101
|
Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression. PLoS Genet 2008; 4:e1000092. [PMID: 18551179 PMCID: PMC2410297 DOI: 10.1371/journal.pgen.1000092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/12/2008] [Indexed: 02/08/2023] Open
Abstract
DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3−/−;Apc1638N and Mlh3−/−;Pms2−/−;Apc1638N (MPA) mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1−/−;Apc1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle) family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression. Approximately one million people every year are diagnosed with colorectal cancer worldwide, and about five hundred thousand of these people subsequently perish from the disease. Colorectal cancer is thought to develop through a series of early and later stages (called cancer initiation and progression, respectively). Deaths from colorectal cancer are particularly tragic because the disease can usually be cured if discovered before full-blown progression. However, our knowledge of how these tumors progress remains very limited. DNA mismatch repair is known to be an important process in preventing ∼15% of colorectal cancer initiation. In this study we describe how two of these genes (Mlh3 and Pms2) that have partial functional redundancy and therefore individually are rarely mutated are also important in preventing colorectal cancer progression. Additionally, we describe a new gene (Tle6-like) that, when overactive, makes these cancers progress more rapidly. The overall goal of this study is to understand colorectal cancer progression better so that we can come up with new ways to block it at the later stage.
Collapse
|
102
|
Nishant KT, Plys AJ, Alani E. A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae. Genetics 2008; 179:747-755. [PMID: 18505871 PMCID: PMC2429871 DOI: 10.1534/genetics.108.086645] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 03/20/2008] [Indexed: 07/26/2023] Open
Abstract
Interference-dependent crossing over in yeast and mammalian meioses involves the mismatch repair protein homologs MSH4-MSH5 and MLH1-MLH3. The MLH3 protein contains a highly conserved metal-binding motif DQHA(X)(2)E(X)(4)E that is found in a subset of MLH proteins predicted to have endonuclease activities (Kadyrov et al. 2006). Mutations within this motif in human PMS2 and Saccharomyces cerevisiae PMS1 disrupted the endonuclease and mismatch repair activities of MLH1-PMS2 and MLH1-PMS1, respectively (Kadyrov et al. 2006, 2007; Erdeniz et al. 2007). As a first step in determining whether such an activity is required during meiosis, we made mutations in the MLH3 putative endonuclease domain motif (-D523N, -E529K) and found that single and double mutations conferred mlh3-null-like defects with respect to meiotic spore viability and crossing over. Yeast two-hybrid and chromatography analyses showed that the interaction between MLH1 and mlh3-D523N was maintained, suggesting that the mlh3-D523N mutation did not disrupt the stability of MLH3. The mlh3-D523N mutant also displayed a mutator phenotype in vegetative growth that was similar to mlh3Delta. Overexpression of this allele conferred a dominant-negative phenotype with respect to mismatch repair. These studies suggest that the putative endonuclease domain of MLH3 plays an important role in facilitating mismatch repair and meiotic crossing over.
Collapse
Affiliation(s)
- K T Nishant
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | |
Collapse
|
103
|
Dpb2p, a noncatalytic subunit of DNA polymerase epsilon, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics 2008; 178:633-47. [PMID: 18245343 DOI: 10.1534/genetics.107.082818] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Most replicases are multi-subunit complexes. DNA polymerase epsilon from Saccharomyces cerevisiae is composed of four subunits: Pol2p, Dpb2p, Dpb3p, and Dpb4p. Pol2p and Dpb2p are essential. To investigate a possible role for the Dpb2p subunit in maintaining the fidelity of DNA replication, we isolated temperature-sensitive mutants in the DPB2 gene. Several of the newly isolated dpb2 alleles are strong mutators, exhibiting mutation rates equivalent to pol2 mutants defective in the 3' --> 5' proofreading exonuclease (pol2-4) or to mutants defective in mismatch repair (msh6). The dpb2 pol2-4 and dpb2 msh6 double mutants show a synergistic increase in mutation rate, indicating that the mutations arising in the dpb2 mutants are due to DNA replication errors normally corrected by mismatch repair. The dpb2 mutations decrease the affinity of Dpb2p for the Pol2p subunit as measured by two-hybrid analysis, providing a possible mechanistic explanation for the loss of high-fidelity synthesis. Our results show that DNA polymerase subunits other than those housing the DNA polymerase and 3' --> 5' exonuclease are essential in controlling the level of spontaneous mutagenesis and genetic stability in yeast cells.
Collapse
|
104
|
Ou J, Niessen RC, Lützen A, Sijmons RH, Kleibeuker JH, de Wind N, Rasmussen LJ, Hofstra RMW. Functional analysis helps to clarify the clinical importance of unclassified variants in DNA mismatch repair genes. Hum Mutat 2007; 28:1047-54. [PMID: 17594722 DOI: 10.1002/humu.20580] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is caused by DNA variations in the DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and PMS2. Many of the mutations identified result in premature termination of translation and thus in loss-of-function of the encoded mutated protein. These DNA variations are thought to be pathogenic mutations. However, some patients carry other DNA mutations, referred to as unclassified variants (UVs), which do not lead to such a premature termination of translation; it is not known whether these contribute to the disease phenotype or merely represent rare polymorphisms. This is a major problem which has direct clinical consequences. Several criteria can be used to classify these UVs, such as: whether they segregate with the disease within pedigrees, are absent in control individuals, show a change of amino acid polarity or size, provoke an amino acid change in a domain that is evolutionary conserved and/or shared between proteins belonging to the same protein family, or show altered function in an in vitro assay. In this review we discuss the various functional assays reported for the HNPCC-associated MMR proteins and the outcomes of these tests on UVs identified in patients diagnosed with or suspected of having HNPCC. We conclude that a large proportion of MMR UVs are likely to be pathogenic, suggesting that missense variants of MMR proteins do indeed play a role in HNPCC.
Collapse
Affiliation(s)
- Jianghua Ou
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Lin Z, Nei M, Ma H. The origins and early evolution of DNA mismatch repair genes--multiple horizontal gene transfers and co-evolution. Nucleic Acids Res 2007; 35:7591-603. [PMID: 17965091 PMCID: PMC2190696 DOI: 10.1093/nar/gkm921] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To understand the evolutionary process of the DNA mismatch repair system, we conducted systematic phylogenetic analysis of its key components, the bacterial MutS and MutL genes and their eukaryotic homologs. Based on genome-wide homolog searches, we identified three new MutS subfamilies (MutS3-5) in addition to the previously studied MutS1 and MutS2 subfamilies. Detailed evolutionary analysis strongly suggests that frequent ancient horizontal gene transfer (HGT) occurred with both MutS and MutL genes from bacteria to eukaryotes and/or archaea. Our results further imply that the origins of mismatch repair system in eukaryotes and archaea are largely attributed to ancient HGT from bacteria instead of vertical evolution. Specifically, the eukaryotic MutS and MutL homologs likely originated from endosymbiotic ancestors of mitochondria or chloroplasts, indicating that not only archaea, but also bacteria are important sources of eukaryotic DNA metabolic genes. The archaeal MutS1 and MutL homologs were also acquired from bacteria simultaneously through HGT. Moreover, the distribution and evolution profiles of the MutS1 and MutL genes suggest that they have undergone long-term coevolution. Our work presents an overall portrait of the evolution of these important genes in DNA metabolism and also provides further understanding about the early evolution of cellular organisms.
Collapse
Affiliation(s)
- Zhenguo Lin
- Department of Biology and Institute of Molecular Evolutionary Genetics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
106
|
Harrington JM, Kolodner RD. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Biol 2007; 27:6546-54. [PMID: 17636021 PMCID: PMC2099603 DOI: 10.1128/mcb.00855-07] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA mismatch repair is thought to act through two subpathways involving the recognition of base-base and insertion/deletion mispairs by the Msh2-Msh6 heterodimer and the recognition of insertion/deletion mispairs by the Msh2-Msh3 heterodimer. Here, through genetic and biochemical approaches, we describe a previously unidentified role of the Msh2-Msh3 heterodimer in the recognition of base-base mispairs and the suppression of homology-mediated duplication and deletion mutations. Saccharomyces cerevisiae msh3 mutants did not show an increase in the rate of base substitution mutations by the CAN1 forward mutation assay compared to the rate for the wild type but did show an altered spectrum of base substitution mutations, including an increased accumulation of base pair changes from GC to CG and from AT to TA; msh3 mutants also accumulated homology-mediated duplication and deletion mutations. The mutation spectrum of mlh3 mutants paralleled that of msh3 mutants, suggesting that the Mlh1-Mlh3 heterodimer may also play a role in the repair of base-base mispairs and in the suppression of homology-mediated duplication and deletion mutations. Mispair binding analysis with purified Msh2-Msh3 and DNA substrates derived from CAN1 sequences found to be mutated in vivo demonstrated that Msh2-Msh3 exhibited robust binding to specific base-base mispairs that was consistent with functional mispair binding.
Collapse
Affiliation(s)
- Jill M Harrington
- Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | |
Collapse
|
107
|
Kow YW, Bao G, Reeves JW, Jinks-Robertson S, Crouse GF. Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands. Proc Natl Acad Sci U S A 2007; 104:11352-7. [PMID: 17592146 PMCID: PMC2040902 DOI: 10.1073/pnas.0704695104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Transformation of both prokaryotes and eukaryotes with single-stranded oligonucleotides can transfer sequence information from the oligonucleotide to the chromosome. We have studied this process using oligonucleotides that correct a -1 frameshift mutation in the LYS2 gene of Saccharomyces cerevisiae. We demonstrate that transformation by oligonucleotides occurs preferentially on the lagging strand of replication and is strongly inhibited by the mismatch-repair system. These results are consistent with a mechanism in which oligonucleotides anneal to single-stranded regions of DNA at a replication fork and serve as primers for DNA synthesis. Because the mispairs the primers create are efficiently removed by the mismatch-repair system, single-stranded oligonucleotides can be used to probe mismatch-repair function in a chromosomal context. Removal of mispairs created by annealing of the single-stranded oligonucleotides to the chromosomal DNA is as expected, with 7-nt loops being recognized solely by MutS beta and 1-nt loops being recognized by both MutS alpha and MutS beta. We also find evidence for Mlh1-independent repair of 7-nt, but not 1-nt, loops. Unexpectedly, we find a strand asymmetry of mismatch-repair function; transformation is blocked more efficiently by MutS alpha on the lagging strand of replication, whereas MutS beta does not show a significant strand bias. These results suggest an inherent strand-related difference in how the yeast MutS alpha and MutS beta complexes access and/or repair mismatches that arise in the context of DNA replication.
Collapse
Affiliation(s)
| | | | | | | | - Gray F. Crouse
- Biology, Emory University, Atlanta, GA 30322
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
108
|
Shell SS, Putnam CD, Kolodner RD. Chimeric Saccharomyces cerevisiae Msh6 protein with an Msh3 mispair-binding domain combines properties of both proteins. Proc Natl Acad Sci U S A 2007; 104:10956-61. [PMID: 17573527 PMCID: PMC1904149 DOI: 10.1073/pnas.0704148104] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Msh2-Msh3 and Msh2-Msh6 are two partially redundant mispair-recognition complexes that initiate mismatch repair in eukaryotes. Crystal structures of the prokaryotic homolog MutS suggest the mechanism by which Msh6 interacts with mispairs because key mispair-contacting residues are conserved in these two proteins. Because Msh3 lacks these conserved residues, we constructed a series of mutants to investigate the requirements for mispair interaction by Msh3. We found that a chimeric protein in which the mispair-binding domain (MBD) of Msh6 was replaced by the equivalent domain of Msh3 was functional for mismatch repair. This chimera possessed the mispair-binding specificity of Msh3 and revealed that communication between the MBD and the ATPase domain is conserved between Msh2-Msh3 and Msh2-Msh6. Further, the chimeric protein retained Msh6-like properties with respect to genetic interactions with the MutL homologs and an Msh2 MBD deletion mutant, indicating that Msh3-like behaviors beyond mispair specificity are not features controlled by the MBD.
Collapse
Affiliation(s)
- Scarlet S. Shell
- *Ludwig Institute for Cancer Research
- Departments of Medicine and
- Cellular and Molecular Medicine, and
- Cancer Center, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669
| | | | - Richard D. Kolodner
- *Ludwig Institute for Cancer Research
- Departments of Medicine and
- Cellular and Molecular Medicine, and
- Cancer Center, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
109
|
|
110
|
Taylor NP, Powell MA, Gibb RK, Rader JS, Huettner PC, Thibodeau SN, Mutch DG, Goodfellow PJ. MLH3 Mutation in Endometrial Cancer. Cancer Res 2006; 66:7502-8. [PMID: 16885347 DOI: 10.1158/0008-5472.can-06-0248] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
MLH3 is a recently described member of the DNA mismatch repair gene family. Based on its interaction with the MutL homologue MLH1, it was postulated that MLH3 might play a role in tumorigenesis. Germ line and somatic mutations in MLH3 have been identified in a small fraction of colorectal cancers, but the role of MLH3 in colorectal cancer tumorigenesis remains controversial. We investigated MLH3's role in endometrial tumorigenesis through analysis of tumor and germ line DNA from 57 endometrial cancer patients who were at increased risk for having inherited cancer susceptibility. Patients with known MSH2 or MSH6 mutations were excluded as well as those who had MLH1-methylated tumors. Sixteen different variants were identified by single-strand conformational variant analysis. Of the 12 missense changes identified, three were somatic mutations. One patient had a germ line missense variant and loss of heterozygosity (LOH) in her tumor specimen. There was no evidence of MLH3 promoter methylation based on combined bisulfite restriction analysis. The identification of inherited missense variants, somatic missense mutations (present in 3 of 57 tumors), and LOH in the tumor from a patient with a germ line missense change suggest a role for MLH3 in endometrial tumorigenesis.
Collapse
Affiliation(s)
- Nicholas P Taylor
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, 4911 Barnes-Jewish Hospital Plaza, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Yao Y, Tao H, Park DI, Sepulveda JL, Sepulveda AR. Demonstration and characterization of mutations induced by Helicobacter pylori organisms in gastric epithelial cells. Helicobacter 2006; 11:272-86. [PMID: 16882331 DOI: 10.1111/j.1523-5378.2006.00408.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Helicobacter pylori gastritis increases gastric cancer risk. Microsatellite instability-type mutations are secondary to deficient DNA mismatch repair. H. pylori gastritis is more frequent in patients with microsatellite instability-positive gastric cancers, and H. pylori organisms independently of inflammation can reduce DNA mismatch repair protein levels, raising the hypothesis that H. pylori organisms might lead to mutagenesis during infection. MATERIALS AND METHODS Mutations were detected using a green fluorescent protein reporter vector (pEGFP-CA13). Gastric cancer AGS cells transfected with pEGFP-CA13 were cocultured with H. pylori or Escherichia coli. The numbers of green fluorescent protein (GFP)-positive cells were determined, and GFP, hMSH2, and hMLH1 protein levels were measured by Western blot. The effect of H. pylori on CpG methylation status of hMLH1 was determined by methylation-specific polymerase chain reaction. RESULTS GFP levels and GFP-positive cell numbers in AGS cells cocultured with H. pylori significantly increased, as the levels of hMLH1 and hMSH2 dropped. H. pylori cocultures induced low-level CpG methylation of the hMLH1 promoter. Sequence analysis of cells cocultured with H. pylori showed an increased number of frameshift mutations and point mutations as compared to cells not cocultured with H. pylori (p = .03 and p = .001, respectively). CONCLUSIONS This is the first report showing that H. pylori bacteria may lead to accumulation of genomic mutations, independently of underlying inflammation. This is associated with reduced DNA mismatch repair, and is at least in part associated with CpG methylation of the hMLH1 promoter. These data support the notion that H. pylori-induced mutations and epigenetic alterations in gastric epithelial cells during chronic gastritis may contribute to an increased risk of gastric cancer associated with H. pylori infection.
Collapse
Affiliation(s)
- Yuan Yao
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
112
|
Emmanuel E, Yehuda E, Melamed-Bessudo C, Avivi-Ragolsky N, Levy AA. The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 2006; 7:100-5. [PMID: 16311517 PMCID: PMC1369230 DOI: 10.1038/sj.embor.7400577] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/21/2005] [Accepted: 10/12/2005] [Indexed: 11/09/2022] Open
Abstract
During homologous recombination (HR), a heteroduplex DNA is formed as a consequence of strand invasion. When the two homologous strands differ in sequence, a mismatch is generated. Earlier studies showed that mismatched heteroduplex often triggers abortion of recombination and that a pivotal component of this pathway is the mismatch repair Msh2 protein. In this study, we analysed the roles of AtMSH2 in suppression of recombination in Arabidopsis. We report that AtMSH2 has a broad range of anti-recombination effects: it suppresses recombination between divergent direct repeats in somatic cells or between homologues from different ecotypes during meiosis. This is the first example of a plant gene that affects HR as a function of sequence divergence and that has an anti-recombination meiotic effect. We discuss the implications of these results for plant improvement by gene transfer across species.
Collapse
Affiliation(s)
- Eyal Emmanuel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elizabeth Yehuda
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Naomi Avivi-Ragolsky
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
- Tel: +972 8 9342734; Fax: +972 8 9344181; E-mail:
| |
Collapse
|
113
|
Wu X, Tsai CY, Patam MB, Zan H, Chen JP, Lipkin SM, Casali P. A role for the MutL mismatch repair Mlh3 protein in immunoglobulin class switch DNA recombination and somatic hypermutation. THE JOURNAL OF IMMUNOLOGY 2006; 176:5426-37. [PMID: 16622010 PMCID: PMC4621967 DOI: 10.4049/jimmunol.176.9.5426] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Class switch DNA recombination (CSR) and somatic hypermutation (SHM) are central to the maturation of the Ab response. Both processes involve DNA mismatch repair (MMR). MMR proteins are recruited to dU:dG mispairs generated by activation-induced cytidine deaminase-mediated deamination of dC residues, thereby promoting S-S region synapses and introduction of mismatches (mutations). The MutL homolog Mlh3 is the last complement of the mammalian set of MMR proteins. It is highly conserved in evolution and is essential to meiosis and microsatellite stability. We used the recently generated knockout mlh3(-/-) mice to address the role of Mlh3 in CSR and SHM. We found that Mlh3 deficiency alters both CSR and SHM. mlh3(-/-) B cells switched in vitro to IgG and IgA but displayed preferential targeting of the RGYW/WRCY (R = A or G, Y = C or T, W = A or T) motif by Sgamma1 and Sgamma3 breakpoints and introduced more insertions and fewer donor/acceptor microhomologies in Smu-Sgamma1 and Smu-Sgamma3 DNA junctions, as compared with mlh3(+/+) B cells. mlh3(-/-) mice showed only a slight decrease in the frequency of mutations in the intronic DNA downstream of the rearranged J(H)4 gene. However, the residual mutations were altered in spectrum. They comprised a decreased proportion of mutations at dA/dT and showed preferential RGYW/WRCY targeting by mutations at dC/dG. Thus, the MMR Mlh3 protein plays a role in both CSR and SHM.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
| | - Connie Y. Tsai
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
| | - Marienida B. Patam
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
| | - Hong Zan
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
| | - Jessica P. Chen
- Department of Medicine, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
| | - Steve M. Lipkin
- Department of Medicine, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
| | - Paolo Casali
- Center for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
- Department of Medicine, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697
- Address correspondence and reprint requests to Professor Paolo Casali, Center for Immunology, 3028 Hewitt Hall, University of California, Irvine, CA 92657-4120.
| |
Collapse
|
114
|
Abstract
By removing biosynthetic errors from newly synthesized DNA, mismatch repair (MMR) improves the fidelity of DNA replication by several orders of magnitude. Loss of MMR brings about a mutator phenotype, which causes a predisposition to cancer. But MMR status also affects meiotic and mitotic recombination, DNA-damage signalling, apoptosis and cell-type-specific processes such as class-switch recombination, somatic hypermutation and triplet-repeat expansion. This article reviews our current understanding of this multifaceted DNA-repair system in human cells.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
115
|
Cohen PE, Pollack SE, Pollard JW. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr Rev 2006; 27:398-426. [PMID: 16543383 DOI: 10.1210/er.2005-0017] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Meiosis is a double-division process that is preceded by only one DNA replication event to produce haploid gametes. The defining event in meiosis is prophase I, during which chromosome pairs locate each other, become physically connected, and exchange genetic information. Although many aspects of this process have been elucidated in lower organisms, there has been scant information available until now about the process in mammals. Recent advances in genetic analysis, especially in mice and humans, have revealed many genes that play essential roles in meiosis in mammals. These include cell cycle-regulatory proteins that couple the exit from the premeiotic DNA synthesis to the progression through prophase I, the chromosome structural proteins involved in synapsis, and the repair and recombination proteins that process the recombination events. Failure to adequately repair the DNA damage caused by recombination triggers meiotic checkpoints that result in ablation of the germ cells by apoptosis. These analyses have revealed surprising sexual dimorphism in the requirements of different gene products and a much less stringent checkpoint regulation in females. This may provide an explanation for the 10-fold increase in meiotic errors in females compared with males. This review provides a comprehensive analysis of the use of genetic manipulation, particularly in mice, but also of the analysis of mutations in humans, to elucidate the mechanisms that are required for traverse through prophase I.
Collapse
Affiliation(s)
- P E Cohen
- Department of Molecular Genetics, Center for the Study of Reproduction and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
116
|
Nicholson A, Fabbri RM, Reeves JW, Crouse GF. The effects of mismatch repair and RAD1 genes on interchromosomal crossover recombination in Saccharomyces cerevisiae. Genetics 2006; 173:647-59. [PMID: 16582436 PMCID: PMC1526514 DOI: 10.1534/genetics.105.055244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 03/28/2006] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes.
Collapse
MESH Headings
- Base Pair Mismatch
- Base Sequence
- Chromosomes, Fungal/genetics
- Crossing Over, Genetic
- DNA Repair/genetics
- DNA Repair Enzymes
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Endonucleases/genetics
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Fungal
- Introns
- Models, Genetic
- MutS Homolog 2 Protein/genetics
- MutS Homolog 2 Protein/metabolism
- MutS Homolog 3 Protein
- Recombination, Genetic
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Substrate Specificity
Collapse
Affiliation(s)
- Ainsley Nicholson
- Graduate Program in Genetics, and Molecular Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
117
|
Affiliation(s)
- Ravi R Iyer
- Department of Biochemistry and Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
118
|
Li Z, Peled JU, Zhao C, Svetlanov A, Ronai D, Cohen PE, Scharff MD. A role for Mlh3 in somatic hypermutation. DNA Repair (Amst) 2006; 5:675-82. [PMID: 16564751 DOI: 10.1016/j.dnarep.2006.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 12/15/2022]
Abstract
Somatic hypermutation (SHM) and class switch recombination (CSR) allow B cells to make high affinity antibodies of various isotypes. Both processes are initiated by activation-induced cytidine deaminase (AID) to generate dG:dU mismatches in the immunoglobulin genes that are resolved differently in SHM and CSR to introduce point mutations and recombination, respectively. The MutL homolog MLH3 has been implicated in meiosis and DNA mismatch repair (MMR). Since it interacts with MLH1, which plays a role in SHM and CSR, we examined these processes in Mlh3-deficient mice. Although deficiencies in other MMR proteins result in defects in SHM, Mlh3(-/-) mice exhibited an increased frequency of mutations in their immunoglobulin variable regions, compared to wild type littermates. Alterations of mutation spectra were observed in the Jh4 flanking region in Mlh3(-/-) mice. Nevertheless, Mlh3(-/-) mice were able to switch to IgG3 or IgG1 with similar frequencies to control mice. This is the first instance where a loss of a DNA repair protein has a positive impact on the rate of SHM, suggesting that Mlh3 normally inhibits the accumulation of mutations in SHM.
Collapse
Affiliation(s)
- Ziqiang Li
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
Jackson N, Sanchez-Moran E, Buckling E, Armstrong SJ, Jones GH, Franklin FCH. Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis. EMBO J 2006; 25:1315-23. [PMID: 16467846 PMCID: PMC1422170 DOI: 10.1038/sj.emboj.7600992] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 01/17/2006] [Indexed: 11/09/2022] Open
Abstract
Characterization of AtMLH3, the Arabidopsis homologue of the prokaryotic MutL mismatch repair gene, reveals that it is expressed in reproductive tissue where it is required for normal levels of meiotic crossovers (COs). Immunocytological studies in an Atmlh3 mutant indicate that chromosome pairing and synapsis proceed with normal distribution of the early recombination pathway proteins. Localization of the MutS homologue AtMSH4 occurs, suggesting that double Holliday junctions (dHjs) are formed, but the MutL homologue AtMLH1, which forms a heterocomplex with AtMLH3, fails to localize normally. Loss of AtMLH3 results in an approximately 60% reduction in COs and is accompanied by a substantial delay of approximately 25 h in prophase I progression. Analysis of the chiasma distribution in Atmlh3 suggests that dHj resolution can occur, but in contrast to wild type where most or all dHjs are directed to form COs the outcome is biased in favour of a non-CO outcome by a ratio of around 2 to 1. The data are compatible with a model whereby the MutL complex imposes a dHj conformation that ensures CO formation.
Collapse
Affiliation(s)
- Neil Jackson
- The School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Ewen Buckling
- The School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susan J Armstrong
- The School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Gareth H Jones
- The School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | |
Collapse
|
120
|
Cannavo E, Marra G, Sabates-Bellver J, Menigatti M, Lipkin SM, Fischer F, Cejka P, Jiricny J. Expression of the MutL homologue hMLH3 in human cells and its role in DNA mismatch repair. Cancer Res 2006; 65:10759-66. [PMID: 16322221 DOI: 10.1158/0008-5472.can-05-2528] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human mismatch repair (MMR) proteins hMLH1 and hPMS2 function in MMR as a heterodimer. Cells lacking either protein have a strong mutator phenotype and display microsatellite instability, yet mutations in the hMLH1 gene account for approximately 50% of hereditary nonpolyposis colon cancer families, whereas hPMS2 mutations are substantially less frequent and less penetrant. Similarly, in the mouse model, Mlh1-/- animals are highly cancer prone and present with gastrointestinal tumors at an early age, whereas Pms2-/- mice succumb to cancer much later in life and do not present with gastrointestinal tumors. This evidence suggested that MLH1 might functionally interact with another MutL homologue, which compensates, at least in part, for a deficiency in PMS2. Sterility of Mlh1-/-, Pms2-/-, and Mlh3-/- mice implicated the Mlh1/Pms2 and Mlh1/Mlh3 heterodimers in meiotic recombination. We now show that the hMLH1/hMLH3 heterodimer, hMutLgamma, can also assist in the repair of base-base mismatches and single extrahelical nucleotides in vitro. Analysis of hMLH3 expression in colon cancer cell lines indicated that the protein levels vary substantially and independently of hMLH1. If hMLH3 participates in MMR in vivo, its partial redundancy with hPMS2, coupled with the fluctuating expression levels of hMLH3, may help explain the low penetrance of hPMS2 mutations in hereditary nonpolyposis colon cancer families.
Collapse
Affiliation(s)
- Elda Cannavo
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Hess MT, Mendillo ML, Mazur DJ, Kolodner RD. Biochemical basis for dominant mutations in the Saccharomyces cerevisiae MSH6 gene. Proc Natl Acad Sci U S A 2006; 103:558-63. [PMID: 16407100 PMCID: PMC1334674 DOI: 10.1073/pnas.0510078103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Here, the ATP-binding, ATP hydrolysis, mispair-binding, sliding clamp formation, and Mlh1-Pms1 complex interaction properties of dominant mutant Msh2-Msh6 complexes have been characterized. The results demonstrate two mechanisms for dominance. In one, seen with the Msh6-S1036P and Msh6-G1067D mutant complexes, the mutant complex binds mispaired bases, is defective for ATP-induced sliding clamp formation and assembly of ternary complexes with Mlh1-Pms1, and occludes mispaired bases from other mismatch repair pathways. In the second, seen with the Msh6-G1142D complex, the mutant complex binds mispaired bases and is defective for ATP-induced sliding clamp formation but assembles ternary complexes with Mlh1-Pms1 that either occlude the mispaired base or prevent Mlh1-Pms1 from acting in alternate mismatch repair pathways.
Collapse
Affiliation(s)
- Martin T Hess
- Department of Medicine, Cancer Center, Ludwig Institute for Cancer Research, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | | | | | |
Collapse
|
122
|
Erdeniz N, Dudley S, Gealy R, Jinks-Robertson S, Liskay RM. Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication. Mol Cell Biol 2005; 25:9221-31. [PMID: 16227575 PMCID: PMC1265805 DOI: 10.1128/mcb.25.21.9221-9231.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Null mutations in DNA mismatch repair (MMR) genes elevate both base substitutions and insertions/deletions in simple sequence repeats. Data suggest that during replication of simple repeat sequences, polymerase slippage can generate single-strand loops on either the primer or template strand that are subsequently processed by the MMR machinery to prevent insertions and deletions, respectively. In the budding yeast Saccharomyces cerevisiae and mammalian cells, MMR appears to be more efficient at repairing mispairs comprised of loops on the template strand compared to loops on the primer strand. We identified two novel yeast pms1 alleles, pms1-G882E and pms1-H888R, which confer a strong defect in the repair of "primer strand" loops, while maintaining efficient repair of "template strand" loops. Furthermore, these alleles appear to affect equally the repair of 1-nucleotide primer strand loops during both leading- and lagging-strand replication. Interestingly, both pms1 mutants are proficient in the repair of 1-nucleotide loop mispairs in heteroduplex DNA generated during meiotic recombination. Our results suggest that the inherent inefficiency of primer strand loop repair is not simply a mismatch recognition problem but also involves Pms1 and other proteins that are presumed to function downstream of mismatch recognition, such as Mlh1. In addition, the findings reinforce the current view that during mutation avoidance, MMR is associated with the replication apparatus.
Collapse
Affiliation(s)
- Naz Erdeniz
- Molecular and Medical Genetics, Oregon Health and Science University, L103, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
123
|
Chen PC, Dudley S, Hagen W, Dizon D, Paxton L, Reichow D, Yoon SR, Yang K, Arnheim N, Liskay RM, Lipkin SM. Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Res 2005; 65:8662-70. [PMID: 16204034 DOI: 10.1158/0008-5472.can-05-0742] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Germ line DNA mismatch repair mutations in MLH1 and MSH2 underlie the vast majority of hereditary non-polyposis colon cancer. Four mammalian homologues of Escherichia coli MutL heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. Although MLH1/PMS2 is generally thought to have the major MutL activity, the precise contributions of each MutL heterodimer to mismatch repair functions are poorly understood. Here, we show that Mlh3 contributes to mechanisms of tumor suppression in the mouse. Mlh3 deficiency alone causes microsatellite instability, impaired DNA-damage response, and increased gastrointestinal tumor susceptibility. Furthermore, Mlh3;Pms2 double-deficient mice have tumor susceptibility, shorter life span, microsatellite instability, and DNA-damage response phenotypes that are indistinguishable from Mlh1-deficient mice. Our data support previous results from budding yeast that show partial functional redundancy between MLH3 and PMS2 orthologues for mutation avoidance and show a role for Mlh3 in gastrointestinal and extragastrointestinal tumor suppression. The data also suggest a mechanistic basis for the more severe mismatch repair-related phenotypes and cancer susceptibility in Mlh1- versus Mlh3- or Pms2-deficient mice. Contributions by both MLH1/MLH3 and MLH1/PMS2 complexes to mechanisms of mismatch repair-mediated tumor suppression, therefore, provide an explanation why, among MutL homologues, only germ line mutations in MLH1 are common in hereditary non-polyposis colon cancer.
Collapse
Affiliation(s)
- Peng-Chieh Chen
- Department of Medicine and Biological Chemistry, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Abstract
Since the discovery of the major human genes with DNA mismatch repair (MMR) function in 1993-1995, mutations in four, MSH2, MLH1, MSH6, and PMS2, have been convincingly linked to susceptibility of hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Among these, PMS2 mutations are associated with diverse clinical features, including those of the Turcot syndrome. Two additional MMR genes, MLH3 and PMS1, have also been proposed to play a role in Lynch syndrome predisposition, but the clinical significance of mutations in these genes is less clear. According to the database maintained by the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC), current InSiGHT (International Society for Gastrointestinal Hereditary Tumors), approximately 500 different HNPCC-associated MMR gene mutations are known that primarily involve MLH1 (approximately 50%), MSH2 (approximately 40%), and MSH6 (approximately 10%). Examination of HNPCC/Lynch syndrome-associated MMR genes and their mutations has revealed several other important functions for their protein products beyond postreplicative mismatch repair as well as many alternative mechanisms of pathogenicity. Despite these advances, much is yet to be learned about the molecular basis of correlations between genetic changes and clinical features of the disease.
Collapse
Affiliation(s)
- Päivi Peltomäki
- Department of Medical Genetics, Biomedicum Helsinki, University of Helsinki, P.O. Box 63, Haartmaninkatu 8, 00014, Finland.
| |
Collapse
|
125
|
Kolas NK, Svetlanov A, Lenzi ML, Macaluso FP, Lipkin SM, Liskay RM, Greally J, Edelmann W, Cohen PE. Localization of MMR proteins on meiotic chromosomes in mice indicates distinct functions during prophase I. ACTA ACUST UNITED AC 2005; 171:447-58. [PMID: 16260499 PMCID: PMC2171243 DOI: 10.1083/jcb.200506170] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4-MSH5. The second complex involves MLH3 together with MSH2-MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2-/- males, but not females, providing an explanation for the sexual dimorphism seen in Pms2-/- mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2-MSH3 and is decreased in Msh2-/- and Msh3-/- mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.
Collapse
Affiliation(s)
- Nadine K Kolas
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
127
|
Gologan A, Graham DY, Sepulveda AR. Molecular markers in Helicobacter pylori-associated gastric carcinogenesis. Clin Lab Med 2005; 25:197-222. [PMID: 15749238 DOI: 10.1016/j.cll.2004.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicobacter pylori infection is a known risk factor of gastric carcino-genesis. This article presents early molecular alterations associated with H. pylori chronic gastritis and advances in the molecular characterization of preneoplastic intestinal metaplasia (IM) and premalignant gastric mucosal lesions. H. pylori infection induces changes in gene expression, genomic instability and accumulation of gene mutations in the stomach epithelium. Mutations, including LOH and microsatellite instability, and gene hypermethylation are seen not only in gastric cancer, but are already detectable in IM and gastric dysplasia/adenoma. Recent reports using microarray expression analysis identified several gastric epithelial genes that are regulated by H. pylori. Among the many genes showing altered epithelial expression in response to H. pylori, some might be useful as markers to assess gastric cancer risk. Profiles of mutagenesis and gene expression in IM and dysplasia/adenoma have been characterized and represent potential markers of preneoplastic and premalignant lesions during gastric carcinogenesis.
Collapse
Affiliation(s)
- Adrian Gologan
- Department of Pathology, University of Pittsburgh Medical Center, PUH-A610, 200 Lothrop Street, Pittsburgh, PA 15213-2582, USA
| | | | | |
Collapse
|
128
|
Shin-Darlak CY, Skinner AM, Turker MS. A role for Pms2 in the prevention of tandem CC --> TT substitutions induced by ultraviolet radiation and oxidative stress. DNA Repair (Amst) 2005; 4:51-7. [PMID: 15533837 DOI: 10.1016/j.dnarep.2004.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 08/09/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
DNA mismatch repair (MMR) is important for preventing base-pair substitutions caused by spontaneous or damage-related DNA polymerase errors. We have used a reversion assay based on mouse Aprt to investigate the role of MMR in preventing ultraviolet radiation (UV) and oxidative stress induced tandem CC --> TT base pair substitutions in cultured mammalian cells. The reversion construct used for this assay can detect both C --> T and CC --> TT mutational events. Most spontaneous mutations in Pms2-deficient cells were single C --> T substitutions (88%), with the remainder being tandem CC --> TT substitutions (12%). The percentage of tandem CC --> TT substitutions rose to 64% and 94% for Pms2-deficient cells exposed to UV and a mixture of hydrogen peroxide and metals (Cu/Fe), respectively. Exposure to hydrogen peroxide alone or metals alone did not induce the tandem substitutions, nor did treatment of the cells with the alkylating agent ethylmethane sulfonate, which induces G --> A substitutions on the opposite strand. Tandem CC --> TT substitutions were also induced by UV irradiation and the hydrogen peroxide/metal mixture in Pms2-proficient cells, but at frequencies significantly lower than those observed in the Pms2-deficient cells. We conclude that mismatch repair plays an important role in preventing tandem CC --> TT substitutions induced by certain genotoxin exposures.
Collapse
Affiliation(s)
- Chi Y Shin-Darlak
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
129
|
Mendillo ML, Mazur DJ, Kolodner RD. Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 2005; 280:22245-57. [PMID: 15811858 DOI: 10.1074/jbc.m407545200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Lac repressor-operator interaction was used as a reversible DNA end-blocking system in conjunction with an IAsys biosensor instrument (Thermo Affinity Sensors), which detects total internal reflectance and allows monitoring of binding and dissociation in real time, in order to develop a system for studying the ability of mismatch repair proteins to move along the DNA. The MSH2-MSH6 complex bound to a mispaired base was found to be converted by ATP binding to a form that showed rapid sliding along the DNA and dissociation via the DNA ends and also showed slow, direct dissociation from the DNA. In contrast, the MSH2-MSH6 complex bound to a base pair containing DNA only showed direct dissociation from the DNA. The MLH1-PMS1 complex formed both mispair-dependent and mispair-independent ternary complexes with the MSH2-MSH6 complex on DNA. The mispair-independent ternary complexes were formed most efficiently on DNA molecules with free ends under conditions where ATP hydrolysis did not occur, and only exhibited direct dissociation from the DNA. The mispair-dependent ternary complexes were formed in the highest yield on DNA molecules with blocked ends, required ATP and magnesium for formation, and showed both dissociation via the DNA ends and direct dissociation from the DNA.
Collapse
Affiliation(s)
- Marc L Mendillo
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, School of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0669, USA
| | | | | |
Collapse
|
130
|
Abdullah MFF, Hoffmann ER, Cotton VE, Borts RH. A role for the MutL homologue MLH2 in controlling heteroduplex formation and in regulating between two different crossover pathways in budding yeast. Cytogenet Genome Res 2005; 107:180-90. [PMID: 15467363 DOI: 10.1159/000080596] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 02/23/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND AIMS Mismatch repair proteins play important roles during meiotic recombination in the budding yeast Saccharomyces cerevisiae and most eukaryotic organisms studied to date. To study the functions of the mismatch repair protein Mlh2p in meiosis, we constructed mlh2Delta strains and measured rates of crossing over, gene conversion, post-meiotic segregation and spore viability. We also analysed mlh1Delta, mlh3Delta, msh4Delta, msh5Delta, exo1Delta and mus81Delta mutant strains singularly and in various combinations. RESULTS Loss of MLH2 resulted in a small but significant decrease in spore viability and a significant increase in gene conversion frequencies but had no apparent effect on crossing over. Deletion of MLH2 in mlh3Delta, msh4Delta or msh5Delta strains resulted in significant proportion of the "lost" crossovers found in single deletion strains being regained in some genetic intervals. We and others propose that there are at least two pathways to generate crossovers in yeast (Ross-Macdonald and Roeder, 1994; Zalevsky et al., 1999; Khazanehdari and Borts, 2000; Novak et al., 2001; de los Santos et al., 2003). Most recombination intermediates are processed by the "major", Msh4-dependent pathway, which requires the activity of Mlh1p/Mlh3p/Msh4p/Msh5p as well as a number of other proteins. The minor pathway(s) utilizes Mms4p/Mus81p. We suggest that the absence of Mlh2p allows some crossovers from the MSH4 pathway to traverse the MUS81-dependent pathway.
Collapse
Affiliation(s)
- M F F Abdullah
- Department of Genetics, University of Leicester, Leicester, UK
| | | | | | | |
Collapse
|
131
|
Morimoto H, Tsukada J, Kominato Y, Tanaka Y. Reduced expression of human mismatch repair genes in adult T-cell leukemia. Am J Hematol 2005; 78:100-7. [PMID: 15682421 DOI: 10.1002/ajh.20259] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the expression of six human DNA mismatch repair (MMR) genes, human MutS homologues 2 (hMSH2), 3 (hMSH3), and 6 (hMSH6), human MutL homologue 1 (hMLH1), human post-meiotic segregations 1 (hPMS1) and 2 (hPMS2), in primary leukemic cells obtained from 11 patients with acute-type adult T-cell leukemia (ATL) by using reverse transcription-polymerase chain reaction (RT-PCR). In contrast to normal peripheral lymphocytes, all primary ATL samples had reduced or loss of expression of two or more MMR genes, and the expression of several MMR genes was simultaneously suppressed in each ATL patient. Abnormal expression of hMSH2, hMSH3, hMSH6, hMLH1, and hPMS1 was observed more frequently than that of hPMS2. In particular, expression of hMSH2 and hPMS1 was reduced in all cases. Western blot analysis further showed reduced expression of both hMSH2 and hPMS1 proteins in all five cases examined. In three out of the 5 cases, both of the two proteins were undetectable. Interestingly, methylation-specific PCR indicated methylation of hPMS1 promoter in all of four ATL cases examined. hPMS1 expression, but not hMSH2 expression, was restored by treatment with a DNA demethylation agent, 5-aza-2'-deoxycytidine, suggesting that methylation plays a crucial role in inhibition of the hPMS1 gene expression in ATL. Our results demonstrate that defect of both human MutS and human MutL systems in primary ATL cells.
Collapse
Affiliation(s)
- Hiroaki Morimoto
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | |
Collapse
|
132
|
Min IM, Selsing E. Antibody class switch recombination: roles for switch sequences and mismatch repair proteins. Adv Immunol 2005; 87:297-328. [PMID: 16102577 DOI: 10.1016/s0065-2776(05)87008-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mechanisms and targeting of antibody class switch DNA recombination are reviewed. Particular emphasis is on the roles for the DNA sequences comprising switch (S) regions, including the S-region tandem repeats, and on the roles of proteins that are involved in both DNA mismatch repair and in class switch recombination.
Collapse
Affiliation(s)
- Irene M Min
- Genetics Program, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
133
|
Marra G, Jiricny J. DNA mismatch repair and colon cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2005; 570:85-123. [PMID: 18727499 DOI: 10.1007/1-4020-3764-3_4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Giancarlo Marra
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
134
|
Ellison AR, Lofing J, Bitter GA. Human MutL homolog (MLH1) function in DNA mismatch repair: a prospective screen for missense mutations in the ATPase domain. Nucleic Acids Res 2004; 32:5321-38. [PMID: 15475387 PMCID: PMC524276 DOI: 10.1093/nar/gkh855] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Germline mutations in the DNA mismatch repair (MMR) genes MSH2 and MLH1 are responsible for the majority of hereditary non-polyposis colorectal cancer (HNPCC), an autosomal-dominant early-onset cancer syndrome. Genetic testing of both MSH2 and MLH1 from individuals suspected of HNPCC has revealed a considerable number of missense codons, which are difficult to classify as either pathogenic mutations or silent polymorphisms. To identify novel MLH1 missense codons that impair MMR activity, a prospective genetic screen in the yeast Saccharomyces cerevisiae was developed. The screen utilized hybrid human-yeast MLH1 genes that encode proteins having regions of the yeast ATPase domain replaced by homologous regions from the human protein. These hybrid MLH1 proteins are functional in MMR in vivo in yeast. Mutagenized MLH1 fragments of the human coding region were synthesized by error-prone PCR and cloned directly in yeast by in vivo gap repair. The resulting yeast colonies, which constitute a library of hybrid MLH1 gene variants, were initially screened by semi-quantitative in vivo MMR assays. The hybrid MLH1 genes were recovered from yeast clones that exhibited a MMR defect and sequenced to identify alterations in the mutagenized region. This investigation identified 117 missense codons that conferred a 2-fold or greater decreased efficiency of MMR in subsequent quantitative MMR assays. Notably, 10 of the identified missense codons were equivalent to codon changes previously observed in the human population and implicated in HNPCC. To investigate the effect of all possible codon alterations at single residues, a comprehensive mutational analysis of human MLH1 codons 43 (lysine-43) and 44 (serine-44) was performed. Several amino acid replacements at each residue were silent, but the majority of substitutions at lysine-43 (14/19) and serine-44 (18/19) reduced the efficiency of MMR. The assembled data identifies amino acid substitutions that disrupt MLH1 structure and/or function, and should assist the interpretation of MLH1 genetic tests.
Collapse
|
135
|
Alou AH, Azaiez A, Jean M, Belzile FJ. Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability. PLANT MOLECULAR BIOLOGY 2004; 56:339-49. [PMID: 15604748 DOI: 10.1007/s11103-004-3472-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mismatch repair (MMR) genes participate in the maintenance of genome stability in all organisms. Based on its high degree of sequence conservation, it seems likely that the AtPMS1 gene of Arabidopsis thaliana is part of the MMR system in this model plant. To test this hypothesis, we aimed to disrupt AtPMS1 function by over-expressing mutated alleles expected to result in a dominant negative effect. To create one mutant allele we substituted two amino acids in the MutL-box, and for the other mutant allele we deleted 87 amino acids comprising the whole MutL-box. Contrary to published reports in some eukaryotes, transgenic plants expressing these alleles did not exhibit a decrease in fertility nor any other visible phenotype. To examine the impact of these mutations on microsatellite instability, the phenotype most often observed in organisms defective in MMR, reporter lines containing a uidA (GUS) gene inactivated by the insertion of a synthetic microsatellite (G7 or G16) were used. GUS gene function in these lines can be restored following the loss of one base or the gain of two bases in the repetitive tract. This results in the observation of blue sectors on a white background following histochemical staining. In a subset of the transformants, a significant increase (2- to 28-fold) in microsatellite instability was observed relative to wild-type. This report shows that MMR function can be disrupted via a dominant negative approach, and it is the first report to describe the phenotypic consequence of disrupting the function of a MutL homolog in plants.
Collapse
Affiliation(s)
- Abdourahamane H Alou
- Département de Phytologie, Université Laval, Pavillon Marchand, Québec, G1K 7P4, Canada
| | | | | | | |
Collapse
|
136
|
Edelmann L, Edelmann W. Loss of DNA mismatch repair function and cancer predisposition in the mouse: animal models for human hereditary nonpolyposis colorectal cancer. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2004; 129C:91-9. [PMID: 15264277 DOI: 10.1002/ajmg.c.30021] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Germline mutations in DNA mismatch repair genes underlie one of the most common hereditary cancer predisposition syndromes known in humans, hereditary nonpolyposis colorectal cancer (HNPCC). Defects of the DNA mismatch repair system are also prevalent in sporadic colorectal cancers. The generation of mice with targeted inactivating mutations in the mismatch repair genes has facilitated the in vivo study of how these genes function and how their individual loss contributes to tumorigenesis. Although there are notable limitations when using murine models to study the molecular basis of human cancer, there is remarkable similarity between the two species with respect to the contribution of individual members of the mismatch repair system to cancer susceptibility, and mouse mutants have greatly enhanced our understanding of the normal role of these genes in mutation avoidance and suppression of tumorigenesis.
Collapse
Affiliation(s)
- Lisa Edelmann
- Human Genetics, Mt. Sinai School of Medicine, New York, NY, USA
| | | |
Collapse
|
137
|
Luo Y, Lin FT, Lin WC. ATM-mediated stabilization of hMutL DNA mismatch repair proteins augments p53 activation during DNA damage. Mol Cell Biol 2004; 24:6430-44. [PMID: 15226443 PMCID: PMC434232 DOI: 10.1128/mcb.24.14.6430-6444.2004] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 02/18/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022] Open
Abstract
Human DNA mismatch repair (MMR) proteins correct DNA errors and regulate cellular response to DNA damage by signaling apoptosis. Mutations of MMR genes result in genomic instability and cancer development. Nonetheless, how MMR proteins are regulated has not yet been determined. While hMLH1, hPMS2, and hMLH3 are known to participate in MMR, the function of another member of MutL-related proteins, hPMS1, remains unclear. Here we show that DNA damage induces the accumulation of hPMS1, hPMS2, and hMLH1 through ataxia-telangiectasia-mutated (ATM)-mediated protein stabilization. The subcellular localization of PMS proteins is also regulated during DNA damage, which induces nuclear localization of hPMS1 and hPMS2 in an hMLH1-dependent manner. The induced levels of hMLH1 and hPMS1 are important for the augmentation of p53 phosphorylation by ATM in response to DNA damage. These observations identify hMutL proteins as regulators of p53 response and demonstrate for the first time a function of hMLH1-hPMS1 complex in controlling the DNA damage response.
Collapse
Affiliation(s)
- Yuhong Luo
- Department of Medicine, University of Alabama at Birmingham, 35294-3300, USA
| | | | | |
Collapse
|
138
|
Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci U S A 2004; 101:9315-20. [PMID: 15199178 PMCID: PMC438974 DOI: 10.1073/pnas.0305749101] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination between moderately divergent DNA sequences is impaired compared with identical sequences. In yeast, an HO endonuclease-induced double-strand break can be repaired by single-strand annealing (SSA) between flanking homologous sequences. A 3% sequence divergence between 205-bp sequences flanking the double-strand break caused a 6-fold reduction in repair compared with identical sequences. This reduction in heteroduplex rejection was suppressed in a mismatch repair-defective msh6 Delta strain and partially suppressed in an msh2 separation-of-function mutant. In mlh1 Delta strains, heteroduplex rejection was greater than in msh6 Delta strains but less than in wild type. Deleting PMS1, MLH2,or MLH3 had no effect on heteroduplex rejection, but a pms1 Delta mlh2 Delta mlh3 Delta triple mutant resembled mlh1 Delta. However, correction of the mismatches within heteroduplex SSA intermediates required PMS1 and MLH1 to the same extent as MSH2 and MSH6. An SSA competition assay in which either diverged or identical repeats can be used for repair showed that heteroduplex DNA is likely to be unwound rather than degraded. This conclusion is supported by the finding that deleting the SGS1 helicase also suppressed heteroduplex rejection.
Collapse
Affiliation(s)
- Neal Sugawara
- Rosenstiel Center and Department of Biology, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | | | |
Collapse
|
139
|
Li GM, Presnell SR, Gu L. Folate deficiency, mismatch repair-dependent apoptosis, and human disease. J Nutr Biochem 2004; 14:568-75. [PMID: 14559107 DOI: 10.1016/s0955-2863(03)00115-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The vitamin that is most commonly deficient in the American diet is folate. Severe folate deficiency in humans is known to cause megaloblastic anemia and developmental defects, and is associated with an increased incidence of several forms of human cancer. Although the exact mechanisms by which this vitamin deficiency may cause these diseases are not known at the present time, recent work has shown that folate deficiency also causes genomic instability and programmed cell death (or apoptosis). Additionally, it is known that the DNA mismatch repair pathway mediates folate deficiency-induced apoptosis. This review will first describe work suggesting that folate deficiency causes genomic instability and apoptosis, then discuss possible mechanisms by which the mismatch repair pathway could trigger folate deficiency-induced apoptosis, which has either protective or destructive effects on tissue.
Collapse
Affiliation(s)
- Guo Min Li
- Department of Pathology and Laboratory Medicine, Markey Cancer Center, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
140
|
Yuan F, Gu L, Guo S, Wang C, Li GM. Evidence for involvement of HMGB1 protein in human DNA mismatch repair. J Biol Chem 2004; 279:20935-40. [PMID: 15014079 DOI: 10.1074/jbc.m401931200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defects in human DNA mismatch repair predispose to cancer, but many components of the pathway have not been identified. We report here the identification and characterization of a novel component required for mismatch repair in human cells. A 30-kDa protein was purified to homogeneity by virtue of its ability to complement a depleted HeLa extract in repair of mismatched heteroduplexes. The complementing activity was identified as HMGB1 (the high mobility group box 1 protein), a non-histone chromatin protein that facilitates protein-protein interactions and recognizes DNA damage. Evidence is also presented that HMGB1 physically interacts with MutSalpha and is required at a step prior to the excision of mispaired nucleotide in mismatch repair.
Collapse
Affiliation(s)
- Fenghua Yuan
- Department of Pathology and Laboratory Medicine, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA
| | | | | | | | | |
Collapse
|
141
|
Bell JS, Harvey TI, Sims AM, McCulloch R. Characterization of components of the mismatch repair machinery in Trypanosoma brucei. Mol Microbiol 2004; 51:159-73. [PMID: 14651619 DOI: 10.1046/j.1365-2958.2003.03804.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mismatch repair is one of a number of DNA repair pathways that cells possess to deal with damage to their genome. Mismatch repair is concerned with the recognition and correction of incorrectly paired bases, which can be base-base mismatches or insertions or deletions of a few bases, and appears to have been conserved throughout evolution. Primarily, this is concerned with increasing the fidelity of DNA replication, but also has important roles in the regulation of homologous recombination and the correction of chemical damage. In this study, we describe five genes in the protistan parasite Trypanosoma brucei that are likely to be involved in nuclear mismatch repair. The predicted T. brucei mismatch repair genes are diverged compared with their likely counterparts in the other eukaryotes examined to date. To demonstrate that these do indeed encode a functional nuclear mismatch repair system, we made T. brucei null mutants in two of the genes, MSH2 and MLH1, that are likely to be central to the functioning of the mismatch repair machinery. These mutations resulted in increased rates of sequence variation at a number of microsatellite loci in the parasite genome, and led to increased tolerance to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine, both phenotypes consistent with mismatch repair impairment.
Collapse
Affiliation(s)
- Joanna S Bell
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, UK
| | | | | | | |
Collapse
|
142
|
Caporale LH. Natural selection and the emergence of a mutation phenotype: an update of the evolutionary synthesis considering mechanisms that affect genome variation. Annu Rev Microbiol 2004; 57:467-85. [PMID: 14527288 DOI: 10.1146/annurev.micro.57.030502.090855] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Most descriptions of evolution assume that all mutations are completely random with respect to their potential effects on survival. However, much like other phenotypic variations that affect the survival of the descendants, intrinsic variations in the probability, type, and location of genetic change can feel the pressure of natural selection. From site-specific recombination to changes in polymerase fidelity and repair of DNA damage, an organism's gene products affect what genetic changes occur in its genome. Through the action of natural selection on these gene products, potentially favorable mutations can become more probable than random. With examples from variation in bacterial surface proteins to the vertebrate immune response, it is clear that a great deal of genetic change is better than "random" with respect to its potential effect on survival. Indeed, some potentially useful mutations are so probable that they can be viewed as being encoded implicitly in the genome. An updated evolutionary theory includes emergence, under selective pressure, of genomic information that affects the probability of different classes of mutation, with consequences for genome survival.
Collapse
|
143
|
Abstract
DNA mismatch repair (MMR) guards the integrity of the genome in virtually all cells. It contributes about 1000-fold to the overall fidelity of replication and targets mispaired bases that arise through replication errors, during homologous recombination, and as a result of DNA damage. Cells deficient in MMR have a mutator phenotype in which the rate of spontaneous mutation is greatly elevated, and they frequently exhibit microsatellite instability at mono- and dinucleotide repeats. The importance of MMR in mutation avoidance is highlighted by the finding that defects in MMR predispose individuals to hereditary nonpolyposis colorectal cancer. In addition to its role in postreplication repair, the MMR machinery serves to police homologous recombination events and acts as a barrier to genetic exchange between species.
Collapse
Affiliation(s)
- Mark J Schofield
- Genetics and Biochemistry Branch, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
144
|
Spell RM, Jinks-Robertson S. Role of Mismatch Repair in the Fidelity ofRAD51- andRAD59-Dependent Recombination inSaccharomyces cerevisiae. Genetics 2003; 165:1733-44. [PMID: 14704162 PMCID: PMC1462911 DOI: 10.1093/genetics/165.4.1733] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractTo prevent genome instability, recombination between sequences that contain mismatches (homeologous recombination) is suppressed by the mismatch repair (MMR) pathway. To understand the interactions necessary for this regulation, the genetic requirements for the inhibition of homeologous recombination were examined using mutants in the RAD52 epistasis group of Saccharomyces cerevisiae. The use of a chromosomal inverted-repeat recombination assay to measure spontaneous recombination between 91 and 100% identical sequences demonstrated differences in the fidelity of recombination in pathways defined by their dependence on RAD51 and RAD59. In addition, the regulation of homeologous recombination in rad51 and rad59 mutants displayed distinct patterns of inhibition by different members of the MMR pathway. Whereas the requirements for the MutS homolog, MSH2, and the MutL homolog, MLH1, in the suppression of homeologous recombination were similar in rad51 strains, the loss of MSH2 caused a greater loss in homeologous recombination suppression than did the loss of MLH1 in a rad59 strain. The nonequivalence of the regulatory patterns in the wild-type and mutant strains suggests an overlap between the roles of the RAD51 and RAD59 gene products in potential cooperative recombination mechanisms used in wild-type cells.
Collapse
|
145
|
Huang ME, Rio AG, Nicolas A, Kolodner RD. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci U S A 2003; 100:11529-34. [PMID: 12972632 PMCID: PMC208792 DOI: 10.1073/pnas.2035018100] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A genomewide screen of a collection of 4,847 yeast gene deletion mutants was carried out to identify the genes required for suppressing mutations in the CAN1 forward-mutation assay. The primary screens and subsequent analysis allowed (i) identification of 18 known mutator mutants, providing a solid means for checking the efficiency of the screen, and (ii) identification of a number of genes not known previously to be involved in suppressing mutations. Among the previously uncharacterized mutation-suppressing genes were six genes of unknown function including four (CSM2, SHU2, SHU1, and YLR376c) encoding proteins that interact with each other and promote resistance to killing by methyl methanesulfonate, one gene (EGL1) previously identified as suppressing Ty1 mobility and recombination between repeated sequences, and one gene (YLR154c) that was not associated with any known processes. In addition, five genes (TSA1, SOD1, LYS7, SKN7, and YAP1) implicated in the oxidative-stress responses were found to play a significant role in mutation suppression. Furthermore, TSA1, which encodes thioredoxin peroxidase, was found to strongly suppress gross chromosomal rearrangements. These results provide a global view of the nonessential genes involved in preventing mutagenesis. Study of such genes should provide useful clues in identification of human genes potentially involved in cancer predisposition and in understanding their mechanisms of action.
Collapse
Affiliation(s)
- Meng-Er Huang
- Ludwig Institute for Cancer Research, Department of Medicine and Cancer Center, University of California at San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
146
|
Hall MC, Shcherbakova PV, Fortune JM, Borchers CH, Dial JM, Tomer KB, Kunkel TA. DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. Nucleic Acids Res 2003; 31:2025-34. [PMID: 12682353 PMCID: PMC153752 DOI: 10.1093/nar/gkg324] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The yeast Mlh1-Pms1 heterodimer required for mismatch repair (MMR) binds to DNA. Here we map DNA binding to N-terminal fragments of Mlh1 and Pms1. We demonstrate that Mlh1 and Pms1 N-terminal domains (NTDs) independently bind to double-stranded and single-stranded DNA, in the absence of dimerization and with different affinities. Full-length Mlh1p alone, which can homodimerize, also binds to DNA. Substituting conserved positively charged amino acids in Mlh1 produces mutator phenotypes in a haploid yeast strain characteristic of reduced MMR. These substitutions strongly reduce DNA binding by the Mlh1 NTD and, to a lesser extent, they also reduce DNA binding by full-length Mlh1 and the Mlh1-Pms1 heterodimer. Replacement of a homologous Pms1 residue has a much smaller effect on mutation rate and does not reduce DNA binding. The results demonstrate that NTDs of yeast Mlh1 and Pms1 contain independent DNA binding sites and they suggest that the C-terminal region of Mlh1p may also contribute to DNA binding. The differential mutator effects and binding properties observed here further suggest that Mlh1 and Pms1 differ in their interactions with DNA. Finally, the results are consistent with the hypothesis that DNA binding by Mlh1 is important for MMR.
Collapse
Affiliation(s)
- Mark C Hall
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Quaresima B, Alifano P, Tassone P, Avvedimento EV, Costanzo FS, Venuta S. Human mismatch-repair protein MutL homologue 1 (MLH1) interacts with Escherichia coli MutL and MutS in vivo and in vitro: a simple genetic system to assay MLH1 function. Biochem J 2003; 371:183-9. [PMID: 12513688 PMCID: PMC1223262 DOI: 10.1042/bj20021205] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2002] [Revised: 12/09/2002] [Accepted: 01/03/2003] [Indexed: 02/07/2023]
Abstract
A simple genetic system has been developed to test the effect of over-expression of wild-type or mutated human MutL homologue 1 (hMLH1) proteins on methyl-directed mismatch repair (MMR) in Escherichia coli. The system relies on detection of Lac(+) revertants using MMR-proficient or MMR-deficient E. coli strains carrying a lac +1 frameshift mutation expressing hMLH1 proteins. We report that expression of wild-type hMLH1 protein causes an approx. 19-fold increase in mutation rates. The mutator phenotype was due to the ability of hMLH1 protein to interact with bacterial MutL and MutS proteins, thereby interfering with the formation of complexes between MMR proteins and mismatched DNA. Conversely, expression of proteins encoded by alleles deriving from hereditary-non-polyposis-colon-cancer (HNPCC) families decreases mutation rates, depending on the specific amino acid substitutions. These effects parallel the MutL-and MutS-binding and ATP-binding/hydrolysis activities of the mutated proteins.
Collapse
Affiliation(s)
- Barbara Quaresima
- Dipartimento di Medicina Sperimentale e Clinica G. Salvatore, Università degli Studi di Catanzaro Magna Graecia, Via Tommaso Campanella 115, 88100 Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
148
|
Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H, Kneitz B, Yang G, Kunkel TA, Kolodner RD, Cohen PE, Edelmann W. Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 2003; 17:603-14. [PMID: 12629043 PMCID: PMC196005 DOI: 10.1101/gad.1060603] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Exonuclease 1 (Exo1) is a 5'-3' exonuclease that interacts with MutS and MutL homologs and has been implicated in the excision step of DNA mismatch repair. To investigate the role of Exo1 in mammalian mismatch repair and assess its importance for tumorigenesis and meiosis, we generated an Exo1 mutant mouse line. Analysis of Exo1(-/-) cells for mismatch repair activity in vitro showed that Exo1 is required for the repair of base:base and single-base insertion/deletion mismatches in both 5' and 3' nick-directed repair. The repair defect in Exo1(-/-) cells also caused elevated microsatellite instability at a mononucleotide repeat marker and a significant increase in mutation rate at the Hprt locus. Exo1(-/-) animals displayed reduced survival and increased susceptibility to the development of lymphomas. In addition, Exo1(-/-) male and female mice were sterile because of a meiotic defect. Meiosis in Exo1(-/-) animals proceeded through prophase I; however, the chromosomes exhibited dynamic loss of chiasmata during metaphase I, resulting in meiotic failure and apoptosis. Our results show that mammalian Exo1 functions in mutation avoidance and is essential for male and female meiosis.
Collapse
Affiliation(s)
- Kaichun Wei
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Argueso JL, Kijas AW, Sarin S, Heck J, Waase M, Alani E. Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol Cell Biol 2003; 23:873-86. [PMID: 12529393 PMCID: PMC140715 DOI: 10.1128/mcb.23.3.873-886.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In eukaryotic cells, DNA mismatch repair is initiated by a conserved family of MutS (Msh) and MutL (Mlh) homolog proteins. Mlh1 is unique among Mlh proteins because it is required in mismatch repair and for wild-type levels of crossing over during meiosis. In this study, 60 new alleles of MLH1 were examined for defects in vegetative and meiotic mismatch repair as well as in meiotic crossing over. Four alleles predicted to disrupt the Mlh1p ATPase activity conferred defects in all functions assayed. Three mutations, mlh1-2, -29, and -31, caused defects in mismatch repair during vegetative growth but allowed nearly wild-type levels of meiotic crossing over and spore viability. Surprisingly, these mutants did not accumulate high levels of postmeiotic segregation at the ARG4 recombination hotspot. In biochemical assays, Pms1p failed to copurify with mlh1-2, and two-hybrid studies indicated that this allele did not interact with Pms1p and Mlh3p but maintained wild-type interactions with Exo1p and Sgs1p. mlh1-29 and mlh1-31 did not alter the ability of Mlh1p-Pms1p to form a ternary complex with a mismatch substrate and Msh2p-Msh6p, suggesting that the region mutated in these alleles could be responsible for signaling events that take place after ternary complex formation. These results indicate that mismatches formed during genetic recombination are processed differently than during replication and that, compared to mismatch repair functions, the meiotic crossing-over role of MLH1 appears to be more resistant to mutagenesis, perhaps indicating a structural role for Mlh1p during crossing over.
Collapse
Affiliation(s)
- Juan Lucas Argueso
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
Defects in DNA-repair pathways lead to an accumulation of mutations in genomic DNA that result from non-repair or mis-repair of modifications introduced into the DNA by endogenous or exogenous agents or by the malfunction of DNA metabolic pathways. Until recently, only two repair pathways, postreplicative mismatch repair and nucleotide excision repair, have been linked to cancer in mammals, but these have been joined in recent months also by the damage-reversal and base-excision-repair processes, which have been shown to be inactivated, either through mutation or epigenetically, in human cancer.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zürich, Switzerland.
| | | |
Collapse
|