101
|
Indole: A privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 2019; 183:111691. [DOI: 10.1016/j.ejmech.2019.111691] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
|
102
|
Sharma MC, Sharma S. Molecular modeling study of uracil-based hydroxamic acids-containing histone deacetylase inhibitors. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
103
|
Asfaha Y, Schrenk C, Alves Avelar LA, Hamacher A, Pflieger M, Kassack MU, Kurz T. Recent advances in class IIa histone deacetylases research. Bioorg Med Chem 2019; 27:115087. [PMID: 31561937 DOI: 10.1016/j.bmc.2019.115087] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic control plays an important role in gene regulation through chemical modifications of DNA and post-translational modifications of histones. An essential post-translational modification is the histone acetylation/deacetylation-process which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The mammalian zinc dependent HDAC family is subdivided into three classes: class I (HDACs 1-3, 8), class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and class IV (HDAC 11). In this review, recent studies on the biological role and regulation of class IIa HDACs as well as their contribution in neurodegenerative diseases, immune disorders and cancer will be presented. Furthermore, the development, synthesis, and future perspectives of selective class IIa inhibitors will be highlighted.
Collapse
Affiliation(s)
- Yodita Asfaha
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Christian Schrenk
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Leandro A Alves Avelar
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Alexandra Hamacher
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marc Pflieger
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Thomas Kurz
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
104
|
Zhang L, Li X, Chen Y, Wan M, Jiang Q, Zhang L, Chou CJ, Song W, Zhang L. Discovery of N-(2-Aminophenyl)-4-(bis(2-chloroethyl)amino)Benzamide as a Potent Histone Deacetylase Inhibitor. Front Pharmacol 2019; 10:957. [PMID: 31543818 PMCID: PMC6730478 DOI: 10.3389/fphar.2019.00957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
Inhibition of histone deacetylases (HDACs) has been an important emerging therapy for the treatment of multiple cancers. However, the application of HDAC inhibitors is restricted by the limited potency against solid tumors. In order to discover novel HDAC inhibitors with potent antitumor activities, nitrogen mustard group was introduced to the structure of CI994. The derived molecule N-(2-aminophenyl)-4-(bis(2-chloroethyl)amino)benzamide (NA) exhibited enzyme inhibitory pattern of class I selectivity with IC50 values of 95.2, 260.7, and 255.7 nM against HDAC1, HDAC2, and HDAC3, respectively. In the antiproliferative assay, NA exhibited 10.3-fold (2.66 μM) and 11.3-fold (1.73 μM) higher potency than did suberoylanilide hydroxamic acid (SAHA) (27.3 and 19.5 μM) in inhibition of A2780 and HepG2 cell growth, respectively. Further HepG2 cell-based cell cycle and apoptosis studies revealed that induction of the G2/M phase arrest and cell apoptosis contributes to the antitumor effects of NA. It is suggested that NA could be utilized as a lead compound in the development of bifunctional HDAC inhibitors for the treatment of solid tumors.
Collapse
Affiliation(s)
- Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, China
| | - Xiaoyang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Minghui Wan
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Qixiao Jiang
- School of Public Health, Qingdao University, Qingdao, China
| | - Li Zhang
- School of Pharmacy, Qingdao University, Qingdao, China
| | - C. James Chou
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, United States
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, China
| |
Collapse
|
105
|
Mohammadi F, Soltani A, Ghahremanloo A, Javid H, Hashemy SI. The thioredoxin system and cancer therapy: a review. Cancer Chemother Pharmacol 2019; 84:925-935. [PMID: 31367788 DOI: 10.1007/s00280-019-03912-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/25/2019] [Indexed: 12/01/2022]
Abstract
Thioredoxin (Trx), thioredoxin reductase (TrxR), and NADPH are key members of the Trx system that is involved in redox regulation and antioxidant defense. In recent years, several researchers have provided information about the roles of the Trx system in cancer development and progression. These reports indicated that many tumor cells express high levels of Trx and TrxR, which can be responsible for drug resistance in tumorigenesis. Inhibition of the Trx system may thus contribute to cancer therapy and improving chemotherapeutic agents. There are now a number of effective natural and synthetic inhibitors with chemotherapy applications possessing antitumor activity ranging from oxidative stress induction to apoptosis. In this article, we first described the features and functions of the Trx system and then reviewed briefly its correlations with cancer. Finally, we summarized the present knowledge about the Trx/TrxR inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Fariba Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
106
|
Kumar D, Sarma P, Bhadra MP, Tangutur AD. Impact of Hybrid-polar Histone Deacetylase Inhibitor m-Carboxycinnamic Acid bis-Hydroxyamide on Human Pancreatic Adenocarcinoma Cells. Anticancer Agents Med Chem 2019; 19:750-759. [DOI: 10.2174/1871520619666190101115034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 11/22/2022]
Abstract
Background:
Histone deacetylase inhibitors (HDACIs) have got immense importance as promising
drugs for cancer treatment as these inhibitors regulate cellular differentiation, gene expression, cell cycle arrest
and apoptosis. The current study investigates the effect of the hybrid-polar HDACI m-carboxycinnamic acid bishydroxyamide
(CBHA) on the growth of human pancreatic adenocarcinoma cells, using the cell line MIA PaCa-
2 as an in vitro model.
Methods:
Following CBHA treatment of the MIA PaCa-2 cells, we characterized the effect of CBHA by in vitro
cytotoxicity evaluation, clonogenic assay, cell cycle analysis, immunoblotting for soluble and insoluble fractions
of tubulin, immunofluorescence and caspase-3 assay.
Results:
We observed that the histone deacetylase inhibitor CBHA markedly impaired growth of the pancreatic
cancer cells by resulting in dose-dependent G2/M arrest, disruption of microtubule organization, induction of
caspase-mediated apoptosis and in vitro suppression of HDAC6. Our study also shows that inhibition of
HDAC6 by CBHA induced acetylation of α-tubulin.
Conclusion:
Together, our findings show that CBHA can be a potential plausible therapeutic that could be
exploited for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT, Hyderabad, India
| | - Pranjal Sarma
- Department of Applied Biology, CSIR-IICT, Hyderabad, India
| | - Manika P. Bhadra
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT, Hyderabad, India
| | - Anjana D. Tangutur
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT, Hyderabad, India
| |
Collapse
|
107
|
Martinez-Archundia M, Colin-Astudillo B, Gómez-Hernández L, Abarca-Rojano E, Correa-Basurto J. Docking analysis provide structural insights to design novel ligands that target PKM2 and HDC8 with potential use for cancer therapy. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1579326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M. Martinez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., Mexico
| | - B. Colin-Astudillo
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., Mexico
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - L. Gómez-Hernández
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - E. Abarca-Rojano
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Distrito Federal, México
| | - J. Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México D.F., Mexico
| |
Collapse
|
108
|
Patnaik S, Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol 2019; 10:588. [PMID: 31244652 PMCID: PMC6563763 DOI: 10.3389/fphar.2019.00588] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic variations along with epigenetic modifications of DNA are involved in colorectal cancer (CRC) development and progression. CRC is the fourth leading cause of cancer-related deaths worldwide. Initiation and progression of CRC is the cumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Colorectal carcinogenesis is associated with epigenetic aberrations including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. Recently, epigenetic modifications have been identified like association of hypermethylated gene Claudin11 (CLDN11) with metastasis and prognosis of poor survival of CRC. DNA methylation of genes CMTM3, SSTR2, MDF1, NDRG4 and TGFB2 are potential epigenetic biomarkers for the early detection of CRC. Tumor suppressor candidate 3 (TUSC3) mRNA expression is silenced by promoter methylation, which promotes epidermal growth factor receptor (EGFR) signaling and rescues the CRC cells from apoptosis and hence leading to poor survival rate. Previous scientific evidences strongly suggest epigenetic modifications that contribute to anticancer drug resistance. Recent research studies emphasize development of drugs targeting histone deacetylases (HDACs) and DNA methyltransferase inhibitors as an emerging anticancer strategy. This review covers potential epigenetic modification targeting chemotherapeutic drugs and probable implementation for the treatment of CRC, which offers a strong rationale to explore therapeutic strategies and provides a basis to develop potent antitumor drugs.
Collapse
|
109
|
Han J, Lim W, You D, Jeong Y, Kim S, Lee JE, Shin TH, Lee G, Park S. Chemoresistance in the Human Triple-Negative Breast Cancer Cell Line MDA-MB-231 Induced by Doxorubicin Gradient Is Associated with Epigenetic Alterations in Histone Deacetylase. JOURNAL OF ONCOLOGY 2019; 2019:1345026. [PMID: 31275376 PMCID: PMC6582875 DOI: 10.1155/2019/1345026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
Chemoresistance is one of the major causes of therapeutic failure in breast cancer patients. In this study, the mechanism of chemoresistance in human triple-negative breast cancer (TNBC) cells (MDA-MB-231) induced by doxorubicin (DOX) gradient was investigated. These DOX-resistant cells showed higher drug efflux rate, increased anchorage-independent growth when cultured in suspension, and increased tumor-forming ability in nude mice, compared to the wild-type MDA-MB-231 cells. RNA sequencing analysis showed an increase in the expression of genes involved in membrane transport, antiapoptosis, and histone regulation. Kaplan-Meier plot analysis of TNBC patients who underwent preoperative chemotherapy showed that the relapse free survival (RFS) of patients with high HIST1H2BK (histone cluster 1 H2B family member k) expression was significantly lower than that of patients with low HIST1H2BK expression. Quantitative real-time PCR confirmed that the level of HIST1H2BK expression was increased in resistant cells. The cytotoxicity analysis showed that the DOX resistance of resistant cells was reduced by treatment with a histone deacetylase (HDAC) inhibitor. Our results suggest that, in DOX-resistant cells, HIST1H2BK expression can be rapidly induced by the high expression of genes involved in membrane transport, antiapoptosis, and histone regulation. In conclusion, chemoresistance in MDA-MB-231 cells can occur in a relatively short period by DOX gradient via this previously known mechanism of resistance, and DOX resistance is dependent on the specificity of resistant cells to HDAC.
Collapse
Affiliation(s)
- Jeonghun Han
- Regenerative Medicine and Cell Therapy Institute, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Yisun Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Sangmin Kim
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
- Breast Cancer Center, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
110
|
p53 at the Crossroads between Different Types of HDAC Inhibitor-Mediated Cancer Cell Death. Int J Mol Sci 2019; 20:ijms20102415. [PMID: 31096697 PMCID: PMC6567317 DOI: 10.3390/ijms20102415] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022] Open
Abstract
Cancer is a complex genetic and epigenetic-based disease that has developed an armada of mechanisms to escape cell death. The deregulation of apoptosis and autophagy, which are basic processes essential for normal cellular activity, are commonly encountered during the development of human tumors. In order to assist the cancer cell in defeating the imbalance between cell growth and cell death, histone deacetylase inhibitors (HDACi) have been employed to reverse epigenetically deregulated gene expression caused by aberrant post-translational protein modifications. These interfere with histone acetyltransferase- and deacetylase-mediated acetylation of both histone and non-histone proteins, and thereby exert a wide array of HDACi-stimulated cytotoxic effects. Key determinants of HDACi lethality that interfere with cellular growth in a multitude of tumor cells are apoptosis and autophagy, which are either mutually exclusive or activated in combination. Here, we compile known molecular signals and pathways involved in the HDACi-triggered induction of apoptosis and autophagy. Currently, the factors that determine the mode of HDACi-elicited cell death are mostly unclear. Correspondingly, we also summarized as yet established intertwined mechanisms, in particular with respect to the oncogenic tumor suppressor protein p53, that drive the interplay between apoptosis and autophagy in response to HDACi. In this context, we also note the significance to determine the presence of functional p53 protein levels in the cancer cell. The confirmation of the context-dependent function of autophagy will pave the way to improve the benefit from HDACi-mediated cancer treatment.
Collapse
|
111
|
Li Y, Wang F, Chen X, Wang J, Zhao Y, Li Y, He B. Zinc-dependent Deacetylase (HDAC) Inhibitors with Different Zinc Binding Groups. Curr Top Med Chem 2019; 19:223-241. [PMID: 30674261 DOI: 10.2174/1568026619666190122144949] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022]
Abstract
The state of histone acetylation plays a very crucial role in carcinogenesis and its development by chromatin remodeling and thus altering transcription of oncogenes and tumor suppressor genes. Such epigenetic regulation was controlled by zinc-dependent histone deacetylases (HDACs), one of the major regulators. Due to the therapeutic potential of HDACs as one of the promising drug targets in cancer, HDAC inhibitors have been intensively investigated over the last few decades. Notably, there are five HDAC inhibitors already approved to the market. Vorinostat (SAHA), Belinostat (PXD-101) and Romidepsin (FK228) have been approved by Food and Drug Administration (FDA) in USA for treating cutaneous T-cell lymphoma (CTCL) or peripheral T cell lymphoma (PTCL) while Panbinostat (LBH-589) has also been approved by the FDA for the treatment of multiple myeloma. Recently, Chidamide was approved by China Food and Drug Administration (CFDA) for the treatment of PTCL. The structural feature of almost all HDAC inhibitors consists of Cap group, linker, and zinc-binding group (ZBG). The binding of ZBG groups to zinc ion plays a decisive role in the inhibition of HDAC. Therefore, we will summarize the developed HDAC inhibitors according to different ZBG groups and discuss their binding mode with zinc ion.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Basic Medicine, Guizhou Medical University, Guiyang 550004, China
| | - Fang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Xiaoxue Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jie Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yonglong Zhao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China.,Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
112
|
Agrawal H, Selokar NL, Saini M, Singh MK, Chauhan MS, Palta P, Singla SK, Manik RS. Epigenetic Alteration of Donor Cells with Histone Deacetylase Inhibitor m-Carboxycinnamic Acid Bishydroxymide Improves the In Vitro Developmental Competence of Buffalo (Bubalus bubalis) Cloned Embryos. Cell Reprogram 2019; 20:76-88. [PMID: 29412736 DOI: 10.1089/cell.2017.0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epigenetic reprogramming is an indispensable process during the course of mammalian development, but aberrant in cloned embryos. The aim of this study was to examine the effect of donor cell treatment with histone deacetylase (HDAC) inhibitor m-carboxycinnamic acid bishydroxymide (CBHA) on cloned embryo development and establish its optimal concentration. Different concentrations of CBHA (2.5, 5.0, 10.0, and 20.0 μM) were used to treat buffalo adult fibroblast cells for 24 hours and effect on cell proliferation, gene expression, and histone modifications was analyzed. Based on these experiments, the best concentration was chosen to determine the effect of enhanced gene activation mark on developmental rates. Among the different concentrations, CBHA at higher concentration (20 μM) shows the sign of apoptosis and stress as indicated by proliferation rate and gene expression data. CBHA treatment significantly decreased the activity of HDACs and increased the level of gene activation mark H3K9ac and H3K4me3, but could not alter the level of H3K27ac. Based on these experiments, 5 μM CBHA was chosen for treatment of donor cells used for the production of cloned embryos. There was no significant difference in cleavage rate between the control and CBHA treatment group (98.5% ± 1.5% vs. 99.0% ± 1.0%), whereas, blastocyst rate markedly improved (46.65% ± 1.94% vs. 57.18% ± 2.68%). The level of H3K9ac and H3K27me3 did not differ significantly in cloned blastocyst produced from either control or CBHA-treated cells. Altogether, these results suggested that donor cell treatment with CBHA supports the reprogramming process and improves the cloned preimplantation development.
Collapse
Affiliation(s)
- Himanshu Agrawal
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,2 School of Bioengineering and Biosciences, Lovely Professional University , Phagwara, India
| | - Naresh Lalaji Selokar
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Monika Saini
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,3 Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes , Hisar, India
| | - Manoj Kumar Singh
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Manmohan Singh Chauhan
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India .,4 ICAR-Central Institute for Research on Goats , Mathura, India
| | - Prabhat Palta
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Suresh Kumar Singla
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| | - Radhey Sham Manik
- 1 Embryo Biotechnology Laboratory, Animal Biotechnology Centre, ICAR-National Dairy Research Institute , Karnal, Haryana, India
| |
Collapse
|
113
|
Zhang M, Pan Y, Tang D, Dorfman RG, Xu L, Zhou Q, Zhou L, Wang Y, Li Y, Yin Y, Kong B, Friess H, Zhao S, Wu JL, Wang L, Zou X. Low levels of pyruvate induced by a positive feedback loop protects cholangiocarcinoma cells from apoptosis. Cell Commun Signal 2019; 17:23. [PMID: 30866966 PMCID: PMC6417221 DOI: 10.1186/s12964-019-0332-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/20/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cancer cells avidly consume glucose and convert it to lactate, resulting in a low pyruvate level. This phenomenon is known as the Warburg effect, and is important for cell proliferation. Although cMyc has often been described as an oncoprotein that preferentially contributes to the Warburg effect and tumor proliferation, mechanisms of action remain unclear. Histone deacetylase 3 (HDAC3) regulates gene expression by removing acetyl groups from lysine residues, as well as has an oncogenic role in apoptosis and contributes to the proliferation of many cancer cells including cholangiocarcinoma (CCA). HDAC inhibitors display antitumor activity in many cancer cell lines. Cancer cells maintain low levels of pyruvate to prevent inhibition of HDAC but the mechanisms remain elusive. The purpose of our study was to explore the role of cMyc in regulating pyruvate metabolism, as well as to investigate whether the inhibitory effect of pyruvate on HDAC3 could hold promise in the treatment of cancer cells. METHODS We studied pyruvate levels in CCA cell lines using metabolite analysis, and analyzed the relationship of pyruvate levels and cell proliferation with cell viability analysis. We cultivated CCA cell lines with high or low levels of pyruvate, and then analyzed the protein levels of HDAC3 and apoptotic markers via Western Blotting. We then explored the reasons of low levels of pyruvate by using seahorse analysis and 13C6 metabolites tracing analysis, and then confirmed the results using patient tissue protein samples through Western Blotting. Bioinformatics analysis and transfection assay were used to confirm the upstream target of the low levels of pyruvate status in CCA. The regulation of cMyc by HDAC3 was studied through immunoprecipitation and Western Blotting. RESULTS We confirmed downregulated pyruvate levels in CCA, and defined that high pyruvate levels correlated with reduced cell proliferation levels. Downregulated pyruvate levels decreased the inhibition to HDAC3 and consequently protected CCA cells from apoptosis. Synergistically upregulated LDHA, PKM2 levels resulted in low levels of pyruvate, as well as poor patient survival. We also found that low levels of pyruvate contributed to proliferation of CCA cells and confirmed that the upstream target is cMyc. Conversely, high activity of HDAC3 stabilized cMyc protein by preferential deacetylating cMyc at K323 site, which further contributed to the low pyruvate levels. Finally, this creates a positive feedback loop that maintained the low levels of pyruvate and promoted CCA proliferation. CONCLUSIONS Collectively, our findings identify a role for promoting the low pyruvate levels regulated by c-Myc, and its dynamic acetylation in cancer cell proliferation. These targets, as markers for predicting tumor proliferation in patients undergoing clinical treatments, could pave the way towards personalized therapies.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
- Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, 200032 China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Shanghai, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | | | - Lei Xu
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Yang Li
- Department of Gastroenterology, Nanjing Medical University Affiliated Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yuyao Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Bo Kong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
- Department of Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Shimin Zhao
- Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD), Fudan University, Shanghai, 200032 China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jian-lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 442000 People’s Republic of China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, No.321 Zhongshan Road, 210008 Nanjing, People’s Republic of China
| |
Collapse
|
114
|
Alp E, Damkaci F, Guven E, Tenniswood M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int J Nanomedicine 2019; 14:1335-1346. [PMID: 30863064 PMCID: PMC6388755 DOI: 10.2147/ijn.s191837] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The efficacy of epigenetic drugs, such as histone deacetylase inhibitors, is often diminished by poor aqueous solubility resulting in limited bioavailability and a low therapeutic index. To overcome the suboptimal therapeutic index, we have developed a biocompatible starch nanoparticle formulation of CG-1521, a histone deacetylase inhibitor in preclinical development for hard-to-treat breast cancers, which improves its bioavailability and half-life. Methods The physicochemical parameters (size, zeta potential, morphology, loading, and release kinetics) of these nanoparticles (CG-NPs) have been optimized and their cytotoxic and apoptotic capacities measured in MCF-7 breast cancer cell line. The mechanism of action of the encapsulated drug was compared with the free drug at molecular level. Results We show that encapsulation of CG-1521 substantially reduces the release rate of drug and provides a significantly enhanced cytotoxic ability of nanoparticles compared with equivalent dose of free CG-1521. CG-NPs induced cell cycle arrest and significant apoptosis in MCF-7 cells in vitro. The biological action of encapsulated drug has the similar impact with free drug on gene expression. Conclusion The findings suggest that encapsulation of CG-1521 into starch nanoparticles can improve drug delivery of histone deacetylase inhibitors for breast cancer therapy without interfering with the mechanism of action of the drug.
Collapse
Affiliation(s)
- Esma Alp
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, Ankara 06800, Turkey.,Department of Chemistry, State University of New York at Oswego, Oswego, NY 13126, USA.,Cancer Research Center, Rensselaer, NY 12144, USA, .,Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA,
| | - Fehmi Damkaci
- Department of Chemistry, State University of New York at Oswego, Oswego, NY 13126, USA
| | - Eylem Guven
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Martin Tenniswood
- Cancer Research Center, Rensselaer, NY 12144, USA, .,Department of Biomedical Sciences, State University of New York, University at Albany, Rensselaer, NY 12144, USA,
| |
Collapse
|
115
|
Gaviard C, Cosette P, Jouenne T, Hardouin J. LasB and CbpD Virulence Factors of Pseudomonas aeruginosa Carry Multiple Post-Translational Modifications on Their Lysine Residues. J Proteome Res 2019; 18:923-933. [PMID: 30672296 DOI: 10.1021/acs.jproteome.8b00556] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a multi-drug resistant human pathogen largely involved in nosocomial infections. Today, effective antibacterial agents are lacking. Exploring the bacterial physiology at the post-translational modifications (PTM) level may contribute to the renewal of fighting strategies. Indeed, some correlations between PTMs and the bacterial virulence, adaptation, and resistance have been shown. In a previous study performed in P. aeruginosa, we reported that many virulence factors like chitin-binding protein CbpD and elastase LasB were multiphosphorylated. Besides phosphorylation, other PTMs, like those occurring on lysine, seem to play key roles in bacteria. In the present study, we investigated for the first time the lysine succinylome and acetylome of the extracellular compartment of P. aeruginosa by using a two-dimensional immunoaffinity approach. Some virulence factors were identified as multimodified on lysine residues, among them, LasB and CbpD. Lysine can be modified by a wide range of chemical groups. In order to check the presence of other chemical groups on modified lysines identified on LasB and CbpD, we used 1- and 2- dimensional gel electrophoresis approaches to target lysine modified by 7 other modifications: butyrylation, crotonylation, dimethylation, malonylation, methylation, propionylation, and trimethylation. We showed that some lysines of these two virulence factors were modified by these 9 different PTMs. Interestingly, we found that the PTMs recovered on these two virulence factors were different than those previously reported in the intracellular compartment.
Collapse
Affiliation(s)
- Charlotte Gaviard
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Pascal Cosette
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Thierry Jouenne
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| | - Julie Hardouin
- Normandie University, UNIROUEN, INSA Rouen, CNRS, PBS , 76000 Rouen , France.,PISSARO Proteomic Facility, IRIB , 76821 Mont-Saint-Aignan , France
| |
Collapse
|
116
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
117
|
Yoshida M. Recent advances in target identification of bioactive natural products. Biosci Biotechnol Biochem 2019; 83:1-9. [DOI: 10.1080/09168451.2018.1533804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ABSTRACT
Natural products are a tremendous source of tool discovery for basic science and drug discovery for clinical uses. In contrast to the large number of compounds isolated from nature, however, the number of compounds whose target molecules have been identified so far is fairly limited. Elucidation of the mechanism of how bioactive small molecules act in cells to induce biological activity (mode of action) is an attractive but challenging field of basic biology. At the same time, this is the major bottleneck for drug development of compounds identified in cell-based and phenotype-based screening. Although researchers’ experience and inspiration have been crucial for successful target identification, recent advancements in genomics, proteomics, and chemical genomics have made this challenging task possible in a systematic fashion.
Collapse
Affiliation(s)
- Minoru Yoshida
- RIKEN Center for Sustainable Resource Science, Wako, Japan
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
118
|
Adams MK, Banks CA, Miah S, Killer M, Washburn MP. Purification and enzymatic assay of class I histone deacetylase enzymes. Methods Enzymol 2019; 626:23-40. [PMID: 31606077 PMCID: PMC6839770 DOI: 10.1016/bs.mie.2019.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The reversible acetylation of histones has a profound influence on transcriptional status. Histone acetyltransferases catalyze the addition of these chemical modifications to histone lysine residues. Conversely, histone deacetylases (HDACs) catalyze the removal of these acetyl groups from histone lysine residues. As modulators of transcription, HDACs have found themselves as targets of several FDA-approved chemotherapeutic compounds which aim to inhibit enzyme activity. The ongoing efforts to develop targeted and isoform-specific HDAC inhibitors necessitates tools to study these modifications and the enzymes that maintain an equilibrium of these modifications. In this chapter, we present an optimized workflow for the isolation of recombinant protein and subsequent assay of class I HDAC activity. We demonstrate the application of this assay by assessing the activities of recombinant HDAC1, HDAC2, and SIN3B. This assay system utilizes readily available reagents and can be used to assess the activity and responsiveness of class I HDAC complexes to HDAC inhibitors.
Collapse
Affiliation(s)
- Mark K. Adams
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | | | - Sayem Miah
- Stowers Institute for Medical Research, Kansas City, MO 64110
| | - Maxime Killer
- Stowers Institute for Medical Research, Kansas City, MO 64110,Current address: Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Michael P. Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110,Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160,Correspondence:
| |
Collapse
|
119
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
120
|
Thomas M, Alsarraf J, Araji N, Tranoy-Opalinski I, Renoux B, Papot S. The Lossen rearrangement from free hydroxamic acids. Org Biomol Chem 2019; 17:5420-5427. [DOI: 10.1039/c9ob00789j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During more than a century, the Lossen rearrangement was supposed to occur exclusively in the presence of stochiometric amount of activating reagents. Very recently, it was demonstrated that the Lossen rearrangement can take place directly from free hydroxamic acids offering a renewal of interest for this reaction.
Collapse
Affiliation(s)
- Mikaël Thomas
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Jérôme Alsarraf
- Chaire de recherche sur les agents anticancéreux d'origine naturelle
- Laboratoire d'analyse et de séparation des essences végétales (LASEVE)
- Département des Sciences Fondamentales
- Université du Québec à Chicoutimi
- Chicoutimi
| | - Nahla Araji
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Isabelle Tranoy-Opalinski
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Brigitte Renoux
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| | - Sébastien Papot
- Université de Poitiers
- UMR-CNRS 7285
- Institut de Chimie des Milieux et des Matériaux de Poitiers (IC2MP)
- Groupe Systèmes Moléculaires Programmés
- 86073 Poitiers
| |
Collapse
|
121
|
Lewis KA, Jordan HR, Tollefsbol TO. Effects of SAHA and EGCG on Growth Potentiation of Triple-Negative Breast Cancer Cells. Cancers (Basel) 2018; 11:cancers11010023. [PMID: 30591655 PMCID: PMC6356328 DOI: 10.3390/cancers11010023] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer comprises approximately 15–20% of all breast cancers diagnosed and is nearly twice as common in black women than white women in the United States. We evaluated the effects of two epigenetic-modifying compounds on markers of growth potential in several triple-negative breast cancer cell lines. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor currently used in the treatment of cutaneous T cell lymphoma, was administered to triple-negative breast cancer cells alone or in combination with epigallocatechin-3-gallate (EGCG), a DNA methyltransferase (DNMT) inhibitor isolated from green tea. The compounds affected the expression of oncogenic miR-221/222 and tumor suppressors, p27 and PTEN, in addition to estrogen receptor alpha (ERα). E-cadherin expression was increased while N-cadherin was decreased, indicating a more epithelial phenotype. In addition, the activity of DNMTs was diminished with the treatments, and there was a significant enrichment of AcH3 within the promoter of p27 and PTEN, suggesting a role of epigenetic mechanisms for the aforementioned changes. These results translated to reduced migration of the triple-negative breast cancer cells with the treatments. Together, these findings support the role of SAHA and EGCG in limiting growth and proliferation of breast cancer cells.
Collapse
Affiliation(s)
- Kayla A Lewis
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA.
- School of Nursing, University of Alabama at Birmingham, 1701 University Blvd, Birmingham, AL 35294, USA.
| | - Harrison R Jordan
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama at Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama at Birmingham, 1675 University Blvd, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA.
| |
Collapse
|
122
|
Surolia I, Bates SE. Entinostat finds a path: A new study elucidates effects of the histone deacetylase inhibitor on the immune system. Cancer 2018; 124:4597-4600. [PMID: 30423203 DOI: 10.1002/cncr.31766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Ira Surolia
- Division of Hematology and Oncology, Columbia University Medical Center, New York, New York
| | - Susan E Bates
- Division of Hematology and Oncology, Columbia University Medical Center, New York, New York
| |
Collapse
|
123
|
Epigenetic Targeting of Autophagy via HDAC Inhibition in Tumor Cells: Role of p53. Int J Mol Sci 2018; 19:ijms19123952. [PMID: 30544838 PMCID: PMC6321134 DOI: 10.3390/ijms19123952] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022] Open
Abstract
Tumor development and progression is the consequence of genetic as well as epigenetic alterations of the cell. As part of the epigenetic regulatory system, histone acetyltransferases (HATs) and deacetylases (HDACs) drive the modification of histone as well as non-histone proteins. Derailed acetylation-mediated gene expression in cancer due to a delicate imbalance in HDAC expression can be reversed by histone deacetylase inhibitors (HDACi). Histone deacetylase inhibitors have far-reaching anticancer activities that include the induction of cell cycle arrest, the inhibition of angiogenesis, immunomodulatory responses, the inhibition of stress responses, increased generation of oxidative stress, activation of apoptosis, autophagy eliciting cell death, and even the regulation of non-coding RNA expression in malignant tumor cells. However, it remains an ongoing issue how tumor cells determine to respond to HDACi treatment by preferentially undergoing apoptosis or autophagy. In this review, we summarize HDACi-mediated mechanisms of action, particularly with respect to the induction of cell death. There is a keen interest in assessing suitable molecular factors allowing a prognosis of HDACi-mediated treatment. Addressing the results of our recent study, we highlight the role of p53 as a molecular switch driving HDACi-mediated cellular responses towards one of both types of cell death. These findings underline the importance to determine the mutational status of p53 for an effective outcome in HDACi-mediated tumor therapy.
Collapse
|
124
|
Zhang L, Zhang J, Jiang Q, Zhang L, Song W. Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2018; 33:714-721. [PMID: 29616828 PMCID: PMC6009916 DOI: 10.1080/14756366.2017.1417274] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/01/2022] Open
Abstract
Zinc binding groups (ZBGs) play a crucial role in targeting histone deacetylase inhibitors (HDACIs) to the active site of histone deacetylases (HDACs), thus determining the potency of HDACIs. Due to the high affinity to the zinc ion, hydroxamic acid is the most commonly used ZBG in the structure of HDACs. An alternative ZBG is benzamide group, which features excellent inhibitory selectivity for class I HDACs. Various ZBGs have been designed and tested to improve the activity and selectivity of HDACIs, and to overcome the pharmacokinetic limitations of current HDACIs. Herein, different kinds of ZBGs are reviewed and their features have been discussed for further design of HDACIs.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Jian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qixiao Jiang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Li Zhang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
125
|
Cheng YW, Liao LD, Yang Q, Chen Y, Nie PJ, Zhang XJ, Xie JJ, Shan BE, Zhao LM, Xu LY, Li EM. The histone deacetylase inhibitor panobinostat exerts anticancer effects on esophageal squamous cell carcinoma cells by inducing cell cycle arrest. Cell Biochem Funct 2018; 36:398-407. [PMID: 30484863 DOI: 10.1002/cbf.3359] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 02/05/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. Histone deacetylase inhibitors (HDACIs) have been demonstrated as an emerging class of anticancer drugs for a range of haematological and solid tumours. However, the effect of HDACIs has not yet been investigated on ESCC cells. In this study, HDACIs were initially considered to have anticancer activity for ESCC, due to the high expression of HDAC genes in ESCC cell lines by analysing expression data of 27 ESCC cell lines from the Broad-Novartis Cancer Cell Line Encyclopedia. Next, we used five ESCC cell lines and one normal immortalized esophageal epithelial cell line to screen three HDACIs, panobinostat (LBH589), vorinostat (SAHA), and trichostatin A (TSA), for the ability to inhibit growth. Here, we report that LBH589 more effectively suppressed cell proliferation of ESCC cell lines, in a dose-dependent manner, than TSA and SAHA, as well as had lower toxicity against the SHEE normal immortalized esophageal epithelial cell line. Further experiments indicated that LBH589 treatment significantly inhibited TP53 (mutated TP53) expression, both at the mRNA and protein level, and simultaneously increased p21 and decreased cyclin D1 expression. Taken together, we propose that LBH589 inhibits ESCC cell proliferation mainly through inducing cell cycle arrest by increasing p21 and decreasing cyclin D1 in a p53-independent manner. SIGNIFICANCE OF THE STUDY: In this study, the antitumor activity of HDACIs LBH589, SAHA, and TSA on ESCC was characterized, with LBH589 displaying the most potent anti-proliferative activity while not harming normal immortalized esophageal epithelial cells. Furthermore, we propose that LBH589 exerts its anti-proliferative effect by inducing cell cycle arrest. The ability to specifically target cancer cells indicates therapeutic potential for use of LBH589 in the treatment of ESCC.
Collapse
Affiliation(s)
- Yin-Wei Cheng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Lian-Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ping-Juan Nie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiao-Jun Zhang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jian-Jun Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| | - Bao-En Shan
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lian-Mei Zhao
- Research Centre, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, Guangdong, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
126
|
Zhang L, Chen Y, Jiang Q, Song W, Zhang L. Therapeutic potential of selective histone deacetylase 3 inhibition. Eur J Med Chem 2018; 162:534-542. [PMID: 30472601 DOI: 10.1016/j.ejmech.2018.10.072] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
Histone deacetylases (HDACs) are closely related to the occurrence and development of a variety of diseases, such as tumor, inflammation, diabetes mellitus, cardiovascular and neurodegenerative diseases. Inhibition of HDACs by developing HDAC inhibitors has achieved significant progress in the treatment of diseases caused by epigenetic abnormalities, and especially in the cancer therapy. Isoform selective HDAC inhibitors are emphasized to be disease specific and have less off-target effects and better safety performances. HDAC3 has been illustrated to play specific role in the development of several diseases, and the discovery of HDAC3 selective inhibitors has exhibited potential in the targeted disease treatment. Herein, we summarize the current knowledge about the prospects of selective inhibition of HDAC3 for the drug development.
Collapse
Affiliation(s)
- Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Yiming Chen
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Qixiao Jiang
- School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Weiguo Song
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
127
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
128
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
129
|
McGivern TJP, Slator C, Kellett A, Marmion CJ. Innovative DNA-Targeted Metallo-prodrug Strategy Combining Histone Deacetylase Inhibition with Oxidative Stress. Mol Pharm 2018; 15:5058-5071. [PMID: 30192548 DOI: 10.1021/acs.molpharmaceut.8b00652] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cancer remains a global health challenge. There is an urgent need to develop innovative therapeutics that can overcome the shortcomings of existing cancer therapies. DNA enzymes involved in nucleic acid compaction and organization are an attractive cancer drug target for therapeutic exploitation. In this work, a family of Cu(II) prodrugs containing suberoylanilide hydroxamic acid (SAHA), a well-established histone deacetylase inhibitor (HDACi) and clinically approved cancer drug, and phenanthrene ligands as DNA intercalative components have been rationally developed. The complexes, of general formula [Cu(SAHA-1H)( N, N'-phenanthrene)]+, exhibit excellent DNA recognition with binding affinity of lead agents in the order of ∼107 M(bp)-1. Biophysical studies involving nucleic acid polymers indicate intercalative binding at both adenine-thymine (A-T) and guanine-cytosine (G-C) rich sequences but thermodynamically stable interactions are favored in G-C tracts. The complexes mediate DNA damage by producing reactive oxygen species (ROS) with spin trapping experiments showing that superoxide, the hydroxyl radical, and hydrogen peroxide play critical roles in strand scission. The agents were found to have promising antiproliferative effects against a panel of epithelial cancers, and in two representative cell lines possessing mutated p53 (SK-OV-3 and DU145), enhanced cytotoxicity was observed. Significantly, mechanistic experiments with the most promising candidates revealed HDAC inhibition activity was achieved over a shorter time frame as compared to clinical standards with DNA damage-response markers identifying upregulation of both DNA synthesis and nucleotide excision repair (NER) pathways. Finally, confocal imaging and gene expression analysis show this metallodrug class exerts cytotoxic activity predominantly through an apoptotic pathway.
Collapse
Affiliation(s)
- Tadhg J P McGivern
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland.,School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin, Dublin 9 , Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin, Dublin 9 , Ireland
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology , Dublin City University , Glasnevin, Dublin 9 , Ireland
| | - Celine J Marmion
- Centre for Synthesis and Chemical Biology, Department of Chemistry , Royal College of Surgeons in Ireland , 123 St. Stephen's Green , Dublin 2 , Ireland
| |
Collapse
|
130
|
Gaviard C, Jouenne T, Hardouin J. Proteomics ofPseudomonas aeruginosa: the increasing role of post-translational modifications. Expert Rev Proteomics 2018; 15:757-772. [DOI: 10.1080/14789450.2018.1516550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Charlotte Gaviard
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
- PISSARO proteomic facility, IRIB, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
131
|
Rajan A, Shi H, Xue B. Class I and II Histone Deacetylase Inhibitors Differentially Regulate Thermogenic Gene Expression in Brown Adipocytes. Sci Rep 2018; 8:13072. [PMID: 30166563 PMCID: PMC6117331 DOI: 10.1038/s41598-018-31560-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/17/2018] [Indexed: 01/04/2023] Open
Abstract
Class I histone deacetylase inhibitors (HDACis) enhance whole body energy expenditure and attenuate high fat diet-induced insulin resistance. However, it is not clear whether this is exerted directly through activating brown fat thermogenesis. Here, we find that pan-HDACi TSA exerts paradoxical effects on brown fat gene expression, as it inhibits the expression of Ucp1, Pparγ and Prdm16 in brown adipocytes, while promoting the expression of other brown fat-specific genes such as Pgc1α, Pgc1β, Acox1 and Cidea. Further studies indicate that class I HDACi MS-275 significantly increases; whereas class II HDACi MC-1568 markedly reduces, the expression of Ucp1 and other brown fat-specific genes in treated brown adipocytes. ChIP assay reveals an enhanced H3 acetylation at the Pgc1α promoter in MS-275-treated brown adipocytes; whereas the effect of MC-1568 is associated with up-regulation of retinoblastoma protein (Rb) and an enhanced acetylation of H3K27 at the Rb promoter. Loss of function studies indicate that Pgc1α up-regulation largely mediates the stimulatory effect of class I HDACis on the thermogenic program, whereas up-regulation of Rb may be responsible for the inhibitory effect of class II HDACis. Thus, our data suggest that class I and II HDACis have differential effects on brown fat thermogenic gene expression.
Collapse
Affiliation(s)
- Anubama Rajan
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Hang Shi
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Bingzhong Xue
- Center for Obesity Reversal, Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
132
|
Persky DO, Li H, Rimsza LM, Barr PM, Popplewell LL, Bane CL, Von Gehr A, LeBlanc M, Fisher RI, Smith SM, Friedberg JW. A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806. Am J Hematol 2018; 93:486-493. [PMID: 29266344 DOI: 10.1002/ajh.25010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/07/2017] [Accepted: 12/17/2017] [Indexed: 02/06/2023]
Abstract
Loss of major histocompatibility Class II expression (MHCII) in diffuse large B-cell lymphoma (DLBCL) correlates with decreased survival. MHCII transcription is in part regulated by histone acetylation. We tested the hypothesis that combination of histone deacetylase inhibitor (HDACI) with standard chemotherapy would improve outcomes in DLBCL in part through increased MHCII expression. S0806 was a single arm phase I/II trial of vorinostat given at 400 mg po daily on days 1-9 (subsequently amended to days 1-5 due to toxicity), combined with R-CHOP given on day 3 of a 21-day cycle for 8 cycles, with primary phase II endpoint of 2-year progression free survival (PFS). With 72 evaluable patients, at median follow up of 3 years, 2-year PFS estimate was 73%, and OS estimate was 86%. Considering that the regimen fell short of predefined efficacy improvement and was associated with high rates of febrile neutropenia (38%) and sepsis (19%), it cannot be recommended for general use. Consistent with our hypothesis, patients with low MCHII expression on S0806 had numerically superior outcomes compared to those from trial S0433 which did not use an HDACI, but the difference was not statistically significant. Current studies are focused on finding biomarkers of response to HDACI.
Collapse
Affiliation(s)
| | - Hongli Li
- SWOG Statistical Center; Seattle Washington
| | | | | | | | | | - Ann Von Gehr
- Kaiser Permanente NCORP/Kaiser Permanente San Jose; San Jose California
| | | | - Richard I. Fisher
- Fox Chase Cancer Center/Temple University School of Medicine; Philadelphia Pennsylvania
| | | | | |
Collapse
|
133
|
Histone deacetylases as targets for antitrypanosomal drugs. Future Sci OA 2018; 4:FSO325. [PMID: 30271613 PMCID: PMC6153458 DOI: 10.4155/fsoa-2018-0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
Parasitic protozoa comprise several species that are causative agents of important diseases. These diseases are distributed throughout the world and include leishmaniasis, Chagas disease and sleeping sickness, malaria and toxoplasmosis. Treatment is based on drugs that were developed many years ago, which have side effects and produce resistant parasites. One approach for the development of new drugs is the identification of new molecular targets. We summarize the data on histone deacetylases, a class of enzymes that act on histones, which are closely associated with DNA and its regulation. These enzymes may constitute new targets for the development of antiparasitic protozoa drugs. Although several protozoan species are mentioned, members of the Trypanosomatidae family are the main focus of this short review. Parasitic protozoa comprise species that are causative agents of important diseases distributed throughout the world. The available drugs for treatment were developed many years ago, might cause side effects and produce resistant parasites. The identification of new molecular targets is required for the development of new drugs. Histone deacetylases act on histones, are closely associated with DNA and thus may constitute new targets for antiparasitic therapy, especially that against trypanosomatid protozoa.
Collapse
|
134
|
Salgado E, Bian X, Feng A, Shim H, Liang Z. HDAC9 overexpression confers invasive and angiogenic potential to triple negative breast cancer cells via modulating microRNA-206. Biochem Biophys Res Commun 2018; 503:1087-1091. [PMID: 29936177 DOI: 10.1016/j.bbrc.2018.06.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
Triple negative breast cancer (TNBC) is among the most aggressive breast cancer subtypes with poor prognosis. The purpose of this study is to better understand the molecular basis of TNBC as well as develop new therapeutic strategies. Our results demonstrate that HDAC9 is overexpressed in TNBC compared to non-TNBC cell lines and tissues and is inversely proportional with miR-206 expression levels. We show that HDAC9 selective inhibition blocked the invasion of TNBC cells in vitro and repressed the angiogenesis shown via in vivo Matrigel plug assays. Subsequent HDAC9 siRNA knockdown was then shown to restore miR-206 while also decreasing VEGF and MAPK3 levels. Furthermore, the inhibition of miR-206 neutralized the action of HDAC9 siRNA on decreasing VEGF and MAPK3 levels. This study highlights HDAC9 as a mediator of cell invasion and angiogenesis in TNBC cells through VEGF and MAPK3 by modulating miR-206 expression and suggests that selective inhibition of HDAC9 may be an efficient route for TNBC therapy.
Collapse
Affiliation(s)
- Eric Salgado
- Molecular and Systems Pharmacology Graduate Studies Program, Emory University, Atlanta, GA, 30322, USA; Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Xuehai Bian
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA; Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Amber Feng
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA
| | - Hyunsuk Shim
- Molecular and Systems Pharmacology Graduate Studies Program, Emory University, Atlanta, GA, 30322, USA; Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| | - Zhongxing Liang
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
135
|
Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. CHEM REC 2018; 18:1681-1700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| |
Collapse
|
136
|
Wu M, Hayward D, Kalin JH, Song Y, Schwabe JWR, Cole PA. Lysine-14 acetylation of histone H3 in chromatin confers resistance to the deacetylase and demethylase activities of an epigenetic silencing complex. eLife 2018; 7:e37231. [PMID: 29869982 PMCID: PMC6019071 DOI: 10.7554/elife.37231] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The core CoREST complex (LHC) contains histone deacetylase HDAC1 and histone demethylase LSD1 held together by the scaffold protein CoREST. Here, we analyze the purified LHC with modified peptide and reconstituted semisynthetic mononucleosome substrates. LHC demethylase activity toward methyl-Lys4 in histone H3 is strongly inhibited by H3 Lys14 acetylation, and this appears to be an intrinsic property of the LSD1 subunit. Moreover, the deacetylase selectivity of LHC unexpectedly shows a marked preference for H3 acetyl-Lys9 versus acetyl-Lys14 in nucleosome substrates but this selectivity is lost with isolated acetyl-Lys H3 protein. This diminished activity of LHC to Lys-14 deacetylation in nucleosomes is not merely due to steric accessibility based on the pattern of sensitivity of the LHC enzymatic complex to hydroxamic acid-mediated inhibition. Overall, these studies have revealed how a single Lys modification can confer a composite of resistance in chromatin to a key epigenetic enzyme complex involved in gene silencing.
Collapse
Affiliation(s)
- Mingxuan Wu
- Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Dawn Hayward
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Jay H Kalin
- Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| | - Yun Song
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUnited Kingdom
| | - John WR Schwabe
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUnited Kingdom
| | - Philip A Cole
- Division of Genetics, Department of MedicineBrigham and Women’s HospitalBostonUnited States
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
137
|
Markossian S, Ang KK, Wilson CG, Arkin MR. Small-Molecule Screening for Genetic Diseases. Annu Rev Genomics Hum Genet 2018; 19:263-288. [PMID: 29799800 DOI: 10.1146/annurev-genom-083117-021452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.
Collapse
Affiliation(s)
- Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Kenny K Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Christopher G Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
138
|
Abstract
Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn2+-binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.
Collapse
|
139
|
Choi G, Yang TJ, Yoo S, Choi SI, Lim JY, Cho PS, Hwang SW. TRPV4-Mediated Anti-nociceptive Effect of Suberanilohydroxamic Acid on Mechanical Pain. Mol Neurobiol 2018; 56:444-453. [PMID: 29707744 DOI: 10.1007/s12035-018-1093-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/29/2022]
Abstract
Biological effects of suberanilohydroxamic acid (SAHA) have mainly been observed in the context of tumor suppression via epigenetic mechanisms, but other potential outcomes from its use have also been proposed in different fields such as pain modulation. Here, we tried to understand whether SAHA modulates specific pain modalities by a non-epigenetic unknown mechanism. From 24 h Complete Freund's Adjuvant (CFA)-inflamed hind paws of mice, mechanical and thermal inflammatory pain indices were collected with or without immediate intraplantar injection of SAHA. To examine the action of SAHA on sensory receptor-specific pain, transient receptor potential (TRP) ion channel-mediated pain indices were collected in the same manner of intraplantar treatment. Activities of primarily cultured sensory neurons and heterologous cells transfected with TRP channels were monitored to determine the molecular mechanism underlying the pain-modulating effect of SAHA. As a result, immediate and localized pretreatment with SAHA, avoiding an epigenetic intervention, acutely attenuated mechanical inflammatory pain and receptor-specific pain evoked by injection of a TRP channel agonist in animal models. We show that a component of the mechanisms involves TRPV4 inhibition based on in vitro intracellular Ca2+ imaging and electrophysiological assessments with heterologous expression systems and cultured sensory neurons. Taken together, the present study provides evidence of a novel off-target action and its mechanism of SAHA in its modality-specific anti-nociceptive effect and suggests the utility of this compound for pharmacological modulation of pain.
Collapse
Affiliation(s)
- Geunyeol Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Tae-Jin Yang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Seung-In Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Pyung Sun Cho
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, South Korea. .,Department of Physiology, Korea University College of Medicine, Seoul, 02841, South Korea.
| |
Collapse
|
140
|
Whittaker SR, Barlow C, Martin MP, Mancusi C, Wagner S, Self A, Barrie E, Te Poele R, Sharp S, Brown N, Wilson S, Jackson W, Fischer PM, Clarke PA, Walton MI, McDonald E, Blagg J, Noble M, Garrett MD, Workman P. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor. Mol Oncol 2018; 12:287-304. [PMID: 29063678 PMCID: PMC5830651 DOI: 10.1002/1878-0261.12148] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/18/2023] Open
Abstract
Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimized from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II, and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small-molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2 family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer.
Collapse
Affiliation(s)
- Steven R. Whittaker
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Clare Barlow
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Mathew P. Martin
- Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneMedical SchoolNewcastle upon TyneUK
| | - Caterina Mancusi
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Steve Wagner
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Annette Self
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Elaine Barrie
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Robert Te Poele
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Swee Sharp
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Nathan Brown
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Stuart Wilson
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Wayne Jackson
- Cyclacel Ltd.DundeeUK
- Present address:
Samuel Lister AcademyBingleyWest YorkshireBD16 1TZUK
| | - Peter M. Fischer
- Cyclacel Ltd.DundeeUK
- Present address:
School of Pharmacy and Centre for Biomolecular SciencesUniversity of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Paul A. Clarke
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Michael I. Walton
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Edward McDonald
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| | - Martin Noble
- Northern Institute for Cancer ResearchUniversity of Newcastle upon TyneMedical SchoolNewcastle upon TyneUK
| | - Michelle D. Garrett
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
- Present address:
School of BiosciencesUniversity of KentCanterburyKentCT2 7NJUK
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics UnitDivision of Cancer TherapeuticsThe Institute of Cancer ResearchLondonUK
| |
Collapse
|
141
|
Abstract
Since the identification and cloning of human histone deacetylases (HDACs) and the rapid approval of vorinostat (Zolinza®) for the treatment of cutaneous T-cell lymphoma, the field of HDAC biology has met many initial successes. However, many challenges remain due to the complexity involved in the lysine posttranslational modifications, epigenetic transcription regulation, and nonepigenetic cellular signaling cascades. In this chapter, we will: review the discovery of the first HDAC inhibitor and present discussion regarding the future of next-generation HDAC inhibitors, give an overview of different classes of HDACs and their differences in lysine deacylation activity, discuss different classes of HDAC inhibitors and their HDAC isozyme preferences, and review HDAC inhibitors' preclinical studies, their clinical trials, their pharmacokinetic challenges, and future direction. We will also discuss the likely reason for the failure of multiple HDAC inhibitor clinical trials in malignancies other than lymphoma and multiple myeloma. In addition, the potential molecular mechanism(s) that may play a key role in the efficacy and therapeutic response rate in the clinic and the likely patient population for HDAC therapy will be discussed.
Collapse
Affiliation(s)
- Jesse J McClure
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States
| | - Xiaoyang Li
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States
| | - C James Chou
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States.
| |
Collapse
|
142
|
Kim IS, Kim HS, Kim M, Kwon J, Kim EM, Hwang H, Oh PS, Lim ST, Sohn MH, Kim DH, Jeong HJ. Synthesis and Evaluation of 2-[18F]Fluoroethyltriazolesuberohydroxamine Acid for Histone Deacetylase in a Tumor Model as a Positron Emission Tomography Radiotracer. Cancer Biother Radiopharm 2018; 33:52-59. [DOI: 10.1089/cbr.2017.2320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- In Sun Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hyeon-Soo Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Minjoo Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Jeongil Kwon
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Kaibiotech, Research Center, Jeonju, Jeollabuk-do, Republic of Korea
| | - Eun-Mi Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Hyosook Hwang
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Myung-Hee Sohn
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| | - Dong Hyun Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Kaibiotech, Research Center, Jeonju, Jeollabuk-do, Republic of Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
- Research Institute of Clinical Medicine, Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
143
|
Sun Y, Chen BR, Deshpande A. Epigenetic Regulators in the Development, Maintenance, and Therapeutic Targeting of Acute Myeloid Leukemia. Front Oncol 2018. [PMID: 29527516 PMCID: PMC5829038 DOI: 10.3389/fonc.2018.00041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The importance of epigenetic dysregulation to acute myeloid leukemia (AML) pathophysiology has become increasingly apparent in recent years. Epigenetic regulators, including readers, writers, and erasers, are recurrently dysregulated by way of chromosomal translocations, somatic mutations, or genomic amplification in AML and many of these alterations are directly implicated in AML pathogenesis. Mutations in epigenetic regulators are often discovered in founder clones and persist after therapy, indicating that they may contribute to a premalignant state poised for the acquisition of cooperating mutations and frank malignancy. Apart from the proto-oncogenic impact of these mutations, the AML epigenome is also shaped by other epigenetic factors that are not mutated but co-opted by AML oncogenes, presenting with actionable vulnerabilities in this disease. Targeting the AML epigenome might also be important for eradicating AML leukemia stem cells, which can be critical for disease maintenance and resistance to therapy. In this review, we describe the importance of epigenetic regulators in AML. We also summarize evidence implicating specific epigenetic regulators in AML pathobiology and discuss emerging epigenome-based therapies for the treatment of AML in the clinic.
Collapse
Affiliation(s)
- Younguk Sun
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Bo-Rui Chen
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Aniruddha Deshpande
- Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
144
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
145
|
Lynch C, Zhao J, Huang R, Kanaya N, Bernal L, Hsieh JH, Auerbach SS, Witt KL, Merrick BA, Chen S, Teng CT, Xia M. Identification of Estrogen-Related Receptor α Agonists in the Tox21 Compound Library. Endocrinology 2018; 159:744-753. [PMID: 29216352 PMCID: PMC5774247 DOI: 10.1210/en.2017-00658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022]
Abstract
The estrogen-related receptor α (ERRα) is an orphan nuclear receptor (NR) that plays a role in energy homeostasis and controls mitochondrial oxidative respiration. Increased expression of ERRα in certain ovarian, breast, and colon cancers has a negative prognosis, indicating an important role for ERRα in cancer progression. An interaction between ERRα and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) has also recently been shown to regulate an enzyme in the β-oxidation of free fatty acids, thereby suggesting that ERRα plays an important role in obesity and type 2 diabetes. Therefore, it would be prudent to identify compounds that can act as activators of ERRα. In this study, we screened ∼10,000 (8311 unique) compounds, known as the Tox21 10K collection, to identify agonists of ERRα. We performed this screen using two stably transfected HEK 293 cell lines, one with the ERRα-reporter alone and the other with both ERRα-reporter and PGC-1α expression vectors. After the primary screening, we identified more than five agonist clusters based on compound structural similarity analysis (e.g., statins). By examining the activities of the confirmed ERRα modulators in other Tox21 NR assays, eliminating those with promiscuous NR activity, and performing follow-up assays (e.g., small interfering RNA knockdown), we identified compounds that might act as endocrine disrupters through effects on ERRα signaling. To our knowledge, this study is the first comprehensive analysis in discovering potential endocrine disrupters that affect the ERRα signaling pathway.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| | - Noriko Kanaya
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Lauren Bernal
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina 27560
| | - Scott S. Auerbach
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kristine L. Witt
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - B. Alex Merrick
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Christina T. Teng
- Division of the National Toxicology Program, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
146
|
Structural modification of histone deacetylase inhibitors with a phenylglycine scaffold. Anticancer Drugs 2018; 29:145-156. [PMID: 33052636 DOI: 10.1097/cad.0000000000000579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the discovery of histone deacetylase inhibitors (HDACIs) as antitumor drugs, a series of potent phenylglycine-based HDACIs were developed. However, further development is restricted by the poor solubility. Therefore, structural modifications were performed in the present study in the development of potent HDACIs with improved pharmacokinetic properties. The synthesized molecules were designed by the substitution of fatty linkers for aromatic linkers, and showed good solubility profiles. Among the compounds derived, molecule HD9 showed a potent enzyme-inhibitory effect (IC50 values of 76 nmol/l) and in-vitro antiproliferative activities (IC50 values of 0.51, 0.83, and 0.76 µmol/l against U937, K562, and HL60 cells, respectively). Molecule HD9 showed selectivity of HDAC3 over HDAC6 in the isoform selectivity assays. Molecular docking studies showed good binding patterns of molecule HD9 to the active site of HDAC3. Results from the present work indicated that molecule HD9 is a promising lead compound for the tumor therapy.
Collapse
|
147
|
Oikawa T, Otsuka Y, Onodera Y, Horikawa M, Handa H, Hashimoto S, Suzuki Y, Sabe H. Necessity of p53-binding to the CDH1 locus for its expression defines two epithelial cell types differing in their integrity. Sci Rep 2018; 8:1595. [PMID: 29371630 PMCID: PMC5785525 DOI: 10.1038/s41598-018-20043-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/12/2018] [Indexed: 12/19/2022] Open
Abstract
TP53 mutation (i.e., loss of normal-p53) may evoke epithelial-mesenchymal transition (EMT), which was previously attributed to loss of certain miRNAs. However, not all epithelial cells undergo EMT upon TP53 mutation, and the p53-miRNA axis may not fully explain p53 function in epithelial integrity. We here show two modes of epithelial integrity: one involves p53-binding to a nucleotide region and the other does not. In the former, p53 binds to the CDH1 (encoding E-cadherin) locus to antagonize EZH2-mediated H3K27 trimethylation (H3K27me3) to maintain high levels of acetylation of H3K27 (H3K27ac). In the latter, the same locus is not highly acetylated at H3K27, and does not allow p53-binding, nor needs to antagonize EZH2. We moreover demonstrated that although the CDH1 locus in the p53-independent cells, but not in fibroblasts, becomes high-H3K27ac by butyrate and allows p53-biniding, their CDH1 expression does not become dependent on p53. Our results identified novel modes of the epithelial integrity, in which the same epithelial-specific gene locus exhibits different requirement for p53 with different histone modifications among different epithelial cells to warrant its expression.
Collapse
Affiliation(s)
- Tsukasa Oikawa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yutaro Otsuka
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yasuhito Onodera
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Mei Horikawa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Haruka Handa
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeru Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yutaka Suzuki
- Laboratory of Functional Genomics, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| |
Collapse
|
148
|
Latcheva NK, Viveiros JM, Waddell EA, Nguyen PTT, Liebl FLW, Marenda DR. Epigenetic crosstalk: Pharmacological inhibition of HDACs can rescue defective synaptic morphology and neurotransmission phenotypes associated with loss of the chromatin reader Kismet. Mol Cell Neurosci 2017; 87:77-85. [PMID: 29249293 DOI: 10.1016/j.mcn.2017.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/20/2017] [Accepted: 11/06/2017] [Indexed: 12/25/2022] Open
Abstract
We are beginning to appreciate the complex mechanisms by which epigenetic proteins control chromatin dynamics to tightly regulate normal development. However, the interaction between these proteins, particularly in the context of neuronal function, remains poorly understood. Here, we demonstrate that the activity of histone deacetylases (HDACs) opposes that of a chromatin remodeling enzyme at the Drosophila neuromuscular junction (NMJ). Pharmacological inhibition of HDAC function reverses loss of function phenotypes associated with Kismet, a chromodomain helicase DNA-binding (CHD) protein. Inhibition of HDACs suppresses motor deficits, overgrowth of the NMJ, and defective neurotransmission associated with loss of Kismet. We hypothesize that Kismet and HDACs may converge on a similar set of target genes in the nervous system. Our results provide further understanding into the complex interactions between epigenetic protein function in vivo.
Collapse
Affiliation(s)
- Nina K Latcheva
- Department of Biology, Drexel University, Philadelphia, PA, United States; Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, United States
| | | | - Edward A Waddell
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Phuong T T Nguyen
- Department of Biology, Drexel University, Philadelphia, PA, United States
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, United States
| | - Daniel R Marenda
- Department of Biology, Drexel University, Philadelphia, PA, United States; Program in Molecular and Cellular Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, United States; Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
149
|
Structure–activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery. Future Med Chem 2017; 9:2211-2237. [PMID: 29182018 DOI: 10.4155/fmc-2017-0130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure–activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.
Collapse
|
150
|
Park I, Kwon MS, Paik S, Kim H, Lee HO, Choi E, Lee H. HDAC2/3 binding and deacetylation of BubR1 initiates spindle assembly checkpoint silencing. FEBS J 2017; 284:4035-4050. [DOI: 10.1111/febs.14286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Inai Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Sangjin Paik
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyeonjong Kim
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hae-Ock Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Eunhee Choi
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyunsook Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| |
Collapse
|