101
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
102
|
Could hypoxia influence basic biological properties and ultrastructural features of adult canine mesenchymal stem /stromal cells? Vet Res Commun 2018; 42:297-308. [PMID: 30238341 DOI: 10.1007/s11259-018-9738-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to compare canine adipose tissue mesenchymal stem cells cultured under normoxic (20% O2) and not severe hypoxic (7% O2) conditions in terms of marker expression, proliferation rate, differentiation potential and cell morphology. Intra-abdominal fat tissue samples were recovered from 4 dogs and cells isolated from each sample were cultured under hypoxic and normoxic conditions. Proliferation rate and adhesion ability were determined, differentiation towards chondrogenic, osteogenic and adipogenic lineages was induced; the expression of CD44, CD34, DLA-DQA1, DLA-DRA1 was determined by PCR, while flow cytometry analysis for CD90, CD105, CD45 and CD14 was carried out. The morphological study was performed by transmission electron microscopy. Canine AT-MSCs, cultured under different oxygen tensions, maintained their basic biological features. However, under hypoxia, cells were not able to form spheroid aggregates revealing a reduction of their adhesivness. In both conditions, MSCs mainly displayed the same ultrastructural morphology and retained the ability to produce membrane vesicles. Noteworthy, MSCs cultivated under hypoxya revealed a huge shedding of large complex vesicles, containing smaller round-shaped vesicles. In our study, hypoxia partially influences the basic biological properties and the ultrastructural features of canine mesenchymal stem /stromal cells. Further studies are needed to clarify how hypoxia affects EVs production in term of amount and content in order to understand its contribution in tissue regenerative mechanisms and the possible employment in clinical applications. The findings of the present work could be noteworthy for canine as well as for other mammalian species.
Collapse
|
103
|
Yoshioka J, Ohsugi Y, Yoshitomi T, Yasukawa T, Sasaki N, Yoshimoto K. Label-Free Rapid Separation and Enrichment of Bone Marrow-Derived Mesenchymal Stem Cells from a Heterogeneous Cell Mixture Using a Dielectrophoresis Device. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3007. [PMID: 30205546 PMCID: PMC6163816 DOI: 10.3390/s18093007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are an important cell resource for stem cell-based therapy, which are generally isolated and enriched by the density-gradient method based on cell size and density after collection of tissue samples. Since this method has limitations with regards to purity and repeatability, development of alternative label-free methods for BMSC separation is desired. In the present study, rapid label-free separation and enrichment of BMSCs from a heterogeneous cell mixture with bone marrow-derived promyelocytes was successfully achieved using a dielectrophoresis (DEP) device comprising saw-shaped electrodes. Upon application of an electric field, HL-60 cells as models of promyelocytes aggregated and floated between the saw-shaped electrodes, while UE7T-13 cells as models of BMSCs were effectively captured on the tips of the saw-shaped electrodes. After washing out the HL-60 cells from the device selectively, the purity of the UE7T-13 cells was increased from 33% to 83.5% within 5 min. Although further experiments and optimization are required, these results show the potential of the DEP device as a label-free rapid cell isolation system yielding high purity for rare and precious cells such as BMSCs.
Collapse
Affiliation(s)
- Junya Yoshioka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Yu Ohsugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Saitama 350-8585, Japan.
| | - Toru Yoshitomi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
| | - Tomoyuki Yasukawa
- Graduate School of Material Science, University of Hyogo, Hyogo 678-1297, Japan.
| | - Naoki Sasaki
- Department of Applied Chemistry, Faculty of Science and Engineering, Toyo University, Saitama 350-8585, Japan.
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.
- JST, PRESTO, The University of Tokyo, Tokyo 153-8902, Japan.
| |
Collapse
|
104
|
Su Y, Shen X, Chen J, Isales CM, Zhao J, Shi XM. Differentially expressed genes in PPARγ-deficient MSCs. Mol Cell Endocrinol 2018; 471:97-104. [PMID: 28774780 PMCID: PMC5792374 DOI: 10.1016/j.mce.2017.07.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/28/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipogenesis. It is also a central player in energy metabolism, inflammation and immunity. As an important nuclear transcription factor, PPARγ can regulate the expression and function of genes or biological processes directly or indirectly via association with other factors and thus modulate their activities. To better understand the impact of PPARγ on the global gene expression profile, we evaluated the bioinformatic data, which revealed the changes that occurred in genes and their pathways in the absence of PPARγ. In brief, we performed RNA deep sequencing (RNA-Seq) analysis using RNA samples isolated from multipotent mesenchymal stromal cells (MSCs) of PPARγ knockout and wild type control mice. The RNA-Seq data sets were then subjected to bioinformatic analyses from various angles to better reveal the breadth of PPARγ function in different biological processes. Our results reveal novel genes and networks modulated by PPARγ and provides new insights into our understanding of the physiologic and pathophysiologic role this nuclear receptor plays in health and disease.
Collapse
Affiliation(s)
- Yun Su
- Department of Neuroscience & Regenerative Medicine, USA
| | - Xiaona Shen
- Department of Mathematics, Logistical Engineering University, Chongqing, China
| | - Jie Chen
- Department of Biostatistics and Epidemiology, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Neuroscience & Regenerative Medicine, USA; Orthopaedic Surgery, Augusta University, Augusta, GA, USA
| | - Jing Zhao
- Department of Mathematics, Logistical Engineering University, Chongqing, China.
| | - Xing-Ming Shi
- Department of Neuroscience & Regenerative Medicine, USA; Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
105
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
106
|
Cortical AAV-CNTF Gene Therapy Combined with Intraspinal Mesenchymal Precursor Cell Transplantation Promotes Functional and Morphological Outcomes after Spinal Cord Injury in Adult Rats. Neural Plast 2018; 2018:9828725. [PMID: 30245710 PMCID: PMC6139201 DOI: 10.1155/2018/9828725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) promotes survival and enhances long-distance regeneration of injured axons in parts of the adult CNS. Here we tested whether CNTF gene therapy targeting corticospinal neurons (CSN) in motor-related regions of the cerebral cortex promotes plasticity and regrowth of axons projecting into the female adult F344 rat spinal cord after moderate thoracic (T10) contusion injury (SCI). Cortical neurons were transduced with a bicistronic adeno-associated viral vector (AAV1) expressing a secretory form of CNTF coupled to mCHERRY (AAV-CNTFmCherry) or with control AAV only (AAV-GFP) two weeks prior to SCI. In some animals, viable or nonviable F344 rat mesenchymal precursor cells (rMPCs) were injected into the lesion site two weeks after SCI to modulate the inhibitory environment. Treatment with AAV-CNTFmCherry, as well as with AAV-CNTFmCherry combined with rMPCs, yielded functional improvements over AAV-GFP alone, as assessed by open-field and Ladderwalk analyses. Cyst size was significantly reduced in the AAV-CNTFmCherry plus viable rMPC treatment group. Cortical injections of biotinylated dextran amine (BDA) revealed more BDA-stained axons rostral and alongside cysts in the AAV-CNTFmCherry versus AAV-GFP groups. After AAV-CNTFmCherry treatments, many sprouting mCherry-immunopositive axons were seen rostral to the SCI, and axons were also occasionally found caudal to the injury site. These data suggest that CNTF has the potential to enhance corticospinal repair by transducing parent CNS populations.
Collapse
|
107
|
Bi M, Wang J, Zhang Y, Li L, Wang L, Yao R, Duan S, Tong S, Li J. Bone mesenchymal stem cells transplantation combined with mild hypothermia improves the prognosis of cerebral ischemia in rats. PLoS One 2018; 13:e0197405. [PMID: 30067742 PMCID: PMC6070180 DOI: 10.1371/journal.pone.0197405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are used as a great promising choice for the treatment of cerebral ischemia. Herein, we discuss the neuroprotective effects of the combination of BMSCs transplantation and mild hypothermia (MH) in an ischemia-reperfusion rat model. First, BMSCs were isolated using density gradient centrifugation and the adherent screening method, followed by culture, identification and labeling with DAPI. Second, adult male SD rats were divided into 5 groups: sham group (surgery without blockage of middle cerebral artery), model group (middle cerebral artery occlusion (MCAO) was established 2h prior to reperfusion), BMSCs group (injection of BMSCs via the lateral ventricle 24h after MCAO), MH group (mild hypothermia for 3h immediately after MCAO) and combination therapy group (combination of BMSCs and MH). Finally, the modified neurological severity score (mNSS) test was performed to assess behavioral function at different time points (before MCAO, before transplantation, at day 1, day 5 and day 10 after transplantation). After that, the brain was subjected to TTC staining, and the homing and angiogenesis were evaluated by immumofluorescence and immunohistochemistry. Immunofluorescence staining and Western Blot analysis were performed to calculate the percentage of the infarct area and explore glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF). Our results showed that the combination therapy significantly decreased mNSS scores (P<0.01) and reduced the percentage of the infarct area (P<0.01) than a single treatment. Moreover, the expression of GFAP and VEGF increased significantly in the combination therapy group (at day 5, day 10 after transplantation; at all time points after transplantation, respectively) compared to the single treatment groups. Taken together, it was suggested that the combination of BMSCs transplantation and MH can significantly reduce the percentage of the infarct area and improve functional recovery by promoting homing and angiogenesis, which may be a beneficial treatment for cerebral ischemia.
Collapse
Affiliation(s)
- Min Bi
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Jiawei Wang
- Medical College of Xiamen University, Xiamen, Fujian, China
- Department of Neurology, The 184th Hospital of People’s Liberation Army of China, Yingtan, Jiangxi, China
| | - Yidan Zhang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Longzhu Li
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Linhui Wang
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Ran Yao
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Shijie Duan
- Medical College of Xiamen University, Xiamen, Fujian, China
| | - Suijun Tong
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- * E-mail: (ST); (JL)
| | - Jianpeng Li
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
- * E-mail: (ST); (JL)
| |
Collapse
|
108
|
Petrova ES. Differentiation Potential of Mesenchymal Stem Cells and Stimulation of Nerve Regeneration. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418040033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
109
|
Grochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy-Brief review. Clin Neurol Neurosurg 2018; 173:8-14. [PMID: 30053745 DOI: 10.1016/j.clineuro.2018.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 12/23/2022]
Abstract
Adult mammalian neural stem cells are unique because of their properties, such as differentiation capacity, self-renewal, quiescence, and also because they exist in specific niches, which are the subventricular zone (SVZ) and subgranular zone (SGZ) - the dentate gyrus of the hippocampus. SVZ is situated along the ependymal cell layer, dividing the ventricular area and subventricular zone. There are several sources of neural stem cells such as human embryonic stem cells, human fetal brain-derived neural stem/progenitor cells, human induced pluripotent stem cells, direct reprogrammed astrocytes. Stem cell sciences are a promising tool for research purposes as well as therapy. Induced pluripotent stem cells appear to be very useful for human neuron studies, allowing the creation of defined neuron populations, particularly for neurodevelopmental and neurodegenerative diseases as well as ischemic events. Neural stem cell sciences have a promising future in terms of stem cell therapy as well as research. There is, however, still a great need for further research to overcome obstacles.
Collapse
Affiliation(s)
- Cezary Grochowski
- Department of Anatomy, Medical University of Lublin, Doktora Kazimierza Jaczewskiego 4, 20-400, Lublin, Poland; Department of Neurosurgery and Pediatric Neurosurgery in Lublin, Medical University of Lublin, Poland.
| | - Elżbieta Radzikowska
- Department of Plastic Surgery, Central Clinical Hospital of the MSWiA in Warsaw, Poland
| | - Ryszard Maciejewski
- Department of Anatomy, Medical University of Lublin, Doktora Kazimierza Jaczewskiego 4, 20-400, Lublin, Poland
| |
Collapse
|
110
|
Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, Watanabe M, Iiri T, Matsumoto N. Isolation of Adipose-Derived Stem/Stromal Cells from Cryopreserved Fat Tissue and Transplantation into Rats with Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19071963. [PMID: 29976859 PMCID: PMC6073880 DOI: 10.3390/ijms19071963] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue contains multipotent cells known as adipose-derived stem/stromal cells (ASCs), which have therapeutic potential for various diseases. Although the demand for adipose tissue for research use remains high, no adipose tissue bank exists. In this study, we attempted to isolate ASCs from cryopreserved adipose tissue with the aim of developing a banking system. ASCs were isolated from fresh and cryopreserved adipose tissue of rats and compared for proliferation (doubling time), differentiation capability (adipocytes), and cytokine (hepatocyte growth factor and vascular endothelial growth factor) secretion. Finally, ASCs (2.5 × 106) were intravenously infused into rats with spinal cord injury, after which hindlimb motor function was evaluated. Isolation and culture of ASCs from cryopreserved adipose tissue were possible, and their characteristics were not significantly different from those of fresh tissue. Transplantation of ASCs derived from cryopreserved tissue significantly promoted restoration of hindlimb movement function in injured model rats. These results indicate that cryopreservation of adipose tissue may be an option for clinical application.
Collapse
Affiliation(s)
- Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Akemi Hamaguchi
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|
111
|
Soundararajan M, Kannan S. Fibroblasts and mesenchymal stem cells: Two sides of the same coin? J Cell Physiol 2018; 233:9099-9109. [DOI: 10.1002/jcp.26860] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
| | - Suresh Kannan
- Department of Biomedical Sciences Sri Ramachandra University Chennai Tamil Nadu India
| |
Collapse
|
112
|
Kim R, Lee S, Lee CY, Yun H, Lee H, Lee MY, Kim J, Jeong JY, Baek K, Chang W. Salvia miltiorrhiza enhances the survival of mesenchymal stem cells under ischemic conditions. ACTA ACUST UNITED AC 2018; 70:1228-1241. [PMID: 29943504 PMCID: PMC6099286 DOI: 10.1111/jphp.12950] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Objectives To validate the enhanced therapeutic effect of Salvia miltiorrhiza Bunge (SM) for brain ischemic stroke through the anti‐apoptotic and survival ability of mesenchymal stem cells (MSCs). Methods The viability and the expression level of cell apoptotic and survival‐related proteins in MSCs by treatment of SM were assessed in vitro. In addition, the infarcted brain region and the behavioural changes after treatment of MSCs with SM were confirmed in rat middle cerebral artery occlusion (MCAo) models. Key findings We demonstrated that SM attenuates apoptosis and improves the cell viability of MSCs. In the rat MCAo model, the recovery of the infarcted region and positive changes of behaviour are observed after treatment of MSCs with SM. Conclusions The therapy using SM enhances the therapeutic effect for brain ischemic stroke by promoting the survival of MSCs. This synergetic effect thereby proposes a new experimental approach of traditional Chinese medicine and stem cell‐based therapies for patients suffering from a variety of diseases.
Collapse
Affiliation(s)
- Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Seokyeon Lee
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| | - Chang Youn Lee
- Department of Integrated Omics for Biomedical Sciences, Yonsei University, Seoul, Korea
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, Korea
| | - Hojin Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women's University, Seoul, Korea
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, Korea
| | - Kyungmin Baek
- Department of Cardiovascular and Neurologic Disease, College of Oriental Medicine, Daegu Hanny University, Daegu, Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan, Korea
| |
Collapse
|
113
|
Dalamagkas K, Tsintou M, Seifalian A, Seifalian AM. Translational Regenerative Therapies for Chronic Spinal Cord Injury. Int J Mol Sci 2018; 19:1776. [PMID: 29914060 PMCID: PMC6032191 DOI: 10.3390/ijms19061776] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury is a chronic and debilitating neurological condition that is currently being managed symptomatically with no real therapeutic strategies available. Even though there is no consensus on the best time to start interventions, the chronic phase is definitely the most stable target in order to determine whether a therapy can effectively restore neurological function. The advancements of nanoscience and stem cell technology, combined with the powerful, novel neuroimaging modalities that have arisen can now accelerate the path of promising novel therapeutic strategies from bench to bedside. Several types of stem cells have reached up to clinical trials phase II, including adult neural stem cells, human spinal cord stem cells, olfactory ensheathing cells, autologous Schwann cells, umbilical cord blood-derived mononuclear cells, adult mesenchymal cells, and autologous bone-marrow-derived stem cells. There also have been combinations of different molecular therapies; these have been either alone or combined with supportive scaffolds with nanostructures to facilitate favorable cell⁻material interactions. The results already show promise but it will take some coordinated actions in order to develop a proper step-by-step approach to solve impactful problems with neural repair.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- The Institute for Rehabilitation and Research, Memorial Hermann Texas Medical Centre, Houston, TX 77030, USA.
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London (UCL), London NW3 2QG, UK.
| | - Magdalini Tsintou
- Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science, University College of London (UCL), London NW3 2QG, UK.
- Center for Neural Systems Investigations, Massachusetts General Hospital/HST Athinoula A., Martinos Centre for Biomedical Imaging, Harvard Medical School, Boston, MA 02129, USA.
| | - Amelia Seifalian
- Faculty of Medical Sciences, UCL Medical School, London WC1E 6BT, UK.
| | - Alexander M Seifalian
- NanoRegMed Ltd. (Nanotechnology & Regenerative Medicine Commercialization Centre), The London BioScience Innovation Centre, London NW1 0NH, UK.
| |
Collapse
|
114
|
Strub M, Keller L, Idoux-Gillet Y, Lesot H, Clauss F, Benkirane-Jessel N, Kuchler-Bopp S. Bone Marrow Stromal Cells Promote Innervation of Bioengineered Teeth. J Dent Res 2018; 97:1152-1159. [PMID: 29879365 DOI: 10.1177/0022034518779077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transplantation of bone marrow mesenchymal stem cells (BMDCs) into a denervated side of the spinal cord was reported to be a useful option for axonal regeneration. The innervation of teeth is essential for their function and protection but does not occur spontaneously after injury. Cultured reassociations between dissociated embryonic dental mesenchymal and epithelial cells and implantation lead to a vascularized tooth organ regeneration. However, when reassociations were coimplanted with a trigeminal ganglion (TG), innervation did not occur. On the other hand, reassociations between mixed embryonic dental mesenchymal cells and bone marrow-derived cells isolated from green fluorescent protein (GFP) transgenic mice (BMDCs-GFP) (50/50) with an intact and competent dental epithelium (ED14) were innervated. In the present study, we verified the stemness of isolated BMDCs, confirmed their potential role in the innervation of bioengineered teeth, and analyzed the mechanisms by which this innervation can occur. For that purpose, reassociations between mixed embryonic dental mesenchymal cells and BMDCs-GFP with an intact and competent dental epithelium were cultured and coimplanted subcutaneously with a TG for 2 wk in ICR mice. Axons entered the dental pulp and reached the odontoblast layer. BMDCs-GFP were detected at the base of the tooth, with some being present in the pulp associated with the axons. Thus, while having a very limited contribution in tooth formation, they promoted the innervation of the bioengineered teeth. Using quantitative reverse transcription polymerase chain reaction and immunostainings, BMDCs were shown to promote innervation by 2 mechanisms: 1) via immunomodulation by reducing the number of T lymphocytes (CD3+, CD25+) in the implants and 2) by expressing neurotrophic factors such as NGF, BDNF, and NT3 for axonal growth. This strategy using autologous mesenchymal cells coming from bone marrow could be used to innervate bioengineered teeth without treatment with an immunosuppressor such as cyclosporine A (CsA), thus avoiding multiple side effects.
Collapse
Affiliation(s)
- M Strub
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France.,3 Hôpitaux Universitaires de Strasbourg (HUS), Department of Pediatric Dentistry, Strasbourg, France
| | - L Keller
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Y Idoux-Gillet
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France
| | - H Lesot
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France
| | - F Clauss
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France.,3 Hôpitaux Universitaires de Strasbourg (HUS), Department of Pediatric Dentistry, Strasbourg, France
| | - N Benkirane-Jessel
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France.,2 Université de Strasbourg (UDS), Faculté de Chirurgie Dentaire, Strasbourg, France
| | - S Kuchler-Bopp
- 1 INSERM (French National Institute of Health and Medical Research), Regenerative NanoMedicine (RNM), FMTS, Strasbourg, France
| |
Collapse
|
115
|
Cho JS, Lee J, Jeong DU, Kim HW, Chang WS, Moon J, Chang JW. Effect of Placenta-Derived Mesenchymal Stem Cells in a Dementia Rat Model via Microglial Mediation: a Comparison between Stem Cell Transplant Methods. Yonsei Med J 2018; 59:406-415. [PMID: 29611403 PMCID: PMC5889993 DOI: 10.3349/ymj.2018.59.3.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/12/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Loss of cholinergic neurons in the hippocampus is a hallmark of many dementias. Administration of stem cells as a therapeutic intervention for patients is under active investigation, but the optimal stem cell type and transplantation modality has not yet been established. In this study, we studied the therapeutic effects of human placenta-derived mesenchymal stem cells (pMSCs) in dementia rat model using either intracerebroventricular (ICV) or intravenous (IV) injections and analyzed their mechanisms of therapeutic action. MATERIALS AND METHODS Dementia modeling was established by intraventricular injection of 192 IgG-saporin, which causes lesion of cholinergic neurons. Sixty-five male Sprague-Dawley rats were divided into five groups: control, lesion, lesion+ICV injection of pMSCs, lesion+IV injection of pMSCs, and lesion+donepezil. Rats were subjected to the Morris water maze and subsequent immunostaining analyses. RESULTS Both ICV and IV pMSC administrations allowed significant cognitive recovery compared to the lesioned rats. Acetylcholinesterase activity was significantly rescued in the hippocampus of rats injected with pMSCs post-lesion. Choline acetyltransferase did not co-localize with pMSCs, showing that pMSCs did not directly differentiate into cholinergic cells. Number of microglial cells increased in lesioned rats and significantly decreased back to normal levels with pMSC injection. CONCLUSION Our results suggest that ICV and IV injections of pMSCs facilitate the recovery of cholinergic neuronal populations and cognitive behavior. This recovery likely occurs through paracrine effects that resemble microglia function rather than direct differentiation of injected pMSCs into cholinergic neurons.
Collapse
Affiliation(s)
- Jae Sung Cho
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyeon Lee
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Da Un Jeong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Han Wool Kim
- General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
| | - Won Seok Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jisook Moon
- General Research Institute, Gangnam CHA General Hospital, Seoul, Korea
- Department of Bioengineering, College of Life Science, CHA University, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
116
|
El Ayachi I, Zhang J, Zou XY, Li D, Yu Z, Wei W, O’Connell KM, Huang GTJ. Human dental stem cell derived transgene-free iPSCs generate functional neurons via embryoid body-mediated and direct induction methods. J Tissue Eng Regen Med 2018; 12:e1836-e1851. [PMID: 29139614 PMCID: PMC6482049 DOI: 10.1002/term.2615] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/02/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSCs) give rise to neural stem/progenitor cells, serving as a good source for neural regeneration. Here, we established transgene-free (TF) iPSCs from dental stem cells (DSCs) and determined their capacity to differentiate into functional neurons in vitro. Generated TF iPSCs from stem cells of apical papilla and dental pulp stem cells underwent two methods-embryoid body-mediated and direct induction, to guide TF-DSC iPSCs along with H9 or H9 Syn-GFP (human embryonic stem cells) into functional neurons in vitro. Using the embryoid body-mediated method, early stage neural markers PAX6, SOX1, and nestin were detected by immunocytofluorescence or reverse transcription-real time polymerase chain reaction (RT-qPCR). At late stage of neural induction measured at Weeks 7 and 9, the expression levels of neuron-specific markers Nav1.6, Kv1.4, Kv4.2, synapsin, SNAP25, PSD95, GAD67, GAP43, and NSE varied between stem cells of apical papilla iPSCs and H9. For direct induction method, iPSCs were directly induced into neural stem/progenitor cells and guided to become neuron-like cells. The direct method, while simpler, showed cell detachment and death during the differentiation process. At early stage, PAX6, SOX1 and nestin were detected. At late stage of differentiation, all five genes tested, nestin, βIII-tubulin, neurofilament medium chain, GFAP, and Nav, were positive in many cells in cultures. Both differentiation methods led to neuron-like cells in cultures exhibiting sodium and potassium currents, action potential, or spontaneous excitatory postsynaptic potential. Thus, TF-DSC iPSCs are capable of undergoing guided neurogenic differentiation into functional neurons in vitro, thereby may serve as a cell source for neural regeneration.
Collapse
Affiliation(s)
- Ikbale El Ayachi
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Zhang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xiao-Ying Zou
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
- Department of Cariology, Endodontology and Operative Dentistry, School and Hospital of Stomatology, Peking University, Beijing, 100081, P. R. China
| | - Dong Li
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zongdong Yu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wei Wei
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Kristen M.S. O’Connell
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - George T.-J. Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Endodontics, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118, USA
| |
Collapse
|
117
|
Anti-Inflammatory Effect of Geniposide on Osteoarthritis by Suppressing the Activation of p38 MAPK Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8384576. [PMID: 29682561 PMCID: PMC5846349 DOI: 10.1155/2018/8384576] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/15/2023]
Abstract
It has been suggested that the activation of the p38 mitogen activated protein kinases (MAPKs) signaling pathway plays a significant role in the progression of OA by leading to the overexpression of proinflammatory cytokines, chemokines, and signaling enzymes in human osteoarthritis chondrocytes. However, most p38 MAPK inhibitors applied for OA have been thought to be limited due to their potential long-term toxicities. Geniposide (GE), an iridoid glycoside purified from the fruit of the herb, has been widely used in traditional medicine for the treatment of a variety of chronic inflammatory diseases. In this study, we evaluated the inhibition effect of geniposide on the inflammatory progression of the surgically induced osteoarthritis and whether the protective effect of geniposide on OA is related to the inhibition of the p38 MAPK signaling pathway. In vitro, geniposide attenuated the expression of inflammatory cytokines including interleukin-1 (IL-1), tumor necrosis factor (TNF-α), and nitric oxide (NO) production as well as matrix metalloproteinase- (MMP-) 13 in chondrocytes isolated from surgically induced rabbit osteoarthritis model. Additionally, geniposide markedly suppressed the expression of IL-1, TNF-α, NO, and MMP-13 in the synovial fluid from the rabbits with osteoarthritis. More importantly, our results clearly demonstrated that the inhibitory effect of geniposide on surgery-induced expression of inflammatory mediators in osteoarthritis was closely associated with the suppression of the p38 MAPK signaling pathways. Our study demonstrates that geniposide may have therapeutic potential to serve as an alternative agent for the p38 MAPK inhibition for the treatment of OA due to its inherent features of biological activities and low toxicity as a traditional Chinese medicine.
Collapse
|
118
|
González-Nieto D, Fernández-García L, Pérez-Rigueiro J, Guinea GV, Panetsos F. Hydrogels-Assisted Cell Engraftment for Repairing the Stroke-Damaged Brain: Chimera or Reality. Polymers (Basel) 2018; 10:polym10020184. [PMID: 30966220 PMCID: PMC6415003 DOI: 10.3390/polym10020184] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/06/2018] [Accepted: 02/11/2018] [Indexed: 01/07/2023] Open
Abstract
The use of advanced biomaterials as a structural and functional support for stem cells-based therapeutic implants has boosted the development of tissue engineering applications in multiple clinical fields. In relation to neurological disorders, we are still far from the clinical reality of restoring normal brain function in neurodegenerative diseases and cerebrovascular disorders. Hydrogel polymers show unique mechanical stiffness properties in the range of living soft tissues such as nervous tissue. Furthermore, the use of these polymers drastically enhances the engraftment of stem cells as well as their capacity to produce and deliver neuroprotective and neuroregenerative factors in the host tissue. Along this article, we review past and current trends in experimental and translational research to understand the opportunities, benefits, and types of tentative hydrogel-based applications for the treatment of cerebral disorders. Although the use of hydrogels for brain disorders has been restricted to the experimental area, the current level of knowledge anticipates an intense development of this field to reach clinics in forthcoming years.
Collapse
Affiliation(s)
- Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
| | - Laura Fernández-García
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, Spain.
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid 28040 Madrid, Spain.
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group: Faculty of Biology and Faculty of Optics, Universidad Complutense de Madrid, 28040 Madrid, Spain.
- Instituto de Investigación Sanitaria, Hospital Clínico San Carlos Madrid, IdISSC, 28040 Madrid, Spain.
| |
Collapse
|
119
|
Neuroprotective Effects of Bioactive Compounds and MAPK Pathway Modulation in "Ischemia"-Stressed PC12 Pheochromocytoma Cells. Brain Sci 2018; 8:brainsci8020032. [PMID: 29419806 PMCID: PMC5836051 DOI: 10.3390/brainsci8020032] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/24/2018] [Accepted: 02/02/2018] [Indexed: 02/08/2023] Open
Abstract
This review surveys the efforts taken to investigate in vitro neuroprotective features of synthetic compounds and cell-released growth factors on PC12 clonal cell line temporarily deprived of oxygen and glucose followed by reoxygenation (OGD/R). These cells have been used previously to mimic some of the properties of in vivo brain ischemia-reperfusion-injury (IRI) and have been instrumental in identifying common mechanisms such as calcium overload, redox potential, lipid peroxidation and MAPKs modulation. In addition, they were useful for establishing the role of certain membrane penetrable cocktails of antioxidants as well as potential growth factors which may act in neuroprotection. Pharmacological mechanisms of neuroprotection addressing modulation of the MAPK cascade and increased redox potential by natural products, drugs and growth factors secreted by stem cells, in either undifferentiated or nerve growth factor-differentiated PC12 cells exposed to ischemic conditions are discussed for future prospects in neuroprotection studies.
Collapse
|
120
|
Hernandez-Muñoz I, Figuerola E, Sanchez-Molina S, Rodriguez E, Fernández-Mariño AI, Pardo-Pastor C, Bahamonde MI, Fernández-Fernández JM, García-Domínguez DJ, Hontecillas-Prieto L, Lavarino C, Carcaboso AM, de Torres C, Tirado OM, de Alava E, Mora J. RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-κB pathway, independently of the fusion oncoprotein. Oncotarget 2018; 7:46283-46300. [PMID: 27317769 PMCID: PMC5216798 DOI: 10.18632/oncotarget.10092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) is an aggressive tumor defined by EWSR1 gene fusions that behave as an oncogene. Here we demonstrate that RING1B is highly expressed in primary ES tumors, and its expression is independent of the fusion oncogene. RING1B-depleted ES cells display an expression profile enriched in genes functionally involved in hematological development but RING1B depletion does not induce cellular differentiation. In ES cells, RING1B directly binds the SCN8A sodium channel promoter and its depletion results in enhanced Nav1.6 expression and function. The signaling pathway most significantly modulated by RING1B is NF-κB. RING1B depletion results in enhanced p105/p50 expression, which sensitizes ES cells to apoptosis by FGFR/SHP2/STAT3 blockade. Reduced NaV1.6 function protects ES cells from apoptotic cell death by maintaining low NF-κB levels. Our findings identify RING1B as a trait of the cell-of-origin and provide a potential targetable vulnerability.
Collapse
Affiliation(s)
| | - Elisabeth Figuerola
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Sara Sanchez-Molina
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Eva Rodriguez
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Ana Isabel Fernández-Mariño
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain.,Present Affiliation: Department of Neuroscience and Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison-53705, USA
| | - Carlos Pardo-Pastor
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - María Isabel Bahamonde
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - Daniel J García-Domínguez
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908-Barcelona, Spain
| | - Enrique de Alava
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| |
Collapse
|
121
|
Shen CJ, Chan TF, Chen CC, Hsu YC, Long CY, Lai CS. Human umbilical cord matrix-derived stem cells expressing interferon-β gene inhibit breast cancer cells via apoptosis. Oncotarget 2018; 7:34172-9. [PMID: 27129156 PMCID: PMC5085146 DOI: 10.18632/oncotarget.8997] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/14/2016] [Indexed: 01/05/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) derived from the umbilical cord matrix have been reported to be used as anti-tumor gene carrier for attenuation of tumor growth, which extends the half-life and lowers the unexpected cytotoxicity of the gene in vivo. Interferon-β (IFNβ) is known to possess robust antitumor effects on different types of cancer cell lines in vitro. The present study was aimed to investigate the anti-tumor effect of IFNβ gene-transfected hUCMSCs (IFNβ-hUCMSCs) on breast cancer cells with emphasis on triple negative breast carcinoma. Our findings revealed that the co-culture of IFNβ-hUCMSCs with the human triple negative breast carcinoma cell lines MDA-MB-231 or Hs578T significantly inhibited growth of both carcinoma cells. In addition, the culture medium conditioned by these cells also significantly suppressed the growth and induced apoptosis of both carcinoma cells. Further investigation showed that the suppressed growth and the apoptosis induced by co-culture of IFNβ-hUCMSCs or conditioned medium were abolished by pretreating anti-IFNβ neutralizing antibody. These findings indicate that IFNβ-hUCMSCs triggered cell death of breast carcinoma cells through IFN-β production, thereby induced apoptosis and suppressed tumor cell growth. In conclusion, we demonstrated that IFNβ-hUCMSCs inhibited the growth of breast cancer cells through apoptosis. with potent anti-cancer activity, it represents as an anti-cancer cytotherapeutic modality against breast cancer.
Collapse
Affiliation(s)
- Ching-Ju Shen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Te-Fu Chan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chung Chen
- Department of Plastic and Reconstruction Surgery, E-Da Hospital, Taiwan
| | - Yi-Chiang Hsu
- Graduate Institute of Medical Science, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan.,Innovative Research Center of Medicine, College of Health Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Sheng Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Plastic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
122
|
Li S, Wang J, Han Y, Li X, Liu C, Lv Z, Wang X, Tang X, Wang Z. Carbenoxolone inhibits mechanical stress-induced osteogenic differentiation of mesenchymal stem cells by regulating p38 MAPK phosphorylation. Exp Ther Med 2018; 15:2798-2803. [PMID: 29456683 PMCID: PMC5795701 DOI: 10.3892/etm.2018.5757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 12/29/2017] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to explore the effects of pannexin1 (Px1) protein channels on osteogenic differentiation of mesenchymal stem cells (MSCs) under mechanical stress stimulation. MSCs were isolated from Sprague Dawley rats (3 weeks old, weighing 100–120 g) and cultured in vitro. A safe concentration of carbenoxolone was determined (CBX, an inhibitor of Px1 channels; 100 µM) on MSCs using the Cell Counting Kit-8 (CCK8) method. MSCs were divided into 6 groups: Control, stress (4,000 µ strain), and stress following 3, 6, 12, and 24 h pretreatment with CBX. Stress groups were stimulated with mechanical stress for 15 min. Alkaline phosphatase (ALP) activity, type I collagen expression, intracellular calcium ion (Ca2+) concentration, Px1 expression, p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated phosphorylation were determined. ALP activity was increased in the stress group, and this was prevented by pretreatment with CBX. Similarly, stress-induced increases in type I collagen expression, Ca2+ concentration, Px1 expression, and p38 MAPK phosphorylation decreased in the presence of CBX. ERK phosphorylation was decreased by stress, however was not affected by CBX treatment. Altogether, the results suggest that mechanical stress promoted the osteogenic differentiation of MSCs, and this promotion was inhibited by pretreatment with CBX, possibly through regulating the phosphorylation of p38 MAPK.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jing Wang
- Department of Plastic and Cosmetic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yudi Han
- Department of Plastic and Reconstructive Surgery, General Hospital of Chinese PLA, Beijing 100853, P.R. China
| | - Xiaoteng Li
- Department of Orthopedic Trauma, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Changjian Liu
- Department of Orthopedic Trauma, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhengshuai Lv
- Department of Orthopedic Trauma, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Xin Tang
- Department of Orthopedic Trauma, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhe Wang
- Department of Orthopedic Trauma, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
123
|
Dalamagkas K, Tsintou M, Seifalian AM. Stem cells for spinal cord injuries bearing translational potential. Neural Regen Res 2018; 13:35-42. [PMID: 29451202 PMCID: PMC5840986 DOI: 10.4103/1673-5374.224360] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) is a highly debilitating neurological disease, which still lacks effective treatment strategies, causing significant financial burden and distress to the affected families. Nevertheless, nanotechnology and regenerative medicine strategies holding promise for the development of novel therapies that would reach from bench to bedside to serve the SCI patients. There has already been significant progress in the field of cell-based therapies, with the clinical application for SCI, currently in phase II of the clinical trial. Stem cells (e.g., induced pluripotent stem cells, fetal stem cells, human embryonic stem cells, and olfactory ensheathing cells) are certainly not to be considered the panacea for neural repair but, especially when combined with rehabilitation or other combinatorial approaches using the help of nanotechnology, they seem to be the source of some of the most promising and clinical translatable cell-based therapies that could help solving impactful problems on neural repair.
Collapse
Affiliation(s)
- Kyriakos Dalamagkas
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA
- Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Magdalini Tsintou
- Department of Tissue Engineering, Harvard Medical School, Boston, MA, USA
- Nanotechnology & Regenerative Medicine Centre, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (Ltd.), The London BioScience Innovation Centre, London, UK
| |
Collapse
|
124
|
Kuroda S, Koh M, Hori E, Hayakawa Y, Akai T. Muse Cell: A New Paradigm for Cell Therapy and Regenerative Homeostasis in Ischemic Stroke. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1103:187-198. [PMID: 30484230 DOI: 10.1007/978-4-431-56847-6_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Multilineage-differentiating stress enduring (Muse) cells are one of the most promising donor cells for cell therapy against ischemic stroke, because they can differentiate into any type of cells constructing the central nervous system (CNS), including the neurons. They can easily be isolated from the bone marrow stromal cells (BMSCs), which may also contribute to functional recovery after ischemic stroke as donor cells. In this chapter, we concisely review their biological features and then future perspective of Muse cell transplantation for ischemic stroke. In addition, we briefly refer to the surprising role of Muse cells to maintain the homeostasis in the living body under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Satoshi Kuroda
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan.
| | - Masaki Koh
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Emiko Hori
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Yumiko Hayakawa
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| | - Takuya Akai
- Department of Neurosurgery, Graduate School of Medicine and Pharmaceutical Science, University of Toyama, Toyama, Japan
| |
Collapse
|
125
|
Regenerative Medicine Applications of Mesenchymal Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:115-141. [PMID: 29767289 DOI: 10.1007/5584_2018_213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major research challenge is to develop therapeutics that assist with healing damaged tissues and organs because the human body has limited ability to restore the majority of these tissues and organs to their original state. Tissue engineering (TE) and regenerative medicine (RM) promises to offer efficient therapeutic biological strategies that use mesenchymal stem cells (MSCs). MSCs possess the capability for self-renewal, multilineage differentiation, and immunomodulatory properties that make them attractive for clinical applications. They have been extensively investigated in numerous preclinical and clinical settings in an attempt to overcome their challenges and promote tissue regeneration and repair. This review explores the exciting opportunities afforded by MSCs, their desirable properties as cellular therapeutics in RM, and implicates their potential use in clinical practice. Here, we attempt to identify challenges and issues that determine the clinical efficacy of MSCs as treatment for skeletal and non-skeletal tissues.
Collapse
|
126
|
Ishikawa S, Horinouchi C, Mizoguchi R, Senokuchi A, Kamikakimoto R, Murata D, Hatazoe T, Tozaki T, Misumi K, Hobo S. Isolation of equine peripheral blood stem cells from a Japanese native horse. J Equine Sci 2017; 28:153-158. [PMID: 29270073 PMCID: PMC5735313 DOI: 10.1294/jes.28.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/18/2017] [Indexed: 12/29/2022] Open
Abstract
The sizes of Japanese native horses have drastically decreased, and protection of these populations is important for Japanese horse culture. Social trials as well as scientific attempts are necessary for maintaining the breed. Mesenchymal stem cells (MSCs) have potential as a cell source for various cell therapies. However, there have been no reports on MSCs of Japanese native horses. We aimed to isolate and characterize MSCs from a Japanese native horse, the Noma horse. Plastic-adherent and self-replicating cells were isolated from a Noma horse’s peripheral blood (PB). The isolated cells had trilineage potential and a surface antigen of mesenchymal cells, so they fulfilled the minimal criteria of MSCs. Therefore, PB can be one source of MSCs for Japanese native horses.
Collapse
Affiliation(s)
- Shingo Ishikawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Chie Horinouchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Ryugo Mizoguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Asuka Senokuchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Rie Kamikakimoto
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Daiki Murata
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takashi Hatazoe
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Kazuhiro Misumi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Seiji Hobo
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
127
|
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6:2173-2185. [PMID: 29076267 PMCID: PMC5702523 DOI: 10.1002/sctm.17-0129] [Citation(s) in RCA: 511] [Impact Index Per Article: 63.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSC) hold great potential for regenerative medicine because of their ability for self-renewal and differentiation into tissue-specific cells such as osteoblasts, chondrocytes, and adipocytes. MSCs orchestrate tissue development, maintenance and repair, and are useful for musculoskeletal regenerative therapies to treat age-related orthopedic degenerative diseases and other clinical conditions. Importantly, MSCs produce secretory factors that play critical roles in tissue repair that support both engraftment and trophic functions (autocrine and paracrine). The development of uniform protocols for both preparation and characterization of MSCs, including standardized functional assays for evaluation of their biological potential, are critical factors contributing to their clinical utility. Quality control and release criteria for MSCs should include cell surface markers, differentiation potential, and other essential cell parameters. For example, cell surface marker profiles (surfactome), bone-forming capacities in ectopic and orthotopic models, as well as cell size and granularity, telomere length, senescence status, trophic factor secretion (secretome), and immunomodulation, should be thoroughly assessed to predict MSC utility for regenerative medicine. We propose that these and other functionalities of MSCs should be characterized prior to use in clinical applications as part of comprehensive and uniform guidelines and release criteria for their clinical-grade production to achieve predictably favorable treatment outcomes for stem cell therapy. Stem Cells Translational Medicine 2017;6:2173-2185.
Collapse
Affiliation(s)
- Rebekah M. Samsonraj
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Department of Orthopaedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Michael Raghunath
- Department of Biomedical EngineeringNational University of SingaporeSingapore
- Center for Cell Biology and Tissue Engineering, Competence Center for Tissue Engineering and Substance Testing (TEDD)Institute for Chemistry and Biotechnology, ZHAW School of Life Sciences and Facility Management, Zurich University of Applied SciencesSwitzerland
| | - Victor Nurcombe
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
| | - James H. Hui
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | | | - Simon M. Cool
- Glycotherapeutics GroupInstitute of Medical Biology, Agency for Science, Technology and Research (A*STAR)Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
128
|
Affiliation(s)
- H T Hassan
- Institute of Medical Sciences, University of Lincoln, UK.
| | | |
Collapse
|
129
|
Imam MA, Holton J, Horriat S, Negida AS, Grubhofer F, Gupta R, Narvani A, Snow M. A systematic review of the concept and clinical applications of bone marrow aspirate concentrate in tendon pathology. SICOT J 2017; 3:58. [PMID: 28990575 PMCID: PMC5632955 DOI: 10.1051/sicotj/2017039] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/04/2017] [Indexed: 12/24/2022] Open
Abstract
Tendon pathologies are a group of musculoskeletal conditions frequently seen in clinical practice. They can be broadly classified into traumatic, degenerative and overuse-related tendinopathies. Rotator cuff tears, Achilles tendinopathy and tennis elbow are common examples of these conditions. Conventional treatments have shown inconsistent outcomes and might fail to provide satisfactory clinical improvement. With the growing trend towards the use of mesenchymal stem cells (MSCs) in other branches of medicine, there is an increasing interest in treating tendon pathologies using the bone marrow MSC. In this article, we provide a systematic literature review documenting the current status of the use of bone marrow aspirate concentrate (BMAC) for the treatment of tendon pathologies. We also asked the question on the safety of BMAC and whether there are potential complications associated with BMAC therapy. Our hypothesis is that the use of BMAC provides safe clinical benefit when used for the treatment of tendinopathy or as a biological augmentation of tendon repair. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist while preparing this systematic review. A literature search was carried out including the online databases of PubMed, EMBASE, ClinicalTrial.gov and the Cochrane Library from 1960 to the end of May 2015. Relevant studies were selected and critically appraised. Data from eligible studies were extracted and classified per type of tendon pathology. We included 37 articles discussing the application and use of BMAC for the treatment of tendon pathologies. The Critical Appraisal Skills Program (CASP) appraisal confirmed a satisfactory standard of 37 studies. Studies were sub-categorised into: techniques of extraction, processing and microscopic examination of BMAC (n = 18), where five studies looked at the evaluation of aspiration techniques (n = 5), augmentation of rotator cuff tears (n = 5), augmentation of tendo-achilles tendon (n = 1), treatment of gluteal tendon injuries (n = 1), management of elbow epicondylitis (n = 2), management of patellar tendinopathy (n = 1) and complications related to BMAC (n = 5). Multiple experimental studies investigated the use of BMAC for tendon repair; nonetheless, there are only limited clinical studies available in this field. Unfortunately, due to the scarcity of studies, which were mainly case series, the current level of evidence is weak. We strongly recommend further future randomised controlled studies in this field to allow scientists and clinicians make evidence-based conclusions.
Collapse
Affiliation(s)
- Mohamed A. Imam
-
Department of Trauma and Orthopaedics, Faculty of Medicine, Suez Canal University Circular road Ismailia
41111 Egypt
-
The Royal Orthopaedic Hospital Birmingham
B31 2AP UK
| | - James Holton
-
The Royal Orthopaedic Hospital Birmingham
B31 2AP UK
-
Birmingham University Birmingham
B15 2TT UK
| | | | | | - Florian Grubhofer
-
Department of Orthopaedics, Balgrist University Hospital, University of Zurich Forchstrasse 340 8008
Zürich Switzerland
| | - Rohit Gupta
-
Ashford and St Peters Hospitals Chertsey
KT16 0PZ UK
| | - Ali Narvani
-
Ashford and St Peters Hospitals Chertsey
KT16 0PZ UK
| | - Martyn Snow
-
The Royal Orthopaedic Hospital Birmingham
B31 2AP UK
-
Regenerative Medicine, Aston University, Aston Triangle Birmingham
B4 7ET UK
| |
Collapse
|
130
|
Zazzeroni L, Lanzoni G, Pasquinelli G, Ricordi C. Considerations on the harvesting site and donor derivation for mesenchymal stem cells-based strategies for diabetes. CELLR4-- REPAIR, REPLACEMENT, REGENERATION, & REPROGRAMMING 2017; 5:e2435. [PMID: 30505879 PMCID: PMC6267851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mesenchymal Stem Cells (MSCs) possess important characteristics that could be exploited in therapeutic strategies for Type 1 Diabetes (T1D) and for certain complications of Type 2 Diabetes (T2D). MSCs can inhibit autoimmune, alloimmune and inflammatory processes. Moreover, they can promote the function of endogenous and transplanted pancreatic islets. Furthermore, they can stimulate angiogenesis. MSC functions are largely mediated by their secretome, which includes growth factors, exosomes, and other extracellular vesicles. MSCs have shown a good safety profile in clinical trials. MSC-derived exosomes are emerging as an alternative to the transplantation of live MSCs. MSCs harvested from different anatomical locations (e.g. bone marrow, umbilical cord, placenta, adipose tissue, and pancreas) have shown differences in gene expression profiles and function. Data from clinical trials suggest that umbilical cord-derived MSCs could be superior to bone marrow-derived MSCs for the treatment of T1D. Autologous MSCs from diabetic patients may present abnormal functions. BM-MSCs from T1D patients exhibit gene expression differences that may impact in vivo function. BM-MSCs from T2D patients seem to be significantly impaired due to the T2D diabetic milieu. In this review, we highlight how the harvesting site and donor derivation can affect the efficacy of MSC-based treatments for T1D and T2D.
Collapse
Affiliation(s)
- L Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - G Lanzoni
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - G Pasquinelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - C Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
131
|
Choi KA, Hong S. Induced neural stem cells as a means of treatment in Huntington's disease. Expert Opin Biol Ther 2017; 17:1333-1343. [PMID: 28792249 DOI: 10.1080/14712598.2017.1365133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Huntington's disease (HD) is an inherited neurodegenerative disease characterized by chorea, dementia, and depression caused by progressive nerve cell degeneration, which is triggered by expanded CAG repeats in the huntingtin (Htt) gene. Currently, there is no cure for this disease, nor is there an effective medicine available to delay or improve the physical, mental, and behavioral severities caused by it. Areas covered: In this review, the authors describe the use of induced neural stem cells (iNSCs) by direct conversion technology, which offers great advantages as a therapeutic cell type to treat HD. Expert opinion: Cell conversion of somatic cells into a desired stem cell type is one of the most promising treatments for HD because it could be facilitated for the generation of patient-specific neural stem cells. The induced pluripotent stem cells (iPSCs) have a powerful potential for differentiation into neurons, but they may cause teratoma formation due to an undifferentiated pluripotent stem cell after transplantation Therefore, direct conversion of somatic cells into iNSCs is a promising alternative technology in regenerative medicine and the iNSCs may be provided as a therapeutic cell source for Huntington's disease.
Collapse
Affiliation(s)
- Kyung-Ah Choi
- a School of Biosystem and Biomedical Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea
| | - Sunghoi Hong
- a School of Biosystem and Biomedical Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea.,b Department of Integrated Biomedical and Life Science , College of Health Science, Korea University , Seongbuk-gu , Republic of Korea
| |
Collapse
|
132
|
|
133
|
Bicknese AR, Goodwin HS, Quinn CO, Henderson VCD, Chien SN, Wall DA. Human Umbilical Cord Blood Cells can be Induced to Express Markers for Neurons and Glia. Cell Transplant 2017; 11:261-264. [DOI: 10.3727/096020197390022] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Rare cells are present in human umbilical cord blood that do not express the hematopoietic marker CD45 and in culture do not produce cells of hematopoietic lineage. These umbilical cord multipotent stem cells (UC-MC) behave as multilineage progenitor cells (stem cells) and can be expanded in tissue culture. Exposure to basic fibroblast growth factor (bFGF) and human epidermal growth factor (hEGF) for a minimum of 7 days in culture induces expression of neural and glial markers. Western immunoblots demonstrate expression of both β-tubulin III and glial fibrillary acidic protein (GFAP). Immunocytochemistry of the cells showed intense labeling to both compounds on the intracellular cytoskeleton. The oligodendrocyte cell surface marker galactocerebroside (Gal-C) was present on most cells. Many cells show dual labeling, expressing both neuronal and glial markers.
Collapse
Affiliation(s)
- Alma R. Bicknese
- Departments of Neurology, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
- Departments of Pediatrics of Saint Louis University, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
- Departments of The Pediatric Research Institute, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
| | - Holly S. Goodwin
- Departments of The Pediatric Research Institute, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
| | - Cheryl O. Quinn
- Departments of Pediatrics of Saint Louis University, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
- Departments of The Pediatric Research Institute, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
| | | | - Shin-Nan Chien
- Departments of The Pediatric Research Institute, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
| | - Donna A. Wall
- Departments of Pediatrics of Saint Louis University, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
- Departments of The Pediatric Research Institute, Cardinal Glennon Children's Hospital, St. Louis, MO 63110
| |
Collapse
|
134
|
Wu J, Sun Z, Sun HS, Wu J, Weisel RD, Keating A, Li ZH, Feng ZP, Li RK. Intravenously Administered Bone Marrow Cells Migrate to Damaged Brain Tissue and Improve Neural Function in Ischemic Rats. Cell Transplant 2017; 16:993-1005. [DOI: 10.3727/000000007783472435] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulated evidence suggests that bone marrow stromal cells (BMSCs) are capable of regenerating damaged tissue. This study evaluated whether intravenously (noninvasively) administered, GFP-labeled BMSCs would migrate into damaged brain tissue and improve neurological function after a stroke. Wistar rats were subjected to middle cerebral artery occlusion and reperfusion. Twenty-four hours after injury, the rats received an IV injection of culture medium or BMSCs isolated from adult Wistar rats expressing green fluorescent protein (GFP). Two hours after injury and 1, 3, and 7 days after cell transplantation, neurological function was evaluated using a neurological severity scale. On day 7, the brain scar size was determined using tetrazolium chloride staining, and the implanted cells were identified using confocal microscopy. Immunohistochemistry was used to evaluate apoptosis and angiogenesis in the ischemic region, as well as the spatial distribution of the implanted BMSCs relative to the native neural cells. Implanted BMSCs migrated throughout the territory of the middle cerebral artery by 7 days after transplantation. Most implanted cells were located in the scar area and border zone of the ischemic region, and some expressed the neuronal marker NeuN. Rats receiving BMSC transplantation exhibited reduced scar size, limited apoptosis, and enhanced angiogenic factor expression and vascular density in the ischemic region relative to the control group, as well as significant improvements in the neurological severity scores. Intravenously administrated BMSCs facilitated the structural and functional recovery of neural tissue following ischemic injury, perhaps mediated by enhanced angiogenesis.
Collapse
Affiliation(s)
- Jiang Wu
- Division of Cardiovascular Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
- Department of Neurology, Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhuo Sun
- Division of Cardiovascular Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - Richard D. Weisel
- Division of Cardiovascular Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - Armand Keating
- Division of Stem Cell and Developmental Biology, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - Zhi-Hong Li
- Division of Cardiovascular Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Research Institute and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
135
|
Zigova T, Song S, Willing AE, Hudson JE, Newman MB, Saporta S, Sanchez-Ramos J, Sanberg PR. Human Umbilical Cord Blood Cells Express Neural Antigens after Transplantation into the Developing Rat Brain. Cell Transplant 2017. [DOI: 10.3727/096020198389915] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Recently, our laboratory began to characterize the mononuclear cells from human umbilical cord blood (HUCB) both in vitro and in vivo. These cryopreserved human cells are available in unlimited quantities and it is believed that they may represent a source of cells with possible therapeutic and practical value. Our previous molecular and immunocytochemical studies on cultured HUCB cells revealed their ability to respond to nerve growth factor (NGF) by increased expression of neural markers typical for nervous system-derived stem cells. In addition, the DNA microarray detected downregulation of several genes associated with development of blood cell lines. To further explore the survival and phenotypic properties of HUCB cells we transplanted them into the developing rat brain, which is known to provide a conducive environment for development of neural phenotypes. Prior to transplantation, HUCB cells were either cultured with DMEM and fetal bovine serum or were exposed to retinoic acid (RA) and nerve growth factor (NGF). Neonatal pups (1 day old) received unilateral injection of cell suspension into the anterior part of subventricular zone. One month after transplantation animals were perfused, their brains cryosectioned, and immunocytochemistry was performed for identification of neural phenotypes. Our results clearly demonstrated that approximately 20% of transplanted HUCB survived (without immunosuppression) within the neonatal brain. Additionally, double-labeling with cell-type-specific markers revealed that some HUCB-derived cells (recognized by anti-human nuclei labeling) were immunopositive for glial fibrillary acidic protein (GFAP) and few donor cells expressed the neuronal marker TuJ1 (class III β-tubulin). These findings suggest that at least some of the transplanted HUCB cells differentiated into cells with distinct glial or neuronal phenotypes after being exposed to instructive signals from the developing brain.
Collapse
Affiliation(s)
- Tanja Zigova
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Anatomy, University of South Florida College of Medicine, Tampa, FL
| | - Shijie Song
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurology, University of South Florida College of Medicine, Tampa, FL
- James Haley VA Hospital, Tampa, FL
| | - Alison E. Willing
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Anatomy, University of South Florida College of Medicine, Tampa, FL
| | - Jennifer E. Hudson
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurology, University of South Florida College of Medicine, Tampa, FL
| | - Mary B. Newman
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
| | - Samuel Saporta
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Anatomy, University of South Florida College of Medicine, Tampa, FL
| | - Juan Sanchez-Ramos
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- James Haley VA Hospital, Tampa, FL
| | - Paul R. Sanberg
- Center for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurosurgery, University of South Florida College of Medicine, Tampa, FL
- Center for Aging and Brain Repair, Departments of, Neurology, University of South Florida College of Medicine, Tampa, FL
| |
Collapse
|
136
|
Lei Q, Liu T, Gao F, Xie H, Sun L, Zhao A, Ren W, Guo H, Zhang L, Wang H, Chen Z, Guo AY, Li Q. Microvesicles as Potential Biomarkers for the Identification of Senescence in Human Mesenchymal Stem Cells. Am J Cancer Res 2017; 7:2673-2689. [PMID: 28819455 PMCID: PMC5558561 DOI: 10.7150/thno.18915] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Senescence in human mesenchymal stem cells (MSCs) not only contributes to organism aging and the development of a variety of diseases but also severely impairs their therapeutic properties as a promising cell therapy. Studies searching for efficient biomarkers that represent cellular senescence have attracted much attention; however, no single marker currently provides an accurate cell-free representation of cellular senescence. Here, we studied characteristics of MSC-derived microvesicles (MSC-MVs) that may reflect the senescence in their parental MSCs. We found that senescent late passage (LP) MSCs secreted higher levels of MSC-MVs with smaller size than did early passage (EP) MSCs, and the level of CD105+ MSC-MVs decreased with senescence in the parental MSCs. Also, a substantially weaker ability to promote osteogenesis in MSCs was observed in LP than EP MSC-MVs. Comparative analysis of RNA sequencing showed the same trend of decreasing number of highly-expressed miRNAs with increasing number of passages in both MSCs and MSC-MVs. Most of the highly-expressed genes in LP MSCs and the corresponding MSC-MVs were involved in the regulation of senescence-related diseases, such as Alzheimer's disease. Furthermore, based on the miRNA profiling, transcription factors (TF) and genes regulatory networks of MSC senescence, and the datasets from GEO database, we confirmed that expression of miR-146a-5p in MSC-MVs resembled the senescent state of their parental MSCs. Our findings provide evidence that MSC-MVs are a key factor in the senescence-associated secretory phenotype of MSCs and demonstrate that their integrated characteristics can dynamically reflect the senescence state of MSCs representing a potential biomarker for monitoring MSC senescence.
Collapse
|
137
|
Ohta Y, Hamaguchi A, Ootaki M, Watanabe M, Takeba Y, Iiri T, Matsumoto N, Takenaga M. Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 2017; 19:839-848. [DOI: 10.1016/j.jcyt.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
|
138
|
|
139
|
Padovan CS, Jahn K, Birnbaum T, Reich P, Sostak P, Strupp M, Straube A. Expression of Neuronal Markers in Differentiated Marrow Stromal Cells and CD133+ Stem-Like Cells. Cell Transplant 2017; 12:839-48. [PMID: 14763503 DOI: 10.3727/000000003771000183] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bone marrow stromal cells, which normally give rise to bone, cartilage, adipose tissue, and hematopoiesis-supporting cells, have been shown to differentiate in vitro and in vivo into neural-like cells. In this study, we examined the expression of neuronal and glial markers in human marrow stromal cells under culture conditions appropriate for neural stem cells, and compared the unsorted cell population to bone marrow CD133+ stem-like cells using immunofluorescence, Western blot, and functional patch-clamp analysis. Overall, the expression of the early neuronal marker β3-tubulin was most pronounced in the presence of DMEM/F12 and neurotrophin 3 (NT3) or brain-derived neurotrophic factor (BDNF), when marrow stromal cells were cultured onto fibronectin. Electrophysiological examination, however, could not show fast sodium currents or functional neurotransmitter receptors in differentiated marrow stromal cells. CD133+ mesenchymal stem-like cells, but not CD34+/CD133– cells, generally showed a higher expression of neuronal markers than did unsorted marrow stromal cells, and differentiated CD133+ cells more resembled neuron-like cells.
Collapse
Affiliation(s)
- Claudio S Padovan
- Department of Neurology, Ludwig-Maximilian-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
140
|
Galiñanes M, Loubani M, Davies J, Chin D, Pasi J, Bell PR. Autotransplantation of Unmanipulated Bone Marrow into Scarred Myocardium is Safe and Enhances Cardiac Function in Humans. Cell Transplant 2017; 13:7-13. [PMID: 15040600 DOI: 10.3727/000000004772664842] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cell transplants into damaged myocardium may have the potential to improve cardiac function. We investigated the safety of transplanting unmanipulated autologous bone marrow into infarcted myocardium of patients undergoing coronary bypass surgery and assessed its efficacy to improve cardiac function. Fourteen patients with one or more areas of transmural myocardial infarction were studied. Autologous bone marrow was obtained by sternal bone aspirate at the time of surgery, diluted in autologous serum at a ratio of 1:2, and then injected 1 cm apart into the mid-depth of the left ventricular scar. There were no deaths, no perioperative myocardial infarctions, and no significant ventricular arrhythmias. Dobutamine stress echocardiography demonstrated overall improvement in the global and regional left ventricular function 6 weeks and 10 months after surgery. Of 34 infarcted left ventricular segments, 11 were injected with bone marrow alone, 13 were revascularized with a bypass graft alone, and 10 received bone marrow transplantation and a bypass graft in combination. Only the left ventricle segmental wall motion score of the areas injected with bone marrow and receiving a bypass graft in combination improved at low dose and at peak dobutamine stress. These findings suggest that transplantation of unmanipulated autologous bone marrow into scar tissue of the human heart is safe and enhances cardiac function only when used in combination with myocardial revascularization. This benefit can be seen after 6 weeks of the bone marrow transplant and is maintained after 10 months of follow-up.
Collapse
Affiliation(s)
- Manuel Galiñanes
- Department of Integrative Human Cardiovascular Physiology and Cardiac Surgery, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK.
| | | | | | | | | | | |
Collapse
|
141
|
Morigi M, Benigni A, Remuzzi G, Imberti B. The Regenerative Potential of Stem Cells in Acute Renal Failure. Cell Transplant 2017; 15 Suppl 1:S111-7. [PMID: 16826803 DOI: 10.3727/000000006783982449] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adult stem cells have been characterized in several tissues as a subpopulation of cells able to maintain, generate, and replace terminally differentiated cells in response to physiological cell turnover or tissue injury. Little is known regarding the presence of stem cells in the adult kidney but it is documented that under certain conditions, such as the recovery from acute injury, the kidney can regenerate itself by increasing the proliferation of some resident cells. The origin of these cells is largely undefined; they are often considered to derive from resident renal stem or progenitor cells. Whether these immature cells are a subpopulation preserved from the early stage of nephrogenesis is still a matter of investigation and represents an attractive possibility. Moreover, the contribution of bone marrow-derived stem cells to renal cell turnover and regeneration has been suggested. In mice and humans, there is evidence that extrarenal cells of bone marrow origin take part in tubular epithelium regeneration. Injury to a target organ can be sensed by bone marrow stem cells that migrate to the site of damage, undergo differentiation, and promote structural and functional repair. Recent studies have demonstrated that hematopoietic stem cells were mobilized following ischemia/reperfusion and engrafted the kidney to differentiate into tubular epithelium in the areas of damage. The evidence that mesenchymal stem cells, by virtue of their renoprotective property, restore renal tubular structure and also ameliorate renal function during experimental acute renal failure provides opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Marina Morigi
- Mario Negri Institute for Pharmacological Research, Via Gavazzeni 11, 24125 Bergamo, Italy.
| | | | | | | |
Collapse
|
142
|
Singh SP, Jadhav SH, Chaturvedi CP, Nityanand S. Therapeutic efficacy of multipotent adult progenitor cells versus mesenchymal stem cells in experimental autoimmune encephalomyelitis. Regen Med 2017. [PMID: 28621170 DOI: 10.2217/rme-2016-0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM In this study, we have evaluated the therapeutic efficacy of mouse multipotent adult progenitor cells (mMAPCs) in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, and compared it with mouse mesenchymal stem cells (mMSCs). MATERIALS & METHODS We administered PKH26-labeled mMAPC and mMSC into EAE mice and evaluated their therapeutic efficacy. RESULTS The mMAPC-treated mice in comparison with the mMSC group exhibited a higher suppression of EAE (p < 0.05), and a higher fold expression of neuronal genes GAP43, NG2, PDGFR, Nestin, SMI 32, BDNF and NT 3 in spinal cord (p < 0.05), suggesting a better neuroprotective and regenerative potential of mMAPC than mMSC. CONCLUSION MAPC may be a potential cell type, which is superior to mesenchymal stem cell for the treatment of EAE/multiple sclerosis.
Collapse
Affiliation(s)
- Saurabh Pratap Singh
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow-226014, India
| | - Sachin Hanumantrao Jadhav
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow-226014, India
| | - Chandra Prakash Chaturvedi
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow-226014, India
| | - Soniya Nityanand
- Stem Cell Research Facility, Department of Hematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow-226014, India
| |
Collapse
|
143
|
Spurlock MS, Ahmed AI, Rivera KN, Yokobori S, Lee SW, Sam PN, Shear DA, Hefferan MP, Hazel TG, Johe KK, Gajavelli S, Tortella FC, Bullock RM. Amelioration of Penetrating Ballistic-Like Brain Injury Induced Cognitive Deficits after Neuronal Differentiation of Transplanted Human Neural Stem Cells. J Neurotrauma 2017; 34:1981-1995. [PMID: 28249550 PMCID: PMC6913783 DOI: 10.1089/neu.2016.4602] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Penetrating traumatic brain injury (PTBI) is one of the major cause of death and disability worldwide. Previous studies with penetrating ballistic-like brain injury (PBBI), a PTBI rat model revealed widespread perilesional neurodegeneration, similar to that seen in humans following gunshot wound to the head, which is unmitigated by any available therapies to date. Therefore, we evaluated human neural stem cell (hNSC) engraftment to putatively exploit the potential of cell therapy that has been seen in other central nervous system injury models. Toward this objective, green fluorescent protein (GFP) labeled hNSC (400,000 per animal) were transplanted in immunosuppressed Sprague-Dawley (SD), Fisher, and athymic (ATN) PBBI rats 1 week after injury. Tacrolimus (3 mg/kg 2 days prior to transplantation, then 1 mg/kg/day), methylprednisolone (10 mg/kg on the day of transplant, 1 mg/kg/week thereafter), and mycophenolate mofetil (30 mg/kg/day) for 7 days following transplantation were used to confer immunosuppression. Engraftment in SD and ATN was comparable at 8 weeks post-transplantation. Evaluation of hNSC differentiation and distribution revealed increased neuronal differentiation of transplanted cells with time. At 16 weeks post-transplantation, neither cell proliferation nor glial lineage markers were detected. Transplanted cell morphology was similar to that of neighboring host neurons, and there was relatively little migration of cells from the peritransplant site. By 16 weeks, GFP-positive processes extended both rostrocaudally and bilaterally into parenchyma, spreading along host white matter tracts, traversing the internal capsule, and extending ∼13 mm caudally from transplantation site reaching into the brainstem. In a Morris water maze test at 8 weeks post-transplantation, animals with transplants had shorter latency to platform than vehicle-treated animals. However, weak injury-induced cognitive deficits in the control group at the delayed time point confounded benefits of durable engraftment and neuronal differentiation. Therefore, these results justify further studies to progress towards clinical translation of hNSC therapy for PTBI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Deborah A. Shear
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | | | | | | | - Frank C. Tortella
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | |
Collapse
|
144
|
ZHAO Y, XU L, HUA Y. Effects of Dendrobium officinale polysaccharide on adipogenic differentiation of rat bone marrow mesenchymal stem cells. FOOD SCIENCE AND TECHNOLOGY 2017. [DOI: 10.1590/1678-457x.22716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Lujia XU
- Zhejiang University of Technology, China
| | - Yunfen HUA
- Zhejiang University of Technology, China; Hangzhou Precision Medicine Research Center, China
| |
Collapse
|
145
|
Lin BL, Zhang JZ, Lu LJ, Mao JJ, Cao MH, Mao XH, Zhang F, Duan XH, Zheng CS, Zhang LM, Shen J. Superparamagnetic Iron Oxide Nanoparticles-Complexed Cationic Amylose for In Vivo Magnetic Resonance Imaging Tracking of Transplanted Stem Cells in Stroke. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:107. [PMID: 28489049 PMCID: PMC5449988 DOI: 10.3390/nano7050107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Cell-based therapy with mesenchymal stem cells (MSCs) is a promising strategy for acute ischemic stroke. In vivo tracking of therapeutic stem cells with magnetic resonance imaging (MRI) is imperative for better understanding cellular survival and migrational dynamics over time. In this study, we develop a novel biocompatible nanocomplex (ASP-SPIONs) based on cationic amylose, by introducing spermine and the image label, ultrasmall superparamagnetic iron oxide nanoparticles (SPIONs), to label MSCs. The capacity, efficiency, and cytotoxicity of the nanocomplex in transferring SPIONs into green fluorescence protein-modified MSCs were tested; and the performance of in vivo MRI tracking of the transplanted cells in acute ischemic stroke was determined. The results demonstrated that the new class of SPIONs-complexed nanoparticles based on biodegradable amylose can serve as a highly effective and safe carrier to transfer magnetic label into stem cells. A reliable tracking of transplanted stem cells in stroke was achieved by MRI up to 6 weeks, with the desirable therapeutic benefit of stem cells on stroke retained. With the advantages of a relatively low SPIONs concentration and a short labeling period, the biocompatible complex of cationic amylose with SPIONs is highly translatable for clinical application. It holds great promise in efficient, rapid, and safe labeling of stem cells for subsequent cellular MRI tracking in regenerative medicine.
Collapse
Affiliation(s)
- Bing-Ling Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jun-Zhao Zhang
- Department of Polymer and Materials Science, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
| | - Lie-Jing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Jia-Ji Mao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Ming-Hui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Xu-Hong Mao
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Xiao-Hui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Chu-Shan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Li-Ming Zhang
- Department of Polymer and Materials Science, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China.
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-Based Composites, Key Laboratory of Designed Synthesis and Application of Polymer Material, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
146
|
Paulose CS, John PS, Chinthu R, Akhilraj PR, Anju TR. Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level. Biomed J 2017; 40:94-100. [PMID: 28521906 PMCID: PMC6138792 DOI: 10.1016/j.bj.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/15/2016] [Indexed: 12/05/2022] Open
Abstract
Background Spinal cord injury results in disruption of brain-spinal cord fibre connectivity, leading to progressive tissue damage at the site of injury and resultant paralysis of varying degrees. The current study investigated the role of autologous bone marrow modulated with neurotransmitters and neurotransmitter stimulating agent, Citicholine, in spinal cord of spinal cord injured rats. Methods Radioreceptor assay using [3H] ligand was carried out to quantify muscarinic receptor. Gene expression studies were done using Real Time PCR analysis. Results Scatchard analysis of muscarinic M1 receptor showed significantly decreased Bmax (p < 0.001) and Kd (p < 0.01) compared to control and significant reversal (p < 0.001) in both the treatment groups (spinal cord injury treated with 5HT and GABA, and spinal cord injury treated with Citicholine). Muscarinic M1 receptor gene expression in spinal cord injured group showed significant down regulation (p < 0.001) compared to control, and both the treatment groups significantly reversed (p < 0.001) these changes to near control when compared to spinal cord injured group. The confocal microscopic study using specific antibody of muscarinic M1 confirmed the gene expression studies. Conclusion Thus our results suggest that the neurotransmitters combination along with bone marrow or Citicholine with bone marrow can reverse the muscarinic receptor alterations in the spinal cord of spinal cord injured rats, which is a promising step towards a better therapeutic intervention for spinal cord injury because of the positive role of cholinergic system in regulation of both locomotor activity and synaptic plasticity.
Collapse
Affiliation(s)
- Cheramadathukudiyil Skaria Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India.
| | | | - Romeo Chinthu
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Puthenveetil Raju Akhilraj
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Thoppil Raveendran Anju
- Center for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| |
Collapse
|
147
|
Liu L, Liu H, Chen M, Ren S, Cheng P, Zhang H. miR-301b~miR-130b-PPARγ axis underlies the adipogenic capacity of mesenchymal stem cells with different tissue origins. Sci Rep 2017; 7:1160. [PMID: 28442776 PMCID: PMC5430834 DOI: 10.1038/s41598-017-01294-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in regenerative medicine and cellular therapy due to their multi-lineage differentiation potential and immunomodulatory function. The applicability of MSCs also depends on their cellular sources and in vivo functions. Here in this study, we systematically compared the morphologic characteristics, immunophenotypes and the adipogenic differentiation of MSCs derived from umbilical cord (UC), adipose tissue (Ad) and bone marrow (BM). We found that the three tissues-derived MSCs displayed decreased adipogenic capacity in the order: Ad-MSC > BM-MSC > UC-MSC, and no morphologic and immunophenotypic differences were observed. Mechanistic investigation revealed a miR-301b~miR-130b-PPARγ axis, whose expression pattern in UC-MSC, Ad-MSC and BM-MSC significantly correlates with their adipogenic capacity. Our results come up with a potential mechanism to elucidate the differential adipogenesis of Ad-MSC, BM-MSC and UC-MSC, which would provide instructional advice for which source of MSCs to choose according to a certain clinical purpose. Furthermore, the miR-301b~miR-130b-PPARγ axis may also be used as a potential therapeutic target for the disorders associated with MSCs-mediated abnormal adipogenesis.
Collapse
Affiliation(s)
- Lulu Liu
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong Province, China
| | - Haihui Liu
- Department of Graduate School, Jining Medical University, Jining, 272000, Shandong Province, China
| | - Mingtai Chen
- Central Laboratory, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong Province, China
| | - Saisai Ren
- Department of Graduate School, Jining Medical University, Jining, 272000, Shandong Province, China
| | - Panpan Cheng
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong Province, China
| | - Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong Province, China.
| |
Collapse
|
148
|
Callewaert G, Da Cunha MMCM, Sindhwani N, Sampaolesi M, Albersen M, Deprest J. Cell-based secondary prevention of childbirth-induced pelvic floor trauma. Nat Rev Urol 2017; 14:373-385. [PMID: 28374792 DOI: 10.1038/nrurol.2017.42] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With advancing population age, pelvic-floor dysfunction (PFD) will affect an increasing number of women. Many of these women wish to maintain active lifestyles, indicating an urgent need for effective strategies to treat or, preferably, prevent the occurrence of PFD. Childbirth and pregnancy have both long been recognized as crucial contributing factors in the pathophysiology of PFD. Vaginal delivery of a child is a serious traumatic event, causing anatomical and functional changes in the pelvic floor. Similar changes to those experienced during childbirth can be found in symptomatic women, often many years after delivery. Thus, women with such PFD symptoms might have incompletely recovered from the trauma caused by vaginal delivery. This hypothesis creates the possibility that preventive measures can be initiated around the time of delivery. Secondary prevention has been shown to be beneficial in patients with many other chronic conditions. The current general consensus is that clinicians should aim to minimize the extent of damage during delivery, and aim to optimize healing processes after delivery, therefore preventing later dysfunction. A substantial amount of research investigating the potential of stem-cell injections as a therapeutic strategy for achieving this purpose is currently ongoing. Data from small animal models have demonstrated positive effects of mesenchymal stem-cell injections on the healing process following simulated vaginal birth injury.
Collapse
Affiliation(s)
- Geertje Callewaert
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | | | - Nikhil Sindhwani
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maurilio Sampaolesi
- Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Maarten Albersen
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Urology, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Cluster Organ Systems, Faculty of Medicine, University of Leuven, Herestraat 49, Leuven 3000, Belgium.,Department of Obstetrics and Gynaecology, Division Woman and Child, University Hospitals Leuven, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
149
|
"Neuronal-Like Differentiation of Murine Mesenchymal Stem Cell Line: Stimulation by Juglans regia L. Oil". Appl Biochem Biotechnol 2017; 183:385-395. [PMID: 28289857 DOI: 10.1007/s12010-017-2452-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Mesenchymal stem cells have been extensively used for cell-based therapies especially in neuronal diseases. Studies still continue to delineate mechanisms involved in differentiating mesenchymal stem cells into neuronal cells under experimental conditions as they have low mortality rate and hence, the number of cells available for experiments is much more limited. Culturing and differentiating of neuronal cell is more challenging as they do not undergo cell division thus, bringing them to differentiate proves to be a difficult task. Here, the aim of this study is to investigate whether Juglans regia L. (walnut oil) differentiates multipotent, C3H10T1/2 cells, a murine mesenchymal stem cell line, into neuronal cells. A simple treatment protocol induced C3H10T1/2 cells to exhibit a neuronal phenotype. With this optimal differentiation protocol, almost all cells exhibited neuronal morphology. The cell bodies extended long processes. C3H10T1/2 cells were plated and treated with walnut oil post 24 h of plating. The treatment was given (with walnut oil treated cultures with or without control cultures) at different concentrations. The cultured cells were then stained with cresyl violet acetate solution which was used to stain the Nissl substance in the cytoplasm of the induced neuronal culture. The results indicated that the C3H10T1/2 cells differentiated into neuronal-like cells with long outgrowths of axon-like structures able to take up the cresyl violet acetate stain indicating their preliminary differentiation into neuronal-like morphology with walnut oil treatment. Treating the mesenchymal stem cells can in future establish a cultured mesenchymal stem cell line as neuronal differentiating cell line model.
Collapse
|
150
|
Phinney DG, Pittenger MF. Concise Review: MSC-Derived Exosomes for Cell-Free Therapy. Stem Cells 2017; 35:851-858. [PMID: 28294454 DOI: 10.1002/stem.2575] [Citation(s) in RCA: 1201] [Impact Index Per Article: 150.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cell transplantation is undergoing extensive evaluation as a cellular therapy in human clinical trials. Because MSCs are easily isolated and amenable to culture expansion in vitro there is a natural desire to test MSCs in many diverse clinical indications. This is exemplified by the rapidly expanding literature base that includes many in vivo animal models. More recently, MSC-derived extracellular vesicles (EVs), which include exosomes and microvesicles (MV), are being examined for their role in MSC-based cellular therapy. These vesicles are involved in cell-to-cell communication, cell signaling, and altering cell or tissue metabolism at short or long distances in the body. The exosomes and MVs can influence tissue responses to injury, infection, and disease. MSC-derived exosomes have a content that includes cytokines and growth factors, signaling lipids, mRNAs, and regulatory miRNAs. To the extent that MSC exosomes can be used for cell-free regenerative medicine, much will depend on the quality, reproducibility, and potency of their production, in the same manner that these parameters dictate the development of cell-based MSC therapies. However, the MSC exosome's contents are not static, but rather a product of the MSC tissue origin, its activities and the immediate intercellular neighbors of the MSCs. As such, the exosome content produced by MSCs appears to be altered when MSCs are cultured with tumor cells or in the in vivo tumor microenvironment. Therefore, careful attention to detail in producing MSC exosomes may provide a new therapeutic paradigm for cell-free MSC-based therapies with decreased risk. Stem Cells 2017;35:851-858.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | | |
Collapse
|