101
|
A statistical analysis of the robustness of alternate genetic coding tables. Int J Mol Sci 2008; 9:679-697. [PMID: 19325778 PMCID: PMC2635705 DOI: 10.3390/ijms9050679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/25/2008] [Accepted: 04/11/2008] [Indexed: 11/24/2022] Open
Abstract
The rules that specify how the information contained in DNA is translated into amino acid “language” during protein synthesis are called “the genetic code”, commonly called the “Standard” or “Universal” Genetic Code Table. As a matter of fact, this coding table is not at all “universal”: in addition to different genetic code tables used by different organisms, even within the same organism the nuclear and mitochondrial genes may be subject to two different coding tables. Results In an attempt to understand the advantages and disadvantages these coding tables may bring to an organism, we have decided to analyze various coding tables on genes subject to mutations, and have estimated how these genes “survive” over generations. We have used this as indicative of the “evolutionary” success of that particular coding table. We find that the “standard” genetic code is not actually the most robust of all coding tables, and interestingly, Flatworm Mitochondrial Code (FMC) appears to be the highest ranking coding table given our assumptions. Conclusions It is commonly hypothesized that the more robust a genetic code, the better suited it is for maintenance of the genome. Our study shows that, given the assumptions in our model, Standard Genetic Code is quite poor when compared to other alternate code tables in terms of robustness. This brings about the question of why Standard Code has been so widely accepted by a wider variety of organisms instead of FMC, which needs to be addressed for a thorough understanding of genetic code evolution.
Collapse
|
102
|
Huyse T, Buchmann K, Littlewood DTJ. The mitochondrial genome of Gyrodactylus derjavinoides (Platyhelminthes: Monogenea)--a mitogenomic approach for Gyrodactylus species and strain identification. Gene 2008; 417:27-34. [PMID: 18448274 DOI: 10.1016/j.gene.2008.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/28/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Systematists and evolutionary biologists are constantly on the lookout for new sources of characters to discriminate amongst taxa and estimate interrelationships within and between taxa. Entire mitochondrial genomes provide a wealth of data, both at the nucleotide and amino acid level. Molecular markers are of particular utility when applied to small, morphologically conserved taxa, as is the case for many monogenean ectoparasites of fish. Gyrodactylus species display a considerable degree of anatomical conservatism, complicating diagnostics based solely on morphology, and some are significant pests of wild and cultured fish. Here we sequenced the complete mitochondrial genome of Gyrodactylus derjavinoides Malmberg, Collins, Cunningham & Behiar 2007, one of the most frequently found gyrodactylid species on salmonids in Scandinavia, and compared it with the recently published genomes of Gyrodactylus salaris Malmberg, 1957 and Gyrodactylus thymalli Zitnan 1960. Through comparative sliding window analysis we identified regions of high sequence variability and designed new primer sequences. In total, 6 new primer pairs have been developed, amplifying fragments of cox1, cox3, nad1, nad2, nad4, nad5 and atp6. Together, they amplify regions capturing almost half the nucleotide variability present in the complete mitochondrial genome. These degenerate primers should also work for other Gyrodactylus species parasitizing salmonids. In addition, we developed a multiplex assay that simultaneously amplifies four fragments in a single PCR reaction. Besides the diagnostic value, these fragments can be used for studying the transmission dynamics of Gyrodactylus, providing crucial information for an improved understanding of the spread and epidemiology of these important fish pathogens.
Collapse
Affiliation(s)
- Tine Huyse
- Laboratory of Animal Diversity and Systematics, Catholic University of Leuven, Ch. Deberiotstraat 32, B3000 Leuven, Belgium.
| | | | | |
Collapse
|
103
|
Hox genes and the parasitic flatworms: New opportunities, challenges and lessons from the free-living. Parasitol Int 2008; 57:8-17. [DOI: 10.1016/j.parint.2007.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 09/18/2007] [Accepted: 09/24/2007] [Indexed: 11/20/2022]
|
104
|
Ogino K, Tsuneki K, Furuya H. CLONING OF CHITINASE-LIKE PROTEIN1 CDNA FROM DICYEMID MESOZOANS (PHYLUM: DICYEMIDA). J Parasitol 2007; 93:1403-15. [DOI: 10.1645/ge-1290.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
105
|
Iannelli F, Griggio F, Pesole G, Gissi C. The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level. BMC Evol Biol 2007; 7:155. [PMID: 17764550 PMCID: PMC2220002 DOI: 10.1186/1471-2148-7-155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Accepted: 08/31/2007] [Indexed: 11/24/2022] Open
Abstract
Background Within Chordata, the subphyla Vertebrata and Cephalochordata (lancelets) are characterized by a remarkable stability of the mitochondrial (mt) genome, with constancy of gene content and almost invariant gene order, whereas the limited mitochondrial data on the subphylum Tunicata suggest frequent and extensive gene rearrangements, observed also within ascidians of the same genus. Results To confirm this evolutionary trend and to better understand the evolutionary dynamics of the mitochondrial genome in Tunicata Ascidiacea, we have sequenced and characterized the complete mt genome of two congeneric ascidian species, Phallusia mammillata and Phallusia fumigata (Phlebobranchiata, Ascidiidae). The two mtDNAs are surprisingly rearranged, both with respect to one another and relative to those of other tunicates and chordates, with gene rearrangements affecting both protein-coding and tRNA genes. The new data highlight the extraordinary variability of ascidian mt genome in base composition, tRNA secondary structure, tRNA gene content, and non-coding regions (number, size, sequence and location). Indeed, both Phallusia genomes lack the trnD gene, show loss/acquisition of DHU-arm in two tRNAs, and have a G+C content two-fold higher than other ascidians. Moreover, the mt genome of P. fumigata presents two identical copies of trnI, an extra tRNA gene with uncertain amino acid specificity, and four almost identical sequence regions. In addition, a truncated cytochrome b, lacking a C-terminal tail that commonly protrudes into the mt matrix, has been identified as a new mt feature probably shared by all tunicates. Conclusion The frequent occurrence of major gene order rearrangements in ascidians both at high taxonomic level and within the same genus makes this taxon an excellent model to study the mechanisms of gene rearrangement, and renders the mt genome an invaluable phylogenetic marker to investigate molecular biodiversity and speciation events in this largely unexplored group of basal chordates.
Collapse
Affiliation(s)
- Fabio Iannelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Francesca Griggio
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Graziano Pesole
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
- Dipartimento di Biochimica e Biologia Molecolare "E. Quagliariello", Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Carmela Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
106
|
Plaisance L, Huyse T, Littlewood DTJ, Bakke TA, Bachmann L. The complete mitochondrial DNA sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes: Monogenea), a parasite of grayling (Thymallus thymallus). Mol Biochem Parasitol 2007; 154:190-4. [PMID: 17559954 DOI: 10.1016/j.molbiopara.2007.04.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 04/18/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
We present the complete mitochondrial (mt) genome of Gyrodactylus thymalli, a monogenean ectoparasite on grayling (Thymallus thymallus). The circular genome is 14788 bp in size and includes all 35 genes recognized from other flatworm mt genomes. The overall A+T content of the mt genome is 62.8%. Twenty regions of non-coding DNA ranging from 1 to 111 bp in length were identified in addition to 2 highly conserved large non-coding regions 799 bp and 767 bp in size. Compared to the recently described mt DNA of the closely related G. salaris from Atlantic salmon from Signaldalselva, Norway, the mitochondrial genome of G. thymalli from Hnilec, Slovakia, differs on average by 2.2%.
Collapse
Affiliation(s)
- Laetitia Plaisance
- The Natural History Museum, Department of Zoology, University of Oslo, P.O. Box 1172, Blindern, NO-0318 Oslo, Norway.
| | | | | | | | | |
Collapse
|
107
|
Webster BL, Rudolfová J, Horák P, Littlewood DTJ. The complete mitochondrial genome of the bird schistosome Trichobilharzia regenti (Platyhelminthes: Digenea), causative agent of cercarial dermatitis. J Parasitol 2007; 93:553-61. [PMID: 17626347 DOI: 10.1645/ge-1072r.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The complete mitochondrial (mt) genome of the neuropathogenic bird schistosome Trichobilharzia regenti was fully sequenced in order to develop molecular markers for future diagnostic, molecular ecological, population, and phylogenetic studies. The genome was 14,838 bp in length, with a 68.4% AT bias in protein coding regions. A repeat element (3 x 184 bp) between trnV and trnW distinguished a single short noncoding region. As 9 of 14 genera of schistosomes parasitize birds, future characterization of their mt genomes is desirable for species-specific and strain- or population-specific diagnostic markers; this concerns not only the nasal representatives, e.g., T. regenti characterized in this study, but also numerous species within the predominant group of visceral (blood dwelling) bird schistosomes.
Collapse
Affiliation(s)
- Bonnie L Webster
- Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom
| | | | | | | |
Collapse
|
108
|
Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 2007; 64:662-88. [PMID: 17541678 PMCID: PMC1894752 DOI: 10.1007/s00239-006-0284-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 03/07/2007] [Indexed: 11/26/2022]
Abstract
Many cases of nonstandard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The “gain” represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The “loss” represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is codon disappearance (CD), where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the unassigned codon mechanism, the loss occurs first, whereas in the ambiguous intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. CD is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense-to-sense reassignments cannot be explained by CD. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the unassigned codon and the ambiguous intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.
Collapse
Affiliation(s)
- Supratim Sengupta
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 Canada
| | - Xiaoguang Yang
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| | - Paul G. Higgs
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 Canada
| |
Collapse
|
109
|
Massey SE, Garey JR. A comparative genomics analysis of codon reassignments reveals a link with mitochondrial proteome size and a mechanism of genetic code change via suppressor tRNAs. J Mol Evol 2007; 64:399-410. [PMID: 17390094 DOI: 10.1007/s00239-005-0260-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Using a comparative genomics approach we demonstrate a negative correlation between the number of codon reassignments undergone by 222 mitochondrial genomes and the mitochondrial genome size, the number of mitochondrial ORFs, and the sizes of the large and small subunit mitochondrial rRNAs. In addition, we show that the TGA-to-tryptophan codon reassignment, which has occurred 11 times in mitochondrial genomes, is found in mitochondrial genomes smaller than those which have not undergone the reassignment. We therefore propose that mitochondrial codon reassignments occur in a wide range of phyla, particularly in Metazoa, due to a reduced "proteomic constraint" on the mitochondrial genetic code, compared to the nuclear genetic code. The reduced proteomic constraint reflects the small size of the mitochondrial-encoded proteome and allows codon reassignments to occur with less likelihood of lethality. In addition, we demonstrate a striking link between nonsense codon reassignments and the decoding properties of naturally occurring nonsense suppressor tRNAs. This suggests that natural preexisting nonsense suppression facilitated nonsense codon reassignments and constitutes a novel mechanism of genetic code change. These findings explain for the first time the identity of the stop codons and amino acids reassigned in mitochondrial and nuclear genomes. Nonsense suppressor tRNAs provided the raw material for nonsense codon reassignments, implying that the properties of the tRNA anticodon have dictated the identity of nonsense codon reassignments.
Collapse
Affiliation(s)
- Steven E Massey
- Department of Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| | | |
Collapse
|
110
|
Nakao M, Abmed D, Yamasaki H, Ito A. Mitochondrial genomes of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense (Cestoda: Diphyllobothriidae). Parasitol Res 2007; 101:233-6. [PMID: 17252274 DOI: 10.1007/s00436-006-0433-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
Mitochondrial DNA (mtDNA) sequences of the human broad tapeworms Diphyllobothrium latum and Diphyllobothrium nihonkaiense have been totally determined. Both of them are closed circular molecules (total length, 13,720 bp in D. latum and 13,747 bp in D. nihonkaiense) containing genes for 12 proteins, 22 transfer RNAs, and two ribosomal RNAs. All the genes are coded on T-rich strand. The gene order of Diphyllobothrium mtDNAs is completely identical with that of Taenia and Echinococcus mtDNAs. The overall A + T contents of the genomes are 68.3% in D. latum and 67.8% in D. nihonkaiense. The pairwise divergence values of nucleotide sequences between these tapeworms ranged from 0.069 to 0.152 in protein-coding genes, demonstrating that D. nihonkaiense is a distinct species. The sequences determined in this study may provide useful marker systems for diagnostic, epidemiological, and phylogeographical studies of human diphyllobothriasis.
Collapse
Affiliation(s)
- Minoru Nakao
- Department of Parasitology, Asahikawa Medical College, Midorigaoka-Higashi 2-1, Asahikawa, Hokkaido 078-8510, Japan.
| | | | | | | |
Collapse
|
111
|
Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA, Bachmann L, Littlewood DTJ. The mitochondrial genome of Gyrodactylus salaris (Platyhelminthes: Monogenea), a pathogen of Atlantic salmon (Salmo salar). Parasitology 2006; 134:739-47. [PMID: 17156582 DOI: 10.1017/s0031182006002010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYIn the present study, we describe the complete mitochondrial (mt) genome of the Atlantic salmon parasite Gyrodactylus salaris, the first for any monogenean species. The circular genome is 14 790 bp in size. All of the 35 genes recognized from other flatworm mitochondrial genomes were identified, and they are transcribed from the same strand. The protein-coding and ribosomal RNA (rRNA) genes share the same gene arrangement as those published previously for neodermatan mt genomes (representing cestodes and digeneans only), and the genome has an overall A+T content of 65%. Three transfer RNA (tRNA) genes overlap with other genes, whereas the secondary structure of 3 tRNA genes lack the DHU arm and 1 tRNA gene lacks the TΨC arm. Eighteen regions of non-coding DNA ranging from 4 to 112 bp in length, totalling 278 bp, were identified as well as 2 large non-coding regions (799 bp and 768 bp) that were almost identical to each other. The completion of the mt genome offers the opportunity of defining new molecular markers for studying evolutionary relationships within and among gyrodactylid species.
Collapse
Affiliation(s)
- T Huyse
- Parasitic Worms Group, Department of Zoology, The Natural History Museum, London SW7 5BD, UK.
| | | | | | | | | | | | | |
Collapse
|
112
|
Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 2006; 134:713-22. [PMID: 17156584 DOI: 10.1017/s0031182006001934] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYTaxonomic revision by molecular phylogeny is needed to categorize members of the genus Echinococcus (Cestoda: Taeniidae). We have reconstructed the phylogenetic relationships of E. oligarthrus, E. vogeli, E. multilocularis, E. shiquicus, E. equinus, E. ortleppi, E. granulosus sensu stricto and 3 genotypes of E. granulosus sensu lato (G6, G7 and G8) from their complete mitochondrial genomes. Maximum likelihood and partitioned Bayesian analyses using concatenated data sets of nucleotide and amino acid sequences depicted phylogenetic trees with the same topology. The 3 E. granulosus genotypes corresponding to the camel, pig, and cervid strains were monophyletic, and their high level of genetic similarity supported taxonomic species unification of these genotypes into E. canadensis. Sister species relationships were confirmed between E. ortleppi and E. canadensis, and between E. multilocularis and E. shiquicus, regardless of the analytical approach employed. The basal positions of the phylogenetic tree were occupied by the neotropical endemic species, E. oligarthrus and E. vogeli, whose definitive hosts are derived from carnivores that immigrated from North America after the formation of the Panamanian land bridge. Host-parasite co-evolution comparisons suggest that the ancestral homeland of Echinococcus was North America or Asia, depending on whether the ancestral definitive hosts were canids or felids.
Collapse
Affiliation(s)
- M Nakao
- Department of Parasitology, Asahikawa Medical College, Asahikawa, Hokkaido 078-8510, Japan.
| | | | | | | | | |
Collapse
|
113
|
Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 2006; 444:85-8. [PMID: 17051155 DOI: 10.1038/nature05241] [Citation(s) in RCA: 355] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Accepted: 09/11/2006] [Indexed: 11/09/2022]
Abstract
Deuterostomes comprise vertebrates, the related invertebrate chordates (tunicates and cephalochordates) and three other invertebrate taxa: hemichordates, echinoderms and Xenoturbella. The relationships between invertebrate and vertebrate deuterostomes are clearly important for understanding our own distant origins. Recent phylogenetic studies of chordate classes and a sea urchin have indicated that urochordates might be the closest invertebrate sister group of vertebrates, rather than cephalochordates, as traditionally believed. More remarkable is the suggestion that cephalochordates are closer to echinoderms than to vertebrates and urochordates, meaning that chordates are paraphyletic. To study the relationships among all deuterostome groups, we have assembled an alignment of more than 35,000 homologous amino acids, including new data from a hemichordate, starfish and Xenoturbella. We have also sequenced the mitochondrial genome of Xenoturbella. We support the clades Olfactores (urochordates and vertebrates) and Ambulacraria (hemichordates and echinoderms). Analyses using our new data, however, do not support a cephalochordate and echinoderm grouping and we conclude that chordates are monophyletic. Finally, nuclear and mitochondrial data place Xenoturbella as the sister group of the two ambulacrarian phyla. As such, Xenoturbella is shown to be an independent phylum, Xenoturbellida, bringing the number of living deuterostome phyla to four.
Collapse
Affiliation(s)
- Sarah J Bourlat
- Department of Biology, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Hardman M, Hardman LM. Comparison of the phylogenetic performance of neodermatan mitochondrial protein-coding genes. ZOOL SCR 2006. [DOI: 10.1111/j.1463-6409.2006.00248.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
115
|
Webster BL, Mackenzie-Dodds JA, Telford MJ, Littlewood DTJ. The mitochondrial genome of Priapulus caudatus Lamarck (Priapulida: Priapulidae). Gene 2006; 389:96-105. [PMID: 17123748 DOI: 10.1016/j.gene.2006.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 09/19/2006] [Accepted: 10/09/2006] [Indexed: 11/16/2022]
Abstract
We sequenced and annotated the complete mitochondrial (mt) genome of the priapulid Priapulus caudatus in order to provide a source of phylogenetic characters including an assessment of gene order arrangement. The genome was 14,919 bp in its entirety with few, short non-coding regions. A number of protein-coding and tRNA genes overlapped, making the genome relatively compact. The gene order was: cox1, cox2, trnK, trnD, atp8, atp6, cox3, trnG, nad3, trnA, trnR, trnN, rrnS, trnV, rrnL, trnL(yaa), trnL(nag), nad1, -trnS(nga), -cob, -nad6, trnP, -trnT, nad4L, nad4, trnH, nad5, trnF, -trnE, -trnS(nct), trnI, -trnQ, trnM, nad2, trnW, -trnC, -trnY; where '-' indicates genes transcribed on the opposite strand. The gene order, although unique amongst Metazoa, shared the greatest number of gene boundaries and the longest contiguous fragments with the chelicerate Limulus polyphemus. The mt genomes of these taxa differed only by a single inversion of 18 contiguous genes bounded by rrnS and trnS(nct). Other arthropods and nematodes shared fewer gene boundaries but considerably more than the most similar non-ecdysozoan.
Collapse
Affiliation(s)
- Bonnie L Webster
- Department of Zoology, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | | | | | |
Collapse
|
116
|
Kilpert F, Podsiadlowski L. The complete mitochondrial genome of the common sea slater, Ligia oceanica (Crustacea, Isopoda) bears a novel gene order and unusual control region features. BMC Genomics 2006; 7:241. [PMID: 16987408 PMCID: PMC1590035 DOI: 10.1186/1471-2164-7-241] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/20/2006] [Indexed: 11/18/2022] Open
Abstract
Background Sequence data and other characters from mitochondrial genomes (gene translocations, secondary structure of RNA molecules) are useful in phylogenetic studies among metazoan animals from population to phylum level. Moreover, the comparison of complete mitochondrial sequences gives valuable information about the evolution of small genomes, e.g. about different mechanisms of gene translocation, gene duplication and gene loss, or concerning nucleotide frequency biases. The Peracarida (gammarids, isopods, etc.) comprise about 21,000 species of crustaceans, living in many environments from deep sea floor to arid terrestrial habitats. Ligia oceanica is a terrestrial isopod living at rocky seashores of the european North Sea and Atlantic coastlines. Results The study reveals the first complete mitochondrial DNA sequence from a peracarid crustacean. The mitochondrial genome of Ligia oceanica is a circular double-stranded DNA molecule, with a size of 15,289 bp. It shows several changes in mitochondrial gene order compared to other crustacean species. An overview about mitochondrial gene order of all crustacean taxa yet sequenced is also presented. The largest non-coding part (the putative mitochondrial control region) of the mitochondrial genome of Ligia oceanica is unexpectedly not AT-rich compared to the remainder of the genome. It bears two repeat regions (4× 10 bp and 3× 64 bp), and a GC-rich hairpin-like secondary structure. Some of the transfer RNAs show secondary structures which derive from the usual cloverleaf pattern. While some tRNA genes are putative targets for RNA editing, trnR could not be localized at all. Conclusion Gene order is not conserved among Peracarida, not even among isopods. The two isopod species Ligia oceanica and Idotea baltica show a similarly derived gene order, compared to the arthropod ground pattern and to the amphipod Parhyale hawaiiensis, suggesting that most of the translocation events were already present the last common ancestor of these isopods. Beyond that, the positions of three tRNA genes differ in the two isopod species. Strand bias in nucleotide frequency is reversed in both isopod species compared to other Malacostraca. This is probably due to a reversal of the replication origin, which is further supported by the fact that the hairpin structure typically found in the control region shows a reversed orientation in the isopod species, compared to other crustaceans.
Collapse
Affiliation(s)
- Fabian Kilpert
- Department of Animal Systematics and Evolution, Institute of Biology, Freie Universität Berlin, Konigin-Luise-Str. 1-3, D-14195 Berlin, Germany
| | - Lars Podsiadlowski
- Department of Animal Systematics and Evolution, Institute of Biology, Freie Universität Berlin, Konigin-Luise-Str. 1-3, D-14195 Berlin, Germany
| |
Collapse
|
117
|
Haukisalmi V, Hardman LM, Hardman M, Laakkonen J, Niemimaa J, Henttonen H. Morphological and molecular characterisation of Paranoplocephala buryatiensis n. sp. and P. longivaginata Chechulin & Gulyaev, 1998 (Cestoda: Anoplocephalidae) in voles of the genus Clethrionomys. Syst Parasitol 2006; 66:55-71. [PMID: 16977425 DOI: 10.1007/s11230-006-9059-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 03/12/2006] [Indexed: 10/24/2022]
Abstract
A new species, Paranoplocephala buryatiensis n. sp. (Cestoda:Anoplocephalidae), is described from the grey-sided vole Clethrionomys rufocanus (Sundevall) in the Republic of Buryatia (Russian Federation) and compared with P. longivaginata Chechulin & Gulyaev, 1998, a parasite of the red vole C. rutilus (Pallas) in the same region. P. buryatiensis n. sp. and P. longivaginata both have an exceptionally long vagina and cirrus, unique features among known species of Paranoplocephala Lühe, 1910. The new species differs from P. longivaginata primarily by its wider and more robust body, lower length/width ratio of mature proglottides, tendency of testes to occur in two separate groups, seminal receptacle of a different shape and the position of the cirrus-sac with respect to the ventral longitudinal osmoregulatory canal. The cytochrome oxidase subunit I (COI) sequence data support the independent status of these species, and show that they form a monophyletic assemblage within Paranoplocephala (sensu lato). Assuming cospeciation, an indirect calibration using host speciation dates estimated a rate of mtDNA substitution of 1.0-1.7% pairwise (0.5-0.85% per lineage) sequence divergence per million years. A faunistic review of Paranoplocephala species in C. rufocanus and C. rutilus in the Holarctic region is presented.
Collapse
Affiliation(s)
- Voitto Haukisalmi
- Finnish Forest Research Institute, Vantaa Research Unit, PO Box 18, FIN-01301 Vantaa, Finland.
| | | | | | | | | | | |
Collapse
|
118
|
Abstract
Although the majority of the organisms use the same genetic code to translate DNA, several variants have been described in a wide range of organisms, both in nuclear and organellar systems, many of them corresponding to metazoan mitochondria. These variants are usually found by comparative sequence analyses, either conducted manually or with the computer. Basically, when a particular codon in a query-species is linked to positions for which a specific amino acid is consistently found in other species, then that particular codon is expected to translate as that specific amino acid. Importantly, and despite the simplicity of this approach, there are no available tools to help predicting the genetic code of an organism. We present here GenDecoder, a web server for the characterization and prediction of mitochondrial genetic codes in animals. The analysis of automatic predictions for 681 metazoans aimed us to study some properties of the comparative method, in particular, the relationship among sequence conservation, taxonomic sampling and reliability of assignments. Overall, the method is highly precise (99%), although highly divergent organisms such as platyhelminths are more problematic. The GenDecoder web server is freely available from http://darwin.uvigo.es/software/gendecoder.html.
Collapse
Affiliation(s)
- Federico Abascal
- Departamento de Bioquímica, Genética, e Inmunología, Universidad de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
119
|
Abascal F, Posada D, Knight RD, Zardoya R. Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol 2006; 4:e127. [PMID: 16620150 PMCID: PMC1440934 DOI: 10.1371/journal.pbio.0040127] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/17/2006] [Indexed: 11/18/2022] Open
Abstract
The genetic code provides the translation table necessary to transform the information contained in DNA into the language of proteins. In this table, a correspondence between each codon and each amino acid is established: tRNA is the main adaptor that links the two. Although the genetic code is nearly universal, several variants of this code have been described in a wide range of nuclear and organellar systems, especially in metazoan mitochondria. These variants are generally found by searching for conserved positions that consistently code for a specific alternative amino acid in a new species. We have devised an accurate computational method to automate these comparisons, and have tested it with 626 metazoan mitochondrial genomes. Our results indicate that several arthropods have a new genetic code and translate the codon AGG as lysine instead of serine (as in the invertebrate mitochondrial genetic code) or arginine (as in the standard genetic code). We have investigated the evolution of the genetic code in the arthropods and found several events of parallel evolution in which the AGG codon was reassigned between serine and lysine. Our analyses also revealed correlated evolution between the arthropod genetic codes and the tRNA-Lys/-Ser, which show specific point mutations at the anticodons. These rather simple mutations, together with a low usage of the AGG codon, might explain the recurrence of the AGG reassignments.
Collapse
Affiliation(s)
- Federico Abascal
- Departamento de Bioquímica, Genética, e Inmunología, Universidad de Vigo, Vigo, Spain.
| | | | | | | |
Collapse
|
120
|
Littlewood DTJ, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol 2006; 39:452-67. [PMID: 16464618 DOI: 10.1016/j.ympev.2005.12.012] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 12/20/2005] [Accepted: 12/23/2005] [Indexed: 11/28/2022]
Abstract
Complete mitochondrial genome sequences for the schistosomes Schistosoma haematobium and Schistosoma. spindale have been characterized. S. haematobium is the causative agent of urinary schistosomiasis in humans and S. spindale uses ruminants as its definitive host; both are transmitted by freshwater snail intermediate hosts. Results confirm a major gene order rearrangement among schistosomes in all traditional Schistosoma species groups other than Schistosoma japonicum; i.e., species groups S. mansoni, S. haematobium, and S. indicum. These data lend support to the 'out of Asia' (East and Southeast Asia) hypothesis for Schistosoma. The gene order change involves translocation of atp6-nad2-trnA and a rearrangement of nad3-nad1 relative to other parasitic flatworm mt genomes so far sequenced. Gene order and tRNA secondary structure changes (loss and acquisition of the DHU and/or TPsiC arms of trnC, trnF, and trnR) between mitochondrial genomes of these and other (digenean and cestode) flatworms were inferred by character mapping onto a phylogeny estimated from nuclear small subunit rRNA gene sequences of these same species, in order to find additional rare genomic changes suitable as synapomorphies. Denser and wider taxon sampling of mt genomes across the Platyhelminthes will validate these putative characters.
Collapse
|
121
|
Willems WR, Wallberg A, Jondelius U, Littlewood DTJ, Backeljau T, Schockaert ER, Artois TJ. Filling a gap in the phylogeny of flatworms: relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences. ZOOL SCR 2006. [DOI: 10.1111/j.1463-6409.2005.00216.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
122
|
Le TH, McManus DP, Blair D. Codon usage and bias in mitochondrial genomes of parasitic platyhelminthes. THE KOREAN JOURNAL OF PARASITOLOGY 2005; 42:159-67. [PMID: 15591833 PMCID: PMC2717381 DOI: 10.3347/kjp.2004.42.4.159] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sequences of the complete protein-coding portions of the mitochondrial (mt) genome were analysed for 6 species of cestodes (including hydatid tapeworms and the pork tapeworm) and 5 species of trematodes (blood flukes and liver- and lung-flukes). A near-complete sequence was also available for an additional trematode (the blood fluke Schistosoma malayensis). All of these parasites belong to a large flatworm taxon named the Neodermata. Considerable variation was found in the base composition of the protein-coding genes among these neodermatans. This variation was reflected in statistically-significant differences in numbers of each inferred amino acid between many pairs of species. Both convergence and divergence in nucleotide, and hence amino acid, composition was noted among groups within the Neodermata. Considerable variation in skew (unequal representation of complementary bases on the same strand) was found among the species studied. A pattern is thus emerging of diversity in the mt genome in neodermatans that may cast light on evolution of mt genomes generally.
Collapse
Affiliation(s)
- Thanh Hoa Le
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and the University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
123
|
Olson PD, Tkach VV. Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes. ADVANCES IN PARASITOLOGY 2005; 60:165-243. [PMID: 16230104 DOI: 10.1016/s0065-308x(05)60003-6] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The application of molecular systematics to the parasitic Platyhelminthes (Cestoda, Digenea and Monogenea) over the last decade has advanced our understanding of their interrelationships and evolution substantially. Here we review the current state of play and the early works that led to the molecular-based hypotheses that now predominate in the field; advances in their systematics, taxonomy, classification and phylogeny, as well as trends in species circumscription, molecular targets and analytical methods are discussed for each of the three major parasitic groups. A by-product of this effort has been an ever increasing number of parasitic flatworms characterized genetically, and the useful application of these data to the diagnosis of animal and human pathogens, and to the elucidation of life histories are presented. The final section considers future directions in the field, including taxon sampling, molecular targets of choice, and the current and future utility of mitochondrial and nuclear genomics in systematic study.
Collapse
Affiliation(s)
- Peter D Olson
- Division of Parasitology, Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | | |
Collapse
|
124
|
Swire J, Judson OP, Burt A. Mitochondrial Genetic Codes Evolve to Match Amino Acid Requirements of Proteins. J Mol Evol 2005; 60:128-39. [PMID: 15696375 DOI: 10.1007/s00239-004-0077-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 08/31/2004] [Indexed: 10/25/2022]
Abstract
Mitochondria often use genetic codes different from the standard genetic code. Now that many mitochondrial genomes have been sequenced, these variant codes provide the first opportunity to examine empirically the processes that produce new genetic codes. The key question is: Are codon reassignments the sole result of mutation and genetic drift? Or are they the result of natural selection? Here we present an analysis of 24 phylogenetically independent codon reassignments in mitochondria. Although the mutation-drift hypothesis can explain reassignments from stop to an amino acid, we found that it cannot explain reassignments from one amino acid to another. In particular--and contrary to the predictions of the mutation-drift hypothesis--the codon involved in such a reassignment was not rare in the ancestral genome. Instead, such reassignments appear to take place while the codon is in use at an appreciable frequency. Moreover, the comparison of inferred amino acid usage in the ancestral genome with the neutral expectation shows that the amino acid gaining the codon was selectively favored over the amino acid losing the codon. These results are consistent with a simple model of weak selection on the amino acid composition of proteins in which codon reassignments are selected because they compensate for multiple slightly deleterious mutations throughout the mitochondrial genome. We propose that the selection pressure is for reduced protein synthesis cost: most reassignments give amino acids that are less expensive to synthesize. Taken together, our results strongly suggest that mitochondrial genetic codes evolve to match the amino acid requirements of proteins.
Collapse
Affiliation(s)
- Jonathan Swire
- Centre for Bioinformatics, Biochemistry Building, Department of Biological Sciences, Imperial College, London, SW7 2AY, UK.
| | | | | |
Collapse
|
125
|
Affiliation(s)
- Kenneth M. Halanych
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849;
| |
Collapse
|
126
|
Ruiz-Trillo I, Riutort M, Fourcade HM, Baguñà J, Boore JL. Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Mol Phylogenet Evol 2004; 33:321-32. [PMID: 15336667 DOI: 10.1016/j.ympev.2004.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 03/02/2004] [Indexed: 10/26/2022]
Abstract
We determined 9.7, 5.2, and 6.8 kb, respectively, of the mitochondrial genomes of the acoel Paratomella rubra, the nemertodermatid Nemertoderma westbladi, and the free-living rhabditophoran platyhelminth Microstomum lineare. The identified gene arrangements are unique among metazoans, including each other, sharing no more than one or two single gene boundaries with a few distantly related taxa. Phylogenetic analysis of the amino acid sequences inferred from the sequenced genes confirms that the acoelomorph flatworms (acoels+nemertodermatids) do not belong to the Platyhelminthes, but are, instead, the most basal extant bilaterian group. Therefore, the Platyhelminthes, as traditionally constituted, is a polyphyletic phylum.
Collapse
Affiliation(s)
- Iñaki Ruiz-Trillo
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
127
|
Siddall ME. Invertebrates.—R.C. Brusca and G. J. Brusca. 2003. Sinauer Associates, Sunderland, Massachusetts. xix + 936 pp. ISBN 0–87893–097–3. $109.95(cloth). Syst Biol 2004. [DOI: 10.1080/10635150490472968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Mark E. Siddall
- Invertebrate Zoology, AmericanMuseumof Natural History New York, NY 10024
| |
Collapse
|
128
|
Abstract
Several molecular data sets suggest that acoelomorph flatworms are not members of the phylum Platyhelminthes but form a separate branch of the Metazoa that diverged from all other bilaterian animals before the separation of protostomes and deuterostomes. Here we examine the Hox gene complement of the acoel flatworms. In two distantly related acoel taxa, we identify only three distinct classes of Hox gene: an anterior gene, a posterior gene, and a central class gene most similar to genes of Hox classes 4 and 5 in other Bilateria. Phylogenetic analysis of these genes, together with the acoel caudal homologue, supports the basal position of the acoels. The similar gene sets found in two distantly related acoels suggest that this reduced gene complement may be ancestral in the acoels and that the acoels may have diverged from other bilaterians before elaboration of the 8- to 10-gene Hox cluster that characterizes most bilaterians.
Collapse
Affiliation(s)
- Charles E Cook
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | |
Collapse
|
129
|
McManus DP, Le TH, Blair D. Genomics of parasitic flatworms. Int J Parasitol 2004; 34:153-8. [PMID: 15037102 DOI: 10.1016/j.ijpara.2003.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 11/07/2003] [Accepted: 11/07/2003] [Indexed: 11/26/2022]
Abstract
Although we live in what is often touted as the 'post-genomic era', this term is hardly appropriate when we consider the paucity of knowledge of the genomic biology of parasitic flatworms. The situation is, however, changing-at least for two species of Schistosoma. Recent transcriptome analysis of Schistosoma mansoni and of Schistosoma japonicum has identified novel genes and genes not previously reported for schistosomes, as well as the identification of the molecular mechanisms for host-dependent maturation, immune evasion, development, signalling and sexual dimorphism. The analyses also identify potential vaccine candidates and drug targets. Here, the current state of knowledge is reviewed for mitochondrial and nuclear genomes of parasitic flatworms. We highlight the remarkable recent progress in gene discovery for schistosomes and the goal of sequencing complete schistosome genomes.
Collapse
Affiliation(s)
- Donald P McManus
- Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and The University of Queensland, Brisbane, Qld 4029, Australia.
| | | | | |
Collapse
|
130
|
Abstract
The phylum Platyhelminthes has traditionally been considered the most basal bilaterian taxon. The main difficulty with this placement is the lack of convincing synapomorphies for all Platyhelminthes, which suggest that they are polyphyletic. Recent molecular findings based on 18S rDNA sequence data and number and type of Hox genes strongly suggest that the majority of Platyhelminthes are members of the lophotrochozoan protostomes, whereas the Acoelomorpha (Acoela + Nemertodermatida) fall outside of the Platyhelminthes as the most basal bilaterian taxon. Here we review phylum-wide analyses based on complete ribosomal and other nuclear genes addressed to answer the main issues facing systematics and phylogeny of Platyhelminthes. We present and discuss (i) new corroborative evidence for the polyphyly of the Platyhelminthes and the basal position of Acoelomorpha; (ii) a new consensus internal tree of the phylum; (iii) the nature of the sister group to the Neodermata and the hypotheses on the origin of parasitism; and (iv) the internal phylogeny of some rhabditophoran orders. Some methodological caveats are also introduced. The need to erect a new phylum, the Acoelomorpha, separate from the Platyhelminthes (now Catenulida + Rhabditophora) and based on present and new morphological and molecular characters is highlighted, and a proposal made.
Collapse
|
131
|
Bourlat SJ, Nielsen C, Lockyer AE, Littlewood DTJ, Telford MJ. Xenoturbella is a deuterostome that eats molluscs. Nature 2003; 424:925-8. [PMID: 12931184 DOI: 10.1038/nature01851] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 06/09/2003] [Indexed: 11/08/2022]
Abstract
Xenoturbella bocki, first described in 1949 (ref. 1), is a delicate, ciliated, marine worm with a simple body plan: it lacks a through gut, organized gonads, excretory structures and coelomic cavities. Its nervous system is a diffuse nerve net with no brain. Xenoturbella's affinities have long been obscure and it was initially linked to turbellarian flatworms. Subsequent authors considered it variously as related to hemichordates and echinoderms owing to similarities of nerve net and epidermal ultrastructure, to acoelomorph flatworms based on body plan and ciliary ultrastructure (also shared by hemichordates), or as among the most primitive of Bilateria. In 1997 two papers seemed to solve this uncertainty: molecular phylogenetic analyses placed Xenoturbella within the bivalve molluscs, and eggs and larvae resembling those of bivalves were found within specimens of Xenoturbella. This molluscan origin implies that all bivalve characters are lost during a radical metamorphosis into the adult Xenoturbella. Here, using data from three genes, we show that the samples in these studies were contaminated by bivalve embryos eaten by Xenoturbella and that Xenoturbella is in fact a deuterostome related to hemichordates and echinoderms.
Collapse
Affiliation(s)
- Sarah J Bourlat
- University Museum of Zoology, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | | | |
Collapse
|
132
|
Abstract
None of the supraspecific taxonomic categories can be defined objectively. Each taxon should of course be monophyletic, but there is no morphological or molecular character that identifies, for example, the phylum level. This has led some authors to abandon the Linnaean categories, but they appear to be practical "handles" in daily communication. It has been proposed that each phylum exhibits a characteristic Bauplan, but the identification of such "types" have in practice proved difficult or impossible for several phyla. Monophyly of some of the approximately 30 morphology-based phyla has been put in question by molecular studies, but recent reports clearly show that the 18S rRNA molecule, which has been used extensively in phylogenetic analyses, cannot be used alone in identifying phyla (or other higher taxonomic groups). Some higher taxa, for example Chordata, Vertebrata, and Echinodermata, consistently show up as monophyletic in the analyses, whereas molluscan and annelidan subgroups just as consistently are mixed with each other and with a number of other protostomian phyla in varying patterns.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
133
|
Nakao M, Sako Y, Ito A. The mitochondrial genome of the tapeworm Taenia solium: a finding of the abbreviated stop codon U. J Parasitol 2003; 89:633-5. [PMID: 12880275 DOI: 10.1645/0022-3395(2003)089[0633:tmgott]2.0.co;2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The complete nucleotide sequence of the tapeworm Taenia solium mitochondrial DNA (mtDNA) has been determined. The sequence is 13,709 base pairs in length and contains 36 genes (12 for proteins involved in oxidative phosphorylation, 2 for ribosomal RNAs, and 22 for transfer RNAs). The gene content and organization of the T. solium mtDNA are identical to those of other taeniid mtDNAs. All genes are transcribed in the same direction, and all protein-coding genes appear to initiate with the AUG or GUG codon. In a gene for NADH dehydrogenase subunit 1, the abbreviated stop codon U was confirmed for the first time in flatworm mtDNAs.
Collapse
Affiliation(s)
- Minoru Nakao
- Department of Parasitology, Asahikawa Medical College, Asahikawa 078-8510, Japan.
| | | | | |
Collapse
|
134
|
Telford MJ, Lockyer AE, Cartwright-Finch C, Littlewood DTJ. Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proc Biol Sci 2003; 270:1077-83. [PMID: 12803898 PMCID: PMC1691347 DOI: 10.1098/rspb.2003.2342] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The phylogenetic position of the phylum Platyhelminthes has been re-evaluated in the past decade by analysis of diverse molecular datasets. The consensus is that the Rhabditophora + Catenulida, which includes most of the flatworm taxa, are not primitively simple basal bilaterians but are related to coelomate phyla such as molluscs. The status of two other groups of acoelomate worms, Acoela and Nemertodermatida, is less clear. Although many characteristics unite these two groups, initial molecular phylogenetic studies placed the Nemertodermatida within the Rhabditophora, but placed the Acoela at the base of the Bilateria, distant from other flatworms. This contradiction resulted in scepticism about the basal position of acoels and led to calls for further data. We have sequenced large subunit ribosomal RNA genes from 13 rhabditophorans + catenulids, three acoels and one nemertodermatid, tripling the available data. Our analyses strongly support a basal position of both acoels and nemertodermatids. Alternative hypotheses are significantly less well supported by the data. We conclude that the Nemertodermatida and Acoela are basal bilaterians and, owing to their unique body plan and embryogenesis, should be recognized as a separate phylum, the Acoelomorpha.
Collapse
Affiliation(s)
- Maximilian J Telford
- Laboratory for Development and Evolution, Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | | | |
Collapse
|
135
|
Kostadinova A, Herniou EA, Barrett J, Littlewood DTJ. Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Syst Parasitol 2003; 54:159-76. [PMID: 12652069 DOI: 10.1023/a:1022681123340] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to investigate the relationships within the Echinostomatidae two data sets of gene sequences were analysed. The first consisted of all previously published ND1 sequences (20) together with 17 new sequences. The latter represented six species from the cosmopolitan genera Echinostoma, Echinoparyphium, Hypoderaeum and Isthmiophora. The second data-set of ITS sequences again included all previously published sequences (12) and three new sequences from species of Echinostoma, Echinoparyphium and Isthmiophora. All new isolates, as well as voucher material from five previously sequenced isolates, were identified on the basis of morphological characters. The phylogenetic trees inferred from the ND1 data set helped to clarify the generic affiliation of all isolates and confirmed the morphological identifications. The only exception was Echinoparyphium aconiatum, whose current position in the genus Echinoparyphium was not supported by the sequence data. Although the ITS data provided insufficient resolution for an unequivocal solution to the relationships within the genus Echinostoma, it supported the identification of Echinoparyphium ellisi and the distinct species status of three isolates of Echinostoma revolutum as predicted from the ND1 data.
Collapse
Affiliation(s)
- A Kostadinova
- Department of Biodiversity, Central Laboratory of General Ecology, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria
| | | | | | | |
Collapse
|
136
|
|
137
|
Todaro MA, Littlewood DTJ, Balsamo M, Herniou EA, Cassanelli S, Manicardi G, Wirz A, Tongiorgi P. The Interrelationships of the Gastrotricha Using Nuclear Small rRNA Subunit Sequence Data, with an Interpretation Based on Morphology. ZOOL ANZ 2003. [DOI: 10.1078/0044-5231-00093] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
138
|
Abstract
Complete or near-complete mitochondrial genomes are now available for 11 species or strains of parasitic flatworms belonging to the Trematoda and the Cestoda. The organization of these genomes is not strikingly different from those of other eumetazoans, although one gene (atp8) commonly found in other phyla is absent from flatworms. The gene order in most flatworms has similarities to those seen in higher protostomes such as annelids. However, the gene order has been drastically altered in Schistosoma mansoni, which obscures this possible relationship. Among the sequenced taxa, base composition varies considerably, creating potential difficulties for phylogeny reconstruction. Long non-coding regions are present in all taxa, but these vary in length from only a few hundred to approximately 10000 nucleotides. Among Schistosoma spp., the long non-coding regions are rich in repeats and length variation among individuals is known. Data from mitochondrial genomes are valuable for studies on species identification, phylogenies and biogeography.
Collapse
Affiliation(s)
- Thanh H Le
- Molecular Parasitology Laboratory, Australian Centre for International and Tropical Health and Nutrition, The Queensland Institute of Medical Research and The University of Queensland, Brisbane, Queensland 4029, Australia
| | | | | |
Collapse
|
139
|
Jondelius U, Ruiz-Trillo I, Baguna J, Riutort M. The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. ZOOL SCR 2002. [DOI: 10.1046/j.1463-6409.2002.00090.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
140
|
Betts MJ, Guigó R, Agarwal P, Russell RB. Exon structure conservation despite low sequence similarity: a relic of dramatic events in evolution? EMBO J 2001; 20:5354-60. [PMID: 11574467 PMCID: PMC125659 DOI: 10.1093/emboj/20.19.5354] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolutionary significance of introns remains a mystery. The current availability of several complete eukaryotic genomes permits new studies to probe the possible function of these peculiar genomic features. Here we investigate the degree to which gene structure (intron position, phase and length) is conserved between homologous protein domains. We find that for certain extracellular-signalling and nuclear domains, gene structures are similar even when protein sequence similarity is low or not significant and sequences can only be aligned with a knowledge of protein tertiary structure. In contrast, other domains, including most intracellular signalling modules, show little gene structure conservation. Intriguingly, many domains with conserved gene structures, such as cytokines, are involved in similar biological processes, such as the immune response. This suggests that gene structure conservation may be a record of key events in evolution, such as the origin of the vertebrate immune system or the duplication of nuclear receptors in nematodes. The results suggest ways to detect new and potentially very remote homologues, and to construct phylogenies for proteins with limited sequence similarity.
Collapse
Affiliation(s)
- Matthew J. Betts
- Bioinformatics, GlaxoSmithKline, New Frontiers Science Park (North), 3rd Avenue, Harlow, CM19 5AW, UK, Research Group in Biomedical Informatics, IMIM-UPF, c/ Dr Aiguader 80, 08003 Barcelona, Spain, Bioinformatics, GlaxoSmithKline, UW2230, 709 Swedeland Road, King of Prussia, PA, 19406, USA and EMBL, Meyerhofstrasse 1, D-69012 Heidelberg, Germany Present address: deCODE Genetics, 110 Lyngháls 1, Reykjavík, Iceland Corresponding author e-mail:
| | - Roderic Guigó
- Bioinformatics, GlaxoSmithKline, New Frontiers Science Park (North), 3rd Avenue, Harlow, CM19 5AW, UK, Research Group in Biomedical Informatics, IMIM-UPF, c/ Dr Aiguader 80, 08003 Barcelona, Spain, Bioinformatics, GlaxoSmithKline, UW2230, 709 Swedeland Road, King of Prussia, PA, 19406, USA and EMBL, Meyerhofstrasse 1, D-69012 Heidelberg, Germany Present address: deCODE Genetics, 110 Lyngháls 1, Reykjavík, Iceland Corresponding author e-mail:
| | - Pankaj Agarwal
- Bioinformatics, GlaxoSmithKline, New Frontiers Science Park (North), 3rd Avenue, Harlow, CM19 5AW, UK, Research Group in Biomedical Informatics, IMIM-UPF, c/ Dr Aiguader 80, 08003 Barcelona, Spain, Bioinformatics, GlaxoSmithKline, UW2230, 709 Swedeland Road, King of Prussia, PA, 19406, USA and EMBL, Meyerhofstrasse 1, D-69012 Heidelberg, Germany Present address: deCODE Genetics, 110 Lyngháls 1, Reykjavík, Iceland Corresponding author e-mail:
| | - Robert B. Russell
- Bioinformatics, GlaxoSmithKline, New Frontiers Science Park (North), 3rd Avenue, Harlow, CM19 5AW, UK, Research Group in Biomedical Informatics, IMIM-UPF, c/ Dr Aiguader 80, 08003 Barcelona, Spain, Bioinformatics, GlaxoSmithKline, UW2230, 709 Swedeland Road, King of Prussia, PA, 19406, USA and EMBL, Meyerhofstrasse 1, D-69012 Heidelberg, Germany Present address: deCODE Genetics, 110 Lyngháls 1, Reykjavík, Iceland Corresponding author e-mail:
| |
Collapse
|
141
|
Le TH, Humair PF, Blair D, Agatsuma T, Littlewood DT, McManus DP. Mitochondrial gene content, arrangement and composition compared in African and Asian schistosomes. Mol Biochem Parasitol 2001; 117:61-71. [PMID: 11551632 DOI: 10.1016/s0166-6851(01)00330-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complete sequences were obtained for the coding portions of the mitochondrial (mt) genomes of Schistosoma mansoni (NMRI strain, Puerto Rico; 14 415 bp), S. japonicum (Anhui strain, China; 14 085 bp) and S. mekongi (Khong Island, Laos; 14 072 bp). Each comprises 36 genes: 12 protein-encoding genes (cox1-3, nad1-6, nad4L, atp6 and cob); two ribosomal RNAs, rrnL (large subunit rRNA or 16S) and rrnS (small subunit rRNA or 12S); as well as 22 transfer RNA (tRNA) genes. The atp8 gene is absent. A large segment (9.6 kb) of the coding region (comprising 14 tRNAs, eight complete and two incomplete protein-encoding genes) for S. malayensis (Baling, Malaysian Peninsula) was also obtained. Each genome also possesses a long non-coding region that is divided into two parts (a small and a large non-coding region, the latter not fully sequenced in any species) by one or more tRNAs. The protein-encoding genes are similar in size, composition and codon usage in all species except for cox1 in S. mansoni (609 aa) and cox2 in S. mekongi (219 aa), both of which are longer than homologues in other species. An unexpected finding in all the Schistosoma species was the presence of a leucine zipper motif in the nad4L gene. The gene order in S. mansoni is strikingly different from that seen in the S. japonicum group and other flatworms. There is a high level of identity (87-94% at both the nucleotide and amino acid levels) for all protein-encoding genes of S. mekongi and S. malayensis. The identity between genes of these two species and those of S. japonicum is less (56-83% for amino acids and 73-79% for nucleotides). The identity between the genes of S. mansoni and the Asian schistosomes is far less (33-66% for amino acids and 54-68% for nucleotides), an observation consistent with the known phylogenetic distance between S. mansoni and the other species.
Collapse
Affiliation(s)
- T H Le
- Molecular Parasitology Unit, Australian Centre for International and Tropical Health and Nutrition, The University of Queensland and The Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | | | | | | | | | | |
Collapse
|
142
|
Zrzavý J. The interrelationships of metazoan parasites: a review of phylum- and higher-level hypotheses from recent morphological and molecular phylogenetic analyses. Folia Parasitol (Praha) 2001. [DOI: 10.14411/fp.2001.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
143
|
Peterson KJ, Eernisse DJ. Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evol Dev 2001; 3:170-205. [PMID: 11440251 DOI: 10.1046/j.1525-142x.2001.003003170.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Insight into the origin and early evolution of the animal phyla requires an understanding of how animal groups are related to one another. Thus, we set out to explore animal phylogeny by analyzing with maximum parsimony 138 morphological characters from 40 metazoan groups, and 304 18S rDNA sequences, both separately and together. Both types of data agree that arthropods are not closely related to annelids: the former group with nematodes and other molting animals (Ecdysozoa), and the latter group with molluscs and other taxa with spiral cleavage. Furthermore, neither brachiopods nor chaetognaths group with deuterostomes; brachiopods are allied with the molluscs and annelids (Lophotrochozoa), whereas chaetognaths are allied with the ecdysozoans. The major discordance between the two types of data concerns the rooting of the bilaterians, and the bilaterian sister-taxon. Morphology suggests that the root is between deuterostomes and protostomes, with ctenophores the bilaterian sister-group, whereas 18S rDNA suggests that the root is within the Lophotrochozoa with acoel flatworms and gnathostomulids as basal bilaterians, and with cnidarians the bilaterian sister-group. We suggest that this basal position of acoels and gnathostomulids is artifactal because for 1,000 replicate phylogenetic analyses with one random sequence as outgroup, the majority root with an acoel flatworm or gnathostomulid as the basal ingroup lineage. When these problematic taxa are eliminated from the matrix, the combined analysis suggests that the root lies between the deuterostomes and protostomes, and Ctenophora is the bilaterian sister-group. We suggest that because chaetognaths and lophophorates, taxa traditionally allied with deuterostomes, occupy basal positions within their respective protostomian clades, deuterostomy most likely represents a suite of characters plesiomorphic for bilaterians.
Collapse
Affiliation(s)
- K J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover NH 03755, USA
| | | |
Collapse
|
144
|
Littlewood DT, Olson PD, Telford MJ, Herniou EA, Riutort M. Elongation factor 1-alpha sequences alone do not assist in resolving the position of the acoela within the metazoa. Mol Biol Evol 2001; 18:437-42. [PMID: 11230546 DOI: 10.1093/oxfordjournals.molbev.a003821] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
145
|
Knight RD, Freeland SJ, Landweber LF. Rewiring the keyboard: evolvability of the genetic code. Nat Rev Genet 2001; 2:49-58. [PMID: 11253070 DOI: 10.1038/35047500] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic code evolved in two distinct phases. First, the 'canonical' code emerged before the last universal ancestor; subsequently, this code diverged in numerous nuclear and organelle lineages. Here, we examine the distribution and causes of these secondary deviations from the canonical genetic code. The majority of non-standard codes arise from alterations in the tRNA, with most occurring by post-transcriptional modifications, such as base modification or RNA editing, rather than by substitutions within tRNA anticodons.
Collapse
Affiliation(s)
- R D Knight
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | |
Collapse
|