101
|
Burgos ES, Wilczek C, Onikubo T, Bonanno JB, Jansong J, Reimer U, Shechter D. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase. J Biol Chem 2015; 290:9674-89. [PMID: 25713080 DOI: 10.1074/jbc.m115.636894] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 11/06/2022] Open
Abstract
The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1-20) and H4(1-20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- From the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 and
| | - Carola Wilczek
- From the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 and
| | - Takashi Onikubo
- From the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 and
| | - Jeffrey B Bonanno
- From the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 and
| | - Janina Jansong
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Volmerstrasse 5, 12489 Berlin, Germany
| | - David Shechter
- From the Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 and
| |
Collapse
|
102
|
Wang M, Fuhrmann J, Thompson PR. Protein arginine methyltransferase 5 catalyzes substrate dimethylation in a distributive fashion. Biochemistry 2014; 53:7884-92. [PMID: 25485739 DOI: 10.1021/bi501279g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a histone-modifying enzyme whose activity is aberrantly upregulated in various cancers and thereby contributes to a progrowth phenotype. Indeed, knockdown of PRMT5 leads to growth arrest and apoptosis, suggesting that inhibitors targeting this enzyme may have therapeutic utility in oncology. To aid the development of inhibitors targeting PRMT5, we initiated mechanistic studies geared to understand how PRMT5 selectively catalyzes the symmetric dimethylation of its substrates. Toward that end, we characterized the regiospecificity and processivity of bacterially expressed Caenorhabditis elegans PRMT5 (cPRMT5), insect cell-expressed human PRMT5 (hPRMT5), and human PRMT5 complexed with methylosome protein 50 (MEP50), i.e., the PRMT5·MEP50 complex. Our studies confirm that arginine 3 is the only site of methylation in both histone H4 and H4 tail peptide analogues and that sites distal to the site of methylation promote the efficient symmetric dimethylation of PRMT5 substrates by increasing the affinity of the monomethylated substrate for the enzyme. Additionally, we show for the first time that both cPRMT5 and the hPRMT5·MEP50 complex catalyze substrate dimethylation in a distributive manner, which is assisted by long-range interactions. Finally, our data confirm that MEP50 plays a key role in substrate recognition and activates PRMT5 activity by increasing its affinity for protein substrates. In total, our results suggest that it may be possible to allosterically inhibit PRMT5 by targeting binding pockets outside the active site.
Collapse
Affiliation(s)
- Min Wang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | | | | |
Collapse
|
103
|
Yuan W, Lok JB, Stoltzfus JD, Gasser RB, Fang F, Lei WQ, Fang R, Zhou YQ, Zhao JL, Hu M. Toward understanding the functional role of Ss-RIOK-1, a RIO protein kinase-encoding gene of Strongyloides stercoralis. PLoS Negl Trop Dis 2014; 8:e3062. [PMID: 25101874 PMCID: PMC4125297 DOI: 10.1371/journal.pntd.0003062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Some studies of Saccharomyces cerevisiae and mammals have shown that RIO protein kinases (RIOKs) are involved in ribosome biogenesis, cell cycle progression and development. However, there is a paucity of information on their functions in parasitic nematodes. We aimed to investigate the function of RIOK-1 encoding gene from Strongyloides stercoralis, a nematode parasitizing humans and dogs. METHODOLOGY/PRINCIPAL FINDINGS The RIOK-1 protein-encoding gene Ss-riok-1 was characterized from S. stercoralis. The full-length cDNA, gDNA and putative promoter region of Ss-riok-1 were isolated and sequenced. The cDNA comprises 1,828 bp, including a 377 bp 5'-UTR, a 17 bp 3'-UTR and a 1,434 bp ORF encoding a protein of 477 amino acids containing a RIOK-1 signature motif. The genomic sequence of the Ss-riok-1 coding region is 1,636 bp in length and has three exons and two introns. The putative promoter region comprises 4,280 bp and contains conserved promoter elements, including four CAAT boxes, 12 GATA boxes, eight E-boxes (CANNTG) and 38 TATA boxes. The Ss-riok-1 gene is transcribed throughout all developmental stages with the highest transcript abundance in the infective third-stage larva (iL3). Recombinant Ss-RIOK-1 is an active kinase, capable of both phosphorylation and auto-phosphorylation. Patterns of transcriptional reporter expression in transgenic S. stercoralis larvae indicated that Ss-RIOK-1 is expressed in neurons of the head, body and tail as well as in pharynx and hypodermis. CONCLUSIONS/SIGNIFICANCE The characterization of the molecular and the temporal and spatial expression patterns of the encoding gene provide first clues as to functions of RIOKs in the biological processes of parasitic nematodes.
Collapse
Affiliation(s)
- Wang Yuan
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (JBL); (MH)
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robin B. Gasser
- Faculty of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Fang Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei-Qiang Lei
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yan-Qin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jun-Long Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- * E-mail: (JBL); (MH)
| |
Collapse
|
104
|
Weinberg F, Schulze E, Fatouros C, Schmidt E, Baumeister R, Brummer T. Expression pattern and first functional characterization of riok-1 in Caenorhabditis elegans. Gene Expr Patterns 2014; 15:124-34. [PMID: 24929033 DOI: 10.1016/j.gep.2014.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/08/2023]
Abstract
Rio kinases are atypical serine/threonine kinases that emerge as potential cooperation partners in Ras-driven tumors. In the current study, we performed an RNAi screen in Caenorhabditis elegans to identify suppressors of oncogenic Ras signaling. Aberrant Ras/Raf signaling in C. elegans leads to the formation of a multi-vulva (Muv) phenotype. We found that depletion of riok-1, the C. elegans orthologue of the mammalian RioK1, suppressed the Muv phenotype. By using a promoter GFP construct, we could show that riok-1 is expressed in neuronal cells, the somatic gonad, the vulva, the uterus and the spermatheca. Furthermore, we observed developmental defects in the gonad upon riok-1 knockdown in a wildtype background. Our data suggest that riok-1 is a modulator of the Ras signaling pathway, suggesting implications for novel interventions in the context of Ras-driven tumors.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany
| | - Ekkehard Schulze
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Chronis Fatouros
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; International Max Planck Research School for Molecular and Cell Biology (IMPRS-MCB), Freiburg, Germany
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Tilman Brummer
- Institute of Biology III, Faculty of Biology, University of Freiburg, Germany; Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany; IMMZ - Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Germany.
| |
Collapse
|
105
|
Exogenous expression of marine lectins DlFBL and SpRBL induces cancer cell apoptosis possibly through PRMT5-E2F-1 pathway. Sci Rep 2014; 4:4505. [PMID: 24675921 PMCID: PMC3968455 DOI: 10.1038/srep04505] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/04/2014] [Indexed: 02/03/2023] Open
Abstract
Lectins are widely existed in marine bioresources, and some purified marine lectins were found toxic to cancer cells. In this report, genes encoding Dicentrarchus labrax fucose-binding lectin (DlFBL) and Strongylocentrotus purpuratus rhamnose-binding lectin (SpRBL) were inserted into an adenovirus vector to form Ad.FLAG-DlFBL and Ad.FLAG-SpRBL, which elicited significant in vitro suppressive effect on a variety of cancer cells. Anti-apoptosis factors Bcl-2 and XIAP were determined to be downregulated by Ad.FLAG-DlFBL and Ad.FLAG-SpRBL. Subcellular localization studies showed that DlFBL but not SpRBL widely distributed in membrane systems. Both DlFBL and SpRBL were shown associated with protein arginine methyltransferase 5 (PRMT5), and PRMT5-E2F-1 pathway was suggested to be responsible for the DlFBL and SpRBL induced apoptosis. Further investigations revealed that PRMT5 acted as a common binding target for various exogenous lectin and non-lectin proteins, suggesting a role of PRMT5 as a barrier for foreign gene invasion. The cellular response to exogenous lectins may provide insights into a novel way for cancer gene therapy.
Collapse
|
106
|
Characterization and in vivo functional analysis of the Schizosaccharomyces pombe ICLN gene. Mol Cell Biol 2013; 34:595-605. [PMID: 24298023 DOI: 10.1128/mcb.01407-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the early steps of snRNP biogenesis, the survival motor neuron (SMN) complex acts together with the methylosome, an entity formed by the pICln protein, WD45, and the PRMT5 methyltransferase. To expand our understanding of the functional relationship between pICln and SMN in vivo, we performed a genetic analysis of an uncharacterized Schizosaccharomyces pombe pICln homolog. Although not essential, the S. pombe ICln (SpICln) protein is important for optimal yeast cell growth. The human ICLN gene complements the Δicln slow-growth phenotype, demonstrating that the identified SpICln sequence is the bona fide human homolog. Consistent with the role of human pICln inferred from in vitro experiments, we found that the SpICln protein is required for optimal production of the spliceosomal snRNPs and for efficient splicing in vivo. Genetic interaction approaches further demonstrate that modulation of ICln activity is unable to compensate for growth defects of SMN-deficient cells. Using a genome-wide approach and reverse transcription (RT)-PCR validation tests, we also show that splicing is differentially altered in Δicln cells. Our data are consistent with the notion that splice site selection and spliceosome kinetics are highly dependent on the concentration of core spliceosomal components.
Collapse
|
107
|
Ho MC, Wilczek C, Bonanno JB, Xing L, Seznec J, Matsui T, Carter LG, Onikubo T, Kumar PR, Chan MK, Brenowitz M, Cheng RH, Reimer U, Almo SC, Shechter D. Structure of the arginine methyltransferase PRMT5-MEP50 reveals a mechanism for substrate specificity. PLoS One 2013; 8:e57008. [PMID: 23451136 PMCID: PMC3581573 DOI: 10.1371/journal.pone.0057008] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/16/2013] [Indexed: 01/07/2023] Open
Abstract
The arginine methyltransferase PRMT5-MEP50 is required for embryogenesis and is misregulated in many cancers. PRMT5 targets a wide variety of substrates, including histone proteins involved in specifying an epigenetic code. However, the mechanism by which PRMT5 utilizes MEP50 to discriminate substrates and to specifically methylate target arginines is unclear. To test a model in which MEP50 is critical for substrate recognition and orientation, we determined the crystal structure of Xenopus laevis PRMT5-MEP50 complexed with S-adenosylhomocysteine (SAH). PRMT5-MEP50 forms an unusual tetramer of heterodimers with substantial surface negative charge. MEP50 is required for PRMT5-catalyzed histone H2A and H4 methyltransferase activity and binds substrates independently. The PRMT5 catalytic site is oriented towards the cross-dimer paired MEP50. Histone peptide arrays and solution assays demonstrate that PRMT5-MEP50 activity is inhibited by substrate phosphorylation and enhanced by substrate acetylation. Electron microscopy and reconstruction showed substrate centered on MEP50. These data support a mechanism in which MEP50 binds substrate and stimulates PRMT5 activity modulated by substrate post-translational modifications.
Collapse
Affiliation(s)
- Meng-Chiao Ho
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Carola Wilczek
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Jeffrey B. Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Li Xing
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | | | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Lester G. Carter
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Takashi Onikubo
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - P. Rajesh Kumar
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Man K. Chan
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - R. Holland Cheng
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Ulf Reimer
- JPT Peptide Technologies, Berlin, Germany
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| |
Collapse
|
108
|
Abstract
There are nine protein arginine methyltransferases (PRMTs) encoded in mammalian genomes, the protein products of which catalyse three types of arginine methylation--monomethylation and two types of dimethylation. Protein arginine methylation is an abundant modification that has been implicated in signal transduction, gene transcription, DNA repair and mRNA splicing, among others. Studies have only recently linked this modification to carcinogenesis and metastasis. Sequencing studies have not generally found alterations to the PRMTs; however, overexpression of these enzymes is often associated with various cancers, which might make some of them viable targets for therapeutic strategies.
Collapse
Affiliation(s)
- Yanzhong Yang
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. BOX 389, Smithville, Texas 78957, USA
| | | |
Collapse
|
109
|
Abstract
Protein arginine methyltransferases (PRMTs) play important roles in several cellular processes, including signaling, gene regulation, and transport of proteins and nucleic acids, to impact growth, differentiation, proliferation, and development. PRMT5 symmetrically di-methylates the two-terminal ω-guanidino nitrogens of arginine residues on substrate proteins. PRMT5 acts as part of a multimeric complex in concert with a variety of partner proteins that regulate its function and specificity. A core component of these complexes is the WD40 protein MEP50/WDR77/p44, which mediates interactions with binding partners and substrates. We have determined the crystal structure of human PRMT5 in complex with MEP50 (methylosome protein 50), bound to an S-adenosylmethionine analog and a peptide substrate derived from histone H4. The structure of the surprising hetero-octameric complex reveals the close interaction between the seven-bladed β-propeller MEP50 and the N-terminal domain of PRMT5, and delineates the structural elements of substrate recognition.
Collapse
|
110
|
Morgan MAJ, Mould AW, Li L, Robertson EJ, Bikoff EK. Alternative splicing regulates Prdm1/Blimp-1 DNA binding activities and corepressor interactions. Mol Cell Biol 2012; 32:3403-13. [PMID: 22733990 PMCID: PMC3422002 DOI: 10.1128/mcb.00174-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/16/2012] [Indexed: 01/14/2023] Open
Abstract
Prdm1/Blimp-1 is a master regulator of gene expression in diverse tissues of the developing embryo and adult organism. Its C-terminal zinc finger domain mediates nuclear import, DNA binding, and recruitment of the corepressors G9a and HDAC1/2. Alternatively spliced transcripts lacking exon 7 sequences encode a structurally divergent isoform (Blimp-1Δexon7) predicted to have distinct functions. Here we demonstrate that the short Blimp-1Δexon7 isoform lacks DNA binding activity and fails to bind G9a or HDAC1/2 but retains the ability to interact with PRMT5. To investigate functional roles of alternative splicing in vivo, we engineered novel mouse strains via embryonic stem (ES) cell technology. Like null mutants, embryos carrying a targeted deletion of exon 7 and exclusively expressing Blimp-1Δexon7 die at around embryonic day 10.5 (E10.5) due to placental defects. In heterozygous Δexon7 mice, there is no evidence of dominant-negative effects. Mice carrying a knock-in allele with an exon 6-exon 7 fusion express full-length Blimp-1 only, develop normally, are healthy and fertile as adults, and efficiently generate mature plasma cells. These findings strongly suggest that the short Blimp-1Δexon7 isoform is dispensable. We propose that developmentally regulated alternative splicing is influenced by chromatin structure at the locus and fine-tunes Blimp-1's functional capabilities.
Collapse
Affiliation(s)
- Marc A J Morgan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
111
|
Gu Z, Li Y, Lee P, Liu T, Wan C, Wang Z. Protein arginine methyltransferase 5 functions in opposite ways in the cytoplasm and nucleus of prostate cancer cells. PLoS One 2012; 7:e44033. [PMID: 22952863 PMCID: PMC3428323 DOI: 10.1371/journal.pone.0044033] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 08/01/2012] [Indexed: 11/24/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) plays multiple roles in a large number of cellular processes, and its subcellular localization is dynamically regulated during mouse development and cellular differentiation. However, little is known of the functional differences between PRMT5 in the cytoplasm and PRMT5 in the nucleus. Here, we demonstrated that PRMT5 predominantly localized in the cytoplasm of prostate cancer cells. Subcellular localization assays designed to span the entire open-reading frame of the PRMT5 protein revealed the presence of three nuclear exclusion signals (NESs) in the PRMT5 protein. PRMT5 and p44/MED50/WD45/WDR77 co-localize in the cytoplasm, and both are required for the growth of prostate cancer cells in an PRMT5 methyltransferase activity-dependent manner. In contrast, PRMT5 in the nucleus inhibited cell growth in a methyltransferase activity-independent manner. Consistent with these observations, PRMT5 localized in the nucleus in benign prostate epithelium, whereas it localized in the cytoplasm in prostate premalignant and cancer tissues. We further found that PRMT5 alone methylated both histone H4 and SmD3 proteins but PRMT5 complexed with p44 and pICln methylated SmD3 but not histone H4. These results imply a novel mechanism by which PRMT5 controls cell growth and contributes to prostate tumorigenesis.
Collapse
Affiliation(s)
- Zhongping Gu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yirong Li
- Department of Pathology and Urology, Langone Medical Center, New York University, New York, United States of America
| | - Peng Lee
- Department of Pathology and Urology, Langone Medical Center, New York University, New York, United States of America
| | - Tao Liu
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Chidan Wan
- Center of Pancreatic Disease , Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Zhengxin Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
112
|
Abstract
Nucleolin is a multifunctional protein localized primarily in the nucleolus, but also found in the nucleoplasm, cytoplasm and cell membrane. It is involved in several aspects of DNA metabolism, and participates extensively in RNA regulatory mechanisms, including transcription, ribosome assembly, mRNA stability and translation, and microRNA processing. Nucleolin's implication in disease is linked to its ability to associate with target RNAs via its four RNA-binding domains and its arginine/glycin-rich domain. By modulating the post-transcriptional fate of target mRNAs, which typically bear AU-rich and/or G-rich elements, nucleolin has been linked to cellular events that influence disease, notably cell proliferation and protection against apoptotic death. Through its diverse RNA functions, nucleolin is increasingly implicated in pathological processes, particularly cancer and viral infection. Here, we review the RNA-binding activities of nucleolin, its influence on gene expression patterns, and its impact upon diseases. We also discuss the rising interest in targeting nucleolin therapeutically.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | | |
Collapse
|
113
|
Kiburu IN, LaRonde-LeBlanc N. Interaction of Rio1 kinase with toyocamycin reveals a conformational switch that controls oligomeric state and catalytic activity. PLoS One 2012; 7:e37371. [PMID: 22629386 PMCID: PMC3358306 DOI: 10.1371/journal.pone.0037371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/19/2012] [Indexed: 01/07/2023] Open
Abstract
Rio1 kinase is an essential ribosome-processing factor required for proper maturation of 40 S ribosomal subunit. Although its structure is known, several questions regarding its functional remain to be addressed. We report that both Archaeoglobus fulgidus and human Rio1 bind more tightly to an adenosine analog, toyocamycin, than to ATP. Toyocamycin has antibiotic, antiviral and cytotoxic properties, and is known to inhibit ribosome biogenesis, specifically the maturation of 40 S. We determined the X-ray crystal structure of toyocamycin bound to Rio1 at 2.0 Å and demonstrated that toyocamycin binds in the ATP binding pocket of the protein. Despite this, measured steady state kinetics were inconsistent with strict competitive inhibition by toyocamycin. In analyzing this interaction, we discovered that Rio1 is capable of accessing multiple distinct oligomeric states and that toyocamycin may inhibit Rio1 by stabilizing a less catalytically active oligomer. We also present evidence of substrate inhibition by high concentrations of ATP for both archaeal and human Rio1. Oligomeric state studies show both proteins access a higher order oligomeric state in the presence of ATP. The study revealed that autophosphorylation by Rio1 reduces oligomer formation and promotes monomerization, resulting in the most active species. Taken together, these results suggest the activity of Rio1 may be modulated by regulating its oligomerization properties in a conserved mechanism, identifies the first ribosome processing target of toyocamycin and presents the first small molecule inhibitor of Rio1 kinase activity.
Collapse
Affiliation(s)
- Irene N. Kiburu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, and the University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland, College Park, Maryland, United States of America
| | - Nicole LaRonde-LeBlanc
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, and the University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
114
|
Baumas K, Soudet J, Caizergues-Ferrer M, Faubladier M, Henry Y, Mougin A. Human RioK3 is a novel component of cytoplasmic pre-40S pre-ribosomal particles. RNA Biol 2012; 9:162-74. [PMID: 22418843 PMCID: PMC3346313 DOI: 10.4161/rna.18810] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Maturation of the 40S ribosomal subunit precursors in mammals mobilizes several non-ribosomal proteins, including the atypical protein kinase RioK2. Here, we have investigated the involvement of another member of the RIO kinase family, RioK3, in human ribosome biogenesis. RioK3 is a cytoplasmic protein that does not seem to shuttle between nucleus and cytoplasm via a Crm1-dependent mechanism as does RioK2 and which sediments with cytoplasmic 40S ribosomal particles in a sucrose gradient. When the small ribosomal subunit biogenesis is impaired by depletion of either rpS15, rpS19 or RioK2, a concomitant decrease in the amount of RioK3 is observed. Surprisingly, we observed a dramatic and specific increase in the levels of RioK3 when the biogenesis of the large ribosomal subunit is impaired. A fraction of RioK3 is associated with the non ribosomal pre-40S particle components hLtv1 and hEnp1 as well as with the 18S-E pre-rRNA indicating that it belongs to a bona fide cytoplasmic pre-40S particle. Finally, RioK3 depletion leads to an increase in the levels of the 21S rRNA precursor in the 18S rRNA production pathway. Altogether, our results strongly suggest that RioK3 is a novel cytoplasmic component of pre-40S pre-ribosomal particle(s) in human cells, required for normal processing of the 21S pre-rRNA.
Collapse
Affiliation(s)
- Kamila Baumas
- Centre National de la Recherche Scientifique; Laboratoire de Biologie Moléculaire Eucaryote, Toulouse, France
| | | | | | | | | | | |
Collapse
|
115
|
Kanade SR, Eckert RL. Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. J Biol Chem 2011; 287:7313-23. [PMID: 22199349 DOI: 10.1074/jbc.m111.331660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
Collapse
Affiliation(s)
- Santosh R Kanade
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
116
|
Structural insights into protein arginine symmetric dimethylation by PRMT5. Proc Natl Acad Sci U S A 2011; 108:20538-43. [PMID: 22143770 DOI: 10.1073/pnas.1106946108] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Symmetric and asymmetric dimethylation of arginine are isomeric protein posttranslational modifications with distinct biological effects, evidenced by the methylation of arginine 3 of histone H4 (H4R3): symmetric dimethylation of H4R3 leads to repression of gene expression, while asymmetric dimethylation of H4R3 is associated with gene activation. The enzymes catalyzing these modifications share identifiable sequence similarities, but the relationship between their catalytic mechanisms is unknown. Here we analyzed the structure of a prototypic symmetric arginine dimethylase, PRMT5, and discovered that a conserved phenylalanine in the active site is critical for specifying symmetric addition of methyl groups. Changing it to a methionine significantly elevates the overall methylase activity, but also converts PRMT5 to an enzyme that catalyzes both symmetric and asymmetric dimethylation of arginine. Our results demonstrate a common catalytic mechanism intrinsic to both symmetric and asymmetric arginine dimethylases, and show that steric constrains in the active sites play an essential role in determining the product specificity of arginine methylases. This discovery also implies a potentially regulatable outcome of arginine dimethylation that may provide versatile control of eukaryotic gene expression.
Collapse
|
117
|
Widmann B, Wandrey F, Badertscher L, Wyler E, Pfannstiel J, Zemp I, Kutay U. The kinase activity of human Rio1 is required for final steps of cytoplasmic maturation of 40S subunits. Mol Biol Cell 2011; 23:22-35. [PMID: 22072790 PMCID: PMC3248900 DOI: 10.1091/mbc.e11-07-0639] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
hRio1 is an atypical protein kinase of the conserved RIO family. Depletion of hRio1 affects the last step of 18S rRNA maturation and causes defects in recycling of trans-acting factors from pre-40S subunits in the cytoplasm. The kinase activity of hRio1 is essential for recycling of the endonuclease hNob1 and its binding partner hDim2 from pre-40S. RIO proteins form a conserved family of atypical protein kinases. Humans possess three distinct RIO kinases—hRio1, hRio2, and hRio3, of which only hRio2 has been characterized with respect to its role in ribosomal biogenesis. Here we show that both hRio1 and hRio3, like hRio2, are associated with precursors of 40S ribosomal subunits in human cells. Furthermore, we demonstrate that depletion of hRio1 by RNA interference affects the last step of 18S rRNA maturation and causes defects in the recycling of several trans-acting factors (hEnp1, hRio2, hLtv1, hDim2/PNO1, and hNob1) from pre-40S subunits in the cytoplasm. Although the effects of hRio1 and hRio2 depletion are similar, we show that the two kinases are not fully interchangeable. Moreover, rescue experiments with a kinase-dead mutant of hRio1 revealed that the kinase activity of hRio1 is essential for the recycling of the endonuclease hNob1 and its binding partner hDim2 from cytoplasmic pre-40S. Kinase-dead hRio1 is trapped on pre-40S particles containing hDim2 and hNob1 but devoid of hEnp1, hLtv1, and hRio2. These data reveal a role of hRio1 in the final stages of cytoplasmic pre-40S maturation.
Collapse
|
118
|
Versatility of PRMT5-induced methylation in growth control and development. Trends Biochem Sci 2011; 36:633-41. [PMID: 21975038 DOI: 10.1016/j.tibs.2011.09.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 01/03/2023]
Abstract
Arginine methylation governs important cellular processes that impact growth and proliferation, as well as differentiation and development. Through their ability to catalyze symmetric or asymmetric methylation of histone and non-histone proteins, members of the protein arginine methyltransferase (PRMT) family regulate chromatin structure and expression of a wide spectrum of target genes. Unlike other PRMTs, PRMT5 works in concert with a variety of cellular proteins including ATP-dependent chromatin remodelers and co-repressors to induce epigenetic silencing. Recent work also implicates PRMT5 in the control of growth-promoting and pro-survival pathways, which demonstrates its versatility as an enzyme involved in both epigenetic regulation of anti-cancer target genes and organelle biogenesis. These studies not only provide insight into the molecular mechanisms by which PRMT5 contributes to growth control, but also justify therapeutic targeting of PRMT5.
Collapse
|
119
|
Kang MS, Lee EK, Soni V, Lewis TA, Koehler AN, Srinivasan V, Kieff E. Roscovitine inhibits EBNA1 serine 393 phosphorylation, nuclear localization, transcription, and episome maintenance. J Virol 2011; 85:2859-68. [PMID: 21209116 PMCID: PMC3067954 DOI: 10.1128/jvi.01628-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 12/24/2010] [Indexed: 02/07/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) infection causes human lymphomas and carcinomas. EBV usually persists as an episome in malignant cells. EBV episome persistence, replication, and gene expression are dependent on EBNA1 binding to multiple cognate sites in oriP. To search for inhibitors of EBNA1- and oriP-dependent episome maintenance or transcription, a library of 40,550 small molecules was screened for compounds that inhibit EBNA1- and oriP-dependent transcription and do not inhibit EBNA1- and oriP-independent transcription. This screening identified roscovitine, a selective inhibitor of cyclin-dependent kinase 1 (CDK1), CDK2, CDK5, and CDK7. Based on motif predictions of EBNA1 serine 393 as a CDK phosphorylation site and (486)RALL(489) and (580)KDLVM(584) as potential cyclin binding domains, we hypothesized that cyclin binding to EBNA1 may enable CDK1, -2, -5, or -7 to phosphorylate serine 393. We found that Escherichia coli-expressed EBNA1 amino acids 387 to 641 were phosphorylated in vitro by CDK1-, -2-, -5-, and -7/cyclin complexes and serine 393 phosphorylation was roscovitine inhibited. Further, S393A mutation abrogated phosphorylation. S393A mutant EBNA1 was deficient in supporting EBNA1- and oriP-dependent transcription and episome persistence, and roscovitine had little further effect on the diminished S393A mutant EBNA1-mediated transcription or episome persistence. Immunoprecipitated FLAG-EBNA1 was phosphorylated in vitro, and roscovitine inhibited this phosphorylation. Moreover, roscovitine decreased nuclear EBNA1 and often increased cytoplasmic EBNA1, whereas S393A mutant EBNA1 was localized equally in the nucleus and cytoplasm and was unaffected by roscovitine treatment. These data indicate that roscovitine effects are serine 393 specific and that serine 393 is important in EBNA1- and oriPCp-dependent transcription and episome persistence.
Collapse
Affiliation(s)
- Myung-Soo Kang
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Eun Kyung Lee
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Vishal Soni
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Timothy A. Lewis
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Angela N. Koehler
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Viswanathan Srinivasan
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| | - Elliott Kieff
- Channing Laboratory and Infectious Diseases Division, Brigham and Women's Hospital, Department of Medicine and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University, 50 Irwon-dong, Gangnam-gu, Seoul, South Korea 135-710, Virid Biosciences LLC, C8 East Garden Way, Dayton, New Jersey 08810, Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, Massachusetts 02142, Beckman Coulter Genomics, Danvers, Massachusetts 01913
| |
Collapse
|