101
|
Jiang N, Chen W, Jothikumar P, Patel JM, Shashidharamurthy R, Selvaraj P, Zhu C. Effects of anchor structure and glycosylation of Fcγ receptor III on ligand binding affinity. Mol Biol Cell 2016; 27:3449-3458. [PMID: 27582391 PMCID: PMC5221579 DOI: 10.1091/mbc.e16-06-0470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/26/2016] [Indexed: 11/12/2022] Open
Abstract
The anchor structure of CD16 affects its binding affinity in a ligand-specific manner. The ligand binding affinity decreases for human IgG1 but increases for murine IgG2a when the anchor is changed from full to partial to none. Removing N-glycosylation from CD16 also increases the ligand binding affinity. Isoforms of the Fcγ receptor III (FcγRIII or CD16) are cell surface receptors for the Fc portion of IgG and important regulators of humoral immune responses. Different ligand binding kinetics of FcγRIII isoforms are obtained in three dimensions by surface plasmon resonance and in two dimensions by a micropipette adhesion frequency assay. We show that the anchor structure of CD16 isoforms isolated from the cell membrane affects their binding affinities in a ligand-specific manner. Changing the receptor anchor structure from full to partial to none decreases the ligand binding affinity for human IgG1 (hIgG1) but increases it for murine IgG2a (mIgG2a). Removing N-glycosylation from the CD16 protein core by tunicamycin also increases the ligand binding affinity. Molecular dynamics simulations indicate that deglycosylation at Asn-163 of CD16 removes the steric hindrance for the CD16-hIgG1 Fc binding and thus increases the binding affinity. These results highlight an unexpected sensitivity of ligand binding to the receptor anchor structure and glycosylation and suggest their respective roles in controlling allosterically the conformation of the ligand binding pocket of CD16.
Collapse
Affiliation(s)
- Ning Jiang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Wei Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Prithiviraj Jothikumar
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jaina M Patel
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | | | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 .,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
102
|
Chen Y, Lee H, Tong H, Schwartz M, Zhu C. Force regulated conformational change of integrin α Vβ 3. Matrix Biol 2016; 60-61:70-85. [PMID: 27423389 DOI: 10.1016/j.matbio.2016.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/18/2016] [Accepted: 07/08/2016] [Indexed: 11/28/2022]
Abstract
Integrins mediate cell adhesion to extracellular matrix and transduce signals bidirectionally across the membrane. Integrin αVβ3 has been shown to play an essential role in tumor metastasis, angiogenesis, hemostasis and phagocytosis. Integrins can take several conformations, including the bent and extended conformations of the ectodomain, which regulate integrin functions. Using a biomembrane force probe, we characterized the bending and unbending conformational changes of single αVβ3 integrins on living cell surfaces in real-time. We measured the probabilities of conformational changes, rates and speeds of conformational transitions, and the dynamic equilibrium between the two conformations, which were regulated by tensile force, dependent on the ligand, and altered by point mutations. These findings provide insights into how αVβ3 acts as a molecular machine and how its physiological function and molecular structure are coupled at the single-molecule level.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hyunjung Lee
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Haibin Tong
- Yale Cardiovascular Research Center, Departments of Internal Medicine (Section of Cardiovascular Medicine), Cell Biology and Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Current address: Life Science Research Center, Beihua University, Jilin 132013, China
| | - Martin Schwartz
- Yale Cardiovascular Research Center, Departments of Internal Medicine (Section of Cardiovascular Medicine), Cell Biology and Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
103
|
Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, Zhu C, Trepat X, Roca-Cusachs P. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 2016; 18:540-8. [PMID: 27065098 DOI: 10.1038/ncb3336] [Citation(s) in RCA: 550] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/08/2016] [Indexed: 12/12/2022]
Abstract
Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.
Collapse
Affiliation(s)
| | - Roger Oria
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.,University of Barcelona, Barcelona 08028, Spain
| | - Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anita Kosmalska
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.,University of Barcelona, Barcelona 08028, Spain
| | - Carlos Pérez-González
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.,University of Barcelona, Barcelona 08028, Spain
| | - Natalia Castro
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.,University of Barcelona, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid 28029, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain.,University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
104
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
105
|
Hivroz C, Saitakis M. Biophysical Aspects of T Lymphocyte Activation at the Immune Synapse. Front Immunol 2016; 7:46. [PMID: 26913033 PMCID: PMC4753286 DOI: 10.3389/fimmu.2016.00046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/31/2016] [Indexed: 11/21/2022] Open
Abstract
T lymphocyte activation is a pivotal step of the adaptive immune response. It requires the recognition by T-cell receptors (TCR) of peptides presented in the context of major histocompatibility complex molecules (pMHC) present at the surface of antigen-presenting cells (APCs). T lymphocyte activation also involves engagement of costimulatory receptors and adhesion molecules recognizing ligands on the APC. Integration of these different signals requires the formation of a specialized dynamic structure: the immune synapse. While the biochemical and molecular aspects of this cell–cell communication have been extensively studied, its mechanical features have only recently been addressed. Yet, the immune synapse is also the place of exchange of mechanical signals. Receptors engaged on the T lymphocyte surface are submitted to many tensile and traction forces. These forces are generated by various phenomena: membrane undulation/protrusion/retraction, cell mobility or spreading, and dynamic remodeling of the actomyosin cytoskeleton inside the T lymphocyte. Moreover, the TCR can both induce force development, following triggering, and sense and convert forces into biochemical signals, as a bona fide mechanotransducer. Other costimulatory molecules, such as LFA-1, engaged during immune synapse formation, also display these features. Moreover, T lymphocytes themselves are mechanosensitive, since substrate stiffness can modulate their response. In this review, we will summarize recent studies from a biophysical perspective to explain how mechanical cues can affect T lymphocyte activation. We will particularly discuss how forces are generated during immune synapse formation; how these forces affect various aspects of T lymphocyte biology; and what are the key features of T lymphocyte response to stiffness.
Collapse
Affiliation(s)
- Claire Hivroz
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| | - Michael Saitakis
- Institut Curie Section Recherche, Paris, France; INSERM U932, Paris, France; PSL Research University, Paris, France
| |
Collapse
|
106
|
Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R, Fässler R. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 2016; 5:e10130. [PMID: 26821125 PMCID: PMC4749545 DOI: 10.7554/elife.10130] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/19/2015] [Indexed: 12/28/2022] Open
Abstract
Integrins require an activation step prior to ligand binding and signaling. How talin and kindlin contribute to these events in non-hematopoietic cells is poorly understood. Here we report that fibroblasts lacking either talin or kindlin failed to activate β1 integrins, adhere to fibronectin (FN) or maintain their integrins in a high affinity conformation induced by Mn(2+). Despite compromised integrin activation and adhesion, Mn(2+) enabled talin- but not kindlin-deficient cells to initiate spreading on FN. This isotropic spreading was induced by the ability of kindlin to directly bind paxillin, which in turn bound focal adhesion kinase (FAK) resulting in FAK activation and the formation of lamellipodia. Our findings show that talin and kindlin cooperatively activate integrins leading to FN binding and adhesion, and that kindlin subsequently assembles an essential signaling node at newly formed adhesion sites in a talin-independent manner.
Collapse
Affiliation(s)
- Marina Theodosiou
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Moritz Widmaier
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Emanuel Rognoni
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maik Veelders
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Mitasha Bharadwaj
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Armin Lambacher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Katharina Austen
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, Basel, Switzerland
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt University, Nashville, United States
- Department of Medicine, Veterans Affairs Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
107
|
Ju L, Qian J, Zhu C. Transport regulation of two-dimensional receptor-ligand association. Biophys J 2016; 108:1773-1784. [PMID: 25863068 DOI: 10.1016/j.bpj.2015.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 01/12/2023] Open
Abstract
The impact of flow disturbances on platelet adhesion is complex and incompletely understood. At the molecular scale, platelet glycoprotein Ibα (GPIbα) must associate with the von Willebrand factor A1 domain (VWF-A1) with a rapid on-rate under high hemodynamic forces, as occurs in arterial thrombosis, where various transport mechanisms are at work. Here, we theoretically modeled the coupled transport-reaction process of the two-dimensional (2D) receptor-ligand association kinetics in a biomembrane force probe to explicitly account for the effects of molecular length, confinement stiffness, medium viscosity, surface curvature, and separation distance. We experimentally verified the theoretical approach by visualizing association and dissociation of individual VWF-A1-GPIbα bonds in a real-time thermal fluctuation assay. The apparent on-rate, reciprocal of the average time intervals between sequential bonds, decreased with the increasing gap distance between A1- and GPIbα-bearing surfaces with an 80-nm threshold (beyond which bond formation became prohibitive) identified as the combined contour length of the receptor and ligand molecules. The biomembrane force probe spring constant and diffusivity of the protein-bearing beads also significantly influenced the apparent on-rate, in accordance with the proposed transport mechanisms. The global agreement between the experimental data and the model predictions supports the hypothesis that receptor-ligand association behaves distinctly in the transport- and reaction-limited scenarios. To our knowledge, our results represent the first detailed quantification of physical regulation of the 2D on-rate that allows platelets to sense and respond to local changes in their hemodynamic environment. In addition, they provide an approach for determining the intrinsic kinetic parameters that employs simultaneous experimental measurements and theoretical modeling of bond association in a single assay. The 2D intrinsic forward rate for VWF-A1-GPIbα association was determined from the measurements to be (3.5 ± 0.67) × 10(-4)μm(2) s(-1).
Collapse
Affiliation(s)
- Lining Ju
- Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Cheng Zhu
- Coulter School of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
108
|
Yang H, Tong C, Fu C, Xu Y, Liu X, Chen Q, Zhang Y, Lü S, Li N, Long M. Analyses of movement and contact of two nucleated cells using a gas-driven micropipette aspiration technique. J Immunol Methods 2015; 428:20-9. [PMID: 26631492 DOI: 10.1016/j.jim.2015.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/06/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
Abstract
Adhesion between two nucleated cells undergoes specific significances in immune responses and tumor metastasis since cellular adhesive molecules usually express on two apposed cell membranes. However, quantification of the interactions between two nucleated cells is still challenging in microvasculature. Here distinct cell systems were used, including three types of human cells (Jurkat cell or PMN vs. MDA-MB-231 cell) and two kinds of murine native cells (PMN vs. liver sinusoidal endothelial cell). Cell movement, compression to, and relaxation from the counterpart cell were quantified using an in-house developed gas-driven micropipette aspiration technique (GDMAT). This assay is robust to quantify this process since cell movement and contact inside a pipette are independent of the repeated test cycles. Measured approaching or retraction velocity follows well a normal distribution, which is independent on the cycle period. Contact area or duration also fits a Gaussian distribution and moreover contact duration is linearly correlated with the cycle period. Cell movement is positively related to gas flux but negatively associated to medium viscosity. Cell adhesion tends to reach an equilibrium state with increase of cycle period or contact duration. These results further the understanding in the dynamics of cell movement and contact in microvasculature.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfang Tong
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Changliang Fu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanhong Xu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Liu
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qin Chen
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Zhang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Li
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Center of Biomechanics and Bioengineering, and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
109
|
Hong J, Persaud SP, Horvath S, Allen PM, Evavold BD, Zhu C. Force-Regulated In Situ TCR-Peptide-Bound MHC Class II Kinetics Determine Functions of CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3557-64. [PMID: 26336148 DOI: 10.4049/jimmunol.1501407] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 12/27/2022]
Abstract
We have recently shown that two-dimensional (2D) and force-regulated kinetics of TCR-peptide-bound MHC class I (pMHC-I) interactions predict responses of CD8(+) T cells. To test whether these findings are applicable to CD4(+) T cells, we analyzed the in situ 3.L2 TCR-pMHC-II interactions for a well-characterized panel of altered peptide ligands on the T cell surface using the adhesion frequency assay with a micropipette and the thermal fluctuation and force-clamp assays with a biomembrane force probe. We found that the 2D effective TCR-pMHC-II affinity and off-rate correlate with, but better predict the T cell response than, the corresponding measurements with the surface plasmon resonance in three dimensions. The 2D affinity of the CD4 for MHC-II was very low, approaching the detection limit, making it one to two orders of magnitude lower than the affinity of CD8 for MHC-I. In addition, the signal-dependent cooperation between TCR and coreceptor for pMHC binding previously observed for CD8 was not observed for CD4. Interestingly, force elicited TCR-pMHC-II catch-slip bonds for agonists but slip-only bonds for antagonists, thereby amplifying the power of discrimination between altered peptide ligands. These results show that the force-regulated 2D binding kinetics of the 3.L2 TCR for pMHC-II determine functions of CD4(+) T cells.
Collapse
Affiliation(s)
- Jinsung Hong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Stephen Horvath
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul M Allen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Brian D Evavold
- Department of Immunology and Microbiology, Emory University School of Medicine, Atlanta, GA 30332; and
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
110
|
Ju L, Chen Y, Zhou F, Lu H, Cruz MA, Zhu C. Von Willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics. Thromb Res 2015; 136:606-12. [PMID: 26213126 PMCID: PMC4553094 DOI: 10.1016/j.thromres.2015.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/27/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022]
Abstract
Circulating von Willebrand factor (VWF) adopts a closed conformation that shields the platelet glycoprotein Ibα (GPIbα) binding site in the VWF-A1 domain. Immobilized at sites of vascular injury, VWF is activated by its interaction with collagen and the exertion of increased hemodynamic forces. Studies on native VWF strings and isolated A1 domains suggest the existence of multiple A1 binding states in different biophysical contexts. In this single-molecule study, we have used a biomembrane force probe (BFP) and a flow chamber to identify and characterize a collagen binding induced conformation with a higher affinity to platelet GPIbα. As force increases, our results show that collagen binding increases the stability of GPIbα bond with both VWF and isolated A1 domain. However, the collagen 2D binding affinity for VWF-A3 domain is 10 times of that for A1 domain, suggesting the initial VWF capture is mediated by A3-collagen interaction while A1-collagen regulates the subsequent VWF activation. Our results reveal the molecular mechanism of collagen-regulated, A1-mediated platelet adhesion enhancement. Characterization of different A1 states provides insights into binding heterogeneity of VWF in different scenarios of inflammation and thrombosis.
Collapse
Affiliation(s)
- Lining Ju
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Heart Research Institute, Newtown, NSW 2042, Australia; Charles Perkins Centre, Camperdown, NSW 2006, Australia
| | - Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Fangyuan Zhou
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hang Lu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Miguel A Cruz
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
111
|
Wan Z, Chen X, Chen H, Ji Q, Chen Y, Wang J, Cao Y, Wang F, Lou J, Tang Z, Liu W. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. eLife 2015; 4:e06925. [PMID: 26258882 PMCID: PMC4555871 DOI: 10.7554/elife.06925] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/08/2015] [Indexed: 02/06/2023] Open
Abstract
B lymphocytes use B cell receptors (BCRs) to sense the physical features of the antigens. However, the sensitivity and threshold for the activation of BCRs resulting from the stimulation by mechanical forces are unknown. Here, we addressed this question using a double-stranded DNA-based tension gauge tether system serving as a predefined mechanical force gauge ranging from 12 to 56 pN. We observed that IgM-BCR activation is dependent on mechanical forces and exhibits a multi-threshold effect. In contrast, the activation of isotype-switched IgG- or IgE-BCR only requires a low threshold of less than 12 pN, providing an explanation for their rapid activation in response to antigen stimulation. Mechanistically, we found that the cytoplasmic tail of the IgG-BCR heavy chain is both required and sufficient to account for the low mechanical force threshold. These results defined the mechanical force sensitivity and threshold that are required to activate different isotyped BCRs.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haodong Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Qinghua Ji
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjia Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiyun Cao
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Jizhong Lou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
112
|
Chen Y, Liu B, Ju L, Hong J, Ji Q, Chen W, Zhu C. Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. J Vis Exp 2015:e52975. [PMID: 26274371 DOI: 10.3791/52975] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Membrane receptor-ligand interactions mediate many cellular functions. Binding kinetics and downstream signaling triggered by these molecular interactions are likely affected by the mechanical environment in which binding and signaling take place. A recent study demonstrated that mechanical force can regulate antigen recognition by and triggering of the T-cell receptor (TCR). This was made possible by a new technology we developed and termed fluorescence biomembrane force probe (fBFP), which combines single-molecule force spectroscopy with fluorescence microscopy. Using an ultra-soft human red blood cell as the sensitive force sensor, a high-speed camera and real-time imaging tracking techniques, the fBFP is of ~1 pN (10(-12) N), ~3 nm and ~0.5 msec in force, spatial and temporal resolution. With the fBFP, one can precisely measure single receptor-ligand binding kinetics under force regulation and simultaneously image binding-triggered intracellular calcium signaling on a single live cell. This new technology can be used to study other membrane receptor-ligand interaction and signaling in other cells under mechanical regulation.
Collapse
Affiliation(s)
- Yunfeng Chen
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology
| | - Baoyu Liu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology
| | - Lining Ju
- Charles Perkins Centre, The University of Sydney
| | - Jinsung Hong
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology
| | - Qinghua Ji
- Institute of Biophysics, Laboratory of RNA Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences
| | - Wei Chen
- School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology;
| |
Collapse
|
113
|
Yago T, Petrich BG, Zhang N, Liu Z, Shao B, Ginsberg MH, McEver RP. Blocking neutrophil integrin activation prevents ischemia-reperfusion injury. J Exp Med 2015; 212:1267-81. [PMID: 26169939 PMCID: PMC4516797 DOI: 10.1084/jem.20142358] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/09/2015] [Indexed: 01/13/2023] Open
Abstract
Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia-reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin's capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia-reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin-mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin-mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia-reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable.
Collapse
Affiliation(s)
- Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Brian G Petrich
- Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322 Department of Pediatrics and Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA 30322
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Mark H Ginsberg
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093
| | - Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104 Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
114
|
Abstract
Cells sense biochemical, electrical, and mechanical cues in their environment that affect their differentiation and behavior. Unlike biochemical and electrical signals, mechanical signals can propagate without the diffusion of proteins or ions; instead, forces are transmitted through mechanically stiff structures, flowing, for example, through cytoskeletal elements such as microtubules or filamentous actin. The molecular details underlying how cells respond to force are only beginning to be understood. Here we review tools for probing force-sensitive proteins and highlight several examples in which forces are transmitted, routed, and sensed by proteins in cells. We suggest that local unfolding and tension-dependent removal of autoinhibitory domains are common features in force-sensitive proteins and that force-sensitive proteins may be commonplace wherever forces are transmitted between and within cells. Because mechanical forces are inherent in the cellular environment, force is a signal that cells must take advantage of to maintain homeostasis and carry out their functions.
Collapse
Affiliation(s)
- Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195-7290
| |
Collapse
|
115
|
Dong C, Chen B. Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012723. [PMID: 26274218 DOI: 10.1103/physreve.92.012723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 06/04/2023]
Abstract
It is intriguing how multiple molecular motors can perform coordinated and synchronous functions, which is essential in various cellular processes. Recent studies on skeletal muscle might have shed light on this issue, where rather precise motor force regulation was partly attributed to the specific stochastic features of a single attached myosin motor. Though attached motors can randomly detach from actin filaments either through an adenosine triphosphate (ATP) hydrolysis cycle or through "catch-slip bond" breaking, their respective contribution in motor force regulation has not been clarified. Here, through simulating a mechanical model of sarcomere with a coupled Monte Carlo method and finite element method, we find that the stochastic features of an ATP hydrolysis cycle can be sufficient while those of catch-slip bonds can be dispensable for motor force regulation.
Collapse
Affiliation(s)
- Chenling Dong
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, People's Republic of China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
116
|
The conformational states of talin autoinhibition complex and its activation under forces. SCIENCE CHINA-LIFE SCIENCES 2015; 58:694-703. [PMID: 26032591 DOI: 10.1007/s11427-015-4873-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 10/23/2022]
Abstract
Talin is an integrin-binding protein located at focal adhesion site and serves as both an adapter and a force transmitter. Its integrin binding activity is regulated by the intramolecular autoinhibition interaction between its F3 and RS domains. Here, we used atomic force microscopy to measure the strength of talin autoinhibition complex. Our results suggest that the lifetime of talin autoinhibition complex shows weak catch bond behavior and does not change significantly at smaller forces, while it drops rapidly at larger forces (>10 pN). Moreover, besides the complex conformation revealed by crystal structure, our molecular dynamics (MD) simulations indicate the possible existence of another stable conformation. Further analysis indicates that forces may regulate the equilibrium of the two stable binding states and result in the non-exponential force dependence of the binding lifetime. Our findings reveal a negative regulation mechanism on talin activation and provide a new point of view on the function of talin in focal adhesion.
Collapse
|
117
|
Liu B, Chen W, Natarajan K, Li Z, Margulies DH, Zhu C. The cellular environment regulates in situ kinetics of T-cell receptor interaction with peptide major histocompatibility complex. Eur J Immunol 2015; 45:2099-110. [PMID: 25944482 DOI: 10.1002/eji.201445358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/30/2015] [Indexed: 11/12/2022]
Abstract
T cells recognize antigens at the two-dimensional (2D) interface with antigen-presenting cells (APCs), which trigger T-cell effector functions. T-cell functional outcomes correlate with 2D kinetics of membrane-embedded T-cell receptors (TCRs) binding to surface-tethered peptide-major histocompatibility complex molecules (pMHCs). However, most studies have measured TCR-pMHC kinetics for recombinant TCRs in 3D by surface plasmon resonance, which differs drastically from 2D measurements. Here, we compared pMHC dissociation from native TCR on the T-cell surface to recombinant TCR immobilized on glass surface or in solution. Force on TCR-pMHC bonds regulated their lifetimes differently for native than recombinant TCRs. Perturbing the cellular environment suppressed 2D on-rates but had no effect on 2D off-rate regardless of whether force was applied. In contrast, for the TCR interacting with its monoclonal antibody, the 2D on-rate was insensitive to cellular perturbations and the force-dependent off-rates were indistinguishable for native and recombinant TCRs. These data present novel features of TCR-pMHC kinetics that are regulated by the cellular environment, underscoring the limitations of 3D kinetics in predicting T-cell functions and calling for further elucidation of the underlying molecular and cellular mechanisms that regulate 2D kinetics in physiological settings.
Collapse
Affiliation(s)
- Baoyu Liu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kannan Natarajan
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Zhenhai Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David H Margulies
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
118
|
Molecular Mechanoneurobiology: An Emerging Angle to Explore Neural Synaptic Functions. BIOMED RESEARCH INTERNATIONAL 2015; 2015:486827. [PMID: 26106609 PMCID: PMC4461725 DOI: 10.1155/2015/486827] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/17/2015] [Indexed: 12/28/2022]
Abstract
Neural synapses are intercellular asymmetrical junctions that transmit biochemical and biophysical information between a neuron and a target cell. They are very tight, dynamic, and well organized by many synaptic adhesion molecules, signaling receptors, ion channels, and their associated cytoskeleton that bear forces. Mechanical forces have been an emerging factor in regulating axon guidance and growth, synapse formation and plasticity in physiological and pathological brain activity. Therefore, mechanical forces are undoubtedly exerted on those synaptic molecules and modulate their functions. Here we review current progress on how mechanical forces regulate receptor-ligand interactions, protein conformations, ion channels activation, and cytoskeleton dynamics and discuss how these regulations potentially affect synapse formation, stabilization, and plasticity.
Collapse
|
119
|
Abstract
Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.
Collapse
Affiliation(s)
- Baoyu Liu
- Coulter Department of Biomedical Engineering
| | | | | |
Collapse
|
120
|
Rosetti F, Chen Y, Sen M, Thayer E, Azcutia V, Herter JM, Luscinskas FW, Cullere X, Zhu C, Mayadas TN. A Lupus-Associated Mac-1 Variant Has Defects in Integrin Allostery and Interaction with Ligands under Force. Cell Rep 2015; 10:1655-1664. [PMID: 25772353 DOI: 10.1016/j.celrep.2015.02.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/26/2014] [Accepted: 02/11/2015] [Indexed: 01/23/2023] Open
Abstract
Leukocyte CD18 integrins increase their affinity for ligand by transmitting allosteric signals to and from their ligand-binding αI domain. Mechanical forces induce allosteric changes that paradoxically slow dissociation by increasing the integrin/ligand bond lifetimes, referred to as catch bonds. Mac-1 formed catch bonds with its ligands. However, a Mac-1 gene (ITGAM) coding variant (rs1143679, R77H), which is located in the β-propeller domain and is significantly associated with systemic lupus erythematosus risk, exhibits a marked impairment in 2D ligand affinity and affinity maturation under mechanical force. Targeted mutations and activating antibodies reveal that the failure in Mac-1 R77H allostery is rescued by induction of cytoplasmic tail separation and full integrin extension. These findings demonstrate roles for R77, and the β-propeller in which it resides, in force-induced allostery relay and integrin bond stabilization. Defects in these processes may have pathological consequences, as the Mac-1 R77H variant is associated with increased susceptibility to lupus.
Collapse
Affiliation(s)
- Florencia Rosetti
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Immunology Graduate Program, Division of Medical Sciences, Harvard Graduate School of Arts and Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Yunfeng Chen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mehmet Sen
- Program in Cellular and Molecular Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Thayer
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Veronica Azcutia
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jan M Herter
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - F William Luscinskas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Cullere
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Tanya N Mayadas
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
121
|
Comrie WA, Li S, Boyle S, Burkhardt JK. The dendritic cell cytoskeleton promotes T cell adhesion and activation by constraining ICAM-1 mobility. ACTA ACUST UNITED AC 2015; 208:457-73. [PMID: 25666808 PMCID: PMC4332244 DOI: 10.1083/jcb.201406120] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrity of the dendritic cell (DC) actin cytoskeleton is essential for T cell priming, but the underlying mechanisms are poorly understood. We show that the DC F-actin network regulates the lateral mobility of intracellular cell adhesion molecule 1 (ICAM-1), but not MHCII. ICAM-1 mobility and clustering are regulated by maturation-induced changes in the expression and activation of moesin and α-actinin-1, which associate with actin filaments and the ICAM-1 cytoplasmic domain. Constrained ICAM-1 mobility is important for DC function, as DCs expressing a high-mobility ICAM-1 mutant lacking the cytoplasmic domain exhibit diminished antigen-dependent conjugate formation and T cell priming. These defects are associated with inefficient induction of leukocyte functional antigen 1 (LFA-1) affinity maturation, which is consistent with a model in which constrained ICAM-1 mobility opposes forces on LFA-1 exerted by the T cell cytoskeleton, whereas ICAM-1 clustering enhances valency and further promotes ligand-dependent LFA-1 activation. Our results reveal an important new mechanism through which the DC cytoskeleton regulates receptor activation at the immunological synapse.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Shuixing Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Sarah Boyle
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19102
| |
Collapse
|
122
|
Chen X, Mao Z, Chen B. Probing time-dependent mechanical behaviors of catch bonds based on two-state models. Sci Rep 2015; 5:7868. [PMID: 25598078 PMCID: PMC4297987 DOI: 10.1038/srep07868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/11/2014] [Indexed: 01/13/2023] Open
Abstract
With lifetime counter-intuitively being prolonged under forces, catch bonds can play critical roles in various sub-cellular processes. By adopting different “catching” strategies within the framework of two-state models, we construct two types of catch bonds that have a similar force-lifetime profile upon a constant force-clamp load. However, when a single catch bond of either type is subjected to varied forces, we find that they can behave very differently in both force history dependence and bond strength. We further find that a cluster of catch bonds of either type generally becomes unstable when subjected to a periodically oscillating force, which is consistent with experimental results. These results provide important insights into versatile time-dependent mechanical behaviors of catch bonds. We suggest that it is necessary to further differentiate those bonds that are all phenomenologically referred to as “Catch bonds”.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhixiu Mao
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Bin Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
123
|
Fiore VF, Ju L, Chen Y, Zhu C, Barker TH. Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 2014; 5:4886. [DOI: 10.1038/ncomms5886] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023] Open
|
124
|
Rakshit S, Sivasankar S. Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Phys Chem Chem Phys 2014; 16:2211-23. [PMID: 24419646 DOI: 10.1039/c3cp53963f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesion proteins play critical roles in positioning cells during development, segregating cells into distinct tissue compartments and in maintaining tissue integrity. The principle function of these proteins is to bind cells together and resist mechanical force. Adhesive proteins also enable migrating cells to adhere and roll on surfaces even in the presence of shear forces exerted by fluid flow. Recently, several experimental and theoretical studies have provided quantitative insights into the physical mechanisms by which adhesion proteins modulate their unbinding kinetics in response to tensile force. This perspective reviews these biophysical investigations. We focus on single molecule studies of cadherins, selectins, integrins, the von Willebrand factor and FimH adhesion proteins; the effect of mechanical force on the lifetime of these interactions has been extensively characterized. We review both theoretical models and experimental investigations and discuss future directions in this exciting area of research.
Collapse
Affiliation(s)
- Sabyasachi Rakshit
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
125
|
Liu B, Chen W, Evavold BD, Zhu C. Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 2014; 157:357-368. [PMID: 24725404 DOI: 10.1016/j.cell.2014.02.053] [Citation(s) in RCA: 444] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/27/2013] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
TCR-pMHC interactions initiate adaptive immune responses, but the mechanism of how such interactions under force induce T cell signaling is unclear. We show that force prolongs lifetimes of single TCR-pMHC bonds for agonists (catch bonds) but shortens those for antagonists (slip bonds). Both magnitude and duration of force are important, as the highest Ca(2+) responses were induced by 10 pN via both pMHC catch bonds whose lifetime peaks at this force and anti-TCR slip bonds whose maximum lifetime occurs at 0 pN. High Ca(2+) levels require early and rapid accumulation of bond lifetimes, whereas short-lived bonds that slow early accumulation of lifetimes correspond to low Ca(2+) responses. Our data support a model in which force on the TCR induces signaling events depending on its magnitude, duration, frequency, and timing, such that agonists form catch bonds that trigger the T cell digitally, whereas antagonists form slip bonds that fail to activate.
Collapse
Affiliation(s)
- Baoyu Liu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
126
|
Pryshchep S, Zarnitsyna VI, Hong J, Evavold BD, Zhu C. Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:68-76. [PMID: 24890718 DOI: 10.4049/jimmunol.1303436] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
T cell activation by Ag is one of the key events in adaptive immunity. It is triggered by interactions of the TCR and coreceptor (CD8 or CD4) with antigenic peptides embedded in MHC (pMHC) molecules expressed on APCs. The mechanism of how signal is initiated remains unclear. In this article, we complement our two-dimensional kinetic analysis of TCR-pMHC-CD8 interaction with concurrent calcium imaging to examine how ligand engagement of TCR with and without the coengagement of CD8 initiates signaling. We found that accumulation of frequently applied forces on the TCR via agonist pMHC triggered calcium, which was further enhanced by CD8 cooperative binding. Prolonging the intermission between sequential force applications impaired calcium signals. Our data support a model where rapid accumulation of serial forces on TCR-pMHC-CD8 bonds triggers calcium in T cells.
Collapse
Affiliation(s)
- Sergey Pryshchep
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Veronika I Zarnitsyna
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Jinsung Hong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; and
| | - Brian D Evavold
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332; and
| |
Collapse
|
127
|
Abstract
T cells are key players of the mammalian adaptive immune system. They experience different mechanical microenvironments during their life cycle, from the thymus, secondary lymph organs, and peripheral tissues that are free of externally applied force, but display variable substrate rigidities to the blood and lymphatic circulation systems, where complicated hydrodynamic forces are present. Regardless of whether T cells are subject to external forces or generate their own internal forces, they respond and adapt to different biomechanical cues to modulate their adhesion, migration, trafficking, and triggering of immune functions through mechanical regulation of various molecules that bear force. These include adhesive receptors, immunoreceptors, motor proteins, cytoskeletal proteins, and their associated molecules. Here, we discuss the forces acting on various surface and cytoplasmic proteins of a T cell in different mechanical milieus. We review existing data on how force regulates protein conformational changes and interactions with counter molecules, including integrins, actin, and the T-cell receptor, and how each relates to T-cell functions.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
128
|
Willenbrock F, Zicha D, Hoppe A, Hogg N. Novel automated tracking analysis of particles subjected to shear flow: kindlin-3 role in B cells. Biophys J 2014; 105:1110-22. [PMID: 24010654 PMCID: PMC3762340 DOI: 10.1016/j.bpj.2013.06.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/16/2013] [Accepted: 06/18/2013] [Indexed: 12/23/2022] Open
Abstract
Shear flow assays are used to mimic the influence of physiological shear force in diverse situations such as leukocyte rolling and arrest on the vasculature, capture of nanoparticles, and bacterial adhesion. Analysis of such assays usually involves manual counting, is labor-intensive, and is subject to bias. We have developed the Leukotrack program that incorporates a novel (to our knowledge) segmentation routine capable of reliable detection of cells in phase contrast images. The program also automatically tracks rolling cells in addition to those that are more firmly attached and migrating in random directions. We demonstrate its use in the analysis of lymphocyte arrest mediated by one or more active conformations of the integrin LFA-1. Activation of LFA-1 is a multistep process that depends on several proteins including kindlin-3, the protein that is mutated in leukocyte adhesion deficiency-III patients. We find that the very first stage of LFA-1-mediated attaching is unable to proceed in the absence of kindlin-3. Our evidence indicates that kindlin-3-mediated high-affinity LFA-1 controls both the early transient integrin-dependent adhesions in addition to the final stable adhesions made under flow conditions.
Collapse
|
129
|
Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis. Proc Natl Acad Sci U S A 2013; 111:379-84. [PMID: 24344262 DOI: 10.1073/pnas.1314209111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plexins and semaphorins comprise a large family of receptor-ligand pairs controlling cell guidance in nervous, immune, and vascular systems. How plexin regulation of neurite outgrowth, lymphoid trafficking, and vascular endothelial cell branching is linked to integrin function, central to most directed movement, remains unclear. Here we show that on developing thymocytes, plexinD1 controls surface topology of nanometer-scaled β1 integrin adhesion domains in cis, whereas its ligation by sema3E in trans regulates individual β1 integrin catch bonds. Loss of plexinD1 expression reduces β1 integrin clustering, thereby diminishing avidity, whereas sema3E ligation shortens individual integrin bond lifetimes under force to reduce stability. Consequently, both decreased expression of plexinD1 during developmental progression and a thymic medulla-emanating sema3E gradient enhance thymocyte movement toward the medulla, thus enforcing the orchestrated lymphoid trafficking required for effective immune repertoire selection. Our results demonstrate plexin-tunable molecular features of integrin adhesion with broad implications for many cellular processes.
Collapse
|
130
|
Litvinov RI, Weisel JW. Shear strengthens fibrin: the knob-hole interactions display 'catch-slip' kinetics. J Thromb Haemost 2013; 11:1933-5. [PMID: 23937213 PMCID: PMC5157126 DOI: 10.1111/jth.12374] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022]
Affiliation(s)
- R I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
131
|
Ju L, Dong JF, Cruz MA, Zhu C. The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. J Biol Chem 2013; 288:32289-32301. [PMID: 24062306 DOI: 10.1074/jbc.m113.504001] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Binding of platelet glycoprotein Ibα (GPIbα) to von Willebrand factor (VWF) initiates platelet adhesion to disrupted vascular surface under arterial blood flow. Flow exerts forces on the platelet that are transmitted to VWF-GPIbα bonds, which regulate their dissociation. Mutations in VWF and/or GPIbα may alter the mechanical regulation of platelet adhesion to cause hemostatic defects as found in patients with von Willebrand disease (VWD). Using a biomembrane force probe, we observed biphasic force-decelerated (catch) and force-accelerated (slip) dissociation of GPIbα from VWF. The VWF A1 domain that contains the N-terminal flanking sequence Gln(1238)-Glu(1260) (1238-A1) formed triphasic slip-catch-slip bonds with GPIbα. By comparison, using a short form of A1 that deletes this sequence (1261-A1) abolished the catch bond, destabilizing its binding to GPIbα at high forces. Importantly, shear-dependent platelet rolling velocities on these VWF ligands in a flow chamber system mirrored the force-dependent single-bond lifetimes. Adding the Gln(1238)-Glu(1260) peptide, which interacted with GPIbα and 1261-A1 but not 1238-A1, to whole blood decreased platelet attachment under shear stress. Soluble Gln(1238)-Glu(1260) reduced the lifetimes of GPIbα bonds with VWF and 1238-A1 but rescued the catch bond of GPIbα with 1261-A1. A type 2B VWD 1238-A1 mutation eliminated the catch bond by prolonging lifetimes at low forces, a type 2M VWD 1238-A1 mutation shifted the respective slip-catch and catch-slip transition points to higher forces, whereas a platelet type VWD GPIbα mutation enhanced the bond lifetime in the entire force regime. These data reveal the structural determinants of VWF activation by hemodynamic force of the circulation.
Collapse
Affiliation(s)
- Lining Ju
- From the Coulter Department of Biomedical Engineering
| | - Jing-Fei Dong
- the Puget Sound Blood Research Institute; Department of Medicine, University of Washington, Seattle, Washington 98104
| | - Miguel A Cruz
- Cardiovascular Sciences-Thrombosis, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Cheng Zhu
- From the Coulter Department of Biomedical Engineering; Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,.
| |
Collapse
|
132
|
Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 2013; 42:388-404. [PMID: 24006131 DOI: 10.1007/s10439-013-0904-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Molecular biomechanics includes two themes: the study of mechanical aspects of biomolecules and the study of molecular biology of the cell using mechanical tools. The two themes are interconnected for obvious reasons. The present review focuses on one of the interconnected areas-the mechanical regulation of molecular interaction and conformational change. Recent conceptual developments are summarized, including catch bonds, regulation of molecular interaction by the history of force application, and cyclic mechanical reinforcement. These studies elucidate the mechanochemistry of some of the candidate mechanosensing molecules, thereby providing a natural connection to mechanobiology.
Collapse
|
133
|
Kononova O, Litvinov RI, Zhmurov A, Alekseenko A, Cheng CH, Agarwal S, Marx KA, Weisel JW, Barsegov V. Molecular mechanisms, thermodynamics, and dissociation kinetics of knob-hole interactions in fibrin. J Biol Chem 2013; 288:22681-92. [PMID: 23720752 DOI: 10.1074/jbc.m113.472365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs 'A' and 'B' in the central nodule of fibrin monomer to complementary holes 'a' and 'b' in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob 'A' mimetic) and GHRP (knob 'B' mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5-7) and temperature (T = 25-37 °C). There were similar structural changes in holes 'a' and 'b' during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an "all-or-none" transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.
Collapse
Affiliation(s)
- Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Ju L, Wang YD, Hung Y, Wu CFJ, Zhu C. An HMM-based algorithm for evaluating rates of receptor-ligand binding kinetics from thermal fluctuation data. Bioinformatics 2013; 29:1511-8. [PMID: 23599504 DOI: 10.1093/bioinformatics/btt180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Abrupt reduction/resumption of thermal fluctuations of a force probe has been used to identify association/dissociation events of protein-ligand bonds. We show that off-rate of molecular dissociation can be estimated by the analysis of the bond lifetime, while the on-rate of molecular association can be estimated by the analysis of the waiting time between two neighboring bond events. However, the analysis relies heavily on subjective judgments and is time-consuming. To automate the process of mapping out bond events from thermal fluctuation data, we develop a hidden Markov model (HMM)-based method. RESULTS The HMM method represents the bond state by a hidden variable with two values: bound and unbound. The bond association/dissociation is visualized and pinpointed. We apply the method to analyze a key receptor-ligand interaction in the early stage of hemostasis and thrombosis: the von Willebrand factor (VWF) binding to platelet glycoprotein Ibα (GPIbα). The numbers of bond lifetime and waiting time events estimated by the HMM are much more than those estimated by a descriptive statistical method from the same set of raw data. The kinetic parameters estimated by the HMM are in excellent agreement with those by a descriptive statistical analysis, but have much smaller errors for both wild-type and two mutant VWF-A1 domains. Thus, the computerized analysis allows us to speed up the analysis and improve the quality of estimates of receptor-ligand binding kinetics.
Collapse
Affiliation(s)
- Lining Ju
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30318, USA
| | | | | | | | | |
Collapse
|
135
|
Kong F, Li Z, Parks WM, Dumbauld DW, García AJ, Mould AP, Humphries MJ, Zhu C. Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell 2013; 49:1060-8. [PMID: 23416109 PMCID: PMC3615084 DOI: 10.1016/j.molcel.2013.01.015] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 11/12/2012] [Accepted: 01/11/2013] [Indexed: 12/11/2022]
Abstract
Cells regulate adhesion in response to internally generated and externally applied forces. Integrins connect the extracellular matrix to the cytoskeleton and provide cells with mechanical anchorages and signaling platforms. Here we show that cyclic forces applied to a fibronectin-integrin α5β1 bond switch the bond from a short-lived state with 1 s lifetime to a long-lived state with 100 s lifetime. We term this phenomenon "cyclic mechanical reinforcement," as the bond strength remembers the history of force application and accumulates over repeated cycles, but does not require force to be sustained. Cyclic mechanical reinforcement strengthens the fibronectin-integrin α5β1 bond through the RGD binding site of the ligand with the synergy binding site greatly facilitating the process. A flexible integrin hybrid domain is also important for cyclic mechanical reinforcement. Our results reveal a mechanical regulation of receptor-ligand interactions and identify a molecular mechanism for cell adhesion strengthening by cyclic forces.
Collapse
Affiliation(s)
- Fang Kong
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Zhenhai Li
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - William M. Parks
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David W. Dumbauld
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J. García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - A. Paul Mould
- Welcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, England, UK
| | - Martin J. Humphries
- Welcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, England, UK
| | - Cheng Zhu
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
136
|
Li N, Mao D, Lü S, Tong C, Zhang Y, Long M. Distinct binding affinities of Mac-1 and LFA-1 in neutrophil activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4371-81. [PMID: 23514737 DOI: 10.4049/jimmunol.1201374] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Macrophage-1 Ag (Mac-1) and lymphocyte function-associated Ag-1 (LFA-1), two β2 integrins expressed on neutrophils (PMNs), mediate PMN recruitment cascade by binding to intercellular adhesive molecule 1. Distinct functions of LFA-1-initiating PMN slow rolling and firm adhesion but Mac-1-mediating cell crawling are assumed to be governed by the differences in their binding affinities and kinetic rates. In this study, we applied an adhesion frequency approach to compare their kinetics in the quiescent and activated states using three molecular systems, constitutively expressed receptors on PMNs, wild-type and high-affinity (HA) full-length constructs transfected on 293T cells, and wild-type and HA recombinant extracellular constructs. Data indicate that the difference in binding affinity between Mac-1 and LFA-1 is on-rate dominated with slightly or moderately varied off-rate. This finding was further confirmed when both β2 integrins were activated by chemokines (fMLF or IL-8), divalent cations (Mg(2+) or Mn(2+)), or disulfide bond lockage on an HA state. Structural analyses reveal that such the kinetics difference is likely attributed to the distinct conformations at the interface of Mac-1 or LFA-1 and intercellular adhesive molecule 1. This work furthers the understandings in the kinetic differences between Mac-1 and LFA-1 and in their biological correlations with molecular activation and structural bases.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Microgravity (National Microgravity Laboratory) and Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | |
Collapse
|
137
|
Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds. Proc Natl Acad Sci U S A 2013; 110:5022-7. [PMID: 23460697 DOI: 10.1073/pnas.1218407110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
As a key element in the cytoskeleton, actin filaments are highly dynamic structures that constantly sustain forces. However, the fundamental question of how force regulates actin dynamics is unclear. Using atomic force microscopy force-clamp experiments, we show that tensile force regulates G-actin/G-actin and G-actin/F-actin dissociation kinetics by prolonging bond lifetimes (catch bonds) at a low force range and by shortening bond lifetimes (slip bonds) beyond a threshold. Steered molecular dynamics simulations reveal force-induced formation of new interactions that include a lysine 113(K113):glutamic acid 195 (E195) salt bridge between actin subunits, thus suggesting a molecular basis for actin catch-slip bonds. This structural mechanism is supported by the suppression of the catch bonds by the single-residue replacements K113 to serine (K113S) and E195 to serine (E195S) on yeast actin. These results demonstrate and provide a structural explanation for actin catch-slip bonds, which may provide a mechanoregulatory mechanism to control cell functions by regulating the depolymerization kinetics of force-bearing actin filaments throughout the cytoskeleton.
Collapse
|
138
|
Zhang Y, Jiang N, Zarnitsyna VI, Klopocki AG, McEver RP, Zhu C. P-selectin glycoprotein ligand-1 forms dimeric interactions with E-selectin but monomeric interactions with L-selectin on cell surfaces. PLoS One 2013; 8:e57202. [PMID: 23451187 PMCID: PMC3581448 DOI: 10.1371/journal.pone.0057202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
Interactions of selectins with cell surface glycoconjugates mediate the first step of the adhesion and signaling cascade that recruits circulating leukocytes to sites of infection or injury. P-selectin dimerizes on the surface of endothelial cells and forms dimeric bonds with P-selectin glycoprotein ligand-1 (PSGL-1), a homodimeric sialomucin on leukocytes. It is not known whether leukocyte L-selectin or endothelial cell E-selectin are monomeric or oligomeric. Here we used the micropipette technique to analyze two-dimensional binding of monomeric or dimeric L- and E-selectin with monomeric or dimeric PSGL-1. Adhesion frequency analysis demonstrated that E-selectin on human aortic endothelial cells supported dimeric interactions with dimeric PSGL-1 and monomeric interactions with monomeric PSGL-1. In contrast, L-selectin on human neutrophils supported monomeric interactions with dimeric or monomeric PSGL-1. Our work provides a new method to analyze oligomeric cross-junctional molecular binding at the interface of two interacting cells.
Collapse
Affiliation(s)
- Yan Zhang
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | | | | | | | | | | |
Collapse
|
139
|
Chen W, Lou J, Evans EA, Zhu C. Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. ACTA ACUST UNITED AC 2013; 199:497-512. [PMID: 23109670 PMCID: PMC3483124 DOI: 10.1083/jcb.201201091] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A biomembrane force probe visualizes force-regulated reversible switches between bent and extended conformations of αLβ2 integrin on the surface of a living cell. As adhesion molecules, integrins connect a cell to its environment and transduce signals across the membrane. Their different functional states correspond to distinct conformations. Using a biomembrane force probe, we observed real-time reversible switches between bent and extended conformations of a single integrin, αLβ2, on the surface of a living cell by measuring its nanometer-scale headpiece displacements, bending and unbending frequencies, and molecular stiffness changes. We determined the stabilities of these conformations, their dynamic equilibrium, speeds and rates of conformational changes, and the impact of divalent cations and tensile forces. We quantified how initial and subsequent conformations of αLβ2 regulate the force-dependent kinetics of dissociation from intercellular adhesion molecule 1. Our findings provide new insights into how integrins function as nanomachines to precisely control cell adhesion and signaling.
Collapse
Affiliation(s)
- Wei Chen
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
140
|
Zhu C, Jiang N, Huang J, Zarnitsyna VI, Evavold BD. Insights from in situ analysis of TCR-pMHC recognition: response of an interaction network. Immunol Rev 2013; 251:49-64. [PMID: 23278740 PMCID: PMC3539230 DOI: 10.1111/imr.12016] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recognition of peptide presented by the major histocompatibility complex (pMHC) molecule by the T-cell receptor (TCR) determines T-cell selection, development, differentiation, fate, and function. Despite intensive studies on the structures, thermodynamic properties, kinetic rates, and affinities of TCR-pMHC interactions in the past two decades, questions regarding the functional outcome of these interactions, i.e. how binding of the αβ TCR heterodimer with distinct pMHCs triggers different intracellular signals via the adjacent CD3 components to produce different T-cell responses, remain unclear. Most kinetic measurements have used surface plasmon resonance, a three-dimensional (3D) technique in which fluid-phase receptors and ligands are removed from their cellular environment. Recently, several two-dimensional (2D) techniques have been developed to analyze molecular interactions on live T cells with pMHCs presented by surrogate antigen-presenting cells or supported planar lipid bilayers. The insights from these in situ analyses have provided a sharp contrast of the 2D network biology approach to the 3D reductionist approach and prompted rethinking of our current views of T-cell triggering. Based on these insights, we propose a mechanochemical coupled triggering hypothesis to explain why the in situ kinetic parameters differ so much from their 3D counterparts, yet correlate so much better with T-cell functional responses.
Collapse
Affiliation(s)
- Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0363, USA.
| | | | | | | | | |
Collapse
|
141
|
Sundd P, Pospieszalska MK, Ley K. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol 2012; 55:59-69. [PMID: 23141302 DOI: 10.1016/j.molimm.2012.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Abstract
Neutrophil recruitment to sites of inflammation involves neutrophil rolling along the inflamed endothelium in the presence of shear stress imposed by blood flow. Neutrophil rolling in post-capillary venules in vivo is primarily mediated by P-selectin on the endothelium binding to P-selectin glycoprotein ligand-1 (PSGL-1) constitutively expressed on neutrophils. Blood flow exerts a hydrodynamic drag on the rolling neutrophil which is partially or fully balanced by the adhesive forces generated in the P-selectin-PSGL-1 bonds. Rolling is the result of rapid formation and dissociation of P-selectin-PSGL-1 bonds at the center and rear of the rolling cell, respectively. Neutrophils roll stably on P-selectin in post-capillary venules in vivo and flow chambers in vitro at wall shear stresses greater than 6 dyn cm(-2). However, the mechanisms that enable neutrophils to roll at such high shear stress are not completely understood. In vitro and in vivo studies have led to the discovery of four potential mechanisms, viz. cell flattening, catch bond behavior, membrane tethers, and slings. Rolling neutrophils undergo flattening at high shear stress, which not only increases the size of the cell footprint but also reduces the hydrodynamic drag experienced by the rolling cell. P-selectin-PSGL-1 bonds behave as catch bonds at small detachment forces and thus become stronger with increasing force. Neutrophils rolling at high shear stress form membrane tethers which can be longer than the cell diameter and promote the survival of P-selectin-PSGL-1 bonds. Finally, neutrophils rolling at high shear stress form 'slings', which act as cell autonomous adhesive substrates and support step-wise peeling. Tethers and slings act together and contribute to the forces balancing the hydrodynamic drag. How the synergy between the four mechanisms leads to stable rolling at high shear stress is an area that needs further investigation.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
142
|
Litvinov RI, Mekler A, Shuman H, Bennett JS, Barsegov V, Weisel JW. Resolving two-dimensional kinetics of the integrin αIIbβ3-fibrinogen interactions using binding-unbinding correlation spectroscopy. J Biol Chem 2012; 287:35275-35285. [PMID: 22893701 DOI: 10.1074/jbc.m112.404848] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using a combined experimental and theoretical approach named binding-unbinding correlation spectroscopy (BUCS), we describe the two-dimensional kinetics of interactions between fibrinogen and the integrin αIIbβ3, the ligand-receptor pair essential for platelet function during hemostasis and thrombosis. The methodology uses the optical trap to probe force-free association of individual surface-attached fibrinogen and αIIbβ3 molecules and forced dissociation of an αIIbβ3-fibrinogen complex. This novel approach combines force clamp measurements of bond lifetimes with the binding mode to quantify the dependence of the binding probability on the interaction time. We found that fibrinogen-reactive αIIbβ3 pre-exists in at least two states that differ in their zero force on-rates (k(on1) = 1.4 × 10(-4) and k(on2) = 2.3 × 10(-4) μm(2)/s), off-rates (k(off1) = 2.42 and k(off2) = 0.60 s(-1)), and dissociation constants (K(d)(1) = 1.7 × 10(4) and K(d)(2) = 2.6 × 10(3) μm(-2)). The integrin activator Mn(2+) changed the on-rates and affinities (K(d)(1) = 5 × 10(4) and K(d)(2) = 0.3 × 10(3) μm(-2)) but did not affect the off-rates. The strength of αIIbβ3-fibrinogen interactions was time-dependent due to a progressive increase in the fraction of the high affinity state of the αIIbβ3-fibrinogen complex characterized by a faster on-rate. Upon Mn(2+)-induced integrin activation, the force-dependent off-rates decrease while the complex undergoes a conformational transition from a lower to higher affinity state. The results obtained provide quantitative estimates of the two-dimensional kinetic rates for the low and high affinity αIIbβ3 and fibrinogen interactions at the single molecule level and offer direct evidence for the time- and force-dependent changes in αIIbβ3 conformation and ligand binding activity, underlying the dynamics of fibrinogen-mediated platelet adhesion and aggregation.
Collapse
Affiliation(s)
- Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Andrey Mekler
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Henry Shuman
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joel S Bennett
- Department of Hematology-Oncology Division of the Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts 01854.
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
143
|
Boettiger D. Mechanical control of integrin-mediated adhesion and signaling. Curr Opin Cell Biol 2012; 24:592-9. [PMID: 22857903 DOI: 10.1016/j.ceb.2012.07.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 01/13/2023]
Abstract
Integrin-mediated adhesion is controlled by the number of bonds between cell surface integrins and substrate-bound ligands. Integrin-ligand affinity is modulated by chemical allostery, mechanical allostery and integrin clustering. This review analyzes how each of these factors changes through the phases of cell attachment, adhesion strengthening, and clustering. The analysis predicts a dominant role of mechanical factors in both adhesive regulation and integrin signaling for adherent cells. New approaches and experimental analyses will be required to substantiate this hypothesis.
Collapse
Affiliation(s)
- David Boettiger
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
144
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
145
|
Alon R, Feigelson SW. Chemokine-triggered leukocyte arrest: force-regulated bi-directional integrin activation in quantal adhesive contacts. Curr Opin Cell Biol 2012; 24:670-6. [PMID: 22770729 DOI: 10.1016/j.ceb.2012.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/24/2012] [Accepted: 06/11/2012] [Indexed: 10/28/2022]
Abstract
The arrest of rolling leukocytes on target vascular beds is mediated by specialized leukocyte integrins and their endothelial ligands. In the circulation, these integrins are generally maintained as inactive 'clasped' heterodimers. Encounter by leukocytes of specialized endothelial-presented chemoattractants termed arrest chemokines drive these integrins to undergo force-regulated biochemical conformational changes in response to signals from chemokine-stimulated Gi-protein coupled receptors (GPCRs) and actin remodeling Rho GTPases. To arrest rolling leukocytes, integrin:ligand bonds must undergo stabilization by several orders of magnitude within quantal submicron contacts that consist of discrete integrin:ligand bonds. We present a unifying three step model for rapid integrin activation by chemokines in the quantal arrest unit, the smallest firm adhesive contact formed by a rolling or a captured leukocyte: integrin extension triggered by talin, integrin headpiece opening driven by surface-immobilized ligand and stabilized by low force, and full heterodimer unclasping requiring integrin tail associations with actin-connected talin and Kindlin-3. Specialized GPCRs and their Gi-protein signaling assemblies drive these and other adaptors to specifically bind integrin cytoplasmic tails possibly in conjunction with de novo actin remodeling, thereby optimizing bi-directional activation of ligand-occupied integrins.
Collapse
Affiliation(s)
- Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
146
|
Abstract
Lymphocyte function-associated antigen-1 (LFA-1) is a heterodimeric integrin consisting of αL (gene name, Itgal) and β2 (gene name, Itgb2) subunits expressed in all leukocytes. LFA-1 is essential for neutrophil recruitment to inflamed tissue. Activation of LFA-1 by chemokines allows neutrophils and other leukocytes to undergo arrest, resulting in firm adhesion on endothelia expressing intercellular adhesion molecules (ICAMs). In mice, CXCR2 is the primary chemokine receptor involved in triggering neutrophil arrest, and it does so through “inside-out” activation of LFA-1. CXCR2 signaling induces changes in LFA-1 conformation that are coupled to affinity upregulation of the ligand-binding headpiece (extended with open I domain). Unlike naïve lymphocytes, engagement of P-selectin glycoprotein ligand-1 (PSGL-1) on neutrophils stimulates a slow rolling behavior that is mediated by LFA-1 in a distinct activation state (extended with closed I domain). How inside-out signaling cascades regulate the structure and function of LFA-1 is being studied using flow chambers, intravital microscopy, and flow cytometry for ligand and reporter antibody binding. Here, we review how LFA-1 activation is regulated by cellular signaling and ligand binding. Two FERM domain-containing proteins, talin-1 and Kindlin-3, are critical integrin co-activators and have distinct roles in the induction of LFA-1 conformational rearrangements. This review integrates these new results into existing models of LFA-1 activation.
Collapse
Affiliation(s)
- Craig T Lefort
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | |
Collapse
|
147
|
Huang J, Meyer C, Zhu C. T cell antigen recognition at the cell membrane. Mol Immunol 2012; 52:155-64. [PMID: 22683645 DOI: 10.1016/j.molimm.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/27/2012] [Accepted: 05/01/2012] [Indexed: 11/16/2022]
Abstract
T cell antigen receptors (TCRs) on the surface of T cells bind specifically to particular peptide bound major histocompatibility complexes (pMHCs) presented on the surface of antigen presenting cells (APCs). This interaction is a key event in T cell antigen recognition and activation. Most studies have used surface plasmon resonance (SPR) to measure the in vitro binding kinetics of TCR-pMHC interactions in solution using purified proteins. However, these measurements are not physiologically precise, as both TCRs and pMHCs are membrane-associated molecules which are regulated by their cellular environments. Recently, single-molecule förster resonance energy transfer (FRET) and single-molecule mechanical assays were used to measure the in situ binding kinetics of TCR-pMHC interactions on the surface of live T cells. These studies have provided exciting insights into the biochemical basis of T cell antigen recognition and suggest that TCRs serially engage with a small number of antigens with very fast kinetics in order to maximize TCR signaling and sensitivity.
Collapse
Affiliation(s)
- Jun Huang
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
148
|
Fennewald SM, Kantara C, Sastry SK, Resto VA. Laminin interactions with head and neck cancer cells under low fluid shear conditions lead to integrin activation and binding. J Biol Chem 2012; 287:21058-66. [PMID: 22547070 DOI: 10.1074/jbc.m112.360313] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lymphatic metastasis of cancer cells involves movement from the primary tumor site to the lymph node, where the cells must be able to productively lodge and grow. It is there that tumor cells encounter cellular and non-cellular constituent elements that make up the lymph node parenchyma. Our work shows that head and neck squamous cell carcinoma (HNSCC) cell lines are able to bind to laminin, fibronectin, vitronectin, and hyaluronic acid, which are extracellular matrix elements within the lymph node parenchyma. HNSCC cell lines bound to laminin under lymphodynamic low shear stress (0.07 dynes/cm(2)), consistent with lymph flow via β1 integrins, including α2β1, α3β1, and α6β1. Binding occurred in the presence of shear stress and not in the absence of flow. Additionally, tumor cell binding to laminin under flow did result in calcium signaling. Our data indicate a novel role for β1 integrin-mediated binding of HNSCC cells to laminin under conditions of lymphodynamic flow that results in intracellular calcium signaling within the cancer cell.
Collapse
Affiliation(s)
- Susan M Fennewald
- Department of Otolaryngology, UTMB Health, University of Texas Medical Branch, Galveston, Texas 77555-0521, USA
| | | | | | | |
Collapse
|
149
|
Shao B, Yago T, Coghill PA, Klopocki AG, Mehta-D'souza P, Schmidtke DW, Rodgers W, McEver RP. Signal-dependent slow leukocyte rolling does not require cytoskeletal anchorage of P-selectin glycoprotein ligand-1 (PSGL-1) or integrin αLβ2. J Biol Chem 2012; 287:19585-98. [PMID: 22511754 DOI: 10.1074/jbc.m112.361519] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In inflamed venules, neutrophils roll on P- or E-selectin, engage P-selectin glycoprotein ligand-1 (PSGL-1), and signal extension of integrin α(L)β(2) in a low affinity state to slow rolling on intercellular adhesion molecule-1 (ICAM-1). Cytoskeleton-dependent receptor clustering often triggers signaling, and it has been hypothesized that the cytoplasmic domain links PSGL-1 to the cytoskeleton. Chemokines cause rolling neutrophils to fully activate α(L)β(2), leading to arrest on ICAM-1. Cytoskeletal anchorage of α(L)β(2) has been linked to chemokine-triggered extension and force-regulated conversion to the high affinity state. We asked whether PSGL-1 must interact with the cytoskeleton to initiate signaling and whether α(L)β(2) must interact with the cytoskeleton to extend. Fluorescence recovery after photobleaching of transfected cells documented cytoskeletal restraint of PSGL-1. The lateral mobility of PSGL-1 similarly increased by depolymerizing actin filaments with latrunculin B or by mutating the cytoplasmic tail to impair binding to the cytoskeleton. Converting dimeric PSGL-1 to a monomer by replacing its transmembrane domain did not alter its mobility. By transducing retroviruses expressing WT or mutant PSGL-1 into bone marrow-derived macrophages from PSGL-1-deficient mice, we show that PSGL-1 required neither dimerization nor cytoskeletal anchorage to signal β(2) integrin-dependent slow rolling on P-selectin and ICAM-1. Depolymerizing actin filaments or decreasing actomyosin tension in neutrophils did not impair PSGL-1- or chemokine-mediated integrin extension. Unlike chemokines, PSGL-1 did not signal cytoskeleton-dependent swing out of the β(2)-hybrid domain associated with the high affinity state. The cytoskeletal independence of PSGL-1-initiated, α(L)β(2)-mediated slow rolling differs markedly from the cytoskeletal dependence of chemokine-initiated, α(L)β(2)-mediated arrest.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Xiang X, Lee CY, Li T, Chen W, Lou J, Zhu C. Structural basis and kinetics of force-induced conformational changes of an αA domain-containing integrin. PLoS One 2011; 6:e27946. [PMID: 22140490 PMCID: PMC3225382 DOI: 10.1371/journal.pone.0027946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Integrin α(L)β₂ (lymphocyte function-associated antigen, LFA-1) bears force upon binding to its ligand intercellular adhesion molecule 1 (ICAM-1) when a leukocyte adheres to vascular endothelium or an antigen presenting cell (APC) during immune responses. The ligand binding propensity of LFA-1 is related to its conformations, which can be regulated by force. Three conformations of the LFA-1 αA domain, determined by the position of its α₇-helix, have been suggested to correspond to three different affinity states for ligand binding. METHODOLOGY/PRINCIPAL FINDINGS The kinetics of the force-driven transitions between these conformations has not been defined and dynamically coupled to the force-dependent dissociation from ligand. Here we show, by steered molecular dynamics (SMD) simulations, that the αA domain was successively transitioned through three distinct conformations upon pulling the C-terminus of its α₇-helix. Based on these sequential transitions, we have constructed a mathematical model to describe the coupling between the αA domain conformational changes of LFA-1 and its dissociation from ICAM-1 under force. Using this model to analyze the published data on the force-induced dissociation of single LFA-1/ICAM-1 bonds, we estimated the force-dependent kinetic rates of interstate transition from the short-lived to intermediate-lived and from intermediate-lived to long-lived states. Interestingly, force increased these transition rates; hence activation of LFA-1 was accelerated by pulling it via an engaged ICAM-1. CONCLUSIONS/SIGNIFICANCE Our study defines the structural basis for mechanical regulation of the kinetics of LFA-1 αA domain conformational changes and relates these simulation results to experimental data of force-induced dissociation of single LFA-1/ICAM-1 bonds by a new mathematical model, thus provided detailed structural and kinetic characterizations for force-stabilization of LFA-1/ICAM-1 interaction.
Collapse
Affiliation(s)
- Xue Xiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Cho-yin Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Tian Li
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Jizhong Lou
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|