101
|
miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6. Biosci Rep 2019; 39:BSR20180921. [PMID: 30135141 PMCID: PMC6356013 DOI: 10.1042/bsr20180921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
Various miRNAs have been reported to regulate the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs); however, whether miR-134 plays a role in this biological process remains undetermined. In the present study, we first evaluated the chondrogenic differentiation of BMSCs by Alcian blue staining, and examined the miR-134 expression by quantitative real-time PCR (qRT-PCR) during this process. And miR-134 inhibitor was used to investigate the functions of miR-134 in chondrogenic differentiation of BMSCs by Alcian blue staining, qRT-PCR, and Western blot. Subsequently, the correlation between miR-134 and SMAD6 was assessed via bioinformatics analysis and dual-luciferase reporter assay. Finally, the role of SMAD6 in chondrogenic differentiation of BMSCs was also determined through Alcian blue staining, qRT-PCR, and Western blot. As results showed that miR-134 expression was significantly down-regulated during chondrogenic differentiation, and inhibition of miR-134 obviously promoted chondrogenic differentiation. Dual-luciferase reporter assay indicated that miR-134 could directly target the 3′-UTRs of SMAD6, inhibit miR-134 expression in BMSCs, and up-regulate SMAD6 expression. Moreover, we found that overexpression of SMAD6 significantly promoted chondrogenic differentiation, and that SMAD6-induced promotion of chondrogenic differentiation could be reversed by miR-134 mimics. In conclusion, our findings suggest that miR-134 may act as a negative regulator during chondrogenic differentiation of BMSCs by interacting with SMAD6.
Collapse
|
102
|
Yangyin Yiqi Mixture Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats through Inhibiting TGF-β1/Smad Pathway and Epithelial to Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2710509. [PMID: 30719057 PMCID: PMC6335662 DOI: 10.1155/2019/2710509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/06/2018] [Accepted: 12/16/2018] [Indexed: 11/17/2022]
Abstract
Objective The aim of the current study was to investigate the protective effect of Yangyin Yiqi Mixture (YYYQ) on Bleomycin-induced pulmonary fibrosis in rats based on TGF-β1/Smad signal pathway and epithelial to mesenchymal transition (EMT). Methods 120 Wistar rats were randomly divided into six groups: control group, BLM group, BLM + Pred group, BLM+YYYQ-L group, BLM+YYYQ-M group, and BLM+YYYQ-H group. Rats were given an intratracheal instillation of 3 mg/kg BLM to establish the pulmonary fibrosis model and followed by different dosages of YYYQ (11, 22, 44g/kg, via intragastric gavage) or prednisone soluble (4.2mg/kg, via intragastric gavage) or water. After 14 days and 28 days, tissue sections were stained with hematoxylin-eosin and Masson's trichrome to observe histopathological changes. Protein levels of TGF-β1, CTGF, Interleukin 18, and hydroxyproline were detected by ELISA method, and mRNA expressions of TGF-β1, TβRI, TβRII, Smad3, Smad7, α-SMA, E-cadherin, laminin, and collagen I were detected by RT-PCR. Results TGF-β1, CTGF, Interleukin 18, and hydroxyproline levels and mRNA expression of TGF-β1, TβRI, TβRII, Smad3, α-SMA, laminin, and collagen I were significantly increased (p <0.01), while Smad7 and E-cadherin levels were significantly decreased in BLM group (p <0.01). YYYQ-M and YYYQ-H group had downregulated the TGF-β1, CTGF, hydroxyproline contents, and mRNA expression of TGF-β1, TβRI, TβRII, Smad3, α-SMA, laminin, and collagen I and upregulated mRNA levels of Smad7 and E-cadherin significantly (p <0.01 or p <0.05). The result from the present study, which was also supported by histological evidence, suggested that YYYQ-M group and YYYQ-H group exhibited better treatment effect on Bleomycin-induced pulmonary fibrotic rats when compared to that of BLM + Pred group (p <0.01). Meanwhile, the effect of YYYQ, in three different dosages, on the level of interleukin 18 was not significant. Conclusion These results showed that YYYQ has the potential of ameliorating the progression of pulmonary fibrosis, and the mechanism may be related to suppressing TGF-β1/Smad signal pathway and EMT in BLM-induced pulmonary fibrosis of rats.
Collapse
|
103
|
Liu P, Zhu L, Zou G, Ke H. Matrine Suppresses Pancreatic Fibrosis by Regulating TGF-β/Smad Signaling in Rats. Yonsei Med J 2019; 60:79-87. [PMID: 30554494 PMCID: PMC6298897 DOI: 10.3349/ymj.2019.60.1.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study aimed to elucidate the molecular mechanisms of the anti-pancreatic fibrosis effects of matrine in rats. MATERIALS AND METHODS Trinitrobenzene sulfonic acid was administrated to rats to establish a pancreatic fibrosis model. Rats were divided into four groups: Control, Sham, Model, and Matrine (n=8). Hematoxylin-eosin staining, Masson staining, and Azan staining were performed to evaluate pancreatic fibrosis. Expression of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), and collagen I in pancreatic tissues was evaluated by immunohistochemical staining. mRNA and protein levels of TGF-β receptor 1 (TβR1), TβR2, and Smad2 in pancreatic tissues were determined by RT-PCR and Western blot, respectively. RESULTS In the model group, hyperplasia of glandules around the glandular ducts, mitochondrial swelling of acinous cells, and severe fibrosis were found. Interestingly, in the Matrine group, mitochondrial swelling was only found in a small number of acinous cells, and the fundamental structures of pancreatic tissues were intact. Moreover, pancreatic fibrosis was markedly alleviated. Comparing to the Sham group, expression of α-SMA, TGF-β1, and collagen I was sharply elevated in the Model group (p<0.05); however, their expressions were much lower in the Matrine group, compared to the Model group (p<0.05). Compared with the Sham group, mRNA and protein levels of Smad2, TβR1, and TβR2 in the Model group were notably raised (p<0.05). However, their high expression was significantly downregulated in the Matrine group (p<0.05). CONCLUSION Matrine suppressed pancreatic fibrosis by regulating TGF-β/Smad signaling in rats.
Collapse
Affiliation(s)
- Pi Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Luhong Zhu
- Department of Gastroenterology, Nanchang University, Nanchang, Jiangxi, China
| | - Guohui Zou
- Department of Gastroenterology, Chinese People's Liberation Army No.171 Hospital, Jiujiang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
104
|
Mahadik K, Yadav P, Bhatt B, Shah RA, Balaji KN. Deregulated AUF1 Assists BMP-EZH2-Mediated Delayed Wound Healing during Candida albicans Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:3617-3629. [PMID: 30429285 DOI: 10.4049/jimmunol.1800688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Tissue repair is a complex process that necessitates an interplay of cellular processes, now known to be dictated by epigenetics. Intriguingly, macrophages are testimony to a large repertoire of evolving functions in this process. We identified a role for BMP signaling in regulating macrophage responses to Candida albicans infection during wound repair in a murine model. In this study, the RNA binding protein, AU-rich element-binding factor 1, was posttranslationally destabilized to bring about ubiquitin ligase, NEDD4-directed activation of BMP signaling. Concomitantly, PI3K/PKCδ mobilized the rapid phosphorylation of BMP-responsive Smad1/5/8. Activated BMP pathway orchestrated the elevated recruitment of EZH2 at promoters of genes assisting timely wound closure. In vivo, the repressive H3K27 trimethylation was observed to persist, accompanied by a robust upregulation of BMP pathway upon infection with C. albicans, culminating in delayed wound healing. Altogether, we uncovered the signaling networks coordinated by fungal colonies that are now increasingly associated with the infected wound microbiome, resulting in altered wound fate.
Collapse
Affiliation(s)
- Kasturi Mahadik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Preeti Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | |
Collapse
|
105
|
Lee YC, Su YT, Liu TY, Tsai CM, Chang CH, Yu HR. L-Arginine and L-Citrulline Supplementation Have Different Programming Effect on Regulatory T-Cells Function of Infantile Rats. Front Immunol 2018; 9:2911. [PMID: 30619275 PMCID: PMC6295647 DOI: 10.3389/fimmu.2018.02911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 01/11/2023] Open
Abstract
Arginine is a semiessential amino acid in healthy adult human, but is essential for preterm, newborn or critically ill patients. Arginine can be supplied from our diet or de novo synthesis from citrulline. In conditions of sepsis or endotoxemia, arginine may be deficient and be accompanied with altered immune response. L-arginine supplementation can ameliorate dysregulated immune condition and improve prognosis. Many studies had tried L-arginine or L-citrulline supplementation to examine the effect on immune response in the adult population. Few had studied on the young children. In this study, we determined the effect of L-arginine and L-citrulline supplementation on the immune response of infantile rats. Male infantile rats received normal saline, L-arginine (200 mg/kg/day) or L-citrulline (200 mg/kg/day) intraperitoneally over postnatal day 8 to day 14. The infantile rats were then sacrificed. The blood was analyzed while the spleen was indicated for immune analysis after stimulation with concanavalin A (Con A) or lipopolysaccharide (LPS). We found L-arginine supplementation enhanced Th1 immune response by increasing IFN-γ production. Both the L-arginine and L-citrulline therapy can modulate regulatory T-cell (Treg) immune effects by increasing the IL-10 level. Only the L-citrulline group showed a TGF-β1 increase. Both L-arginine and L-citrulline therapy were also noted to decrease SMAD7 expression and enhance SIRT-1 abundance. However, FOXP3 expression was only modulated by L-citrulline treatment. We then concluded that L-arginine and L-citrulline supplementation can modulate the regulatory T-cells function differently for infantile rats.
Collapse
Affiliation(s)
- Yi-Chen Lee
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, and Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yu-Tsun Su
- Department of Pediatrics, E-Da Hospital/I-Shou University, Kaohsiung, Taiwan
| | - Ta-Yu Liu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, and Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Min Tsai
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, and Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hao Chang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung, Taiwan
| | - Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, and Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
106
|
Xiong X, Tu S, Wang J, Luo S, Yan X. CXXC5: A novel regulator and coordinator of TGF-β, BMP and Wnt signaling. J Cell Mol Med 2018; 23:740-749. [PMID: 30479059 PMCID: PMC6349197 DOI: 10.1111/jcmm.14046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022] Open
Abstract
CXXC5 is a member of the CXXC-type zinc-finger protein family. Proteins in this family play a pivotal role in epigenetic regulation by binding to unmethylated CpG islands in gene promoters through their characteristic CXXC domain. CXXC5 is a short protein (322 amino acids in length) that does not have any catalytic domain, but is able to bind to DNA and act as a transcription factor and epigenetic factor through protein-protein interactions. Intriguingly, increasing evidence indicates that expression of the CXXC5 gene is controlled by multiple signaling pathways and a variety of transcription factors, positioning CXXC5 as an important signal integrator. In addition, CXXC5 is capable of regulating various signal transduction processes, including the TGF-β, Wnt and ATM-p53 pathways, thereby acting as a novel and crucial signaling coordinator. CXXC5 plays an important role in embryonic development and adult tissue homeostasis by regulating cell proliferation, differentiation and apoptosis. In keeping with these functions, aberrant expression or altered activity of CXXC5 has been shown to be involved in several human diseases including tumourigenesis. This review summarizes the current understanding of CXXC5 as a transcription factor and signaling regulator and coordinator.
Collapse
Affiliation(s)
- Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shuo Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jianbin Wang
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
107
|
Beiki B, Zeynali B, Taghiabadi E, Seyedjafari E, Kehtari M. Osteogenic differentiation of Wharton’s jelly-derived mesenchymal stem cells cultured on WJ-scaffold through conventional signalling mechanism. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S1032-S1042. [DOI: 10.1080/21691401.2018.1528981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bahareh Beiki
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahman Zeynali
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Taghiabadi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mousa Kehtari
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| |
Collapse
|
108
|
Single Nucleotide Polymorphism in SMAD7 and CHI3L1 and Colorectal Cancer Risk. Mediators Inflamm 2018; 2018:9853192. [PMID: 30498395 PMCID: PMC6222239 DOI: 10.1155/2018/9853192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancers throughout the world. It represents the third most common cancer and the fourth in mortality. Most of CRC are sporadic, arise with no known high-penetrant genetic variation and with no previous family history. The etiology of sporadic CRC is considered to be multifactorial and arises from the interaction of genetic variants of low-penetrant genes and environmental risk factors. The most common well-studied genetic variation is single nucleotide polymorphisms (SNPs). SNP arises as a point mutation. If the frequency of the sequence variation reaches 1% or more in the population, it is referred to as polymorphism, but if it is lower than 1%, the allele is typically considered as a mutation. Lots of SNPs have been associated with CRC development and progression, for example, genes of TGF-β1 and CHI3L1 pathways. TGF-β1 is a pleiotropic cytokine with a dual role in cancer development and progression. TGF-β1 mediates its actions through canonical and noncanonical pathways. The most important negative regulatory protein for TGF-β1 activity is termed SMAD7. The production of TGF-β can be controlled by another protein called YKL-40. YKL-40 is a glycoprotein with an important role in cancer initiation and metastasis. YKL-40 is encoded by the CHI3L1 gene. The aim of the present review is to give a brief introduction of CRC, SNP, and examples of some SNPs that have been documented to be associated with CRC. We also discuss two important signaling pathways TGF-β1 and CHI3L1 that influence the incidence and progression of CRC.
Collapse
|
109
|
Lu Z, Du L, Liu R, Di R, Zhang L, Ma Y, Li Q, Liu E, Chu M, Wei C. MiR-378 and BMP-Smad can influence the proliferation of sheep myoblast. Gene 2018; 674:143-150. [PMID: 29908283 DOI: 10.1016/j.gene.2018.06.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 01/02/2023]
Abstract
MicroRNA (miRNA) is a sort of endogenous ~20-25 nt non-coding RNAs, and it can regulate a variety of biological events. We found the miR-378 may involve in regulating the muscle development of sheep during our previous research. However, the molecular mechanism of miR-378 regulating myoblast proliferation is still unclear. In this research, we predicted that BMP2 (Bone morphogenetic protein 2) was the target gene of miR-378 and the BMP-Smad signal pathway that BMP2 participated in playing an important role in the muscle development. Therefore, we tried to determine whether miR-378 influence myoblast proliferation of sheep through the BMP-Smad signal pathway. The results indicated that inhibit BMP-Smad signal pathway by interfering Smad4 to promote proliferation of sheep myoblasts; promote BMP-Smad signal pathway by interfering Smad7 to inhibit proliferation of sheep myoblasts; over-expression miR-378 promotes BMP-Smad signal pathway and myoblast proliferation in sheep; interfering miR-378 inhibits BMP-Smad signal pathway and myoblast proliferation in sheep. However, when both of which functioned at the myoblast, miR-378 could not fully depend on BMP-Smad signal pathway to regulate myoblast proliferation. In sum, both miR-378 and BMP-Smad can influence the proliferation of myoblast, but miR-378 does not target the 3' UTR of sheep BMP2.
Collapse
Affiliation(s)
- Zengkui Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lixin Du
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruizao Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ran Di
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qing Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Enmin Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingxing Chu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Caihong Wei
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
110
|
Lappas M. Identification of SMAD3 as a Novel Mediator of Inflammation in Human Myometrium In Vitro. Mediators Inflamm 2018; 2018:3140420. [PMID: 30363688 PMCID: PMC6180979 DOI: 10.1155/2018/3140420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/01/2023] Open
Abstract
Preterm birth remains the primary cause of early neonatal death and is a major determinant for long-term health consequences. Aberrant intrauterine inflammation and infection are known to augment the synthesis of proinflammatory cytokines and induce uterine contractions, which can subsequently lead to preterm birth. The transforming growth factor-β (TGF-β) superfamily members regulate numerous cellular processes through the activation of intracellular mediators known as mothers against decapentaplegic homolog (SMADs). Studies in nongestational tissues have shown that SMAD3 plays a role in immune regulation and inflammation; however, its role in human labour remains unknown. Thus, the present study aimed at (i) characterising the expression of SMAD3 in the human myometrium; (ii) determining the effect of bacterial and viral products and proinflammatory cytokines on SMAD3 transcriptional activity in primary human myometrial cells; and (iii) investigating the effect of SMAD3 siRNA knockdown on the production of prolabour mediators in primary human myometrial cells. Phosphorylated (i.e., active) SMAD3 protein expression was lower in the myometrium after spontaneous term labour compared to the myometrium from nonlabouring women. Using a luciferase assay, the proinflammatory cytokines IL-1β and TNF, and viral analogue polyinosinic : polycytidylic acid (poly(I : C)) significantly reduced SMAD3 transcriptional activity in human primary myometrial cells. Loss-of-function studies found that SMAD3 knockdown in myometrial cells significantly increased IL-1β- and poly(I : C)-induced proinflammatory cytokines (IL-1A, IL-6), chemokines (IL-8, MCP-1), the adhesion molecule ICAM-1, COX-2 mRNA expression, and subsequent PGF2α release. In conclusion, SMAD3 deficiency is associated with increased production of proinflammatory and prolabour mediators in the human myometrium.
Collapse
Affiliation(s)
- Martha Lappas
- Obstetrics, Nutrition, and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
- Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
111
|
Arumugam B, Balagangadharan K, Selvamurugan N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells. J Cell Commun Signal 2018; 12:561-573. [PMID: 29350343 PMCID: PMC6039342 DOI: 10.1007/s12079-018-0449-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/10/2018] [Indexed: 01/10/2023] Open
Abstract
Syringic acid (SA), a phenolic acid, has been used in Chinese and Indian medicine for treating diabetes but its role in osteogenesis has not yet been investigated. In the present study, at the molecular and cellular levels, we evaluated the effects of SA on osteoblast differentiation. At the cellular level, there was increased alkaline phosphatase (ALP) activity and calcium deposition by SA treatment in mouse mesenchymal stem cells (mMSCs). At the molecular level, SA treatment of these cells stimulated expression of Runx2, a bone transcription factor, and of osteoblast differentiation marker genes such as ALP, type I collagen, and osteocalcin. It is known that Smad7 is an antagonist of TGF-β/Smad signaling and is a negative regulator of Runx2. microRNAs (miRNAs) play a key role in the regulation of osteogenesis genes at the post-transcriptional level and studies have reported that Smad7 is one of the target genes of miR-21. We found that there was down regulation of Smad7 and up regulation of miR-21 in SA-treated mMSCs. We further identified that the 3'-untranslated region (UTR) of Smad7 was directly targeted by miR-21 in these cells. Thus, our results suggested that SA promotes osteoblast differentiation via increased expression of Runx2 by miR-21-mediated down regulation of Smad7. Hence, SA may have potential in orthopedic applications.
Collapse
Affiliation(s)
- B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - K Balagangadharan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
112
|
Modulation of TGFβ/Smad signaling by the small GTPase RhoB. Cell Signal 2018; 48:54-63. [DOI: 10.1016/j.cellsig.2018.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/15/2022]
|
113
|
Velapasamy S, Dawson CW, Young LS, Paterson IC, Yap LF. The Dynamic Roles of TGF-β Signalling in EBV-Associated Cancers. Cancers (Basel) 2018; 10:E247. [PMID: 30060514 PMCID: PMC6115974 DOI: 10.3390/cancers10080247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
The transforming growth factor-β (TGF-β) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-β signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-β signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-β signal transduction. The role of TGF-β in regulating the EBV life cycle in tumour cells is also discussed.
Collapse
Affiliation(s)
- Sharmila Velapasamy
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Christopher W Dawson
- Institute of Cancer and Genomic Medicine, University of Birmingham, Birmingham B15 2TT, UK.
| | - Lawrence S Young
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Ian C Paterson
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Lee Fah Yap
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
- Oral Cancer Research and Coordinating Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
114
|
Tang PMK, Zhang YY, Mak TSK, Tang PCT, Huang XR, Lan HY. Transforming growth factor-β signalling in renal fibrosis: from Smads to non-coding RNAs. J Physiol 2018; 596:3493-3503. [PMID: 29781524 DOI: 10.1113/jp274492] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is the key player in tissue fibrosis. However, antifibrotic therapy targeting this multifunctional protein may interfere with other physiological processes to cause side effects. Thus, precise therapeutic targets need to be identified by further understanding the underlying mechanisms of TGF-β1 signalling during fibrogenesis. Equilibrium of Smad signalling is crucial for TGF-β-mediated renal fibrosis, where Smad3 is pathogenic but Smad2 and Smad7 are protective. The activation of TGF-β1/Smad signalling triggers extracellular matrix deposition, and local myofibroblast generation and activation. Mechanistic studies have shown that TGF-β/Smad3 transits the microRNA profile from antifibrotic to profibrotic and therefore promotes renal fibrosis via regulating non-coding RNAs at transcriptional levels. More importantly, disease-specific Smad3-dependent long non-coding RNAs have been recently uncovered from mouse kidney disease models and may represent novel precision therapeutic targets for chronic kidney disease. In this review, mechanisms of TGF-β-driven renal fibrosis via non-coding RNAs and their translational capacities will be discussed in detail.
Collapse
Affiliation(s)
- Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying-Ying Zhang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Thomas Shiu-Kwong Mak
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Philip Chiu-Tsun Tang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
115
|
Albers RE, Selesniemi K, Natale DRC, Brown TL. TGF- β induces Smad2 Phosphorylation, ARE Induction, and Trophoblast Differentiation. Int J Stem Cells 2018; 11:111-120. [PMID: 29699384 PMCID: PMC5984065 DOI: 10.15283/ijsc17069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Background Transforming growth factor beta (TGF-β) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-β. However, the signal transduction pathway activated by TGF-β to induce SM10 progenitor differentiation has yet to be fully investigated. Materials and Methods In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-β induced differentiation. Activation of the TGF-β pathway and the ability of TGF-β to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. Results and Conclusions In this report, we show that three isoforms of TGF-β have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-β superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-β induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation.
Collapse
Affiliation(s)
- Renee E Albers
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | - Kaisa Selesniemi
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| | - David R C Natale
- Department of Reproductive Medicine, University of California-San Diego, San Diego, California 92093, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Wright State University Boonshoft School of Medicine, Dayton, Ohio 45435, USA
| |
Collapse
|
116
|
Wang S, Chen YG. BMP signaling in homeostasis, transformation and inflammatory response of intestinal epithelium. SCIENCE CHINA-LIFE SCIENCES 2018; 61:800-807. [PMID: 29855793 DOI: 10.1007/s11427-018-9310-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Intestine is the organ for food digestion, nutrient absorption and pathogen defense, in which processes intestinal epithelium plays a central role. Intestinal epithelium undergoes fast turnover, and its homeostasis is regulated by multiple signaling pathways, including Wnt, Notch, Hippo and BMP pathways. BMP signaling has been shown to negatively regulate self-renewal of Lgr5+ intestinal stem cells, constrains the expansion of intestinal epithelium, therefore attenuating colorectal cancer formation. BMPs and their receptors are expressed in both epithelial and mesenchymal cells, suggesting a two-way interaction between the mesenchyme and epithelium. In this review, we summarize the current understanding of the function of BMP signaling in homeostasis, cancerous transformation and inflammatory response of intestinal epithelium.
Collapse
Affiliation(s)
- Shan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
117
|
Wojciechowski MC, Shu DY, Lovicu FJ. ERK1/2-Dependent Gene Expression Contributing to TGFβ-Induced Lens EMT. Curr Eye Res 2018; 43:986-997. [PMID: 29652528 DOI: 10.1080/02713683.2018.1464193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE This study aims to highlight some of the genes that are differentially regulated by ERK1/2 signaling in TGFβ-induced EMT in lens, and their potential contribution to this pathological process. MATERIALS AND METHODS Rat lens epithelial explants were cultured with or without TGFβ over a 3-day-culture period to induce EMT, in the presence or absence of UO126 (ERK1/2 signaling inhibitor), both prior to TGFβ-treatment, or 24 or 48 hours after TGFβ treatment. Smad2/3-nuclear immunolabeling was used to indicate active TGFβ signaling, and quantitative RT-PCR was used to analyze changes in the different treatment groups in expression of the following representative genes: TGFβ signaling (Smad7, Smurf1, and Rnf111), epithelial markers (Pax6, Cdh1, Zeb1, and Zeb2), cell survival/death regulators (Bcl2, Bax, and Bad) and lens mesenchymal markers (Mmp9, Fn1, and Col1a1), over the 3 days of culture. RESULTS ERK1/2 was found to regulate the expression of Smurf1, Smad7, Rnf11, Cdh1, Pax6, Zeb1, Bcl2, Bax, and Bad genes in lens cells. TGFβ signaling was evident by nuclear localization of Smad2/3 and this was effectively blocked by pre-treatment with UO126, but not by post-treatment with this ERK1/2 signaling inhibitor. TGFβ induced the expression of its signaling partners (Smad7, Smurf1, and Rnf111), as well as lens mesenchymal genes (Mmp9, Fn1, and Col1a1), consistent with its role in inducing an EMT. These TGFβ-responsive signaling genes, as well as the mesenchymal markers, were all positively regulated by ERK1/2-activity. The expression levels of the lens epithelial genes we examined, and genes that were associated with cell death/survival, were not directly impacted by TGFβ. CONCLUSIONS TGFβ-mediated ERK1/2 signaling positively modulates the expression of mesenchymal genes in lens epithelial explants undergoing EMT, in addition to regulating TGFβ-mediated regulatory genes. Independent of TGFβ, ERK1/2 activity can also regulate the expression of endogenous lens epithelial genes, highlighting its potential key role in regulation of both normal and pathological lens cellular processes.
Collapse
Affiliation(s)
| | - Daisy Y Shu
- a Discipline of Anatomy and Histology , Bosch Institute, University of Sydney , Sydney , Australia.,b Save Sight Institute , University of Sydney , Sydney , Australia
| | - Frank J Lovicu
- a Discipline of Anatomy and Histology , Bosch Institute, University of Sydney , Sydney , Australia.,b Save Sight Institute , University of Sydney , Sydney , Australia
| |
Collapse
|
118
|
Zhao H, Qin X, Zhang Q, Zhang X, Lin J, Ting K, Chen F. Nell-1-ΔE, a novel transcript of Nell-1, inhibits cell migration by interacting with enolase-1. J Cell Biochem 2018; 119:5725-5733. [PMID: 29388706 DOI: 10.1002/jcb.26756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/25/2018] [Indexed: 11/06/2022]
Abstract
NELL-1 is a secreted protein that was originally found to be upregulated in pathologically fusing and fused sutures in non-syndromic unilateral coronal synostosis patients. Apart from the ability of NELL-1 to promote osteogenesis in long and craniofacial bones, NELL-1 reportedly inhibits the formation of several benign and malignant tumors. We previously identified a novel transcript of Nell-1 that lacked a calcium-binding epidermal growth factor (EGF)-like domain compared with full-length Nell-1; this new transcript was named Nell-1-ΔE. Three obvious structural differences between these two isoforms were revealed by homology modeling. Furthermore, the recombinant Nell-1-ΔE protein, but not the full-length Nell-1 protein, inhibited cell migration in vitro. However, full-length Nell-1 and Nell-1-ΔE proteins were present in similar subcellular locations and displayed similar expression patterns in both the intracellular and extracellular spaces. The results from the co-immunoprecipitation and liquid chromatography/tandem mass spectrometry analyses using two cell lines demonstrated that Nell-1-ΔE but not full-length Nell-1 interacted with enolase-1 in the extracellular spaces of both cell lines. The results of wound healing assays using ENO-1-overexpressing cells treated with full-length Nell-1/Nell-1-ΔE suggested that Nell-1-ΔE inhibited cell migration by interacting with ENO-1. Our study indicated that the novel transcript Nell-1-ΔE, but not full-length Nell-1, might be a candidate tumor suppressor factor for basic research and clinical practice.
Collapse
Affiliation(s)
- Huaxiang Zhao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Xueyan Qin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Qian Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Xinli Zhang
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California
| | - Jiuxiang Lin
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| | - Kang Ting
- Dental and Craniofacial Research Institute, University of California, Los Angeles, California
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, P. R. China
| |
Collapse
|
119
|
Yao W, Pan Z, Du X, Zhang J, Li Q. miR-181b-induced SMAD7 downregulation controls granulosa cell apoptosis through TGF-β signaling by interacting with the TGFBR1 promoter. J Cell Physiol 2018; 233:6807-6821. [PMID: 29319157 DOI: 10.1002/jcp.26431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
Abstract
SMAD7 disrupts the TGF-β signaling pathway by influencing TGFBR1 stability and by blocking the binding of TGFBR1 to SMAD2/3. In this study, we showed that SMAD7 attenuated the TGF-β signaling pathway in ovarian granulosa cells (GCs) by regulating TGFBR1 transcriptional activity. To function as a transcription factor, SMAD7 downregulated the mRNA levels of TGFBR1 via direct binding to the SMAD-binding elements (SBEs) within the promoter region of pig TGFBR1. We also showed that SMAD7 enhanced porcine GC apoptosis by interrupting TGFBR1 and the TGF-β signaling pathway. Interestingly, miR-181b, a microRNA that is downregulated during porcine follicular atresia, was identified to be directly targeting SMAD7 at its 3'-UTR. By inhibiting SMAD7, miR-181b could inhibit GC apoptosis by activating the TGF-β signaling pathway. Our findings provide new insights into the mechanisms underlying the regulation of the TGF-β signaling pathway by SMAD7 and miR-181b.
Collapse
Affiliation(s)
- Wang Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengxiang Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jinbi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
120
|
Lin S, Lian D, Liu W, Haig A, Lobb I, Hijazi A, Razvi H, Burton J, Whiteman M, Sener A. Daily therapy with a slow-releasing H 2S donor GYY4137 enables early functional recovery and ameliorates renal injury associated with urinary obstruction. Nitric Oxide 2018. [PMID: 29522906 DOI: 10.1016/j.niox.2018.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To assess the effects of slow-releasing H2S donor GYY4137 on post-obstructive renal function and injury following unilateral ureteral obstruction (UUO) by using the UUO and reimplantation (UUO-R) model in rats and to elucidate potential mechanisms by using an in vitro model of epithelial-mesenchymal transition (EMT). METHODS Male Lewis rats underwent UUO at the left ureterovesical junction. From post-operative day (POD) 1-13, rats received daily intraperitoneal (IP) injection of phosphate buffered saline (PBS, 1 mL) or GYY4137 (200 μmol/kg/day in 1 mL PBS, IP). On POD 14, the ureter was reimplanted back into the bladder, followed by a right nephrectomy. Urine and serum samples were collected to monitor renal function. On POD 30, the left kidney was removed and tissue sections were stained with H&E, TUNEL, CD68, CD206, myeloperoxidase, and Masson's trichrome to determine cortical thickness, apoptosis, inflammation, and fibrosis. In our in vitro model of EMT, NRK52E cells were treated with 10 ng/mL TGF-β1, 10 μM GYY4137 and/or 50 μM GYY4137. Western blot analysis was performed to determine the expression of E-cadherin, vimentin, Smad7 and TGF-β1 receptor II (TβRII). RESULTS GYY4137 led to a moderate decrease in post-obstructive serum creatinine, cystatin C and FENa. We also observed a trend towards a decrease in post-obstructive proteinuria following GYY4137 treatment. Histologically, we observed a significant decrease in apoptosis, inflammation, and fibrosis. Furthermore, our in vitro studies demonstrate that in the presence of TGF-β1, GYY4137 significantly decreases vimentin and TβRII and significantly increases E-cadherin and Smad7. CONCLUSIONS H2S may help to accelerate the recovery of renal function post-obstruction and attenuates renal injury associated with UUO. It is possible that H2S mitigates fibrosis by regulating the TGF-β1-mediated EMT pathway. Taken together, our data suggest that H2S may be a potential novel therapy for improving renal function and limiting renal injury associated with obstructive uropathy.
Collapse
Affiliation(s)
- Shouzhe Lin
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada
| | - Weihua Liu
- Department of Pathology, Western University, London, Ontario, Canada
| | - Aaron Haig
- Department of Pathology, Western University, London, Ontario, Canada
| | - Ian Lobb
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada
| | - Ahmed Hijazi
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Hassan Razvi
- Department of Surgery, Western University, London, Ontario, Canada
| | - Jeremy Burton
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, Exeter, Devon, United Kingdom
| | - Alp Sener
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada; Department of Surgery, Western University, London, Ontario, Canada; Multi-Organ Transplant Program, London Health Sciences Center, London, Ontario, Canada; Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center, London, Ontario, Canada.
| |
Collapse
|
121
|
Wilson RB. Hypoxia, cytokines and stromal recruitment: parallels between pathophysiology of encapsulating peritoneal sclerosis, endometriosis and peritoneal metastasis. Pleura Peritoneum 2018; 3:20180103. [PMID: 30911653 PMCID: PMC6405013 DOI: 10.1515/pp-2018-0103] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
Peritoneal response to various kinds of injury involves loss of peritoneal mesothelial cells (PMC), danger signalling, epithelial-mesenchymal transition and mesothelial-mesenchymal transition (MMT). Encapsulating peritoneal sclerosis (EPS), endometriosis (EM) and peritoneal metastasis (PM) are all characterized by hypoxia and formation of a vascularized connective tissue stroma mediated by vascular endothelial growth factor (VEGF). Transforming growth factor-β1 (TGF-β1) is constitutively expressed by the PMC and plays a major role in the maintenance of a transformed, inflammatory micro-environment in PM, but also in EPS and EM. Persistently high levels of TGF-β1 or stimulation by inflammatory cytokines (interleukin-6 (IL-6)) induce peritoneal MMT, adhesion formation and fibrosis. TGF-β1 enhances hypoxia inducible factor-1α expression, which drives cell growth, extracellular matrix production and cell migration. Disruption of the peritoneal glycocalyx and exposure of the basement membrane release low molecular weight hyaluronan, which initiates a cascade of pro-inflammatory mediators, including peritoneal cytokines (TNF-α, IL-1, IL-6, prostaglandins), growth factors (TGF-α, TGF-β, platelet-derived growth factor, VEGF, epidermal growth factor) and the fibrin/coagulation cascade (thrombin, Tissue factor, plasminogen activator inhibitor [PAI]-1/2). Chronic inflammation and cellular transformation are mediated by damage-associated molecular patterns, pattern recognition receptors, AGE-RAGE, extracellular lactate, pro-inflammatory cytokines, reactive oxygen species, increased glycolysis, metabolomic reprogramming and cancer-associated fibroblasts. The pathogenesis of EPS, EM and PM shows similarities to the cellular transformation and stromal recruitment of wound healing.
Collapse
Affiliation(s)
- Robert Beaumont Wilson
- Upper GI Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, 2170, NSW, Australia
| |
Collapse
|
122
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
123
|
Yang HJ, Liu GL, Liu B, Liu T. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway. J Cell Mol Med 2018; 22:1650-1665. [PMID: 29349903 PMCID: PMC5824402 DOI: 10.1111/jcmm.13442] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/16/2017] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effects of Golgi membrane protein 73 (GP73) on the epithelial-mesenchymal transition (EMT) and on bladder cancer cell invasion and metastasis through the TGF-β1/Smad2 signalling pathway. Paired bladder cancer and adjacent tissue samples (102) and normal bladder tissue samples (106) were obtained. Bladder cancer cell lines (T24, 5637, RT4, 253J and J82) were selected and assigned to blank, negative control (NC), TGF-β, thrombospondin-1 (TSP-1), TGF-β1+ TSP-1, GP73-siRNA-1, GP73-siRNA-2, GP73-siRNA-1+ TSP-1, GP73-siRNA-1+ pcDNA-GP73, WT1-siRNA and WT1-siRNA + GP73-siRNA-1 groups. Expressions of GP73, TGF-β1, Smad2, p-Smad2, E-cadherin and vimentin were detected using RT-qPCR and Western blotting. Cell proliferation, migration and invasion were determined using MTT assay, scratch testing and Transwell assay, respectively. Compared with the blank and NC groups, levels of GP73, TGF-β1, Smad2, p-Smad2, N-cadherin and vimentin decreased, and levels of WT1 and E-cadherin increased in the GP73-siRNA-1 and GP73-siRNA-2 groups, while the opposite results were observed in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups. Cell proliferation, migration and invasion notably decreased in the GP73-siRNA-1 and GP73-siRNA-2 groups in comparison with the blank and NC groups, while in the WT1 siRNA, TGF-β, TSP-1 and TGF-β + TSP-1 groups, cell migration, invasion and proliferation showed the reduction after the EMT. These results suggest that GP73 promotes bladder cancer invasion and metastasis by inducing the EMT through down-regulating WT1 levels and activating the TGF-β1/Smad2 signalling pathway.
Collapse
Affiliation(s)
- Han-Jie Yang
- Department of Urology, Pingxiang Affiliated, Southern Medical University, Pingxiang, China
| | - Ge-Liang Liu
- Department of Urology, Pingxiang Affiliated, Southern Medical University, Pingxiang, China
| | - Bo Liu
- Department of General Surgery, Xiangya 2nd Hospital of Central South University, Changsha, China
| | - Tian Liu
- Department of General Surgery, Xiangya 2nd Hospital of Central South University, Changsha, China
| |
Collapse
|
124
|
Wang D, Lou XQ, Jiang XM, Yang C, Liu XL, Zhang N. Oxymatrine protects against the effects of cardiopulmonary resuscitation via modulation of the TGF-β1/Smad3 signaling pathway. Mol Med Rep 2018; 17:4747-4752. [PMID: 29328383 DOI: 10.3892/mmr.2018.8373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that oxymatrine may inhibit ventricular remodeling and serves an important role in the treatment of cardiovascular disease. The present study investigated whether oxymatrine treatment protects against the effects of cardiopulmonary resuscitation (CPR) via regulation of the transforming growth factor‑β1 (TGF‑β1)/mothers against decapentaplegic (Smad) signaling pathway. A CPR model was established in Sprague‑Dawley (SD) rats by asphyxiation, and rats were subsequently anaesthetized by intraperitoneal injection of chloral hydrate. SD rats were then administered 25 or 50 mg/kg oxymatrine once a day for 4 weeks. Oxymatrine treatment significantly improved troponin I levels, the ejection fraction, hydroxyproline content and the myocardial performance index in model rats. However, treatment with oxymatrine significantly reduced arterial oxygen tension, arterial lactate levels and oxygen extraction. Treatment with oxymatrine following CPR significantly inhibited the protein expression levels of TGF‑β1, TGF‑β1 receptor type 1 and Smad homolog 3 (Smad3) in model rats. The results of this research indicated that oxymatrine treatment may protect against the effects of CPR via regulation of the TGF‑β1/Smad3 signaling pathway and may be a novel drug for CPR in a clinical setting.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Xiao Qian Lou
- Department of Endocrinology, Second Department, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Xiao-Ming Jiang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Chenxi Yang
- Centre for Heart and Lung Innovation University of British Columbia, Vancouver, BC V6P 2G9, Canada
| | - Xiao-Liang Liu
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| | - Nan Zhang
- Department of Emergency, The First Hospital of Jilin University, Chaoyang, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
125
|
Yan X, Xiong X, Chen YG. Feedback regulation of TGF-β signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:37-50. [PMID: 29228156 DOI: 10.1093/abbs/gmx129] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs.
Collapse
Affiliation(s)
- Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
126
|
Xu J, Xu Y. The lncRNA MEG3 downregulation leads to osteoarthritis progression via miR-16/SMAD7 axis. Cell Biosci 2017; 7:69. [PMID: 29255591 PMCID: PMC5727780 DOI: 10.1186/s13578-017-0195-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/02/2017] [Indexed: 01/02/2023] Open
Abstract
Background Osteoarthritis (OA) is a chronic joint disease and there is no a definitive cure at present. Long non-coding RNAs (lncRNAs) have been confirmed to play important roles in the development of OA. However, the underlying mechanism of lncRNA maternally expressed gene 3 (MEG3) in OA has not been well elucidated. Methods The rat OA model and interleukin-1β (IL-1β)-induced rat chondrocytes were constructed. The expression pattern of lncRNA MEG3 and miR-16 was detected by RT-qPCR assay in cartilage tissues of rat OA model. The effect of MEG3 and miR-16 on IL-1β-induced chondrocytes was evaluated on the basis of cell viability and apoptosis. Then, the interaction among MEG3, miR-16 SMAD7 was explored by dual-luciferase reporter assay and RIP assay. Results It is found that lncRNA MEG3 was down-regulated and miR-16 was up-regulated in rat OA cartilage tissues. MEG3 knockdown promoted proliferation and inhibited apoptosis, while miR-16 knockdown suppressed proliferation and promoted apoptosis in IL-1β-induced rat chondrocytes. Moreover, MEG3 was involved in miR-16 pathway and MEG3 suppressed miR-16 expression. Additionally, SMAD7 was a target gene of miR-16 and miR-16 suppressed SMAD7 expression in IL-1β-induced chondrocytes. Moreover, the expression of SMAD7 induced by MEG3 or si-MEG3 was markedly reversed by the introduction of miR-16 or anti-miR-16. Furthermore, MEG3 exerted its anti-proliferation and pro-apoptosis by regulating miR-16 and SMAD7. Conclusion MEG3 was down-regulated and miR-16 was up-regulated in cartilage tissues of rat OA model. MEG3 knockdown might lead to the progression of OA through miR-16/SMAD7 axis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Gusu District, Suzhou, 215031 China.,Department of Orthopedics, Baoshan District Shanghai Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, 201999 China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Gusu District, Suzhou, 215031 China
| |
Collapse
|
127
|
Membrane targeting of inhibitory Smads through palmitoylation controls TGF-β/BMP signaling. Proc Natl Acad Sci U S A 2017; 114:13206-13211. [PMID: 29180412 PMCID: PMC5740658 DOI: 10.1073/pnas.1710540114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
TGF-β/BMP (bone morphogenetic protein) signaling pathways play conserved roles in controlling embryonic development, tissue homeostasis, and stem cell regulation. Inhibitory Smads (I-Smads) have been shown to negatively regulate TGF-β/BMP signaling by primarily targeting the type I receptors for ubiquitination and turnover. However, little is known about how I-Smads access the membrane to execute their functions. Here we show that Dad, the Drosophila I-Smad, associates with the cellular membrane via palmitoylation, thereby targeting the BMP type I receptor for ubiquitination. By performing systematic biochemistry assays, we characterized the specific cysteine (Cys556) essential for Dad palmitoylation and membrane association. Moreover, we demonstrate that dHIP14, a Drosophila palmitoyl acyl-transferase, catalyzes Dad palmitoylation, thereby inhibiting efficient BMP signaling. Thus, our findings uncover a modification of the inhibitory Smads that controls TGF-β/BMP signaling activity.
Collapse
|
128
|
Siegert AM, Serra-Peinado C, Gutiérrez-Martínez E, Rodríguez-Pascual F, Fabregat I, Egea G. Altered TGF-β endocytic trafficking contributes to the increased signaling in Marfan syndrome. Biochim Biophys Acta Mol Basis Dis 2017; 1864:554-562. [PMID: 29174139 DOI: 10.1016/j.bbadis.2017.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 12/15/2022]
Abstract
The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation. We here studied the contribution of endocytic trafficking compartmentalization to increased TGF-β signaling in vascular smooth muscle cells (VSMC) from MFS patients. We examined molecular components involved in clathrin- (SARA, SMAD2) and caveolin-1- (SMAD7, SMURF2) dependent endocytosis. Marfan VSMC showed higher recruitment of SARA and SMAD2 to membranes and their increased interaction with TGF-β receptor II, as well as higher colocalization of SARA with the early endosome marker EEA1. We assessed TGF-β internalization using a biotinylated ligand (b-TGF-β), which colocalized equally with either EEA1 or CAV-1 in VSMC from Marfan patients and controls. However, in Marfan cells, colocalization of b-TGF-β with SARA and EEA1 was increased and accompanied by decreased colocalization with CAV-1 at EEA1-positive endosomes. Moreover, Marfan VSMC showed higher transcriptional levels and membrane enrichment of RAB5. Our results indicate that increased RAB5-associated SARA localization to early endosomes facilitates its TGF-β receptor binding and phosphorylation of signaling mediator SMAD2 in Marfan VSMC. This is accompanied by a reduction of TGF-β sorting into multifunctional vesicles containing cargo from both internalization pathways.
Collapse
Affiliation(s)
- Anna-Maria Siegert
- Departamento de Biomedicina, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Carla Serra-Peinado
- Departamento de Biomedicina, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, 08036 Barcelona, Catalonia, Spain
| | - Enric Gutiérrez-Martínez
- Departamento de Biomedicina, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, 08036 Barcelona, Catalonia, Spain
| | | | - Isabel Fabregat
- Institut d'Investigacions Biomèdiques de Bellvitge (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Gustavo Egea
- Departamento de Biomedicina, Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, 08036 Barcelona, Catalonia, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Catalonia, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Catalonia, Spain.
| |
Collapse
|
129
|
Alonso-Molero J, González-Donquiles C, Palazuelos C, Fernández-Villa T, Ramos E, Pollán M, Aragonés N, Llorca J, Henar Alonso M, Tardón A, Amiano P, Moleon JJJ, Pérez RP, Capelo R, Molina AJ, Acebo IG, Guevara M, Perez-Gomez B, Lope V, Huerta JM, Castaño-Vinyals G, Kogevinas M, Moreno V, Martín V. The RS4939827 polymorphism in the SMAD7 GENE and its association with Mediterranean diet in colorectal carcinogenesis. BMC MEDICAL GENETICS 2017; 18:122. [PMID: 29084532 PMCID: PMC5661920 DOI: 10.1186/s12881-017-0485-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
Background The objective of our investigation is to study the relationship between the rs4939827 SNP in the SMAD7 gene, Mediterranean diet pattern and the risk of colorectal cancer. Methods We examined 1087 cases of colorectal cancer and 2409 population controls with available DNA samples from the MCC-Spain study, 2008–2012. Descriptive statistical analyses, and multivariate logistic mixed models were performed. The potential synergistic effect of rs4939827 and the Mediterranean diet pattern was evaluated with logistic regression in different strata of of adherence to the Mediterranean diet and the genotype. Results High adherence to Mediterrenean diet was statistically significantly associated with colorectal cancer risk. A decreased risk for CRC cancer was observed for the CC compared to the TT genotype (OR = 0.65 and 95% CI = 0.51–0.81) of the rs4939827 SNP Also, we could show an association between the Mediterranean diet pattern (protective factor) and rs4939827. Although the decreased risk for the CC genotype was slightly more pronounced in subjects with high adherence to Mediterrenean diet, there was no statistically significant synergistic effect between genotype CC and adherence to the Mediterranean dietary pattern factors. Conclusion The SMAD7 gene and specifically the allele C could be protective for colorectal cancer. An independent protective association was also observed between high adherence Mediterranean diet pattern and CRC risk. Findings form this study indicate that high adherence to Mediterranean diet pattern has a protective role for CRC cancer probably involving the Tumor Growth Factor- β pathway in this cancer. Electronic supplementary material The online version of this article (10.1186/s12881-017-0485-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jéssica Alonso-Molero
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud. Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Carmen González-Donquiles
- Centro de Investigación Biomédica en Red (CIBERESP) and Oviedo University; Departamento de Ciencias Biomédicas. Universidad de León. Campus de Vegazana, León, Spain.
| | | | - Tania Fernández-Villa
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud. Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Elena Ramos
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud. Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Marina Pollán
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Nuria Aragonés
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Javier Llorca
- Universidad de Cantabria, Santander, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - M Henar Alonso
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer Prevention and Control Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL). Hospitalet de Llobregat, Barcelona, Spain
| | - Adonina Tardón
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Oncology Institute IUOPA, Universidad de Oviedo, Oviedo, Asturias, Spain
| | - Pilar Amiano
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Instituto de Salud Pública de Navarra, Pamplona, Navarra, Spain
| | - José Juan Jiménez Moleon
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
| | - Rosana Peiró Pérez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Dirección General de Salud Pública, Fundación para el fomento de la investigación sanitaria y biomédica de la Comunidad Valenciana, FISABIO-Salud Pública, Barcelona, Spain
| | - Rocío Capelo
- Centro de Investigación en Salud y Medio Ambiente (CYSMA), Universidad de Huelva, Huelva, Spain
| | - Antonio J Molina
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud. Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Inés Gómez Acebo
- Universidad de Cantabria, Santander, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marcela Guevara
- Instituto de Salud Pública de Navarra, Pamplona, Navarra, Spain
| | - Beatriz Perez-Gomez
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Cancer Epidemiology Research Group, Oncology and Hematology Area, IIS Puerta De Hierro, Madrid, Spain
| | - Virginia Lope
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer and Environmental Epidemiology Unit, National Centre for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - José María Huerta
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain
| | - Gemma Castaño-Vinyals
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Manolis Kogevinas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.,IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,School of Public Health, Athens, Greece
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Cancer Prevention and Control Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain.,Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Colorectal Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL). Hospitalet de Llobregat, Barcelona, Spain
| | - Vicente Martín
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,Grupo de Investigación en Interacciones Gen-Ambiente y Salud de la Universidad de León, León, Spain
| |
Collapse
|
130
|
Yan X, Wu J, Jiang Q, Cheng H, Han JDJ, Chen YG. CXXC5 suppresses hepatocellular carcinoma by promoting TGF-β-induced cell cycle arrest and apoptosis. J Mol Cell Biol 2017; 10:48-59. [DOI: 10.1093/jmcb/mjx042] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Xiaohua Yan
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Jingyi Wu
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Quanlong Jiang
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Cheng
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
131
|
Suzuki A, Yoshida H, van Heeringen SJ, Takebayashi-Suzuki K, Veenstra GJC, Taira M. Genomic organization and modulation of gene expression of the TGF-β and FGF pathways in the allotetraploid frog Xenopus laevis. Dev Biol 2017; 426:336-359. [DOI: 10.1016/j.ydbio.2016.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022]
|
132
|
Ferguson KT, Torr EE, Bernau K, Leet J, Sherris D, Sandbo N. The Novel mTOR Complex 1/2 Inhibitor P529 Inhibits Human Lung Myofibroblast Differentiation. J Cell Biochem 2017; 118:2241-2249. [PMID: 28078713 DOI: 10.1002/jcb.25878] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive and deadly disorder with very few therapeutic options. Palomid 529 (8-(1-hydroxyethyl)-2-methoxy-3-(4-methoxybenzyloxy)-benzo[c]chromen-6-one; P529) is a novel dual inhibitor of mechanistic target of rapamycin complex 1/2 (mTORC1/2). In these studies, we investigated the effect of P529 on TGF-β-dependent signaling and myofibroblast differentiation. TGF-β-induced phosphorylation of the mTORC1 targets, p70 S6 kinase 1 (S6K1), and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), were both dose dependently inhibited by P529 in human lung fibroblasts with maximal inhibition occurring between 10 and 20 μM. mTORC2-mediated phosphorylation of Akt at the S473 site was partially inhibited with a similar dose dependency, as was TGF-β-induced myofibroblast differentiation. Protein levels of TGF-β-induced fibronectin and collagen were similarly decreased by P529. At this dose, there was also inhibition of mRNA transcript levels for Col1 and α-SMA, suggesting inhibition of transcriptional activation. However, there was no effect of P529 on canonical TGF-β-induced Smad signaling, as assessed by receptor-associated Smad2/3 phosphorylation, Smad2/3/4 translocation, or Smad-driven gene expression, as assessed by Smad-binding element driven luciferase. Conversely, activation of mTORC1/2 signaling was dependent on TGF-β type I receptor (ALK5) signaling and on Smad2/3 expression. P529 treatment disrupted TGF-β-induced actin stress fiber formation during myofibroblast differentiation, the deposition of new extracellular fibronectin matrix, and linear wound closure by fibroblasts. Likewise, mTOR knockdown inhibited TGF-β-induced myofibroblast differentiation. In conclusion, P529 inhibits TGF-β-induced myofibroblast differentiation, actin stress fiber formation, and matrix protein expression and deposition. Inhibition of mTORC1/2 by P529 may be a promising approach to inhibit in vivo fibrosis. J. Cell. Biochem. 118: 2241-2249, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Keith T Ferguson
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Ave, Madison, Wisconsin, 53792
| | - Elizabeth E Torr
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Ave, Madison, Wisconsin, 53792
| | - Ksenija Bernau
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Ave, Madison, Wisconsin, 53792
| | - Jonathan Leet
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Ave, Madison, Wisconsin, 53792
| | - David Sherris
- GenAdam Therapeutics, Inc, 37 Neillian Crescent, Jamaica Plain, Massachusetts, 02130
| | - Nathan Sandbo
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 600 Highland Ave, Madison, Wisconsin, 53792
| |
Collapse
|
133
|
Khatibi S, Zhu HJ, Wagner J, Tan CW, Manton JH, Burgess AW. Mathematical model of TGF-βsignalling: feedback coupling is consistent with signal switching. BMC SYSTEMS BIOLOGY 2017; 11:48. [PMID: 28407804 PMCID: PMC5390422 DOI: 10.1186/s12918-017-0421-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/24/2017] [Indexed: 02/08/2023]
Abstract
Background Transforming growth factor β (TGF-β) signalling regulates the development of embryos and tissue homeostasis in adults. In conjunction with other oncogenic changes, long-term perturbation of TGF-β signalling is associated with cancer metastasis. Although TGF-β signalling can be complex, many of the signalling components are well defined, so it is possible to develop mathematical models of TGF-β signalling using reduction and scaling methods. The parameterization of our TGF-β signalling model is consistent with experimental data. Results We developed our mathematical model for the TGF-β signalling pathway, i.e. the RF- model of TGF-β signalling, using the “rapid equilibrium assumption” to reduce the network of TGF-β signalling reactions based on the time scales of the individual reactions. By adding time-delayed positive feedback to the inherent time-delayed negative feedback for TGF-β signalling. We were able to simulate the sigmoidal, switch-like behaviour observed for the concentration dependence of long-term (> 3 hours) TGF-β stimulation. Computer simulations revealed the vital role of the coupling of the positive and negative feedback loops on the regulation of the TGF-β signalling system. The incorporation of time-delays for the negative feedback loop improved the accuracy, stability and robustness of the model. This model reproduces both the short-term and long-term switching responses for the intracellular signalling pathways at different TGF-β concentrations. We have tested the model against experimental data from MEF (mouse embryonic fibroblasts) WT, SV40-immortalized MEFs and Gp130 F/F MEFs. The predictions from the RF- model are consistent with the experimental data. Conclusions Signalling feedback loops are required to model TGF-β signal transduction and its effects on normal and cancer cells. We focus on the effects of time-delayed feedback loops and their coupling to ligand stimulation in this system. The model was simplified and reduced to its key components using standard methods and the rapid equilibrium assumption. We detected differences in short-term and long-term signal switching. The results from the RF- model compare well with experimental data and predict the dynamics of TGF-β signalling in cancer cells with different mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0421-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shabnam Khatibi
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia.,The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Hong-Jian Zhu
- Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, 87 Grattan Street, Victoria, 3010, Australia.,IBM Research-Australia, 204 Lygon Street Level 5, Carlton, Victoria, 3053, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria, 3052, Australia
| | - Jonathan H Manton
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Antony W Burgess
- Department of Surgery (RMH), The University of Melbourne, Parkville, Victoria, 3050, Australia. .,The Walter and Eliza Hall Institute of Medical Research (WEHI), 1G Royal Parade, Parkville, Victoria, 3052, Australia. .,Department of Medical Biology, The University of Melbourne, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
134
|
Gupta S, Rodier JT, Sharma A, Giuliano EA, Sinha PR, Hesemann NP, Ghosh A, Mohan RR. Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo. PLoS One 2017; 12:e0172928. [PMID: 28339457 PMCID: PMC5365107 DOI: 10.1371/journal.pone.0172928] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/10/2017] [Indexed: 11/18/2022] Open
Abstract
Corneal scarring is due to aberrant activity of the transforming growth factor β (TGFβ) signaling pathway following traumatic, mechanical, infectious, or surgical injury. Altered TGFβ signaling cascade leads to downstream Smad (Suppressor of mothers against decapentaplegic) protein-mediated signaling events that regulate expression of extracellular matrix and myogenic proteins. These events lead to transdifferentiation of keratocytes into myofibroblasts through fibroblasts and often results in permanent corneal scarring. Hence, therapeutic targets that reduce transdifferentiation of fibroblasts into myofibroblasts may provide a clinically relevant approach to treat corneal fibrosis and improve long-term visual outcomes. Smad7 protein regulates the functional effects of TGFβ signaling during corneal wound healing. We tested that targeted delivery of Smad7 using recombinant adeno-associated virus serotype 5 (AAV5-Smad7) delivered to the corneal stroma can inhibit corneal haze post photorefractive keratectomy (PRK) in vivo in a rabbit corneal injury model. We demonstrate that a single topical application of AAV5-Smad7 in rabbit cornea post-PRK led to a significant decrease in corneal haze and corneal fibrosis. Further, histopathology revealed lack of immune cell infiltration following AAV5-Smad7 gene transfer into the corneal stroma. Our data demonstrates that AAV5-Smad7 gene therapy is relatively safe with significant potential for the treatment of corneal disease currently resulting in fibrosis and impaired vision.
Collapse
Affiliation(s)
- Suneel Gupta
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Jason T. Rodier
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Ajay Sharma
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
| | - Elizabeth A. Giuliano
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Prashant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Nathan P. Hesemann
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, United States of America
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
135
|
Xiao Y, Song YJ, Song B, Huang CB, Ling Q, Yu X. TGF-β/MAPK signaling mediates the effects of bone marrow mesenchymal stem cells on urinary control and interstitial cystitis after urinary bladder transplantation. Am J Transl Res 2017; 9:1193-1202. [PMID: 28386345 PMCID: PMC5376010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE This study aimed to explore the role of the transforming growth factor-β/mitogen activated protein kinase (TGF-β/MAPK) signaling pathway in the effects of bone marrow mesenchymal stem cells (BMSCs) on urinary control and interstitial cystitis in a rat model of urinary bladder transplantation. METHODS A urinary bladder transplantation model was established using Sprague-Dawley rats. Rats were assigned to normal (blank control), negative control (phosphate-buffered saline injection), BMSCs (BMSC injection), sp600125 (MAPK inhibitor injection), or protamine sulfate (protamine sulfate injection) groups. Immunohistochemistry, urodynamic testing, hematoxylin-eosin staining, Western blotting, enzyme-linked immunosorbent assay, and MTT assay were used to assess BMSC growth, the kinetics of bladder urinary excretion, pathological changes in bladder tissue, bladder tissue ultrastructure, the expression of TGF-β/MAPK signaling pathway-related proteins, levels of inflammatory cytokines, and the effects of antiproliferative factor on cell proliferation. RESULTS Compared with normal, negative control, BMSCs, and sp600125 groups, rats in the PS group exhibited decreased discharge volume, maximal micturition volume, contraction interval, and bladder capacity but increased residual urine volume, bladder pressure, bladder peak pressure, expression of TGF-β/MAPK signaling pathway-related proteins, levels of inflammatory cytokines, and growth inhibition rate. Levels of inflammatory cytokines and the growth inhibition rate were positively correlated with the expression of TGF-β/MAPK signaling pathway-related proteins. CONCLUSIONS Our findings demonstrate that the TGF-β/MAPK signaling pathway mediates the beneficial effects of BMSCs on urinary control and interstitial cystitis.
Collapse
Affiliation(s)
- Ya Xiao
- Urological Research Institute of PLA, The First Affiliated Hospital, Third Military Medical UniversityChongqing 400037, P. R. China
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical UniversityChongqing 400037, P. R. China
| | - Ya-Jun Song
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical UniversityChongqing 400037, P. R. China
| | - Bo Song
- Urological Research Institute of PLA, The First Affiliated Hospital, Third Military Medical UniversityChongqing 400037, P. R. China
| | - Chi-Bing Huang
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical UniversityChongqing 400037, P. R. China
| | - Qing Ling
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & TechnologyWuhan 430030, P. R. China
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & TechnologyWuhan 430030, P. R. China
| |
Collapse
|
136
|
Yu L, Di Y, Xin L, Ren Y, Liu X, Sun X, Zhang W, Yao Z, Yang J. SND1 acts as a novel gene transcription activator recognizing the conserved Motif domains of Smad promoters, inducing TGFβ1 response and breast cancer metastasis. Oncogene 2017; 36:3903-3914. [DOI: 10.1038/onc.2017.30] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 02/06/2023]
|
137
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
138
|
Abstract
Inhibitory Smads (I-Smads) have conserved carboxy-terminal MH2 domains but highly divergent amino-terminal regions when compared with receptor-regulated Smads (R-Smads) and common-partner Smads (co-Smads). Smad6 preferentially inhibits Smad signaling initiated by the bone morphogenetic protein (BMP) type I receptors ALK-3 and ALK-6, whereas Smad7 inhibits both transforming growth factor β (TGF-β)- and BMP-induced Smad signaling. I-Smads also regulate some non-Smad signaling pathways. Here, we discuss the vertebrate I-Smads, their roles as inhibitors of Smad activation and regulators of receptor stability, as scaffolds for non-Smad signaling, and their possible roles in the nucleus. We also discuss the posttranslational modification of I-Smads, including phosphorylation, ubiquitylation, acetylation, and methylation.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
139
|
Sharum IB, Granados-Aparici S, Warrander FC, Tournant FP, Fenwick MA. Serine threonine kinase receptor associated protein regulates early follicle development in the mouse ovary. Reproduction 2017; 153:221-231. [DOI: 10.1530/rep-16-0612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 11/14/2016] [Accepted: 11/22/2016] [Indexed: 12/13/2022]
Abstract
The molecular mechanisms involved in regulating the development of small, gonadotrophin-independent follicles are poorly understood; however, many studies have highlighted an essential role for TGFB ligands. Canonical TGFB signalling is dependent upon intracellular SMAD proteins that regulate transcription. STRAP has been identified in other tissues as an inhibitor of the TGFB–SMAD signalling pathway. Therefore, in this study we aimed to determine the expression and role of STRAP in the context of early follicle development. Using qPCR, Strap, Smad3 and Smad7 revealed similar expression profiles in immature ovaries from mice aged 4–16 days containing different populations of early growing follicles. STRAP and SMAD2/3 proteins co-localised in granulosa cells of small follicles using immunofluorescence. Using an established culture model, neonatal mouse ovary fragments with a high density of small non-growing follicles were used to examine the effects of Strap knockdown using siRNA and STRAP protein inhibition by immuno-neutralisation. Both interventions caused a reduction in the proportion of small, non-growing follicles and an increase in the proportion and size of growing follicles in comparison to untreated controls, suggesting inhibition of STRAP facilitates follicle activation. Recombinant STRAP protein had no effect on small, non-growing follicles, but increased the mean oocyte size of growing follicles in the neonatal ovary model and also promoted the growth of isolated preantral follicles in vitro. Overall findings indicate STRAP is expressed in the mouse ovary and is capable of regulating development of small follicles in a stage-dependent manner.
Collapse
|
140
|
TIEG1 Represses Smad7-Mediated Activation of TGF-β1/Smad Signaling in Keloid Pathogenesis. J Invest Dermatol 2017; 137:1051-1059. [PMID: 28108300 DOI: 10.1016/j.jid.2016.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/16/2023]
Abstract
Transforming growth factor-β (TGF-β)/Smad signaling plays a key role in excessive fibrosis and keloid formations. Smad7 is a negative feedback regulator that prevents activation of TGF-β/Smad signaling. However, the regulatory mechanism for Smad7 in the keloid pathogenic process remains elusive. Here, we show that expression of TIEG1 is markedly higher in keloid fibroblasts, whereas protein, mRNA, and promoter activity levels of Smad7 are decreased. When TIEG1 was knocked down with small interfering RNA, both the promoter activity and protein expression of Smad7 were increased, whereas collagen production and the proliferation, migration, and invasion of keloid fibroblasts were decreased. In contrast, TIEG1 overexpression led to a decrease in Smad7 expression and Smad7 promoter activity. Upon TGF-β1 stimulation, TIEG1 promoted Smad2 phosphorylation by down-regulating Smad7. Luciferase reporter assays and chromatin immunoprecipitation assays further showed that TIEG1 can directly bind a GC-box/Sp1 site located between nucleotides -1392 and -1382 in the Smad7 promoter to repress Smad7 promoter activity. Taken together, these findings show that TIEG1 is highly expressed in human keloids and that it directly binds and represses Smad7 promoter-mediated activation of TGF-β/Smad2 signaling, thus providing clues for development of TIEG1 blocking strategies for therapy or prophylaxis of keloids.
Collapse
|
141
|
Shuttleworth VG, Gaughan L, Nawafa L, Mooney CA, Cobb SL, Sheerin NS, Logan IR. The methyltransferase SET9 regulates TGF B-1 activation of renal fibroblasts via interaction with SMAD3. J Cell Sci 2017; 131:jcs.207761. [DOI: 10.1242/jcs.207761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/27/2017] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is a global socioeconomic problem. It is characterised by the presence of differentiated myofibroblasts that, in response to TGF B-1, produce tissue fibrosis, leading to renal failure. Here we define a novel interaction between the SET9 lysine methyltransferase and SMAD3, the principle mediator of TGF B-1 signalling in myofibroblasts. We show that SET9 deficient fibroblasts exhibit globally altered gene expression profiles in response to TGF B-1, whilst overexpression of SET9 enhances SMAD3 transcriptional activity. We also show that SET9 facilitates SMAD3 nuclear import and controls SMAD3 protein degradation, in a manner involving ubiquitination. On a cellular level, we demonstrate that SET9 is broadly required for TGF B-1 effects in diseased primary renal fibroblasts; SET9 promotes fibroblast migration into wounds, expression of extracellular matrix proteins, collagen contractility and myofibroblast differentiation. Finally, we demonstrate that SET9 is recruited to the α-smooth muscle actin gene in response to TGF B-1, providing a mechanism by which SET9 regulates myofibroblast contractility and differentiation. Together with previous studies, we make the case for SET9 inhibition in the treatment of progressive CKD.
Collapse
Affiliation(s)
- Victoria G. Shuttleworth
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Luke Gaughan
- Northern Institute for Cancer Research, Paul O'Gorman Building, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lotfia Nawafa
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Caitlin A. Mooney
- Dept of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, UK
| | - Steven L. Cobb
- Dept of Chemistry, Biophysical Sciences Institute, Durham University, South Road, Durham, DH1 3LE, UK
| | - Neil S. Sheerin
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Ian R. Logan
- Institute of Cellular Medicine, The Medical School, Framlington Place, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
142
|
Odenthal J, Takes R, Friedl P. Plasticity of tumor cell invasion: governance by growth factors and cytokines. Carcinogenesis 2016; 37:1117-1128. [PMID: 27664164 DOI: 10.1093/carcin/bgw098] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023] Open
Abstract
Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis.
Collapse
Affiliation(s)
- Julia Odenthal
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands.,Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | - Robert Takes
- Department of Otorhinolaryngology and Head and Neck Surgery, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands, .,Department of Genitourinary Medical Oncology - Research, Houston, TX 77030, USA and.,Cancer Genomics Center, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
143
|
Li N, Yang Y, He K, Zhang F, Zhao L, Zhou W, Yuan J, Liang W, Fang X. Single-Molecule Imaging Reveals the Activation Dynamics of Intracellular Protein Smad3 on Cell Membrane. Sci Rep 2016; 6:33469. [PMID: 27641076 PMCID: PMC5027577 DOI: 10.1038/srep33469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023] Open
Abstract
Smad3 is an intracellular protein that plays a key role in propagating transforming growth factor β (TGF-β) signals from cell membrane to nucleus. However whether the transient process of Smad3 activation occurs on cell membrane and how it is regulated remains elusive. Using advanced live-cell single-molecule fluorescence microscopy to image and track fluorescent protein-labeled Smad3, we observed and quantified, for the first time, the dynamics of individual Smad3 molecules docking to and activation on the cell membrane. It was found that Smad3 docked to cell membrane in both unstimulated and stimulated cells, but with different diffusion rates and dissociation kinetics. The change in its membrane docking dynamics can be used to study the activation of Smad3. Our results reveal that Smad3 binds with type I TGF-β receptor (TRI) even in unstimulated cells. Its activation is regulated by TRI phosphorylation but independent of receptor endocytosis. This study offers new information on TGF-β/Smad signaling, as well as a new approach to investigate the activation of intracellular signaling proteins for a better understanding of their functions in signal transduction.
Collapse
Affiliation(s)
- Nan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yong Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Kangmin He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Fayun Zhang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Libo Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jinghe Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wei Liang
- Key Laboratory of Protein and Peptide Drugs, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
144
|
Degueurce G, D'Errico I, Pich C, Ibberson M, Schütz F, Montagner A, Sgandurra M, Mury L, Jafari P, Boda A, Meunier J, Rezzonico R, Brembilla NC, Hohl D, Kolios A, Hofbauer G, Xenarios I, Michalik L. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med 2016; 8:919-36. [PMID: 27250636 PMCID: PMC4967944 DOI: 10.15252/emmm.201505384] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.
Collapse
Affiliation(s)
- Gwendoline Degueurce
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ilenia D'Errico
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Pich
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- INRA ToxAlim, Integrative Toxicology and Metabolism, UMR1331, Toulouse, France
| | - Marie Sgandurra
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lionel Mury
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paris Jafari
- Department of Musculoskeletal Medicine, Service of Plastic and Reconstructive Surgery CHUV, Epalinges, Switzerland
| | - Akash Boda
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Meunier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roger Rezzonico
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France
| | - Nicolò Costantino Brembilla
- Dermatology, University Hospital and School of Medicine, Geneva, Switzerland Immunology and Allergy, University Hospital and School of Medicine, Geneva Switzerland
| | - Daniel Hohl
- Service de dermatologie et venereology, Hôpital de Beaumont CHUV, Lausanne, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital, University of Zürich, Zürich, Switzerland Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Günther Hofbauer
- Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
145
|
Huang XL, Zhang L, Duan Y, Wang YJ, Zhao JH, Wang J. E3 ubiquitin ligase: A potential regulator in fibrosis and systemic sclerosis. Cell Immunol 2016; 306-307:1-8. [PMID: 27406900 DOI: 10.1016/j.cellimm.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 01/11/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis in the skin and internal organs. The pathogenesis of SSc is not completely understood until now. Recently, many studies have focused on the role of E3 ubiquitin ligases in organ fibrosis. However, the possible regulatory mechanisms of E3 ubiquitin ligases in fibrosis and SSc are not well documented. In this review, we summarized that E3 ubiquitin ligases regulated fibrosis through ubiquitin-mediated degradation of TGF-β/Smad signaling pathway. Moreover, E3 ubiquitin ligases participated in regulating fibrosis by other methods, such as inducing epithelial transition to mesenchymal cell, enhancing the production of TGF-β and protecting activated hepatic stellate cells from apoptosis. However, the specific regulatory mechanisms of E3 ubiquitin ligases in scleroderma is still not fully understood. There are more works to be done to specify the mechanism of E3 ubiquitin ligases in regulation of fibrosis in SSc.
Collapse
Affiliation(s)
- Xiao-Lei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Li Zhang
- Medical Genetics Center, Anhui Medical College, Hefei, China
| | - Yu Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Jie Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiu-Hua Zhao
- West Anhui Health Vocational College, Lu'an, Anhui, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
146
|
Niu L, Cui X, Qi Y, Xie D, Wu Q, Chen X, Ge J, Liu Z. Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice. PLoS One 2016; 11:e0156090. [PMID: 27224286 PMCID: PMC4880333 DOI: 10.1371/journal.pone.0156090] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy.
Collapse
Affiliation(s)
- Liman Niu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueling Cui
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongxue Xie
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qian Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xinxin Chen
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jingyan Ge
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- * E-mail: (ZL); (JG)
| |
Collapse
|