101
|
Wang JM, Ko CY, Chen LC, Wang WL, Chang WC. Functional role of NF-IL6beta and its sumoylation and acetylation modifications in promoter activation of cyclooxygenase 2 gene. Nucleic Acids Res 2006; 34:217-31. [PMID: 16397300 PMCID: PMC1325205 DOI: 10.1093/nar/gkj422] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
NF-IL6β regulates gene expression and plays function roles in many tissues. The EGF-regulated cyclooxygenase-2 (cox-2) expression is mediated through p38MAPK signaling pathway and positively correlates with NF-IL6β expression in A431 cells. NF-IL6β coordinated with c-Jun on cox-2 transcriptional activation by reporter and small interfering RNA assays. NF-IL6β could directly bind to CCAAT/enhancer-binding protein (C/EBP) and cyclic AMP-response element (CRE) sites of the cox-2 promoter by in vitro-DNA binding assay. The C/EBP site was important for basal and, to a lesser extent, for EGF-regulated cox-2 transcription, while the CRE site was a more specific response to EGF inducibility of cox-2 gene. SUMO1 expression attenuated EGF- and NF-IL6β-induced cox-2 promoter activities. NF-IL6β was found to be sumoylated by in vivo- and in vitro-sumoylation assays, and the SUMO1-NF-IL6β (suNF-IL6β) lost its ability to interact with p300 in in vitro-binding assay. NF-IL6β was also acetylated by p300, and acetylation of NF-IL6β enhanced the cox-2 promoter activity stimulated by NF-IL6β itself. In vivo-DNA binding assay demonstrated that EGF stimulated the recruitment of p300 and NF-IL6β to the cox-2 promoter, yet promoted the dissociation of SUMO1-modificated proteins from the promoter. These results indicated that NF-IL6β plays a pivotal role in the regulation of basal and EGF-induced cox-2 transcription.
Collapse
Affiliation(s)
- Ju-Ming Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chiung-Yuan Ko
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Lei-Chin Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- Department of Medical Nutrition, I-Shou UniversityDashu Township, Kaohsiung County, Taiwan
| | - Wen-Lin Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
- To whom correspondence should be addressed. Tel: +886 6 235 3535 Ext. 5496; Fax: +886 6 274 9296;
| |
Collapse
|
102
|
Yin L, Wang Y, Dridi S, Vinson C, Hillgartner FB. Role of CCAAT/enhancer-binding protein, histone acetylation, and coactivator recruitment in the regulation of malic enzyme transcription by thyroid hormone. Mol Cell Endocrinol 2005; 245:43-52. [PMID: 16293364 DOI: 10.1016/j.mce.2005.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/23/2022]
Abstract
In chick embryo hepatocytes, activation of malic enzyme gene transcription by triiodothyronine (T3) is mediated by a T3 response unit (T3RU) that contains five T3 response elements (T3REs) plus five accessory elements that enhance T3 responsiveness conferred by the T3REs. Results from in vitro binding assays indicate that one of the accessory elements (region F) binds CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Here, we investigated the role of C/EBPalpha in the regulation of malic enzyme transcription by T3. Transfection analyses demonstrated that the stimulation of T3RE function by region F did not require the presence of additional malic enzyme gene promoter sequences. Expression of a dominant negative C/EBP inhibited the ability of region F to stimulate T3 responsiveness. In chromatin immunoprecipitation assays, C/EBPalpha and TR associated with the malic enzyme T3RU in the absence and presence of T3 with the extent of the association being greater in the presence of T3. These observations indicate that C/EBPalpha interacts with TR on the malic enzyme T3RU to enhance T3 regulation of malic enzyme gene transcription. T3 treatment increased the acetylation of histones, decreased the recruitment of nuclear receptor corepressor and increased the recruitment of steroid receptor coactivator-1, CREB binding protein, and the thyroid hormone associated protein/mediator complex at the malic enzyme T3RU. In contrast, T3 treatment had no effect on the acetylation of histones and the recruitment of corepressors and coactivators at the T3RU that mediates the T3 activation of acetyl-CoA carboxylase-alpha gene transcription. We propose that differences between the malic enzyme T3RU and the ACCalpha T3RU in the ability of T3 to modulate histone acetylation and coregulatory protein recruitment are due to differences in the composition of the nuclear receptor complexes that bind these regulatory regions.
Collapse
Affiliation(s)
- Liya Yin
- Department of Biochemistry and Molecular Pharmacology, School of Medicine, P.O. Box 9142, West Virginia University, Morgantown, 26506-9142, USA
| | | | | | | | | |
Collapse
|
103
|
Chen JJ, Huang WC, Chen CC. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein. Mol Biol Cell 2005; 16:5579-91. [PMID: 16195339 PMCID: PMC1289404 DOI: 10.1091/mbc.e05-08-0778] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inhibition of ubiquitin-proteasome pathway has been shown to be a promising strategy for the treatment of inflammation and cancer. Here, we show that proteasome inhibitors MG132, PSI-1, and lactacystin induce COX-2 expression via enhancing gene transcription rather than preventing protein degradation in the human alveolar NCI-H292 and A549, and gastric AGS epithelial cells. NF-IL6 and CRE, but not NF-kappaB elements on the COX-2 promoter were involved in the gene transcription event. The binding of CCAAT/enhancer binding protein (C/EBP)beta and C/EBPdelta to the CRE and NF-IL6 elements, as well as the recruitment of CBP and the enhancement of histone H3 and H4 acetylation on the COX-2 promoter was enhanced by MG132. However, it did not affect the total protein levels of C/EBPbeta and C/EBPdelta. MG132-induced DNA-binding activity of C/EBPdelta, but not C/EBPbeta was regulated by p38, PI3K, Src, and protein kinase C. Small interfering RNA of C/EBPdelta suppressed COX-2 expression, further strengthening the role of C/EBPdelta in COX-2 gene transcription. In addition, the generation of intracellular reactive oxygen species (ROS) in response to MG132 contributed to the activation of MAPKs and Akt. These findings reveal that the induction of COX-2 transcription induced by proteasome inhibitors requires ROS-dependent protein kinases activation and the subsequent recruitments of C/EBPdelta and CBP.
Collapse
Affiliation(s)
- Jun-Jie Chen
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 10018, Taiwan
| | | | | |
Collapse
|
104
|
Liu Y, Shen Q, Malloy PJ, Soliman E, Peng X, Kim S, Pike JW, Feldman D, Christakos S. Enhanced coactivator binding and transcriptional activation of mutant vitamin D receptors from patients with hereditary 1,25-dihydroxyvitamin D-resistant rickets by phosphorylation and vitamin D analogs. J Bone Miner Res 2005; 20:1680-91. [PMID: 16059639 DOI: 10.1359/jbmr.050410] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 03/18/2005] [Accepted: 04/20/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED In this study, we report that the function of certain mutant VDRs from patients with hereditary HVDRR can at least be partially restored by phosphorylation and hexafluoro 1,25(OH)2D3 analogs. Our study provides new insights into mechanisms involved in enhancement of mutant VDR function. INTRODUCTION 1,25-Dihydroxyvitamin D-resistant rickets (HVDRR) is a rare genetic disorder caused by inactivating mutations in the vitamin D receptor (VDR). In this study, we examined VDR from patients with HVDRR having mutations in the ligand-binding domain (F251C, I268T, H305Q, E420K). We examined methods of restoring transcriptional activity of these mutants and the mechanisms involved. MATERIALS AND METHODS Reporter gene transcriptional assays were used to examine the activation of mutant VDRs. Western-blot analysis, glutathione S-transferase (GST) pull-down assays, and chromatin immunoprecipitation (ChIP) assays were also used in this study. RESULTS Using mutant VDRs, H305Q, F251C, I268T, and 10(-8) M 1,25(OH)2D3, only 10-30% of the activity of wildtype (WT) VDR in activating 24(OH)ase transcription was observed. The transcriptional response of mutant VDR mutants was significantly enhanced 2- to 3-fold by co-treatment of VDR mutant transfected COS-7 cells with 1,25(OH)2D3 and okadaic acid (OA; inhibitor of phosphatase; 50 nM). The H305Q mutant was the most responsive (90% of the response exhibited by WT VDR was restored). The E420K mutant was unresponsive to 1,25(OH)2D3 in the presence or absence of OA. The increased transcriptional response correlated with an increase in the interaction between DRIP205 and the mutant VDR. We further provide evidence that OA induces the phosphorylation of CREB-binding protein (CBP), indicating for the first time a correlation between phosphorylation of CBP and enhanced VDR function. Hexafluoro 1,25(OH)2D3 analogs (RO-26-2198 and RO-4383561) also resulted in at least a partial restoration of the transcriptional responsiveness of mutant VDRs I268T, F251C, and H305Q. Our data indicate that the enhanced potency of the hexafluoro analogs may be caused by increased DRIP205 and glucocorticoid receptor interacting protein 1 (GRIP-1) binding to VDRs and enhanced association of VDRs with DNA, as suggested by results of ChIP assays. CONCLUSION Our study provides new insights into the mechanisms involved in the enhancement of VDR function by both phosphorylation and hexafluoro analogs and forms a basis for future study of vitamin D analogs or specifically designed kinase activity mediators as potential therapy for the treatment of selected patients with HVDRR.
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School and the Graduate School for Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Waters V, Sokol S, Reddy B, Soong G, Chun J, Prince A. The effect of cyclosporin A on airway cell proinflammatory signaling and pneumonia. Am J Respir Cell Mol Biol 2005; 33:138-44. [PMID: 15879161 PMCID: PMC2715308 DOI: 10.1165/rcmb.2005-0005oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cyclosporin A (CsA) blocks T cell activation by interfering with the Ca2+-dependent phosphatase, calcineurin. Proinflammatory responses to bacteria that are activated by Ca2+-fluxes in airway cells are a potential target for CsA. Although local immunosuppression may be advantageous to control airway inflammation, it could also increase susceptibility to bacterial pneumonia and invasive infection. As aerosolized CsA is currently under study in lung transplantation, we examined its direct effects on airway cells as well as in a murine model of pneumonia. Epithelial interleukin-6 production was very effectively inhibited by CsA, whereas CXCL8 production, the major PMN chemokine, was only modestly diminished. Responses to a TLR2 agonist Pam3Cys were more sensitive to CsA inhibition than those activated by Pseudomonas aeruginosa. CsA substantially blocked activation of nuclear factor of activated T cells and cAMP-responsive element-binding protein (P<0.001), inhibited CCAAT/enhancer-binding protein by 50% (P<0.05), and minimally blocked activator protein-1 and nuclear factor-kappaB responses to bacteria in epithelial cells. The in vitro effects were confirmed in a mouse model of P. aeruginosa infection with similar rates of PMN recruitment, pneumonia and mortality in CsA treated and control mice. These studies indicate that airway epithelial signaling is a potential target for CsA, and such local immunosuppression may not increase susceptibility to invasive infection.
Collapse
Affiliation(s)
- Valerie Waters
- Department of Pediatrics and Pharmacology, Columbia University, 650 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
106
|
Tang C, Sula MJ, Bohnet S, Rehman A, Taishi P, Krueger JM. Interleukin-1beta induces CREB-binding protein (CBP) mRNA in brain and the sequencing of rat CBP. ACTA ACUST UNITED AC 2005; 137:213-22. [PMID: 15950780 DOI: 10.1016/j.molbrainres.2005.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 03/08/2005] [Accepted: 03/13/2005] [Indexed: 10/25/2022]
Abstract
Interleukin-1 beta (IL-1) and CREB have many CNS actions including sleep regulation and hippocampal-dependent learning. CREB acts in part via CREB-binding protein (CBP). We thus determined whether IL-1 could induce CBP gene expression. Initially, cultured hippocampal cells were treated with IL-1 and differential display reverse transcription was used to identify up- and down-regulated genes. We then sequenced rat CBP. Of the IL-1-upregulated genes, CBP and adenine nucleotide translocator-1 (ANT-1) were investigated in vivo. In these experiments, IL-1 was given to rats intraventricularly and sacrificed 2 h later; both CBP and ANT-1 transcripts were upregulated in the cerebral cortex and hypothalamus. We conclude that rat CBP shares many of the functional domains as human and murine CBP and that IL-1 upregulates genes previously associated with learning and sleep.
Collapse
Affiliation(s)
- Chad Tang
- Department of VCAPP, Program in Neuroscience, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | | | |
Collapse
|
107
|
Svotelis A, Doyon G, Bernatchez G, Désilets A, Rivard N, Asselin C. IL-1 beta-dependent regulation of C/EBP delta transcriptional activity. Biochem Biophys Res Commun 2005; 328:461-70. [PMID: 15694370 DOI: 10.1016/j.bbrc.2005.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 11/19/2022]
Abstract
We have previously shown that the transcription factor C/EBP delta is involved in the intestinal inflammatory response. C/EBP delta regulates several inflammatory response genes, such as haptoglobin, in the rat intestinal epithelial cell line IEC-6 in response to IL-1. However, the different C/EBP delta domains involved in IL-1 beta-mediated transcriptional activation and the kinases implicated have not been properly defined. To address this, we determined the role of the p38 MAP kinase in the regulation of C/EBP delta transcriptional activity. The IL-1-dependent induction of the acute phase protein gene haptoglobin in IEC-6 cells was decreased in response to the p38 MAP kinase inhibitor SB203580, as determined by Northern blot. Transcriptional activity of C/EBP delta was repressed by the specific inhibitor of the p38 MAP kinase, as assessed by transient transfection assays. Mutagenesis studies and transient transfection assays revealed an important domain for transcriptional activation between amino acids 70 and 108. This domain overlapped with a docking site for the p38 MAP kinase, between amino acids 75 and 85, necessary to insure C/EBP delta phosphorylation. Deletion of this domain led to a decrease in basal transcriptional activity of C/EBP delta and in p300-dependent transactivation, as assessed by transient transfection assays, and in IL-1-dependent haptoglobin induction. This unusual arrangement of a kinase docking site within a transactivation domain may functionally be important for the regulation of C/EBP delta transcriptional activity.
Collapse
Affiliation(s)
- Amy Svotelis
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | |
Collapse
|
108
|
Bowie ML, Dietze EC, Delrow J, Bean GR, Troch MM, Marjoram RJ, Seewaldt VL. Interferon-regulatory factor-1 is critical for tamoxifen-mediated apoptosis in human mammary epithelial cells. Oncogene 2005; 23:8743-55. [PMID: 15467738 DOI: 10.1038/sj.onc.1208120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unlike estrogen receptor-positive (ER(+)) breast cancers, normal human mammary epithelial cells (HMECs) typically express low nuclear levels of ER (ER poor). We previously demonstrated that 1.0 microM tamoxifen (Tam) promotes apoptosis in acutely damaged ER-poor HMECs through a rapid, 'nonclassic' signaling pathway. Interferon-regulatory factor-1 (IRF-1), a target of signal transducer and activator of transcription-1 transcriptional regulation, has been shown to promote apoptosis following DNA damage. Here we show that 1.0 microM Tam promotes apoptosis in acutely damaged ER-poor HMECs through IRF-1 induction and caspase-1/3 activation. Treatment of acutely damaged HMEC-E6 cells with 1.0 microM Tam resulted in recruitment of CBP to the gamma-IFN-activated sequence element of the IRF-1 promoter, induction of IRF-1, and sequential activation of caspase-1 and -3. The effects of Tam were blocked by expression of siRNA directed against IRF-1 and caspase-1 inhibitors. These data indicate that Tam induces apoptosis in HMEC-E6 cells through a novel IRF-1-mediated signaling pathway that results in activated caspase-1 and -3.
Collapse
Affiliation(s)
- Michelle L Bowie
- Division of Medical Oncology, Duke University, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
109
|
Dhawan P, Peng X, Sutton ALM, MacDonald PN, Croniger CM, Trautwein C, Centrella M, McCarthy TL, Christakos S. Functional cooperation between CCAAT/enhancer-binding proteins and the vitamin D receptor in regulation of 25-hydroxyvitamin D3 24-hydroxylase. Mol Cell Biol 2005; 25:472-87. [PMID: 15601867 PMCID: PMC538756 DOI: 10.1128/mcb.25.1.472-487.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] induces the synthesis of 25-hydroxyvitamin D(3) 24-hydroxylase [24(OH)ase], an enzyme involved in its catabolism, thereby regulating its own metabolism. Here we demonstrate that CCAAT enhancer binding protein beta (C/EBPbeta) is induced by 1,25(OH)(2)D(3) in kidney and in osteoblastic cells and is a potent enhancer of vitamin D receptor (VDR)-mediated 24(OH)ase transcription. Transfection studies indicate that 1,25(OH)(2)D(3) induction of 24(OH)ase transcription is enhanced a maximum of 10-fold by C/EBPbeta. Suppression of 1,25(OH)(2)D(3)-induced 24(OH)ase transcription was observed with dominant negative C/EBP or osteoblastic cells from C/EBPbeta(-/-) mice. A C/EBP site was identified at positions -395 to -388 (-395/-388) in the rat 24(OH)ase promoter. Mutation of this site inhibited C/EBPbeta binding and markedly attenuated the transcriptional response to C/EBPbeta. We also report the cooperation of CBP/p300 with C/EBPbeta in regulating VDR-mediated 24(OH)ase transcription. We found that not only 1,25(OH)(2)D(3) but also parathyroid hormone (PTH) can induce C/EBPbeta expression in osteoblastic cells. PTH potentiated the induction of C/EBPbeta and 24(OH)ase expression in response to 1,25(OH)(2)D(3) in osteoblastic cells. Data with the human VDR promoter (which contains two putative C/EBP sites) indicate a role for C/EBPbeta in the protein kinase A-mediated induction of VDR transcription. From this study a fundamental role has been established for the first time for cooperative effects and cross talk between the C/EBP family of transcription factors and VDR in 1,25(OH)(2)D(3)-induced transcription. These findings also indicate a novel role for C/EBPbeta in the cross talk between PTH and 1,25(OH)(2)D(3) that involves the regulation of VDR transcription.
Collapse
Affiliation(s)
- Puneet Dhawan
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Yeagley D, Quinn PG. 3',5'-cyclic adenosine monophosphate response element-binding protein and CCAAT enhancer-binding protein are dispensable for insulin inhibition of phosphoenolpyruvate carboxykinase transcription and for its synergistic induction by protein kinase A and glucocorticoids. Mol Endocrinol 2004; 19:913-24. [PMID: 15604115 DOI: 10.1210/me.2004-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) transcription is induced by cAMP/protein kinase A (PKA) and glucocorticoids [dexamethasone (Dex)] and is inhibited by insulin to regulate blood glucose. Recent reports suggested that CCAAT enhancer binding protein (C/EBP) binding to the PEPCK cAMP response element (CRE) plays a role in Dex induction and that insulin-induces inhibitory forms of C/EBPbeta to inhibit transcription. Here, we assessed the roles of CRE-binding protein (CREB) and C/EBP factors in mediating hormone-regulated transcription. Neither cAMP nor insulin regulated the phosphorylation of C/EBP. Cycloheximide did not block insulin inhibition, indicating that alternate translation of C/EBPbeta is not required. Dominant-negative CREB or C/EBP blocked induction by PKA, but neither affected regulation by Dex or insulin. Tethering the activation domains of CREB or C/EBP to a CRE-->Gal4 (G4) site mediated varying extents of basal and PKA-inducible activity, but neither activation domain affected induction by Dex or inhibition by insulin. Surprisingly, synergistic induction by PKA and Dex did not require the CRE and was unaffected by dominant-negative CREB or C/EBP. PKA and Dex also synergistically induced a minimal 3 x glucocorticoid response element promoter, but inhibited Dex induction of the mouse mammary tumor virus and IGF-binding protein 1 promoters, even though PKA alone did not regulate these promoters. These results suggest that PKA modifies the activity of other factors involved in Dex induction to mediate synergistic induction or inhibition in a promoter-specific manner. Our data indicate that the roles of CREB and C/EBP are restricted to mediating PEPCK induction by PKA, and that other factors mediate PEPCK induction by Dex, synergism between PKA and Dex, and inhibition by insulin.
Collapse
Affiliation(s)
- David Yeagley
- The Pennsylvania State University, College of Medicine, Department of Cellular and Molecular Physiology, C4718, 500 University Drive, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
111
|
Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S, Kundu M. NF-kappaB- and C/EBPbeta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 2004; 280:4279-88. [PMID: 15561713 DOI: 10.1074/jbc.m412820200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori is a Gram-negative microaerophilic bacterium that causes chronic gastritis, peptic ulcer, and gastric carcinoma. Interleukin-1beta (IL-1beta) is one of the potent proinflammatory cytokines elicited by H. pylori infection. We have evaluated the role of H. pylori lipopolysaccharide (LPS) as one of the mediators of IL-1beta release and dissected the signaling pathways leading to LPS-induced IL-1beta secretion. We demonstrate that both the NF-kappaB and the C/EBPbeta-binding elements of the IL-1beta promoter drive LPS-induced IL-1beta gene expression. NF-kappaB activation requires the classical TLR4-initiated signaling cascade leading to IkappaB phosphorylation as well as PI-3K/Rac1/p21-activated kinase (PAK) 1 signaling, whereas C/EBPbeta activation requires PI-3K/Akt/p38 mitogen-activated protein (MAP) kinase signaling. We observed a direct interaction between activated p38 MAP kinase and C/EBPbeta, suggesting that p38 MAPK is the immediate upstream kinase responsible for activating C/EBPbeta. Most important, we observed a role of Rac1/PAK1 signaling in activation of caspase-1, which is necessary for maturation of pro-IL-1beta. H. pylori LPS induced direct interaction between PAK1 and caspase-1, which was inhibited in cells transfected with dominant-negative Rac1. PAK1 immunoprecipitated from lysates of H. pylori LPS-challenged cells was able to phosphorylate recombinant caspase-1, but not its S376A mutant. LPS-induced caspase-1 activation was abrogated in cells transfected with caspase-1(S376A). Taken together, these results suggested a role of PAK1-induced phosphorylation of caspase-1 at Ser376 in activation of caspase-1. To the best of our knowledge our studies show for the first time that LPS-induced Rac1/PAK1 signaling leading to caspase-1 phosphorylation is crucial for caspase-1 activation. These studies also provide detailed insight into the regulation of IL-1beta gene expression by H. pylori LPS and are particularly important in the light of the observations that IL-1beta gene polymorphisms are associated with increased risk of H. pylori-associated gastric cancer.
Collapse
Affiliation(s)
- Chaitali Basak
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | | | | | | | | | | |
Collapse
|
112
|
Jiang H, Fu K, Andrews G. Gene- and cell-type-specific effects of signal transduction cascades on metal-regulated gene transcription appear to be independent of changes in the phosphorylation of metal-response-element-binding transcription factor-1. Biochem J 2004; 382:33-41. [PMID: 15142038 PMCID: PMC1133912 DOI: 10.1042/bj20040504] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/11/2004] [Accepted: 05/14/2004] [Indexed: 11/17/2022]
Abstract
Post-translational modification of MTF-1 (metal-response-element-binding transcription factor-1) was suggested to play a role in its metalloregulatory functions. In the present study, pulse labelling and two-dimensional electrophoresis-Western blotting were used to demonstrate that, although MTF-1 is highly modified in vivo, its phosphorylation level does not rapidly change in response to metals, nor does its overall modification pattern. Recombinant MTF-1 was found to serve as an in vitro substrate for casein kinase II, c-Jun N-terminal kinase and protein kinase C, but inhibition of these kinases in vivo did not significantly change the modification pattern of MTF-1. Northern blotting revealed that inhibitors of casein kinase II and c-Jun N-terminal kinase severely attenuate the metal-induced transcription of the native chromatin-packaged metallothionein-I and zinc transporter-1 genes, whereas protein kinase C inhibitors exerted gene- and cell-type-specific effects on the metal regulation and basal expression of these two genes. A chromatin immunoprecipitation assay was used to demonstrate that none of these inhibitors prevent the metal-dependent recruitment of MTF-1 to the MT-I promoter. In brief, results of the present study suggest that protein kinases may not alter the phosphorylation state of MTF-1 during the rapid-response phase to metals, nor do they regulate the metal-dependent formation of a stable MTF-1-chromatin complex. Instead, protein kinases may exert their interdependent effects on metal-induced gene expression by acting on cofactors that interact with MTF-1.
Collapse
Key Words
- metal
- metallothionein
- metal-response-element-binding transcription factor-1 (mtf-1)
- phosphorylation
- signal transduction
- zinc transporter-1
- bim i, bisindolylmaleimide i
- chip, chromatin immunoprecipitation
- ckii, casein kinase ii
- drb, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole
- ief, isoelectric focusing
- jnk, c-jun n-terminal kinase
- mef, mouse embryo fibroblast
- mre, metal-response element
- mt, metallothionein
- mtf-1, mre-binding transcription factor-1
- mtf-ko, mtf-1 knockout
- pkc, protein kinase c
- poly(a)+, polyadenylated
- rna pol ii, rna polymerase ii
- znt-1, zinc transporter-1
Collapse
Affiliation(s)
- Huimin Jiang
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7421, U.S.A
| | - Kai Fu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7421, U.S.A
| | - Glen K. Andrews
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7421, U.S.A
| |
Collapse
|
113
|
Affiliation(s)
- Claus Nerlov
- Mouse Biology Programme, European Molecular Biology Laboratory, via Ramarini 32, 00016 Monterotondo, Italy.
| |
Collapse
|