101
|
Toghi Eshghi S, Yang W, Hu Y, Shah P, Sun S, Li X, Zhang H. Classification of Tandem Mass Spectra for Identification of N- and O-linked Glycopeptides. Sci Rep 2016; 6:37189. [PMID: 27869200 PMCID: PMC5116676 DOI: 10.1038/srep37189] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Analysis of intact glycopeptides by mass spectrometry is essential to determining the microheterogeneity of protein glycosylation. Higher-energy collisional dissociation (HCD) fragmentation of glycopeptides generates mono- or disaccharide ions called oxonium ions that carry information about the structure of the fragmented glycans. Here, we investigated the link between glycan structures and the intensity of oxonium ions in the spectra of glycopeptides and utilized this information to improve the identification of glycopeptides in biological samples. Tandem spectra of glycopeptides from fetuin, glycophorin A, ovalbumin and gp120 tryptic digests were used to build a spectral database of N- and O-linked glycopeptides. Logistic regression was applied to this database to develop model to distinguish between the spectra of N- and O-linked glycopeptides. Remarkably, the developed model was found to reliably distinguish between the N- and O-linked glycopeptides using the spectral features of the oxonium ions using verification spectral set. Finally, the performance of the developed predictive model was evaluated in HILIC enriched glycopeptides extracted from human serum. The results showed that pre-classification of tandem spectra based on their glycosylation type improved the identification of N-linked glycopeptides. The developed model facilitates interpretation of tandem mass spectrometry data for assignment of glycopeptides.
Collapse
Affiliation(s)
- Shadi Toghi Eshghi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shisheng Sun
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
102
|
Woo CM, Felix A, Zhang L, Elias JE, Bertozzi CR. Isotope-targeted glycoproteomics (IsoTaG) analysis of sialylated N- and O-glycopeptides on an Orbitrap Fusion Tribrid using azido and alkynyl sugars. Anal Bioanal Chem 2016; 409:579-588. [PMID: 27695962 DOI: 10.1007/s00216-016-9934-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/30/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Protein glycosylation is a post-translational modification (PTM) responsible for many aspects of proteomic diversity and biological regulation. Assignment of intact glycan structures to specific protein attachment sites is a critical step towards elucidating the function encoded in the glycome. Previously, we developed isotope-targeted glycoproteomics (IsoTaG) as a mass-independent mass spectrometry method to characterize azide-labeled intact glycopeptides from complex proteomes. Here, we extend the IsoTaG approach with the use of alkynyl sugars as metabolic labels and employ new probes in analysis of the sialylated glycoproteome from PC-3 cells. Using an Orbitrap Fusion Tribrid mass spectrometer, we identified 699 intact glycopeptides from 192 glycoproteins. These intact glycopeptides represent a total of eight sialylated glycan structures across 126 N- and 576 O-glycopeptides. IsoTaG is therefore an effective platform for identification of intact glycopeptides labeled by alkynyl or azido sugars and will facilitate further studies of the glycoproteome.
Collapse
Affiliation(s)
- Christina M Woo
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Alejandra Felix
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Lichao Zhang
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Joshua E Elias
- Chemical and Systems Biology, Stanford University, Stanford, CA, 94305, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA. .,Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
103
|
Lee LY, Moh ESX, Parker BL, Bern M, Packer NH, Thaysen-Andersen M. Toward Automated N-Glycopeptide Identification in Glycoproteomics. J Proteome Res 2016; 15:3904-3915. [DOI: 10.1021/acs.jproteome.6b00438] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ling Y. Lee
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Edward S. X. Moh
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Benjamin L. Parker
- Charles
Perkins Centre, School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Marshall Bern
- Protein Metrics
Inc., San Carlos, California 94070, United States
| | - Nicolle H. Packer
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department
of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
104
|
Tonry CL, Leacy E, Raso C, Finn SP, Armstrong J, Pennington SR. The Role of Proteomics in Biomarker Development for Improved Patient Diagnosis and Clinical Decision Making in Prostate Cancer. Diagnostics (Basel) 2016; 6:E27. [PMID: 27438858 PMCID: PMC5039561 DOI: 10.3390/diagnostics6030027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023] Open
Abstract
Prostate Cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although increased expression of prostate-specific antigen (PSA) is an effective indicator for the recurrence of PCa, its intended use as a screening marker for PCa is of considerable controversy. Recent research efforts in the field of PCa biomarkers have focused on the identification of tissue and fluid-based biomarkers that would be better able to stratify those individuals diagnosed with PCa who (i) might best receive no treatment (active surveillance of the disease); (ii) would benefit from existing treatments; or (iii) those who are likely to succumb to disease recurrence and/or have aggressive disease. The growing demand for better prostate cancer biomarkers has coincided with the development of improved discovery and evaluation technologies for multiplexed measurement of proteins in bio-fluids and tissues. This review aims to (i) provide an overview of these technologies as well as describe some of the candidate PCa protein biomarkers that have been discovered using them; (ii) address some of the general limitations in the clinical evaluation and validation of protein biomarkers; and (iii) make recommendations for strategies that could be adopted to improve the successful development of protein biomarkers to deliver improvements in personalized PCa patient decision making.
Collapse
Affiliation(s)
- Claire L Tonry
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Emma Leacy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Cinzia Raso
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| | - Stephen P Finn
- School of Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | | | - Stephen R Pennington
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
105
|
Chandler KB, Costello CE. Glycomics and glycoproteomics of membrane proteins and cell-surface receptors: Present trends and future opportunities. Electrophoresis 2016; 37:1407-19. [PMID: 26872045 PMCID: PMC4889498 DOI: 10.1002/elps.201500552] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Membrane proteins mediate cell-cell interactions and adhesion, the transfer of ions and metabolites, and the transmission of signals from the extracellular environment to the cell interior. The extracellular domains of most cell membrane proteins are glycosylated, often at multiple sites. There is a growing awareness that glycosylation impacts the structure, interaction, and function of membrane proteins. The application of glycoproteomics and glycomics methods to membrane proteins has great potential. However, challenges also arise from the unique physical properties of membrane proteins. Successful analytical workflows must be developed and disseminated to advance functional glycoproteomics and glycomics studies of membrane proteins. This review explores the opportunities and challenges related to glycomic and glycoproteomic analysis of membrane proteins, including discussion of sample preparation, enrichment, and MS/MS analyses, with a focus on recent successful workflows for analysis of N- and O-linked glycosylation of mammalian membrane proteins.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
106
|
Thaysen-Andersen M, Packer NH, Schulz BL. Maturing Glycoproteomics Technologies Provide Unique Structural Insights into the N-glycoproteome and Its Regulation in Health and Disease. Mol Cell Proteomics 2016; 15:1773-90. [PMID: 26929216 PMCID: PMC5083109 DOI: 10.1074/mcp.o115.057638] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/09/2016] [Indexed: 12/21/2022] Open
Abstract
The glycoproteome remains severely understudied because of significant analytical challenges associated with glycoproteomics, the system-wide analysis of intact glycopeptides. This review introduces important structural aspects of protein N-glycosylation and summarizes the latest technological developments and applications in LC-MS/MS-based qualitative and quantitative N-glycoproteomics. These maturing technologies provide unique structural insights into the N-glycoproteome and its synthesis and regulation by complementing existing methods in glycoscience. Modern glycoproteomics is now sufficiently mature to initiate efforts to capture the molecular complexity displayed by the N-glycoproteome, opening exciting opportunities to increase our understanding of the functional roles of protein N-glycosylation in human health and disease.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia;
| | - Nicolle H Packer
- From the ‡Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Benjamin L Schulz
- §School of Chemistry & Molecular Biosciences, St Lucia, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
107
|
Site-specific characterization of N-linked glycosylation in human urinary glycoproteins and endogenous glycopeptides. Glycoconj J 2016; 33:937-951. [PMID: 27234710 DOI: 10.1007/s10719-016-9677-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022]
Abstract
Glycosylation is a very important post-translational modification involved in various cellular processes, such as cell adhesion, signal transduction and immune response. Urine is a rich source of glycoproteins and attractive biological fluid for biomarker discovery, owing to its availability, ease of collection, and correlation with pathophysiology of diseases. Although the urinary proteomics have been explored previously, the urinary glycoproteome characterization remains challenging requiring the development and optimization of analytical and bioinformatics methods for protein glycoprofiling. This study describes the high confident identification of 472 unique N-glycosylation sites covering 256 urinary glycoproteins. Besides, 202 unique N-glycosylation sites were identified in low molecular weight endogenous glycopeptides, which belong to 90 glycoproteins. Global site-specific characterization of the N-linked glycan heterogeneity was achieved by intact glycopeptide analysis, revealing 303 unique glycopeptides most of them displaying complex/hybrid glycans composed by sialic acid and fucose. These datasets consist in a valuable resource of glycoproteins and N-glycosylation sites found in healthy human urine that can be further explored in different disorders, in which the N-linked glycosylation may be aberrant.
Collapse
|
108
|
Wu J, Qin H, Li T, Cheng K, Dong J, Tian M, Chai N, Guo H, Li J, You X, Dong M, Ye M, Nie Y, Zou H, Fan D. Characterization of site-specific glycosylation of secreted proteins associated with multi-drug resistance of gastric cancer. Oncotarget 2016; 7:25315-27. [PMID: 27015365 PMCID: PMC5041906 DOI: 10.18632/oncotarget.8287] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/06/2016] [Indexed: 01/14/2023] Open
Abstract
Multi-drug resistance (MDR) remains a great obstacle to effective chemotherapy for gastric cancer. A number of secreted glycoproteins have been reported to be involved in the development of MDR in gastric cancer. However, whether glycosylation of secreted glycoproteins changes during MDR of gastric cancer is unclear. Our present work manifested that N-glycosites and site-specific glycoforms of secreted proteins in drug-resistant cell lines were distinctly different from those in the parental cell line for the first time. Further characterization highlighted the significance of some aberrantly glycosylated secretory proteins in MDR, suggesting that manipulating the glycosylation of specific glycoproteins could be a potential target for overcoming multi-drug resistance in gastric cancer.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Hongqiang Qin
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ting Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Kai Cheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaqiang Dong
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Miaomiao Tian
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Na Chai
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Hao Guo
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Jinjing Li
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Xin You
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingming Dong
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mingliang Ye
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| | - Hanfa Zou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R & A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
109
|
Munkley J, Mills IG, Elliott DJ. The role of glycans in the development and progression of prostate cancer. Nat Rev Urol 2016; 13:324-33. [PMID: 27091662 DOI: 10.1038/nrurol.2016.65] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a unique and heterogeneous disease. Currently, a major unmet clinical need exists to develop biomarkers that enable indolent disease to be distinguished from aggressive disease. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Despite progress over the past decade in profiling the genome and proteome, the prostate cancer glycoproteome remains relatively understudied. A wide range of alterations in the glycoproteins on prostate cancer cells can occur, including increased sialylation and fucosylation, increased O-β-N-acetylglucosamine (GlcNAc) conjugation, the emergence of cryptic and high-mannose N-glycans and alterations to proteoglycans. Glycosylation can alter protein function and has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism; altered glycosylation in prostate cancer might modify some, or all of these processes. In the past three years, powerful tools such as glycosylation-specific antibodies and glycosylation gene signatures have been developed, which enable detailed analyses of changes in glycosylation. Thus, emerging data on these often overlooked modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.
Collapse
Affiliation(s)
- Jennifer Munkley
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Ian G Mills
- Prostate Cancer Research Group, Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospitals, Forskningsparken, Gaustadalléen 21, N-0349 Oslo, Norway.,Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital HE - Norwegian Radium Hospital, Montebello, NO-0424 Oslo, Norway.,Movember/Prostate Cancer UK Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - David J Elliott
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
110
|
Campbell MP, Packer NH. UniCarbKB: New database features for integrating glycan structure abundance, compositional glycoproteomics data, and disease associations. Biochim Biophys Acta Gen Subj 2016; 1860:1669-75. [PMID: 26940363 DOI: 10.1016/j.bbagen.2016.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND UniCarbKB aims to provide a resource for the representation of mammalian glycobiology knowledge by providing a curated database of structural and experimental data, supported by a web application that allows users to easily find and view richly annotated information. The database comprises two levels of annotation (i) global-specific data of oligosaccharides released and characterised from single purified glycoproteins and (ii) information pertaining to site-specific glycan heterogeneity. Additional, contextual information is provided including structural, bibliographic, and taxonomic information for each entry. METHODS Since the launch of UniCarbKB in 2012, we have continued to improve the organisation of our data model. Recently, we have extended our pipeline to collate structural and abundance changes of oligosaccharides in different human disease states and experimental models to extend our coverage of the human glycome. RESULTS In this manuscript, we demonstrate the capability of UniCarbKB to store and query relative glycan abundance data using a set of published colorectal and prostate cancer cell lines as examples. Furthermore, we outline our strategy for managing large-scale glycoproteomics data, site-specific and glycan compositional data, and how this information is adding value to UniCarbKB. Finally, we summarise our efforts to improve the efficient representation of disease terms and associated changes in glycan heterogeneity by integrating the Disease Ontology. CONCLUSIONS Updates and improvements to UniCarbKB have introduced unique features for storing and displaying glycosylation features of mammalian glycoproteins. The integration of site-specific glycosylation data obtained from large-scale glycoproteomics and introduction of cell line studies will improve the analysis of glycoproteins and entire glycomes. GENERAL SIGNIFICANCE Continuing advancements in analytical technologies and new data types are advancing disease-related glycomics. It is increasingly necessary to ensure all the data are comprehensively annotated. UniCarbKB was established with the mission of providing a resource for human glycobiology by capturing a wide range of data with corresponding annotations. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Matthew P Campbell
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Macquarie University, Sydney 2109, Australia.
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
111
|
Parker BL, Thaysen-Andersen M, Fazakerley DJ, Holliday M, Packer NH, James DE. Terminal Galactosylation and Sialylation Switching on Membrane Glycoproteins upon TNF-Alpha-Induced Insulin Resistance in Adipocytes. Mol Cell Proteomics 2016; 15:141-53. [PMID: 26537798 PMCID: PMC4762517 DOI: 10.1074/mcp.m115.054221] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/14/2015] [Indexed: 01/16/2023] Open
Abstract
Insulin resistance (IR) is a complex pathophysiological state that arises from both environmental and genetic perturbations and leads to a variety of diseases, including type-2 diabetes (T2D). Obesity is associated with enhanced adipose tissue inflammation, which may play a role in disease progression. Inflammation modulates protein glycosylation in a variety of cell types, and this has been associated with biological dysregulation. Here, we have examined the effects of an inflammatory insult on protein glycosylation in adipocytes. We performed quantitative N-glycome profiling of membrane proteins derived from mouse 3T3-L1 adipocytes that had been incubated with or without the proinflammatory cytokine TNF-alpha to induce IR. We identified the regulation of specific terminal N-glycan epitopes, including an increase in terminal di-galactose- and a decrease in biantennary alpha-2,3-sialoglycans. The altered N-glycosylation of TNF-alpha-treated adipocytes correlated with the regulation of specific glycosyltransferases, including the up-regulation of B4GalT5 and Ggta1 galactosyltransferases and down-regulation of ST3Gal6 sialyltransferase. Knockdown of B4GalT5 down-regulated the terminal di-galactose N-glycans, confirming the involvement of this enzyme in the TNF-alpha-regulated N-glycome. SILAC-based quantitative glycoproteomics of enriched N-glycopeptides with and without deglycosylation were used to identify the protein and glycosylation sites modified with these regulated N-glycans. The combined proteome and glycoproteome workflow provided a relative quantification of changes in protein abundance versus N-glycosylation occupancy versus site-specific N-glycans on a proteome-wide level. This revealed the modulation of N-glycosylation on specific proteins in IR, including those previously associated with insulin-stimulated GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Benjamin L Parker
- From the ‡Charles Perkins Centre, School of Molecular Bioscience and
| | | | | | - Mira Holliday
- From the ‡Charles Perkins Centre, School of Molecular Bioscience and
| | - Nicolle H Packer
- ¶Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - David E James
- From the ‡Charles Perkins Centre, School of Molecular Bioscience and §School of MedicineUniversity of Sydney, Sydney, Australia;
| |
Collapse
|