101
|
Abstract
The protein called 'small ubiquitin-like modifier' (SUMO) is post-translationally linked to target proteins at the ɛ-amino group of lysine residues. This 'SUMOylation' alters the behavior of the target protein, a change that is utilized to regulate diverse cellular processes. Understanding the target-specific consequences of SUMO modification requires knowledge of the location of conjugation sites, and we have developed a straightforward protocol for the proteome-wide identification of SUMO modification sites using mass spectrometry (MS). The approach described herein requires the expression of a mutant form of SUMO, in which the residue preceding the C-terminal Gly-Gly (diGly) is replaced with a lysine (SUMO(KGG)). Digestion of SUMO(KGG) protein conjugates with endoproteinase Lys-C yields a diGly motif attached to target lysines. Peptides containing this adduct are enriched using a diGly-Lys (K-ɛ-GG)-specific antibody and identified by MS. This diGly signature is characteristic of SUMO(KGG) conjugation alone, as no other ubiquitin-like protein (Ubl) yields this adduct upon Lys-C digestion. We have demonstrated the utility of the approach in SUMOylation studies, but, in principle, it may be adapted for the site-specific identification of proteins modified by any Ubl. Starting from cell lysis, this protocol can be completed in ∼5 d.
Collapse
|
102
|
Eifler K, Vertegaal ACO. Mapping the SUMOylated landscape. FEBS J 2015; 282:3669-80. [PMID: 26185901 PMCID: PMC4869838 DOI: 10.1111/febs.13378] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/15/2015] [Accepted: 07/14/2015] [Indexed: 12/26/2022]
Abstract
SUMOylation is a post‐translational modification that regulates a multitude of cellular processes, including replication, cell‐cycle progression, protein transport and the DNA damage response. Similar to ubiquitin, SUMO (small ubiquitin‐like modifier) is covalently attached to target proteins in a reversible process via an enzymatic cascade. SUMOylation is essential for nearly all eukaryotic organisms, and deregulation of the SUMO system is associated with human diseases such as cancer and neurodegenerative diseases. Therefore, it is of great interest to understand the regulation and dynamics of this post‐translational modification. Within the last decade, mass spectrometry analyses of SUMO proteomes have overcome several obstacles, greatly expanding the number of known SUMO target proteins. In this review, we briefly outline the basic concepts of the SUMO system, and discuss the potential of proteomic approaches to decipher SUMOylation patterns in order to understand the role of SUMO in health and disease.
Collapse
Affiliation(s)
- Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
103
|
Yang WS, Hsu HW, Campbell M, Cheng CY, Chang PC. K-bZIP Mediated SUMO-2/3 Specific Modification on the KSHV Genome Negatively Regulates Lytic Gene Expression and Viral Reactivation. PLoS Pathog 2015. [PMID: 26197391 PMCID: PMC4510548 DOI: 10.1371/journal.ppat.1005051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SUMOylation is associated with epigenetic regulation of chromatin structure and transcription. Epigenetic modifications of herpesviral genomes accompany the transcriptional switch of latent and lytic genes during the virus life cycle. Here, we report a genome-wide comparison of SUMO paralog modification on the KSHV genome. Using chromatin immunoprecipitation in conjunction with high-throughput sequencing, our study revealed highly distinct landscape changes of SUMO paralog genomic modifications associated with KSHV reactivation. A rapid and widespread deposition of SUMO-2/3, compared with SUMO-1, modification across the KSHV genome upon reactivation was observed. Interestingly, SUMO-2/3 enrichment was inversely correlated with H3K9me3 mark after reactivation, indicating that SUMO-2/3 may be responsible for regulating the expression of viral genes located in low heterochromatin regions during viral reactivation. RNA-sequencing analysis showed that the SUMO-2/3 enrichment pattern positively correlated with KSHV gene expression profiles. Activation of KSHV lytic genes located in regions with high SUMO-2/3 enrichment was enhanced by SUMO-2/3 knockdown. These findings suggest that SUMO-2/3 viral chromatin modification contributes to the diminution of viral gene expression during reactivation. Our previous study identified a SUMO-2/3-specific viral E3 ligase, K-bZIP, suggesting a potential role of this enzyme in regulating SUMO-2/3 enrichment and viral gene repression. Consistent with this prediction, higher K-bZIP binding on SUMO-2/3 enrichment region during reactivation was observed. Moreover, a K-bZIP SUMO E3 ligase dead mutant, K-bZIP-L75A, in the viral context, showed no SUMO-2/3 enrichment on viral chromatin and higher expression of viral genes located in SUMO-2/3 enriched regions during reactivation. Importantly, virus production significantly increased in both SUMO-2/3 knockdown and KSHV K-bZIP-L75A mutant cells. These results indicate that SUMO-2/3 modification of viral chromatin may function to counteract KSHV reactivation. As induction of herpesvirus reactivation may activate cellular antiviral regimes, our results suggest that development of viral SUMO E3 ligase specific inhibitors may be an avenue for anti-virus therapy.
Collapse
Affiliation(s)
- Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Hung-Wei Hsu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Mel Campbell
- UC Davis Cancer Center, University of California, Davis, Davis, California, United States of America
| | - Chia-Yang Cheng
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
104
|
Seifert A, Schofield P, Barton GJ, Hay RT. Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci Signal 2015; 8:rs7. [PMID: 26152697 DOI: 10.1126/scisignal.aaa2213] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The small ubiquitin-like modifier 2 (SUMO-2) is required for survival when cells are exposed to treatments that induce proteotoxic stress by causing the accumulation of misfolded proteins. Exposure of cells to heat shock or other forms of proteotoxic stress induces the conjugation of SUMO-2 to proteins in the nucleus. We investigated the chromatin landscape of SUMO-2 modifications in response to heat stress. Through chromatin immunoprecipitation assays coupled to high-throughput DNA sequencing and mRNA sequencing, we showed that in response to heat shock, SUMO-2 accumulated at nucleosome-depleted, active DNA regulatory elements, which represented binding sites for large protein complexes and were predominantly associated with active genes. However, SUMO did not act as a direct transcriptional repressor or activator of these genes during heat shock. Instead, integration of our results with published proteomics data on heat shock-induced SUMO-2 substrates supports a model in which the conjugation of SUMO-2 to proteins acts as an acute stress response that is required for the stability of protein complexes involved in gene expression and posttranscriptional modification of mRNA. We showed that the conjugation of SUMO-2 to chromatin-associated proteins is an integral component of the proteotoxic stress response, and propose that SUMO-2 fulfills its essential role in cell survival by contributing to the maintenance of protein complex homeostasis.
Collapse
Affiliation(s)
- Anne Seifert
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Pietà Schofield
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Geoffrey J Barton
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK.
| |
Collapse
|
105
|
Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 2015; 72:305-39. [PMID: 26033929 PMCID: PMC5049490 DOI: 10.1002/cm.21226] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/29/2022]
Abstract
Sumoylation is a powerful regulatory system that controls many of the critical processes in the cell, including DNA repair, transcriptional regulation, nuclear transport, and DNA replication. Recently, new functions for SUMO have begun to emerge. SUMO is covalently attached to components of each of the four major cytoskeletal networks, including microtubule-associated proteins, septins, and intermediate filaments, in addition to nuclear actin and actin-regulatory proteins. However, knowledge of the mechanisms by which this signal transduction system controls the cytoskeleton is still in its infancy. One story that is beginning to unfold is that SUMO may regulate the microtubule motor protein dynein by modification of its adaptor Lis1. In other instances, cytoskeletal elements can both bind to SUMO non-covalently and also be conjugated by it. The molecular mechanisms for many of these new functions are not yet clear, but are under active investigation. One emerging model links the function of MAP sumoylation to protein degradation through SUMO-targeted ubiquitin ligases, also known as STUbL enzymes. Other possible functions for cytoskeletal sumoylation are also discussed.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Matt Greenlee
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jessica Matts
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Jake Kline
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Kayla J. Davis
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| | - Rita K. Miller
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOklahoma
| |
Collapse
|
106
|
Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardivillé S, Hoedt E, Lefebvre T, Pierce A. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin. PLoS One 2015; 10:e0129965. [PMID: 26090800 PMCID: PMC4474976 DOI: 10.1371/journal.pone.0129965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover, competition between SUMOylation and ubiquitination at K379 coordinately regulates the stability of delta-lactoferrin toward proteolysis. Therefore SUMOylation of delta-lactoferrin is a novel mechanism controlling both its activity and stability.
Collapse
Affiliation(s)
- Adelma Escobar-Ramirez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Anne-Sophie Vercoutter-Edouart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Marlène Mortuaire
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Stephan Hardivillé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Esthelle Hoedt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Annick Pierce
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| |
Collapse
|
107
|
Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal ACO. Ubiquitin-specific Protease 11 (USP11) Deubiquitinates Hybrid Small Ubiquitin-like Modifier (SUMO)-Ubiquitin Chains to Counteract RING Finger Protein 4 (RNF4). J Biol Chem 2015; 290:15526-15537. [PMID: 25969536 DOI: 10.1074/jbc.m114.618132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Indexed: 11/06/2022] Open
Abstract
Ring finger protein 4 (RNF4) is a SUMO-targeted ubiquitin E3 ligase with a pivotal function in the DNA damage response (DDR). SUMO interaction motifs (SIMs) in the N-terminal part of RNF4 tightly bind to SUMO polymers, and RNF4 can ubiquitinate these polymers in vitro. Using a proteomic approach, we identified the deubiquitinating enzyme ubiquitin-specific protease 11 (USP11), a known DDR-component, as a functional interactor of RNF4. USP11 can deubiquitinate hybrid SUMO-ubiquitin chains to counteract RNF4. SUMO-enriched nuclear bodies are stabilized by USP11, which functions downstream of RNF4 as a counterbalancing factor. In response to DNA damage induced by methyl methanesulfonate, USP11 could counteract RNF4 to inhibit the dissolution of nuclear bodies. Thus, we provide novel insight into cross-talk between ubiquitin and SUMO and uncover USP11 and RNF4 as a balanced SUMO-targeted ubiquitin ligase/protease pair with a role in the DDR.
Collapse
Affiliation(s)
- Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Joost Schimmel
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
108
|
Eckhoff J, Dohmen RJ. In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast SUMO (Small Ubiquitin-related Modifier)-specific Protease Ulp2. J Biol Chem 2015; 290:12268-81. [PMID: 25833950 DOI: 10.1074/jbc.m114.622217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
Sumoylation is a post-translational modification essential in most eukaryotes that regulates stability, localization, activity, or interaction of a multitude of proteins. It is a reversible process wherein counteracting ligases and proteases, respectively, mediate the conjugation and deconjugation of SUMO molecules to/from target proteins. Apart from attachment of single SUMO moieties to targets, formation of poly-SUMO chains occurs by the attachment of additional SUMO molecules to lysine residues in the N-terminal extensions of SUMO. In Saccharomyces cerevisiae there are apparently only two SUMO(Smt3)-specific proteases: Ulp1 and Ulp2. Ulp2 has been shown to be important for the control of poly-SUMO conjugates in cells and to dismantle SUMO chains in vitro, but the mechanism by which it acts remains to be elucidated. Applying an in vitro approach, we found that Ulp2 acts sequentially rather than stochastically, processing substrate-linked poly-SUMO chains from their distal ends down to two linked SUMO moieties. Furthermore, three linked SUMO units turned out to be the minimum length of a substrate-linked chain required for efficient binding to and processing by Ulp2. Our data suggest that Ulp2 disassembles SUMO chains by removing one SUMO moiety at a time from their ends (exo mechanism). Apparently, Ulp2 recognizes surfaces at or near the N terminus of the distal SUMO moiety, as attachments to this end significantly reduce cleavage efficiency. Our studies suggest that Ulp2 controls the dynamic range of SUMO chain lengths by trimming them from the distal ends.
Collapse
Affiliation(s)
- Julia Eckhoff
- From the Institute for Genetics, Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - R Jürgen Dohmen
- From the Institute for Genetics, Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
109
|
Bursomanno S, McGouran JF, Kessler BM, Hickson ID, Liu Y. Regulation of SUMO2 target proteins by the proteasome in human cells exposed to replication stress. J Proteome Res 2015; 14:1687-99. [PMID: 25748227 DOI: 10.1021/pr500997p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In human cells, SUMO2 is predominantly conjugated to target proteins in response to cellular stress. Previous studies suggested that proteins conjugated to SUMO2, but not to SUMO1, could be regulated by the ubiquitin-mediated proteasome system. Hence, we set out to understand the role of the proteasome in determining the fate of proteins conjugated to SUMO2 when cells are treated with DNA replication stress conditions. We conducted a quantitative proteomic analysis in a U2OS cell line stably expressing SUMO2(Q87R) tagged with StrepHA in the presence or absence of epoxomicin (EPOX), a proteasome inhibitor. We identified subgroups of putative SUMO2 targets that were either degraded or stabilized by EPOX upon SUMO2 conjugation in response to replication stress. Interestingly, the subgroup of proteins degraded upon SUMO2 conjugation was enriched in proteins playing roles in DNA damage repair and replication, while the proteins stabilized upon SUMOylation were mainly involved in chromatin maintenance. In addition, we identified 43 SUMOylation sites in target proteins, of which 17 are located in the proximity of phosphorylated residues. Considering that DNA replication stress is a major source of genome instability, which is suggested to drive tumorigenesis and possibly aging, our data will facilitate future functional studies in the fields of DNA metabolism and cancer biology.
Collapse
Affiliation(s)
- Sara Bursomanno
- †Center for Chromosome Stability, and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Joanna F McGouran
- ‡Ubiquitin Proteolysis Group, TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7FZ Oxford, UK
| | - Benedikt M Kessler
- ‡Ubiquitin Proteolysis Group, TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, OX3 7FZ Oxford, UK
| | - Ian D Hickson
- †Center for Chromosome Stability, and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | - Ying Liu
- †Center for Chromosome Stability, and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| |
Collapse
|
110
|
Abstract
Monobodies are small recombinant proteins designed to bind with high affinity to target proteins. Monobodies have been generated to mimic the SIM [SUMO (small ubiquitin-like modifier)-interacting motif] present in many SUMO target proteins, but their properties have not been determined in cells. In the present study we characterize the properties of two SUMO1-specific monobodies (hS1MB4 and hS1MB5) in HEK (human embyronic kidney)-293 and HeLa cells and examine their ability to purify SUMO substrates from cell lines and rat brain. Both hS1MB4 and hS1MB5 compared favourably with commercially available antibodies and were highly selective for binding to SUMO1 over SUMO2/3 in pull-down assays against endogenous and overexpressed SUMO and SUMOylated proteins. Monobodies expressed in HeLa cells displayed a nuclear and cytosolic distribution that overlaps with SUMO1. Expression of the monobodies effectively inhibited protein SUMOylation by SUMO1 and, surprisingly, by SUMO2/3, but were not cytotoxic for at least 36 h. We attribute the effects on SUMO2/3 to the role of SUMO1 in chain termination and/or monobody inhibition of the SUMO-conjugating E1 enzyme complex. Taken together, these data provide the first demonstration that monobodies represent useful new tools both to isolate SUMO conjugates and to probe cell SUMOylation pathways in vivo.
Collapse
|
111
|
Abad-Morales V, Domènech EB, Garanto A, Marfany G. mRNA expression analysis of the SUMO pathway genes in the adult mouse retina. Biol Open 2015; 4:224-32. [PMID: 25617419 PMCID: PMC4365491 DOI: 10.1242/bio.201410645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sumoylation is a reversible post-translational modification that regulates different cellular processes by conjugation/deconjugation of SUMO moieties to target proteins. Most work on the functional relevance of SUMO has focused on cell cycle, DNA repair and cancer in cultured cells, but data on the inter-dependence of separate components of the SUMO pathway in highly specialized tissues, such as the retina, is still scanty. Nonetheless, several retinal transcription factors (TFs) relevant for cone and rod fate, as well as some circadian rhythm regulators, are regulated by sumoylation. Here we present a comprehensive survey of SUMO pathway gene expression in the murine retina by quantitative RT-PCR and in situ hybridization (ISH). The mRNA expression levels were quantified in retinas obtained under four different light/dark conditions, revealing distinct levels of gene expression. In addition, a SUMO pathway retinal gene atlas based on the mRNA expression pattern was drawn. Although most genes are ubiquitously expressed, some patterns could be defined in a first step to determine its biological significance and interdependence. The wide expression of the SUMO pathway genes, the transcriptional response under several light/dark conditions, and the diversity of expression patterns in different cell layers clearly support sumoylation as a relevant post-translational modification in the retina. This expression atlas intends to be a reference framework for retinal researchers and to depict a more comprehensive view of the SUMO-regulated processes in the retina.
Collapse
Affiliation(s)
- Víctor Abad-Morales
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Elena B Domènech
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Alejandro Garanto
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Present address: Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands; and Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Gemma Marfany
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| |
Collapse
|
112
|
Liu YY, Ayers S, Milanesi A, Teng X, Rabi S, Akiba Y, Brent GA. Thyroid hormone receptor sumoylation is required for preadipocyte differentiation and proliferation. J Biol Chem 2015; 290:7402-15. [PMID: 25572392 DOI: 10.1074/jbc.m114.600312] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thyroid hormone and thyroid hormone receptor (TR) play an essential role in metabolic regulation. However, the role of TR in adipogenesis has not been established. We reported previously that TR sumoylation is essential for TR-mediated gene regulation and that mutation of either of the two sites in TRα or any of the three sites in TRβ reduces TR sumoylation. Here, we transfected TR sumoylation site mutants into human primary preadiocytes and the mouse 3T3L1 preadipocyte cell line to determine the role of TR sumoylation in adipogenesis. Reduced sumoylation of TRα or TRβ resulted in fewer and smaller lipid droplets and reduced proliferation of preadipocytes. TR sumoylation mutations, compared with wild-type TR, results in reduced C/EBP expression and reduced PPARγ2 mRNA and protein levels. TR sumoylation mutants recruited NCoR and disrupted PPARγ-mediated perilipin1 (Plin1) gene expression, associated with impaired lipid droplet formation. Expression of NCoRΔID, a mutant NCoR lacking the TR interaction domain, partially "rescued" the delayed adipogenesis and restored Plin1 gene expression and adipogenesis. TR sumoylation site mutants impaired Wnt/β-catenin signaling pathways and the proliferation of primary human preadipocytes. Expression of the TRβ K146Q sumoylation site mutant down-regulated the essential genes required for canonical Wnt signal-mediated proliferation, including Wnt ligands, Fzds, β-catenin, LEF1, and CCND1. Additionally, the TRβ K146Q mutant enhanced the canonical Wnt signaling inhibitor Dickkopf-related protein 1 (DKK1). Our data demonstrate that TR sumoylation is required for activation of the Wnt canonical signaling pathway during preadipocyte proliferation and enhances the PPARγ signaling that promotes differentiation.
Collapse
Affiliation(s)
- Yan-Yun Liu
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073,
| | - Stephen Ayers
- the Genomic Medicine Program, Methodist Hospital Research Institute, Houston, Texas 77030, and
| | - Anna Milanesi
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Xiaochun Teng
- the Institute of Endocrinology, China Medical University, Shenyang 110001, China
| | - Sina Rabi
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Ysutada Akiba
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073
| | - Gregory A Brent
- From the Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System and Departments of Medicine and Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90073,
| |
Collapse
|
113
|
Beyer AR, Truchan HK, May LJ, Walker NJ, Borjesson DL, Carlyon JA. The Anaplasma phagocytophilum effector AmpA hijacks host cell SUMOylation. Cell Microbiol 2014; 17:504-19. [PMID: 25308709 DOI: 10.1111/cmi.12380] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/18/2014] [Accepted: 10/03/2014] [Indexed: 12/25/2022]
Abstract
SUMOylation, the covalent attachment of a member of the small ubiquitin-like modifier (SUMO) family of proteins to lysines in target substrates, is an essential post-translational modification in eukaryotes. Microbial manipulation of SUMOylation recently emerged as a key virulence strategy for viruses and facultative intracellular bacteria, the latter of which have only been shown to deploy effectors that negatively regulate SUMOylation. Here, we demonstrate that the obligate intracellular bacterium, Anaplasma phagocytophilum, utilizes an effector, AmpA (A. phagocytophilum post-translationally modified protein A) that becomes SUMOylated in host cells and this is important for the pathogen's survival. We previously discovered that AmpA (formerly APH1387) localizes to the A. phagocytophilum-occupied vacuolar membrane (AVM). Algorithmic prediction analyses denoted AmpA as a candidate for SUMOylation. We verified this phenomenon using a SUMO affinity matrix to precipitate both native AmpA and ectopically expressed green fluorescent protein (GFP)-tagged AmpA. SUMOylation of AmpA was lysine dependent, as SUMO affinity beads failed to precipitate a GFP-AmpA protein when its lysine residues were substituted with arginine. Ectopically expressed and endogenous AmpA were poly-SUMOylated, which was consistent with the observation that AmpA colocalizes with SUMO2/3 at the AVM. Only late during the infection cycle did AmpA colocalize with SUMO1, which terminally caps poly-SUMO2/3 chains. AmpA was also detected in the cytosol of infected host cells, further supporting its secretion and likely participation in interactions that aid pathogen survival. Indeed, whereas siRNA-mediated knockdown of Ubc9 - a necessary enzyme for SUMOylation - slightly bolstered A. phagocytophilum infection, pharmacologically inhibiting SUMOylation in infected cells significantly reduced the bacterial load. Ectopically expressed GFP-AmpA served as a competitive agonist against native AmpA in infected cells, while lysine-deficient GFP-AmpA was less effective, implying that modification of AmpA lysines is important for infection. Collectively, these data show that AmpA becomes directly SUMOylated during infection, representing a novel tactic for A. phagocytophilum survival.
Collapse
Affiliation(s)
- Andrea R Beyer
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
114
|
Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O, Bonneil E, Chelbi-Alix MK, Thibault P. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat Commun 2014; 5:5409. [PMID: 25391492 DOI: 10.1038/ncomms6409] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/29/2014] [Indexed: 01/11/2023] Open
Abstract
Small ubiquitin-related modifiers (SUMO) are evolutionarily conserved ubiquitin-like proteins that regulate several cellular processes including cell cycle progression, intracellular trafficking, protein degradation and apoptosis. Despite the importance of protein SUMOylation in different biological pathways, the global identification of acceptor sites in complex cell extracts remains a challenge. Here we generate a monoclonal antibody that enriches for peptides containing SUMO remnant chains following tryptic digestion. We identify 954 SUMO3-modified lysine residues on 538 proteins and profile by quantitative proteomics the dynamic changes of protein SUMOylation following proteasome inhibition. More than 86% of these SUMOylation sites have not been reported previously, including 5 sites on the tumour suppressor parafibromin (CDC73). The modification of CDC73 at K136 affects its nuclear retention within PML nuclear bodies on proteasome inhibition. In contrast, a CDC73 K136R mutant translocates to the cytoplasm under the same conditions, further demonstrating the effectiveness of our method to characterize the dynamics of lysine SUMOylation.
Collapse
Affiliation(s)
- Frédéric Lamoliatte
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [2] Department of Chemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Danielle Caron
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Chantal Durette
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Louiza Mahrouche
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [2] Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | - Olivier Caron-Lizotte
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | - Pierre Thibault
- 1] Institute for Research in Immunology and Cancer, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [2] Department of Chemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7 [3] Department of Biochemistry, Université de Montréal, PO Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
115
|
Malik MQ, Bertke MM, Huber PW. Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. J Biol Chem 2014; 289:35468-81. [PMID: 25368327 DOI: 10.1074/jbc.m114.609123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 5 S rRNA gene-specific transcription factor IIIA (TFIIIA) interacts with the small ubiquitin-like modifier (SUMO) E3 ligase PIAS2b and with one of its targets, the transcriptional corepressor, XCtBP. PIAS2b is restricted to the cytoplasm of Xenopus oocytes but relocates to the nucleus immediately after fertilization. Following the midblastula transition, PIAS2b and XCtBP are present on oocyte-type, but not somatic-type, 5 S rRNA genes up through the neurula stage, as is a limiting amount of TFIIIA. Histone H3 methylation, coincident with the binding of XCtBP, also occurs exclusively on the oocyte-type genes. Immunohistochemical staining of embryos confirms the occupancy of a subset of the oocyte-type genes by TFIIIA that become positioned at the nuclear periphery shortly after the midblastula transition. Inhibition of SUMOylation activity relieves repression of oocyte-type 5 S rRNA genes and is correlated with a decrease in methylation of H3K9 and H3K27 and disruption of subnuclear localization. These results reveal a novel function for TFIIIA as a negative regulator that recruits histone modification activity through the CtBP repressor complex exclusively to the oocyte-type 5 S rRNA genes, leading to their terminal repression.
Collapse
Affiliation(s)
- Mariam Q Malik
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Michelle M Bertke
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Paul W Huber
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
116
|
Yang W, Paschen W. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Proteomics 2014; 15:1181-91. [PMID: 25236368 DOI: 10.1002/pmic.201400298] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/18/2014] [Accepted: 09/15/2014] [Indexed: 01/14/2023]
Abstract
Small ubiquitin-like modifier (SUMO1-3) conjugation is a posttranslational protein modification whereby SUMOs are conjugated to lysine residues of target proteins. SUMO conjugation can alter the activity, stability, and function of target proteins, and thereby modulate almost all major cellular pathways. Many diseases are associated with SUMO conjugation, including heart failure, arthritis, cancer, degenerative diseases, and brain ischemia/stroke. It is, therefore, of major interest to characterize the SUMO-modified proteome regulated by these disorders. SUMO proteomics analysis is hampered by low levels of SUMOylated proteins. Several strategies have, therefore, been developed to enrich SUMOylated proteins from cell/tissue extracts. These include proteomics analysis on cells expressing epitope-tagged SUMO isoforms, use of monoclonal SUMO antibodies for immunoprecipitation and epitope-specific peptides for elution, and affinity purification with peptides containing SUMO interaction motifs to specifically enrich polySUMOylated proteins. Recently, two mouse models were generated and characterized that express tagged SUMO isoforms, and allow purification of SUMOylated proteins from complex organ extracts. Ultimately, these new analytical tools will help to decipher the SUMO-modified proteome regulated by various human diseases, and thereby, identify new targets for preventive and therapeutic purposes.
Collapse
Affiliation(s)
- Wei Yang
- Molecular Neurobiology Laboratory, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
117
|
Abstract
The E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the β2-strand and the α1-helix parallel to the β2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule.
Collapse
|
118
|
de la Cruz-Herrera CF, Campagna M, García MA, Marcos-Villar L, Lang V, Baz-Martínez M, Gutiérrez S, Vidal A, Rodríguez MS, Esteban M, Rivas C. Activation of the double-stranded RNA-dependent protein kinase PKR by small ubiquitin-like modifier (SUMO). J Biol Chem 2014; 289:26357-26367. [PMID: 25074923 PMCID: PMC4176227 DOI: 10.1074/jbc.m114.560961] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/11/2014] [Indexed: 01/07/2023] Open
Abstract
The dsRNA-dependent kinase PKR is an interferon-inducible protein with ability to phosphorylate the α subunit of the eukaryotic initiation factor (eIF)-2 complex, resulting in a shut-off of general translation, induction of apoptosis, and inhibition of virus replication. Here we analyzed the modification of PKR by the small ubiquitin-like modifiers SUMO1 and SUMO2 and evaluated the consequences of PKR SUMOylation. Our results indicate that PKR is modified by both SUMO1 and SUMO2, in vitro and in vivo. We identified lysine residues Lys-60, Lys-150, and Lys-440 as SUMOylation sites in PKR. We show that SUMO is required for efficient PKR-dsRNA binding, PKR dimerization, and eIF2α phosphorylation. Furthermore, we demonstrate that SUMO potentiates the inhibition of protein synthesis induced by PKR in response to dsRNA, whereas a PKR SUMOylation mutant is impaired in its ability to inhibit protein synthesis and shows reduced capability to control vesicular stomatitis virus replication and to induce apoptosis in response to vesicular stomatitis virus infection. In summary, our data demonstrate the important role of SUMO in processes mediated by the activation of PKR.
Collapse
Affiliation(s)
- Carlos F de la Cruz-Herrera
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Michela Campagna
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Maria A García
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, 18014 Granada
| | - Laura Marcos-Villar
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Valerie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Maite Baz-Martínez
- Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782
| | - Sylvia Gutiérrez
- Confocal Service of Centro Nacional de Biotecnología-CSIC, Darwin 3, Madrid 28049, and
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782, Spain
| | - Manuel S Rodríguez
- Ubiquitylation and Cancer Molecular Biology Laboratory, Inbiomed, San Sebastian-Donostia, 20009 Gipuzkoa, Spain
| | - Mariano Esteban
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, Madrid 28049,; Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela E15782,.
| |
Collapse
|
119
|
Sutinen P, Rahkama V, Rytinki M, Palvimo JJ. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol 2014; 28:1719-28. [PMID: 25127374 DOI: 10.1210/me.2014-1035] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Forkhead box (FOX) protein A1 has been dubbed a pioneer transcription factor because it binds target sites in DNA, thereby displacing nucleosomes to loosen chromatin and facilitating steroid receptor DNA binding nearby. FOXA1 is an important regulator of prostate development, collaborating with androgen receptor (AR). Post-translational modifications regulating FOXA1 are thus far poorly understood. SUMOylation, post-translational modification of proteins by small ubiquitin-like modifier (SUMO) proteins, has emerged as an important regulatory mechanism in transcriptional regulation. In this work, we show by SUMOylation assays in COS-1 cells that the FOXA1 is modified at least in two of its three lysines embedded in SUMOylation consensus, K6 and K389, in proximity to its transactivation domains and K267 proximal to its DNA-binding domain. We also provide evidence for SUMO-2/3 modification of endogenous FOXA1 in LNCaP prostate cancer cells. Based on fluorescence recovery after photobleaching assays with mCherry-fused FOXA1 and EGFP-fused AR in HEK293 cells, the presence of FOXA1 retards the nuclear mobility of agonist-bound AR. Interestingly, mutation of the FOXA1 SUMOylation sites slows down the mobility of the pioneer factor, further retarding the nuclear mobility of the AR. Chromatin immunoprecipitation and gene expression assays suggest that the mutation enhances FOXA1's chromatin occupancy as well as its activity on AR-regulated prostate-specific antigen (PSA) locus in LNCaP cells. Moreover, the mutation altered the ability of FOXA1 to influence proliferation of LNCaP cells. Taken together, these results strongly suggest that the SUMOylation can regulate the transcriptional activity of FOXA1 with the AR.
Collapse
Affiliation(s)
- Päivi Sutinen
- Institute of Biomedicine (P.S.,V.R., M.R., J.J.P.), University of Eastern Finland, 70210 Kuopio; and Department of Pathology (J.J.P.), Kuopio University of Hospital, 70029 Kuopio, Finland
| | | | | | | |
Collapse
|
120
|
Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival. Infect Immun 2014; 82:4154-68. [PMID: 25047847 DOI: 10.1128/iai.01984-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ehrlichia chaffeensis is an obligately intracellular Gram-negative bacterium that selectively infects mononuclear phagocytes. We recently reported that E. chaffeensis utilizes a type 1 secretion (T1S) system to export tandem repeat protein (TRP) effectors and demonstrated that these effectors interact with a functionally diverse array of host proteins. By way of these interactions, TRP effectors modulate host cell functions; however, the molecular basis of these interactions and their roles in ehrlichial pathobiology are not well defined. In this study, we describe the first bacterial protein posttranslational modification (PTM) by the small ubiquitin-like modifier (SUMO). The E. chaffeensis T1S effector TRP120 is conjugated to SUMO at a carboxy-terminal canonical consensus SUMO conjugation motif in vitro and in human cells. In human cells, TRP120 was selectively conjugated with SUMO2/3 isoforms. Disruption of TRP120 SUMOylation perturbed interactions with known host proteins, through predicted SUMO interaction motif-dependent and -independent mechanisms. E. chaffeensis infection did not result in dramatic changes in the global host SUMOylated protein profile, but a robust colocalization of predominately SUMO1 with ehrlichial inclusions was observed. Inhibiting the SUMO pathway with a small-molecule inhibitor had a significant impact on E. chaffeensis replication and recruitment of the TRP120-interacting protein polycomb group ring finger protein 5 (PCGF5) to the inclusion, indicating that the SUMO pathway is critical for intracellular survival. This study reveals the novel exploitation of the SUMO pathway by Ehrlichia, which facilitates effector-eukaryote interactions necessary to usurp the host and create a permissive intracellular niche.
Collapse
|
121
|
Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations. PLoS One 2014; 9:e101663. [PMID: 25003393 PMCID: PMC4086935 DOI: 10.1371/journal.pone.0101663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.
Collapse
|
122
|
Xu Y, Plechanovová A, Simpson P, Marchant J, Leidecker O, Kraatz S, Hay RT, Matthews SJ. Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4. Nat Commun 2014; 5:4217. [PMID: 24969970 PMCID: PMC4083429 DOI: 10.1038/ncomms5217] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer.
Collapse
Affiliation(s)
- Yingqi Xu
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
- These authors contributed equally to this work
| | - Anna Plechanovová
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- These authors contributed equally to this work
| | - Peter Simpson
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Jan Marchant
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Orsolya Leidecker
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sebastian Kraatz
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Steve J. Matthews
- Centre for Structural Biology, Department of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| |
Collapse
|
123
|
Tammsalu T, Matic I, Jaffray EG, Ibrahim AFM, Tatham MH, Hay RT. Proteome-wide identification of SUMO2 modification sites. Sci Signal 2014; 7:rs2. [PMID: 24782567 PMCID: PMC4051997 DOI: 10.1126/scisignal.2005146] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Posttranslational modification with small ubiquitin-like modifiers (SUMOs) alters the function of proteins involved in diverse cellular processes. SUMO-specific enzymes conjugate SUMOs to lysine residues in target proteins. Although proteomic studies have identified hundreds of sumoylated substrates, methods to identify the modified lysines on a proteomic scale are lacking. We developed a method that enabled proteome-wide identification of sumoylated lysines that involves the expression of polyhistidine (6His)-tagged SUMO2 with Thr(90) mutated to Lys. Endoproteinase cleavage with Lys-C of 6His-SUMO2(T90K)-modified proteins from human cell lysates produced a diGly remnant on SUMO2(T90K)-conjugated lysines, enabling immunoprecipitation of SUMO2(T90K)-modified peptides and producing a unique mass-to-charge signature. Mass spectrometry analysis of SUMO-enriched peptides revealed more than 1000 sumoylated lysines in 539 proteins, including many functionally related proteins involved in cell cycle, transcription, and DNA repair. Not only can this strategy be used to study the dynamics of sumoylation and other potentially similar posttranslational modifications, but also, these data provide an unprecedented resource for future research on the role of sumoylation in cellular physiology and disease.
Collapse
Affiliation(s)
- Triin Tammsalu
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Ivan Matic
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Ellis G. Jaffray
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Adel F. M. Ibrahim
- MRC Protein Phosphorylation and Ubiquitination Unit, College of Life Sciences, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Michael H. Tatham
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, University of Dundee, Sir James Black Centre, Dow Street, Dundee DD1 5EH. UK
| |
Collapse
|
124
|
de la Cruz-Herrera CF, Campagna M, Lang V, del Carmen González-Santamaría J, Marcos-Villar L, Rodríguez MS, Vidal A, Collado M, Rivas C. SUMOylation regulates AKT1 activity. Oncogene 2014; 34:1442-50. [PMID: 24704831 DOI: 10.1038/onc.2014.48] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/27/2013] [Accepted: 01/06/2014] [Indexed: 01/09/2023]
Abstract
Serine threonine kinase AKT has a central role in the cell, controlling survival, proliferation, metabolism and angiogenesis. Deregulation of its activity underlies a wide range of pathological situations, including cancer. Here we show that AKT is post-translationally modified by the small ubiquitin-like modifier (SUMO) protein. Interestingly, neither SUMO conjugation nor activation of SUMOylated AKT is regulated by the classical AKT targeting to the cell membrane or by the phosphoinositide 3-kinase pathway. We demonstrate that SUMO induces the activation of AKT, whereas, conversely, down-modulation of the SUMO machinery diminishes AKT activation and cell proliferation. Furthermore, an AKT SUMOylation mutant shows reduced activation, and decreased anti-apoptotic and pro-tumoral activities in comparison with the wild-type protein. These results identify SUMO as a novel key regulator of AKT phosphorylation and activity.
Collapse
Affiliation(s)
- C F de la Cruz-Herrera
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - M Campagna
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - V Lang
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, Gipuzkoa, Spain
| | | | - L Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - M S Rodríguez
- Ubiquitylation and Cancer Molecular Biology laboratory, Inbiomed, San Sebastian-Donostia, Gipuzkoa, Spain
| | - A Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - M Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - C Rivas
- 1] Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología-CSIC, Madrid, Spain [2] Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
125
|
The Mre11 Cellular Protein Is Modified by Conjugation of Both SUMO-1 and SUMO-2/3 during Adenovirus Infection. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/989160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The adenovirus type 5 (Ad5) E1B 55 kDa and E4 Orf6 proteins assemble a Cullin 5-E3 ubiquitin (Ub) ligase that targets, among other cellular proteins, p53 and the Mre11-Rad50-Nbs1 (MRN) complex for degradation. The latter is also inhibited by the E4 Orf3 protein, which promotes the recruitment of Mre11 into specific nuclear sites to promote viral DNA replication. The activities associated with the E1B 55 kDa and E4 Orf6 viral proteins depend mostly on the assembly of this E3-Ub ligase. However, E1B 55 kDa can also function as an E3-SUMO ligase, suggesting not only that regulation of cellular proteins by these viral early proteins may depend on polyubiquitination and proteasomal degradation but also that SUMOylation of target proteins may play a key role in their activities. Since Mre11 is a target of both the E1B/E4 Orf6 complex and E4 Orf3, we decided to determine whether Mre11 displayed similar properties to those of other cellular targets, in Ad5-infected cells. We have found that during Ad5-infection, Mre11 is modified by SUMO-1 and SUMO-2/3 conjugation. Unexpectedly, SUMOylation of Mre11 is not exclusively dependent on E1B 55 kDa, E4 Orf6, or E4 Orf3, rather it seems to be influenced by a molecular interplay that involves each of these viral early proteins.
Collapse
|
126
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. WITHDRAWN: Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014:S1084-9521(14)00058-5. [PMID: 24685615 DOI: 10.1016/j.semcdb.2014.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/03/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published, http://dx.doi.org/10.1016/j.semcdb.2014.03.022. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2).
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(2)
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1)
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3)
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France(1); AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France(3).
| |
Collapse
|
127
|
Cau P, Navarro C, Harhouri K, Roll P, Sigaudy S, Kaspi E, Perrin S, De Sandre-Giovannoli A, Lévy N. Nuclear matrix, nuclear envelope and premature aging syndromes in a translational research perspective. Semin Cell Dev Biol 2014; 29:125-47. [PMID: 24662892 DOI: 10.1016/j.semcdb.2014.03.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lamin A-related progeroid syndromes are genetically determined, extremely rare and severe. In the past ten years, our knowledge and perspectives for these diseases has widely progressed, through the progressive dissection of their pathophysiological mechanisms leading to precocious and accelerated aging, from the genes mutations discovery until therapeutic trials in affected children. A-type lamins are major actors in several structural and functional activities at the nuclear periphery, as they are major components of the nuclear lamina. However, while this is usually poorly considered, they also play a key role within the rest of the nucleoplasm, whose defects are related to cell senescence. Although nuclear shape and nuclear envelope deformities are obvious and visible events, nuclear matrix disorganization and abnormal composition certainly represent the most important causes of cell defects with dramatic pathological consequences. Therefore, lamin-associated diseases should be better referred as laminopathies instead of envelopathies, this later being too restrictive, considering neither the key structural and functional roles of soluble lamins in the entire nucleoplasm, nor the nuclear matrix contribution to the pathophysiology of lamin-associated disorders and in particular in defective lamin A processing-associated aging diseases. Based on both our understanding of pathophysiological mechanisms and the biological and clinical consequences of progeria and related diseases, therapeutic trials have been conducted in patients and were terminated less than 10 years after the gene discovery, a quite fast issue for a genetic disease. Pharmacological drugs have been repurposed and used to decrease the toxicity of the accumulated, unprocessed and truncated prelaminA in progeria. To date, none of them may be considered as a cure for progeria and these clinical strategies were essentially designed toward reducing a subset of the most dramatic and morbid features associated to progeria. New therapeutic strategies under study, in particular targeting the protein expression pathway at the mRNA level, have shown a remarkable efficacy both in vitro in cells and in vivo in mice models. Strategies intending to clear the toxic accumulated proteins from the nucleus are also under evaluation. However, although exceedingly rare, improving our knowledge of genetic progeroid syndromes and searching for innovative and efficient therapies in these syndromes is of paramount importance as, even before they can be used to save lives, they may significantly (i) expand the affected childrens' lifespan and preserve their quality of life; (ii) improve our understanding of aging-related disorders and other more common diseases; and (iii) expand our fundamental knowledge of physiological aging and its links with major physiological processes such as those involved in oncogenesis.
Collapse
Affiliation(s)
- Pierre Cau
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| | - Claire Navarro
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Karim Harhouri
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Patrice Roll
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sabine Sigaudy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Elise Kaspi
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Service de Biologie Cellulaire, Hôpital La Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Sophie Perrin
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | - Annachiara De Sandre-Giovannoli
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France
| | - Nicolas Lévy
- Aix-Marseille Université, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; INSERM, UMR_S 910, Génétique Médicale et Génomique Fonctionnelle, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France; AP-HM, Département de Génétique Médicale, Hôpital d'enfants Timone, 264 Rue Saint Pierre, 13385 Marseille Cedex 5, France.
| |
Collapse
|
128
|
Identification and analysis of endogenous SUMO1 and SUMO2/3 targets in mammalian cells and tissues using monoclonal antibodies. Nat Protoc 2014; 9:896-909. [PMID: 24651501 DOI: 10.1038/nprot.2014.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SUMOylation is a protein modification that regulates the function of hundreds of proteins. Detecting endogenous SUMOylation is challenging: most small ubiquitin-related modifier (SUMO) targets are low in abundance, and only a fraction of a protein's cellular pool is typically SUMOylated. Here we present a step-by-step protocol for the enrichment of endogenous SUMO targets from mammalian cells and tissues (specifically, mouse liver), based on the use of monoclonal antibodies that are available to the scientific community. The protocol comprises (i) production of antibodies and affinity matrix, (ii) denaturing cell lysis, and (iii) SUMO immunoprecipitation followed by peptide elution. Production of affinity matrix and cell lysis requires ∼1 d. The immunoprecipitation with peptide elution can be performed in 2 d. As SUMO proteins are conserved, this protocol should also be applicable to other organisms, including many vertebrates and Drosophila melanogaster.
Collapse
|
129
|
Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochem J 2014; 457:207-14. [PMID: 24151981 PMCID: PMC3901395 DOI: 10.1042/bj20130753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length. The ubiquitin ligase RNF4 targets proteins for proteasomal degradation if they are modified with SUMO chains. RNF4 recognizes its substrates by using short peptide motifs that interact non-covalently with SUMO chains if they contain at least two SUMO moieties.
Collapse
|
130
|
Schimmel J, Eifler K, Sigurðsson JO, Cuijpers SAG, Hendriks IA, Verlaan-de Vries M, Kelstrup CD, Francavilla C, Medema RH, Olsen JV, Vertegaal ACO. Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol Cell 2014; 53:1053-66. [PMID: 24582501 DOI: 10.1016/j.molcel.2014.02.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/23/2013] [Accepted: 01/24/2014] [Indexed: 12/25/2022]
Abstract
Loss of small ubiquitin-like modification (SUMOylation) in mice causes genomic instability due to the missegregation of chromosomes. Currently, little is known about the identity of relevant SUMO target proteins that are involved in this process and about global SUMOylation dynamics during cell-cycle progression. We performed a large-scale quantitative proteomics screen to address this and identified 593 proteins to be SUMO-2 modified, including the Forkhead box transcription factor M1 (FoxM1), a key regulator of cell-cycle progression and chromosome segregation. SUMOylation of FoxM1 peaks during G2 and M phase, when FoxM1 transcriptional activity is required. We found that a SUMOylation-deficient FoxM1 mutant was less active compared to wild-type FoxM1, implying that SUMOylation of the protein enhances its transcriptional activity. Mechanistically, SUMOylation blocks the dimerization of FoxM1, thereby relieving FoxM1 autorepression. Cells deficient for FoxM1 SUMOylation showed increased levels of polyploidy. Our findings contribute to understanding the role of SUMOylation during cell-cycle progression.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Karolin Eifler
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jón Otti Sigurðsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Sabine A G Cuijpers
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ivo A Hendriks
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Matty Verlaan-de Vries
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Christian D Kelstrup
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Chiara Francavilla
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - René H Medema
- Department of Cell Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
131
|
Yang W, Sheng H, Thompson JW, Zhao S, Wang L, Miao P, Liu X, Moseley MA, Paschen W. Small ubiquitin-like modifier 3-modified proteome regulated by brain ischemia in novel small ubiquitin-like modifier transgenic mice: putative protective proteins/pathways. Stroke 2014; 45:1115-22. [PMID: 24569813 DOI: 10.1161/strokeaha.113.004315] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Small ubiquitin-like modifier (SUMO) conjugation is a post-translational modification associated with many human diseases. Characterization of the SUMO-modified proteome is pivotal to define the mechanistic link between SUMO conjugation and such diseases. This is particularly evident for SUMO2/3 conjugation, which is massively activated after brain ischemia/stroke, and is believed to be a protective response. The purpose of this study was to perform a comprehensive analysis of the SUMO3-modified proteome regulated by brain ischemia using a novel SUMO transgenic mouse. METHODS To enable SUMO proteomics analysis in vivo, we generated transgenic mice conditionally expressing tagged SUMO1-3 paralogues. Transgenic mice were subjected to 10 minutes forebrain ischemia and 1 hour of reperfusion. SUMO3-conjugated proteins were enriched by anti-FLAG affinity purification and analyzed by liquid chromatography-tandem mass spectrometry. RESULTS Characterization of SUMO transgenic mice demonstrated that all 3 tagged SUMO paralogues were functionally active, and expression of exogenous SUMOs did not modify the endogenous SUMOylation machinery. Proteomics analysis identified 112 putative SUMO3 substrates of which 91 candidates were more abundant in the ischemia group than the sham group. Data analysis revealed processes/pathways with putative neuroprotective functions, including glucocorticoid receptor signaling, RNA processing, and SUMOylation-dependent ubiquitin conjugation. CONCLUSIONS The identified proteins/pathways modulated by SUMOylation could be the key to understand the mechanisms linking SUMOylation to neuroprotection, and thus provide new promising targets for therapeutic interventions. The new transgenic mouse will be an invaluable platform for analyzing the SUMO-modified proteome in models of human disorders and thereby help to mechanistically link SUMOylation to the pathological processes.
Collapse
Affiliation(s)
- Wei Yang
- From the Department of Anesthesiology (W.Y., H.S., L.W., P.M., X.L., W.P.), Proteomics Core Facility (J.W.T., M.A.M.), and Department of Neurobiology (S.Z.), Duke University Medical Center, Durham, NC; and Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China (X.L.)
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Wang J, Anania VG, Knott J, Rush J, Lill JR, Bourne PE, Bandeira N. A turn-key approach for large-scale identification of complex posttranslational modifications. J Proteome Res 2014; 13:1190-9. [PMID: 24437954 PMCID: PMC3993922 DOI: 10.1021/pr400368u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The conjugation of complex post-translational modifications (PTMs) such as glycosylation and Small Ubiquitin-like Modification (SUMOylation) to a substrate protein can substantially change the resulting peptide fragmentation pattern compared to its unmodified counterpart, making current database search methods inappropriate for the identification of tandem mass (MS/MS) spectra from such modified peptides. Traditionally it has been difficult to develop new algorithms to identify these atypical peptides because of the lack of a large set of annotated spectra from which to learn the altered fragmentation pattern. Using SUMOylation as an example, we propose a novel approach to generate large MS/MS training data from modified peptides and derive an algorithm that learns properties of PTM-specific fragmentation from such training data. Benchmark tests on data sets of varying complexity show that our method is 80-300% more sensitive than current state-of-the-art approaches. The core concepts of our method are readily applicable to developing algorithms for the identifications of peptides with other complex PTMs.
Collapse
Affiliation(s)
- Jian Wang
- Bioinformatics Program, ∥Skaggs School of Pharmacy and Pharmaceutical Sciences, ⊥Center for Computational Mass Spectrometry, and ¶Department of Computer Science and Engineering, University of California, San Diego , La Jolla, California 92093, United States
| | | | | | | | | | | | | |
Collapse
|
133
|
Yang Y, Zhang CY. Visualizing and quantifying protein polySUMOylation at the single-molecule level. Anal Chem 2014; 86:967-72. [PMID: 24383460 DOI: 10.1021/ac403753r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein polySUMOylation, the attachment of small ubiquitin-like modifier (SUMO) chains to the target protein, is associated with a variety of physiological processes. However, the analysis of protein polySUMOylation is often complicated by the heterogeneity of SUMO-target conjugates. Here, we develop a new strategy to visualize and quantify polySUMOylation at the single-molecule level by integrating the tetracysteine (TC) tag labeling technology and total internal reflection fluorescence (TIRF)-based single-molecule imaging. As a proof-of-concept, we employ the human SUMO-2 as the model. The addition of TC tag to SUMO-2 can specifically translate the SUMO-mediated modification into visible fluorescence signal without disturbing the function of SUMO-2. The SUMO monomers display homogeneous fluorescence spots at the single-molecule level, whereas the mixed SUMO chains exhibit nonuniform fluorescence spots with a wide range of intensities. Analysis of the number and the brightness of fluorescence spots enable quantitative measurement of the polySUMOylation degree inside the cells under different physiological conditions. Due to the frequent occurrence of posttranslational modification by polymeric chains in cells, this single-molecule strategy has the potential to be broadly applied for studying protein posttranslational modification in normal cellular physiology and disease etiology.
Collapse
Affiliation(s)
- Yong Yang
- Single-molecule Detection and Imaging Laboratory, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen, Guangdong 518055, China
| | | |
Collapse
|
134
|
Varadaraj A, Mattoscio D, Chiocca S. SUMO Ubc9 enzyme as a viral target. IUBMB Life 2014; 66:27-33. [PMID: 24395713 DOI: 10.1002/iub.1240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/22/2013] [Indexed: 01/20/2023]
Abstract
Viruses alter specific host cell targets to counteract possible defense mechanisms aimed at eliminating infectivity and viral propagation. The SUMO conjugating enzyme Ubc9 functions as a hub for protein sumoylation, whilst also providing an interactive surface for sumoylated proteins through noncovalent interactions. The targeting of Ubc9 by viruses and viral proteins is thus highly beneficial for the disruption of both protein modification and protein-protein interaction mechanisms with which proteins increase their functional repertoire in cells. This review explores some of the clever mechanisms adopted by viruses to deregulate Ubc9, influence effector pathways and positively impact viral persistence consequently.
Collapse
Affiliation(s)
- Archana Varadaraj
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | | | | |
Collapse
|
135
|
Leng L, Xu C, Wei C, Zhang J, Liu B, Ma J, Li N, Qin W, Zhang W, Zhang C, Xing X, Zhai L, Yang F, Li M, Jin C, Yuan Y, Xu P, Qin J, Xie H, He F, Wang J. A proteomics strategy for the identification of FAT10-modified sites by mass spectrometry. J Proteome Res 2014; 13:268-276. [PMID: 23862649 DOI: 10.1021/pr400395k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubiquitin-like protein FAT10 (HLA-F adjacent transcript 10) is uniquely expressed in mammals. The fat10 gene is encoded in the MHC class I locus in the human genome and is related to some specific processes, such as apoptosis, immune response, and cancer. However, biological knowledge of FAT10 is limited, owing to the lack of identification of its conjugates. FAT10 covalently modifies proteins in eukaryotes, but only a few substrates of FAT10 have been reported until now, and no FATylated sites have been identified. Here, we report the proteome-scale identification of FATylated proteins by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified 175 proteins with high confidence as FATylated candidates. A total of 13 modified sites were identified for the first time by a modified search of the raw MS data. The modified sites were highly enriched with hydrophilic amino acids. Furthermore, the FATylation processes of hnRNP C2, PCNA, and PDIA3 were verified by a coimmunoprecipitation assay. We confirmed that most of the substrates were covalently attached to a FAT10 monomer. The functional distribution of the FAT10 targets suggests that FAT10 participates in various biological processes, such as translation, protein folding, RNA processing, and macromolecular complex assembly. These results should be very useful for investigating the biological functions of FAT10.
Collapse
Affiliation(s)
- Ling Leng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
van Treel ND, Mootz HD. SUMOylated RanGAP1 prepared by click chemistry. J Pept Sci 2013; 20:121-7. [PMID: 24338848 DOI: 10.1002/psc.2591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 01/26/2023]
Abstract
Ubiquitin and ubiquitin-like proteins such as SUMO represent important and abundant post-translational modifications involved in many cellular processes. These modifiers are reversibly attached via an isopeptide bond to lysine side chains of their target proteins by the action of specific E1, E2, and E3 enzymes. A significant challenge in studying ubiquitylation and SUMOylation is the frequently encountered inability to access desired conjugates at a defined position of the target protein and in homogenous form by using enzymatic preparation. In recent years, several chemical conjugation approaches have been developed to overcome this limitation. In this study, we aimed to selectively SUMOylate a 189-amino acid fragment of human RanGAP1 (amino acids 398-587) at the position of Lys524 by applying two recently reported approaches based on the Cu(I)-catalyzed alkyne-azide cycloaddition. Because of low yields observed for the incorporation of an unnatural amino acid with an azide moiety by the tRNA suppression technology, this route was abandoned. However, installing a single cysteine at position 524 and its selective alkylation was successful to introduce the azide group. The triazole-linked SUMO1**RanGAP1 conjugate could be obtained in good yields, purified, and was shown to specifically interact with RanBP2/Ubc9. Thus, we expand the scope of proteins accessible to chemical conjugation with ubiquitin-like proteins and underline the importance of having alternative approaches to do so.
Collapse
Affiliation(s)
- Nadine D van Treel
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, 48149, Münster, Germany
| |
Collapse
|
137
|
Kotamarthi HC, Sharma R, Koti Ainavarapu SR. Single-molecule studies on PolySUMO proteins reveal their mechanical flexibility. Biophys J 2013; 104:2273-81. [PMID: 23708367 DOI: 10.1016/j.bpj.2013.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
Proteins with β-sandwich and β-grasp topologies are resistant to mechanical unfolding as shown by single-molecule force spectroscopy studies. Their high mechanical stability has generally been associated with the mechanical clamp geometry present at the termini. However, there is also evidence for the importance of interactions other than the mechanical clamp in providing mechanical stability, which needs to be tested thoroughly. Here, we report the mechanical unfolding properties of ubiquitin-like proteins (SUMO1 and SUMO2) and their comparison with those of ubiquitin. Although ubiquitin and SUMOs have similar size and structural topology, they differ in their sequences and structural contacts, making them ideal candidates to understand the variations in the mechanical stability of a given protein topology. We observe a two-state unfolding pathway for SUMO1 and SUMO2, similar to that of ubiquitin. Nevertheless, the unfolding forces of SUMO1 (∼130 pN) and SUMO2 (∼120 pN) are lower than that of ubiquitin (∼190 pN) at a pulling speed of 400 nm/s, indicating their lower mechanical stability. The mechanical stabilities of SUMO proteins and ubiquitin are well correlated with the number of interresidue contacts present in their structures. From pulling speed-dependent mechanical unfolding experiments and Monte Carlo simulations, we find that the unfolding potential widths of SUMO1 (∼0.51 nm) and SUMO2 (∼0.33 nm) are much larger than that of ubiquitin (∼0.19 nm), indicating that SUMO1 is six times and SUMO2 is three times mechanically more flexible than ubiquitin. These findings might also be important in understanding the functional differences between ubiquitin and SUMOs.
Collapse
Affiliation(s)
- Hema Chandra Kotamarthi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
138
|
Chang PC, Cheng CY, Campbell M, Yang YC, Hsu HW, Chang TY, Chu CH, Lee YW, Hung CL, Lai SM, Tepper CG, Hsieh WP, Wang HW, Tang CY, Wang WC, Kung HJ. The chromatin modification by SUMO-2/3 but not SUMO-1 prevents the epigenetic activation of key immune-related genes during Kaposi's sarcoma associated herpesvirus reactivation. BMC Genomics 2013; 14:824. [PMID: 24267727 PMCID: PMC4046822 DOI: 10.1186/1471-2164-14-824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND SUMOylation, as part of the epigenetic regulation of transcription, has been intensively studied in lower eukaryotes that contain only a single SUMO protein; however, the functions of SUMOylation during mammalian epigenetic transcriptional regulation are largely uncharacterized. Mammals express three major SUMO paralogues: SUMO-1, SUMO-2, and SUMO-3 (normally referred to as SUMO-1 and SUMO-2/3). Herpesviruses, including Kaposi's sarcoma associated herpesvirus (KSHV), seem to have evolved mechanisms that directly or indirectly modulate the SUMO machinery in order to evade host immune surveillance, thus advancing their survival. Interestingly, KSHV encodes a SUMO E3 ligase, K-bZIP, with specificity toward SUMO-2/3 and is an excellent model for investigating the global functional differences between SUMO paralogues. RESULTS We investigated the effect of experimental herpesvirus reactivation in a KSHV infected B lymphoma cell line on genomic SUMO-1 and SUMO-2/3 binding profiles together with the potential role of chromatin SUMOylation in transcription regulation. This was carried out via high-throughput sequencing analysis. Interestingly, chromatin immunoprecipitation sequencing (ChIP-seq) experiments showed that KSHV reactivation is accompanied by a significant increase in SUMO-2/3 modification around promoter regions, but SUMO-1 enrichment was absent. Expression profiling revealed that the SUMO-2/3 targeted genes are primarily highly transcribed genes that show no expression changes during viral reactivation. Gene ontology analysis further showed that these genes are involved in cellular immune responses and cytokine signaling. High-throughput annotation of SUMO occupancy of transcription factor binding sites (TFBS) pinpointed the presence of three master regulators of immune responses, IRF-1, IRF-2, and IRF-7, as potential SUMO-2/3 targeted transcriptional factors after KSHV reactivation. CONCLUSION Our study is the first to identify differential genome-wide SUMO modifications between SUMO paralogues during herpesvirus reactivation. Our findings indicate that SUMO-2/3 modification near protein-coding gene promoters occurs in order to maintain host immune-related gene unaltered during viral reactivation.
Collapse
Affiliation(s)
- Pei-Ching Chang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chia-Yang Cheng
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
- />Department of Computer Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Mel Campbell
- />UC Davis Cancer Center, University of California, Davis, CA 95616 USA
| | - Yi-Cheng Yang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Hung-Wei Hsu
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Ting-Yu Chang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chia-Han Chu
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Yi-Wei Lee
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chiu-Lien Hung
- />Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
| | - Shi-Mei Lai
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Clifford G Tepper
- />UC Davis Cancer Center, University of California, Davis, CA 95616 USA
- />Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
| | - Wen-Ping Hsieh
- />Institute of Statistics, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Hsei-Wei Wang
- />Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 11221 Taiwan
| | - Chuan-Yi Tang
- />Department of Computer Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Wen-Ching Wang
- />Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu, 300 Taiwan
| | - Hsing-Jien Kung
- />UC Davis Cancer Center, University of California, Davis, CA 95616 USA
- />Division of Molecular and Genomic Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County, 35053 Taiwan
- />Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616 USA
- />Institute for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 250 Wu-Xin Street, Taipei City, Taiwan
| |
Collapse
|
139
|
Harting R, Bayram O, Laubinger K, Valerius O, Braus GH. Interplay of the fungal sumoylation network for control of multicellular development. Mol Microbiol 2013; 90:1125-45. [PMID: 24279728 DOI: 10.1111/mmi.12421] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 12/30/2022]
Abstract
The role of the complex network of the ubiquitin-like modifier SumO in fungal development was analysed. SumO is not only required for sexual development but also for accurate induction and light stimulation of asexual development. The Aspergillus nidulans COMPASS complex including its subunits CclA and the methyltransferase SetA connects the SumO network to histone modification. SetA is required for correct positioning of aerial hyphae for conidiophore and asexual spore formation. Multicellular fungal development requires sumoylation and desumoylation. This includes the SumO processing enzyme UlpB, the E1 SumO activating enzyme AosA/UbaB, the E2 conjugation enzyme UbcN and UlpA as major SumO isopeptidase. Genetic suppression analysis suggests a connection between the genes for the Nedd8 isopeptidase DenA and the SumO isopeptidase UlpA and therefore a developmental interplay between neddylation and sumoylation in fungi. Biochemical evidence suggests an additional connection of the fungal SumO network with ubiquitination. Members of the cellular SumO network include histone modifiers, components of the transcription, RNA maturation and stress response machinery, or metabolic enzymes. Our data suggest that the SumO network controls specific temporal and spatial steps in fungal differentiation.
Collapse
Affiliation(s)
- Rebekka Harting
- Institut für Mikrobiologie und Genetik, Georg-August Universität Göttingen, Grisebachstrasse 8, D-37077, Göttingen, Germany
| | | | | | | | | |
Collapse
|
140
|
Citro S, Jaffray E, Hay RT, Seiser C, Chiocca S. A role for paralog-specific sumoylation in histone deacetylase 1 stability. J Mol Cell Biol 2013; 5:416-27. [PMID: 24068740 DOI: 10.1093/jmcb/mjt032] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase 1 (HDAC1) is an essential epigenetic regulator belonging to a highly conserved family of deacetylases. Increased HDAC1 activity and expression often correlates with neoplastic transformation. Here we show how specific modification of HDAC1 by SUMO1, but not by SUMO2, facilitates HDAC1 degradation. Our findings reveal that SUMO1, but not SUMO2, conjugation to HDAC1 promotes HDAC1 ubiquitination and degradation. This is suggested by the observation that in non-tumorigenic mammary epithelial cells HDAC1 is preferentially conjugated to SUMO1 leading to HDAC1 proteolysis, whereas in breast cancer cells HDAC1 is more conjugated to SUMO2, promoting HDAC1 protein stability. SUMO E3 ligases play an important role in paralog-specific conjugation; in particular, the SUMO E3 ligase PIASy, which is overexpressed in breast cancer cells, selectively promotes the conjugation of HDAC1 to SUMO2. Therefore, cell environment affects paralog-specific sumoylation of HDAC1, whose conjugation to SUMO1 but not to SUMO2 facilitates its protein turnover. Our findings uncover a role for paralog-specific sumoylation of HDAC1 whose significance is emphasized by the use of HDAC inhibitors as anticancer drugs.
Collapse
Affiliation(s)
- Simona Citro
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
141
|
SUMO-targeted ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:75-85. [PMID: 24018209 DOI: 10.1016/j.bbamcr.2013.08.022] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
142
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
143
|
Lamoliatte F, Bonneil E, Durette C, Caron-Lizotte O, Wildemann D, Zerweck J, Wenshuk H, Thibault P. Targeted identification of SUMOylation sites in human proteins using affinity enrichment and paralog-specific reporter ions. Mol Cell Proteomics 2013; 12:2536-50. [PMID: 23750026 DOI: 10.1074/mcp.m112.025569] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein modification by small ubiquitin-like modifier (SUMO) modulates the activities of numerous proteins involved in different cellular functions such as gene transcription, cell cycle, and DNA repair. Comprehensive identification of SUMOylated sites is a prerequisite to determine how SUMOylation regulates protein function. However, mapping SUMOylated Lys residues by mass spectrometry (MS) is challenging because of the dynamic nature of this modification, the existence of three functionally distinct human SUMO paralogs, and the large SUMO chain remnant that remains attached to tryptic peptides. To overcome these problems, we created HEK293 cell lines that stably express functional SUMO paralogs with an N-terminal His6-tag and an Arg residue near the C terminus that leave a short five amino acid SUMO remnant upon tryptic digestion. We determined the fragmentation patterns of our short SUMO remnant peptides by collisional activation and electron transfer dissociation using synthetic peptide libraries. Activation using higher energy collisional dissociation on the LTQ-Orbitrap Elite identified SUMO paralog-specific fragment ions and neutral losses of the SUMO remnant with high mass accuracy (< 5 ppm). We exploited these features to detect SUMO modified tryptic peptides in complex cell extracts by correlating mass measurements of precursor and fragment ions using a data independent acquisition method. We also generated bioinformatics tools to retrieve MS/MS spectra containing characteristic fragment ions to the identification of SUMOylated peptide by conventional Mascot database searches. In HEK293 cell extracts, this MS approach uncovered low abundance SUMOylated peptides and 37 SUMO3-modified Lys residues in target proteins, most of which were previously unknown. Interestingly, we identified mixed SUMO-ubiquitin chains with ubiquitylated SUMO proteins (K20 and K32) and SUMOylated ubiquitin (K63), suggesting a complex crosstalk between these two modifications.
Collapse
Affiliation(s)
- Frederic Lamoliatte
- Institute for Research in Immunology and Cancer, Université de Montréal, P.O. Box 6128, Station. Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Sharma P, Yamada S, Lualdi M, Dasso M, Kuehn MR. Senp1 is essential for desumoylating Sumo1-modified proteins but dispensable for Sumo2 and Sumo3 deconjugation in the mouse embryo. Cell Rep 2013; 3:1640-50. [PMID: 23684609 PMCID: PMC3775507 DOI: 10.1016/j.celrep.2013.04.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/15/2013] [Accepted: 04/18/2013] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modification with small ubiquitin-like modifier (Sumo) regulates numerous cellular and developmental processes. Sumoylation is dynamic with deconjugation by Sumo-specific proteases (Senps) regulating steady-state levels. Different Senps are found in distinct subcellular domains, which may limit their deconjugation activity to colocalizing Sumo-modified proteins. In vitro, Senps can discriminate between the different Sumo paralogs: Sumo1 versus the highly related Sumo2 and Sumo3 (Sumo2/3), which can form poly-Sumo chains. However, a full understanding of Senp specificity in vivo is still lacking. Here, using biochemical and genetic approaches, we establish that Senp1 has an essential, nonredundant function to desumoylate Sumo1-modified proteins during mouse embryonic development. Senp1 specificity for Sumo1 conjugates represents an intrinsic function and not simply a product of colocalization. In contrast, Senp1 has only a limited role in Sumo2/3 desumoylation, although it may regulate Sumo1-mediated termination of poly-Sumo2/3 chains.
Collapse
Affiliation(s)
- Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Satoru Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Margaret Lualdi
- Laboratory Animal Sciences Program, SAIC-Frederick, Frederick, MD 21702, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R. Kuehn
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
145
|
Mattoscio D, Segré CV, Chiocca S. Viral manipulation of cellular protein conjugation pathways: The SUMO lesson. World J Virol 2013; 2:79-90. [PMID: 24175232 PMCID: PMC3785051 DOI: 10.5501/wjv.v2.i2.79] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 02/05/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)ylation is a key post-translational modification mechanism that controls the function of a plethora of proteins and biological processes. Given its central regulatory role, it is not surprising that it is widely exploited by viruses. A number of viral proteins are known to modify and/or be modified by the SUMOylation system to exert their function, to create a cellular environment more favorable for virus survival and propagation, and to prevent host antiviral responses. Since the SUMO pathway is a multi-step cascade, viral proteins engage with it at many levels, to advance and favor each stage of a typical infection cycle: replication, viral assembly and immune evasion. Here we review the current knowledge on the interplay between the host SUMO system and viral lifecycle.
Collapse
|
146
|
Merbl Y, Refour P, Patel H, Springer M, Kirschner MW. Profiling of ubiquitin-like modifications reveals features of mitotic control. Cell 2013; 152:1160-72. [PMID: 23452859 DOI: 10.1016/j.cell.2013.02.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 07/18/2012] [Accepted: 02/05/2013] [Indexed: 12/17/2022]
Abstract
Ubiquitin and ubiquitin-like (Ubl) protein modifications affect protein stability, activity, and localization, but we still lack broad understanding of the functions of Ubl modifications. We have profiled the protein targets of ubiquitin and six additional Ubls in mitosis using a functional assay that utilizes active mammalian cell extracts and protein microarrays and identified 1,500 potential substrates; 80-200 protein targets were exclusive to each Ubl. The network structure is nonrandom, with most targets mapping to a single Ubl. There are distinct molecular functions for each Ubl, suggesting divergent biological roles. Analysis of differential profiles between mitosis and G1 highlighted a previously underappreciated role for the Ubl, FAT10, in mitotic regulation. In addition to its role as a resource for Ubl modifications, our study provides a systematic approach to analyze changes in posttranslational modifications at various cellular states.
Collapse
Affiliation(s)
- Yifat Merbl
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Warren Alpert 536, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
147
|
PML-mediated signaling and its role in cancer stem cells. Oncogene 2013; 33:1475-84. [PMID: 23563177 DOI: 10.1038/onc.2013.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/06/2013] [Accepted: 02/09/2013] [Indexed: 02/08/2023]
Abstract
The promyelocytic leukemia (PML) protein, initially discovered as a part of the PML/retinoic acid receptor alpha fusion protein, has been found to be a critical player in oncogenesis and tumor progression. Multiple cellular activities, including DNA repair, alternative lengthening of telomeres, transcriptional control, apoptosis and senescence, are regulated by PML and its featured subcellular structure, the PML nuclear body. In correspondence with its role in many important life processes, PML mediates several complex downstream signaling pathways. The determinant function of PML in tumorigenesis and cancer progression raises the interest in its involvement in cancer stem cells (CSCs), a subpopulation of cancer cells that share properties with stem cells and are critical for tumor propagation. Recently, there are exciting discoveries concerning the requirement of PML in CSC maintenance. Growing evidences strongly suggest a positive role of PML in regulating CSCs in both hematopoietic cancers and solid tumors, whereas the underlying mechanisms may be different and remain elusive. Here we summarize and discuss the PML-mediated signaling pathways in cancers and their potential roles in regulating CSCs.
Collapse
|
148
|
Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 2013; 33:2163-77. [PMID: 23530056 DOI: 10.1128/mcb.01019-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Arkadia is a RING domain E3 ubiquitin ligase that activates the transforming growth factor β (TGF-β) pathway by inducing degradation of the inhibitor SnoN/Ski. Here we show that Arkadia contains three successive SUMO-interacting motifs (SIMs) that mediate noncovalent interaction with poly-SUMO2. We identify the third SIM (VVDL) of Arkadia to be the most relevant one in this interaction. Furthermore, we provide evidence that Arkadia can function as a SUMO-targeted ubiquitin ligase (STUBL) by ubiquitinating SUMO chains. While the SIMs of Arkadia are not essential for SnoN/Ski degradation in response to TGF-β, we show that they are necessary for the interaction of Arkadia with polysumoylated PML in response to arsenic and its concomitant accumulation into PML nuclear bodies. Moreover, Arkadia depletion leads to accumulation of polysumoylated PML in response to arsenic, highlighting a requirement of Arkadia for arsenic-induced degradation of polysumoylated PML. Interestingly, Arkadia homodimerizes but does not heterodimerize with RNF4, the other STUBL involved in PML degradation, suggesting that these two E3 ligases do not act synergistically but most probably act independently during this process. Altogether, these results identify Arkadia to be a novel STUBL that can trigger degradation of signal-induced polysumoylated proteins.
Collapse
|
149
|
Yang YC, Yoshikai Y, Hsu SW, Saitoh H, Chang LK. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 2013; 288:12866-79. [PMID: 23504328 DOI: 10.1074/jbc.m112.413393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) encodes a transcription factor, Rta, which is required to activate the transcription of EBV lytic genes. This study demonstrates that treating P3HR1 cells with a proteasome inhibitor, MG132, causes the accumulation of SUMO-Rta and promotes the expression of EA-D. GST pulldown and coimmunoprecipitation studies reveal that RNF4, a RING-domain-containing ubiquitin E3 ligase, interacts with Rta. RNF4 also targets SUMO-2-conjugated Rta and promotes its ubiquitination in vitro. Additionally, SUMO interaction motifs in RNF4 are important to the ubiquitination of Rta because the RNF4 mutant with a mutation at the motifs eliminates ubiquitination. The mutation of four lysine residues on Rta that abrogated SUMO-3 conjugation to Rta also decreases the enhancement of the ubiquitination of Rta by RNF4. This finding demonstrates that RNF4 is a SUMO-targeted ubiquitin E3 ligase of Rta. Finally, knockdown of RNF4 enhances the expression of Rta and EA-D, subsequently promoting EBV lytic replication and virions production. Results of this study significantly contribute to efforts to elucidate a SUMO-targeted ubiquitin E3 ligase that regulates Rta ubiquitination to influence the lytic development of EBV.
Collapse
Affiliation(s)
- Ya-Chun Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | | | | | | | | |
Collapse
|
150
|
Dangoumau A, Veyrat-Durebex C, Blasco H, Praline J, Corcia P, Andres CR, Vourc'h P. Protein SUMOylation, an emerging pathway in amyotrophic lateral sclerosis. Int J Neurosci 2013; 123:366-74. [PMID: 23289752 DOI: 10.3109/00207454.2012.761984] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The covalent attachment of SUMO proteins (small ubiquitin-like modifier) to specific proteins or SUMOylation regulates their functional properties in the nucleus and cytoplasm of neurons. Recent studies reported dysfunction of the SUMO pathway in molecular and cellular abnormalities associated with amyotrophic lateral sclerosis (ALS). Furthermore, several observations support a direct role for SUMOylation in diverse pathogenic mechanisms involved in ALS, such as response to hypoxia, oxidative stress, glutamate excitotoxicity and proteasome impairment. Recent results also suggest that SUMO modifications of superoxide dismutase 1, transactive response DNA-binding protein 43, CTE (COOH terminus of EAAT2) (proteolytic C-terminal fragment of the glutamate transporter excitatory amino acid transporter 2, EAAT2) and proteins regulating the turnover of ALS-related proteins can participate in the pathogenesis of ALS. Moreover, the fused in sarcoma (FUS) gene, mutated in ALS, encodes a protein with a SUMO E3 ligase activity. In this review, we summarize the functioning of the SUMO pathway in normal conditions and in response to stresses, its action on ALS-related proteins and discuss the need for further research on this pathway in ALS.
Collapse
|