101
|
Pizzorni N, Ciammola A, Casazza G, Ginocchio D, Bianchi F, Feroldi S, Poletti B, Nanetti L, Mariotti C, Mora G, Schindler A. Predictors of malnutrition risk in neurodegenerative diseases: the role of swallowing function. Eur J Neurol 2022; 29:2493-2498. [PMID: 35384164 PMCID: PMC9540307 DOI: 10.1111/ene.15345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oropharyngeal dysphagia is generally recognized to increase the risk of malnutrition, however, its role in patients with neurodegenerative disease has still to be determined. The cross-sectional study aimed to investigate the impact of swallowing function on malnutrition risk in patients with neurodegenerative diseases. METHODS Patients with oral nutrition and diagnosis of Huntington's disease (HD), Parkinson's disease (PD), or Amyotrophic Lateral Sclerosis (ALS) were recruited. Demographic and clinical data were collected. The swallowing assessment included a fiberoptic endoscopic evaluation of swallowing, an oral phase assessment, and a meal observation scored with the Mealtime Assessment Scale (MAS). Malnutrition risk was assessed with the Mini Nutritional Assessment (MNA®). RESULTS Overall, 148 patients were recruited (54 HD, 33 PD, and 61 ALS). One-hundred (67.6%) patients were considered at risk of malnutrition. At the multivariate analysis, age ≥65 (OR 3.16, p=0.014), disease severity (moderate vs mild OR 3.89, severe vs mild OR 9.71, p=0.003), number of masticatory cycles (OR 1.03, p=0.044), and MAS safety (OR 1.44, p=0.016) were significantly associated with malnutrition risk. CONCLUSION Prolonged oral phase and signs of impaired swallowing safety during meals, together with older age and disease severity, are independent predictors of malnutrition risk in neurodegenerative diseases. The study broadens the focus on dysphagia, stressing the importance of an early detection not only of pharyngeal signs, but also of oral phase impairment and meal difficulties through a multidimensional swallowing assessment.
Collapse
Affiliation(s)
- Nicole Pizzorni
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giovanni Casazza
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Daniela Ginocchio
- ALS Center, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | - Federica Bianchi
- ALS Center, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | - Sarah Feroldi
- ALS Center, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy.,Ph.D. Program in Neuroscience, School of Medicine and Surgery, University Milano-Bicocca, Monza, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Lorenzo Nanetti
- Department of Diagnostics and Technology, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Department of Diagnostics and Technology, Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Gabriele Mora
- ALS Center, IRCCS Istituti Clinici Scientifici Maugeri, Milan, Italy
| | - Antonio Schindler
- Department of Biomedical and Clinical Sciences "Luigi Sacco", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
102
|
Youn BY, Lee SY, Cho W, Bae KR, Ko SG, Cheon C. Global Trends of Nutrition in Cancer Research: A Bibliometric and Visualized Analysis Study over the Past 10 Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074165. [PMID: 35409847 PMCID: PMC8998574 DOI: 10.3390/ijerph19074165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023]
Abstract
The increasing application of nutrition in cancer management has attracted a great deal of research interest in recent decades. Nutritional therapies, interventions, and assessments were known to have positive effects on reducing side effects from cancer therapy. In order to identify the global research output for nutrition in cancer research, a bibliometric analysis during the past 10 years was conducted to evaluate the current status of trends, gaps, and research directions as no bibliometric studies have been conducted regarding nutrition and cancer. After the data collection, a total of 1521 articles were chosen for this bibliometric study. The visualization analysis was performed with VOSviewer. The number of publications has grown continuously since a substantial spark was identified in 2019. The majority of the authors’ affiliations were in European countries. Four cancer types were recognized among the top 10 author keywords; they were breast cancer, head and neck cancer, colorectal cancer, and gastric cancer. The Nutrients journal was the most popular among the authors as the journal published 195 articles related to the topic. In conclusion, providing evidence-based nutritional solutions for various types of cancer is essential to nutrition and cancer research. Since it is presumed to have a growing number of cancer patients worldwide with the aging population, it is vital to continuously generate research finding effective nutrition therapies for cancer patients.
Collapse
Affiliation(s)
- Bo-Young Youn
- Department of Preventive Medicine, Kyung Hee University, Seoul 02447, Korea; (B.-Y.Y.); (S.-G.K.)
| | - Seo-Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Wonje Cho
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Kwang-Rok Bae
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - Seong-Gyu Ko
- Department of Preventive Medicine, Kyung Hee University, Seoul 02447, Korea; (B.-Y.Y.); (S.-G.K.)
| | - Chunhoo Cheon
- Department of Preventive Medicine, Kyung Hee University, Seoul 02447, Korea; (B.-Y.Y.); (S.-G.K.)
- Correspondence: ; Tel.: +82-2-961-2382
| |
Collapse
|
103
|
Gates EJ, Bernath AK, Klegeris A. Modifying the diet and gut microbiota to prevent and manage neurodegenerative diseases. Rev Neurosci 2022; 33:767-787. [PMID: 35304983 DOI: 10.1515/revneuro-2021-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
The global prevalence of Alzheimer's disease and Parkinson's disease is steadily increasing due to the aging population. The lack of effective drugs against these neurodegenerative disorders makes it imperative to identify new strategies for their prevention and treatment. Recent studies have revealed that harnessing the power of the gut microbiota through modification of diet may be a valuable approach for reducing the risk, modulating the symptoms, and ameliorating the pathophysiological aspects of neurodegenerative diseases. Consuming specific dietary components can alter the prevalence of bacterial communities within the gut to a healthy enterotype, which can influence the production of beneficial metabolites by microbiota. This article focuses on several dietary components, which have been demonstrated to affect the gut microbiota-brain axis and therefore could lead to attenuation of specific pathological processes in neurodegenerative diseases. Published evidence indicates that fermented foods, including kefir, and foods that are high in bioactive polyphenols and complex carbohydrates, such as grapes, pomegranates, and seaweed, may be effective at reducing neuroinflammation, oxidative stress, neurotransmitter dysfunction, and neuronal death associated with Alzheimer's and Parkinson's diseases. Even though experimental evidence supporting the protective properties of the above dietary components in these diseases is emerging, it is evident that further human clinical studies are required to conclusively establish the benefits of any suggested dietary interventions. The translational potential of such research is illustrated by the clinical success of the recently developed Alzheimer's drug, GV-971, which is a seaweed derivative that works by modulating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Ellen J Gates
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Anna K Bernath
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
104
|
Qian T, Zhao L, Pan X, Sang S, Xu Y, Wang C, Zhong C, Fei G, Cheng X. Association Between Blood Biochemical Factors Contributing to Cognitive Decline and B Vitamins in Patients With Alzheimer's Disease. Front Nutr 2022; 9:823573. [PMID: 35265656 PMCID: PMC8898888 DOI: 10.3389/fnut.2022.823573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/27/2022] [Indexed: 01/01/2023] Open
Abstract
Background Malnutrition, metabolism stress, inflammation, peripheral organs dysfunction, and B vitamins deficiency significantly contribute to the progression and mortality of Alzheimer's disease (AD). However, it is unclear which blood biochemical indicators are most closely related to cognitive decline and B vitamins deficiency (thiamine, folate, vitamin B12) in patients with AD. Methods This was a cross-sectional study of 206 AD patients recruited from six hospitals in China. Thiamine diphosphate (TDP), the bioactive form of thiamine, was measured by high-performance liquid chromatography fluoroscopy (HPLC) at a single center. Levels of biochemical indicators (except TDP) were measured by regular and standard laboratory tests in each hospital. Pearson's rank correlation analysis was used to assess relationships between B vitamins and biochemical indicators. T-test was used to compare the difference between ApoE ε4 and non-ApoE ε4 groups. Differences were considered statistically significant as P < 0.05. Results Among the biochemical results, in AD population, malnutrition indicators (erythrocyte, hemoglobin, serum albumin, and total protein) were most significantly associated with cognitive function, as was free triiodothyronine (FT3) levels which had been observed in previous study. Malnutrition and FT3 levels depend on age but not apolipoprotein E (ApoE) genotype. Meanwhile, Among the B vitamins, TDP was the most significantly associated with malnutrition indicators and FT3. Conclusion Our results indicated that TDP reduction could be a modifiable risk factor for malnutrition and FT3 that contributed to cognitive decline in AD patients. Correcting thiamine metabolism could serve as an optional therapy target for AD treatment.
Collapse
Affiliation(s)
- Ting Qian
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lei Zhao
- Department of Neurology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoli Pan
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Shaoming Sang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yangqi Xu
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Changpeng Wang
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Chunjiu Zhong
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Guoqiang Fei
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoqin Cheng
- Department of Neurology, Zhongshan Hospital (Xiamen Branch), Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
105
|
Dong R, Lin H, Ding Y, Chen X, Shi R, Yuan S, Li J, Zhu B, Xu X, Shen W, Wang K, Ding D, He N. Effects of Docosahexanoic Acid on Gut Microbiota and Fecal Metabolites in HIV-Infected Patients With Neurocognitive Impairment: A 6-Month Randomized, Double-Blind, Placebo-Controlled Trial. Front Nutr 2022; 8:756720. [PMID: 35127778 PMCID: PMC8814435 DOI: 10.3389/fnut.2021.756720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Neurocognitive impairment (NCI) and gut microbiota dysbiosis are prevalent in patients with HIV infection. Docosahexanoic acid (DHA) supplementation may alleviate multiple neurocognitive diseases symptoms and plays important role in regulating gut microbiota. However, it is not known whether DHA algae oil supplements can alleviate neurocognitive impairment (NCI) and regulate gut microbiota and fecal metabolites. A randomized, double-blind, placebo-controlled trial was performed on 68 HIV-infected patients with NCI. Participants were randomized to receive a 3.15 g daily DHA algae oil supplement or placebo for 6 months. We collected blood and fecal samples from these patients before and after the trial. Mini mental state examination (MMSE) and neuropsychological tests (NP tests) were administered to assess the cognitive status of participants. The influence of DHA algae oil on the gut microbiota, fecal metabolomics, plasma proinflammatory, and oxidative stress factors was also investigated. There were no significant changes in NCI according to global diagnosis score (GDS) and MMSE score within the two groups, while patients receiving DHA had improvement in several blood lipids, pro-inflammatory and oxidative stress factors. The DHA supplement increased α-diversity indexes, increased abundances of Blautia, Bifidobacterium, Dorea, Lactobacillus, Faecalibacterium, Fusobacterium, and Agathobacter, and decreased abundances of Bacteroides and Prevotella_9. Furthermore, DHA supplement was correlated with improved fecal lipid metabolites as indicated by ceramides, bile acids, glycerophospholipids. In addition, the DHA supplement was associated with altered cholesterol metabolism and purine metabolism pathways. A daily supplement of DHA algae oil for 6 months has been shown to promote favorable transformations in gut microbiota, profiles of fecal metabolomic, and factors responsible for proinflammatory and oxidative stress, which might be beneficial for the prognosis of HIV-infected patients with NCI in the long-term.
Collapse
Affiliation(s)
- Ruihua Dong
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Haijiang Lin
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Taizhou City Center for Disease Control and Prevention, Taizhou City, China
| | - Yingying Ding
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoxiao Chen
- Taizhou City Center for Disease Control and Prevention, Taizhou City, China
| | - Ruizi Shi
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Shiying Yuan
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Jing Li
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Bowen Zhu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaohui Xu
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou City, China
| | - Keran Wang
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Ding Ding
- Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Na He
- Department of Epidemiology, School of Public Health, and the Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Diseases and Biosafety, Fudan University, Shanghai, China
- *Correspondence: Na He
| |
Collapse
|
106
|
D’Antona S, Caramenti M, Porro D, Castiglioni I, Cava C. Amyotrophic Lateral Sclerosis: A Diet Review. Foods 2021; 10:foods10123128. [PMID: 34945679 PMCID: PMC8702143 DOI: 10.3390/foods10123128] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/26/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and β-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.
Collapse
Affiliation(s)
- Salvatore D’Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Martina Caramenti
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
| | - Isabella Castiglioni
- Department of Physics “G. Occhialini”, University of Milan-Bicocca, Piazza della Scienza 3, 20126 Milan, Italy;
| | - Claudia Cava
- Institute of Bioimaging and Molecular Physiology, National Research Council (IBFM-CNR), Via F.lli Cervi 93, 20054 Milan, Italy; (S.D.); (M.C.); (D.P.)
- Correspondence:
| |
Collapse
|
107
|
Liu XX, Wu PF, Liu YZ, Jiang YL, Wan MD, Xiao XW, Yang QJ, Jiao B, Liao XX, Wang JL, Liu SH, Zhang X, Shen L. Association Between Serum Vitamins and the Risk of Alzheimer's Disease in Chinese Population. J Alzheimers Dis 2021; 85:829-836. [PMID: 34864672 DOI: 10.3233/jad-215104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic and fatal neurodegenerative disease; accumulating evidence suggests that vitamin deficiency is associated with the risk of AD. However, studies attempting to elucidate the relationship between vitamins and AD varied widely. OBJECTIVE This study aimed to investigate the relationship between serum vitamin levels and AD in a cohort of the Chinese population. METHODS A total of 368 AD patients and 574 healthy controls were recruited in this study; serum vitamin A, B1, B6, B9, B12, C, D, and E were measured in all participants. RESULTS Compared with the controls, vitamin B2, B9, B12, D, and E were significantly reduced in AD patients. Lower levels of vitamin B2, B9, B12, D, and E were associated with the risk of AD. After adjusting for age and gender, low levels of vitamin B2, B9, and B12 were still related to the risk of AD. In addition, a negative correlation was determined between vitamin E concentration and Activity of Daily Living Scale score while no significant association was found between serum vitamins and age at onset, disease duration, Mini-Mental State Examination, and Neuropsychiatric Inventory Questionnaire score. CONCLUSION We conclude that lower vitamin B2, B9, B12, D, and E might be associated with the risk of AD, especially vitamin B2, B9, and B12. And lower vitamin E might be related to severe ability impairment of daily activities.
Collapse
Affiliation(s)
- Xi-Xi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wu
- Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ying-Zi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ya-Ling Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mei-Dan Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Jie Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xin-Xin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Shao-Hui Liu
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
108
|
Chromiec PA, Urbaś ZK, Jacko M, Kaczor JJ. The Proper Diet and Regular Physical Activity Slow Down the Development of Parkinson Disease. Aging Dis 2021; 12:1605-1623. [PMID: 34631210 PMCID: PMC8460298 DOI: 10.14336/ad.2021.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
From year to year, we know more about neurodegeneration and Parkinson’s disease (PD). A positive influence of various types of physical activity is more often described in the context of neuroprotection and prevention as well as the form of rehabilitation in Parkinson’s patients. Moreover, when we look at supplementation, clinical nutrition and dietetics, we will see that balancing consumed products and supplementing the vitamins or minerals is necessary. Considering the biochemical pathways in skeletal muscle, we may see that many researchers desire to identify molecular mediators that have an impact through exercise and balanced diet on human health or development of the neurodegenerative disease. Therefore, it is mandatory to study the potential mechanism(s) related to diet and factors resulted from physical activity as molecular mediators, which play a therapeutic role in PD. This review summarizes the available literature on mechanisms and specific pathways involved in diet-exercise relationship and discusses how therapy, including appropriate exercises and diet that influence molecular mediators, may significantly slow down the progress of neurodegenerative processes. We suggest that a proper diet combined with physical activity will be a good solution for psycho-muscle BALANCE not only in PD but also in other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Zofia Kinga Urbaś
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Martyna Jacko
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Jan Jacek Kaczor
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| |
Collapse
|
109
|
Enjoy Carefully: The Multifaceted Role of Vitamin E in Neuro-Nutrition. Int J Mol Sci 2021; 22:ijms221810087. [PMID: 34576251 PMCID: PMC8466828 DOI: 10.3390/ijms221810087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin E is often associated with health benefits, such as antioxidant, anti-inflammatory and cholesterol-lowering effects. These properties make its supplementation a suitable therapeutic approach in neurodegenerative disorders, for example, Alzheimer’s or Parkinson’s disease. However, trials evaluating the effects of vitamin E supplementation are inconsistent. In randomized controlled trials, the observed associations often cannot be substantiated. This could be due to the wide variety of study designs regarding the dosage and duration of vitamin E supplementation. Furthermore, genetic variants can influence vitamin E uptake and/or metabolism, thereby distorting its overall effect. Recent studies also show adverse effects of vitamin E supplementation regarding Alzheimer’s disease due to the increased synthesis of amyloid β. These diverse effects may underline the inhomogeneous outcomes associated with its supplementation and argue for a more thoughtful usage of vitamin E. Specifically, the genetic and nutritional profile should be taken into consideration to identify suitable candidates who will benefit from supplementation. In this review, we will provide an overview of the current knowledge of vitamin E supplementation in neurodegenerative disease and give an outlook on individualized, sustainable neuro-nutrition, with a focus on vitamin E supplementation.
Collapse
|
110
|
Kylkilahti TM, Berends E, Ramos M, Shanbhag NC, Töger J, Markenroth Bloch K, Lundgaard I. Achieving brain clearance and preventing neurodegenerative diseases-A glymphatic perspective. J Cereb Blood Flow Metab 2021; 41:2137-2149. [PMID: 33461408 PMCID: PMC8392766 DOI: 10.1177/0271678x20982388] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
Age-related neurodegenerative diseases are a growing burden to society, and many are sporadic, meaning that the environment, diet and lifestyle play significant roles. Cerebrospinal fluid (CSF)-mediated clearing of brain waste products via perivascular pathways, named the glymphatic system, is receiving increasing interest, as it offers unexplored perspectives on understanding neurodegenerative diseases. The glymphatic system is involved in clearance of metabolic by-products such as amyloid-β from the brain, and its function is believed to lower the risk of developing some of the most common neurodegenerative diseases. Here, we present magnetic resonance imaging (MRI) data on the heart cycle's control of CSF flow in humans which corroborates findings from animal studies. We also review the importance of sleep, diet, vascular health for glymphatic clearance and find that these factors are also known players in brain longevity.
Collapse
Affiliation(s)
- Tekla Maria Kylkilahti
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Eline Berends
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Marta Ramos
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Nagesh C Shanbhag
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Johannes Töger
- Diagnostic Radiology, Department of Clinical Sciences, Lund University and Skane University Hospital Lund, Lund, Sweden
| | | | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
111
|
Zhang JJ, Li L, Liu D, Hu FF, Cheng GR, Xu L, Yan PT, Tian Y, Hu H, Yu YF, Gan XG, An LN, Zhang B, Qian J, Fu LY, Cheng X, Lian PF, Zou MJ, Chen C, Wu QM, Zeng Y. Urban-Rural Disparities in the Association Between Body Mass Index and Cognitive Impairment in Older Adults: A Cross-Sectional Study in Central China. J Alzheimers Dis 2021; 83:1741-1752. [PMID: 34459393 DOI: 10.3233/jad-210295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Some studies have demonstrated an association between low and high body mass index (BMI) and an increased risk of dementia. However, only a few of these studies were performed in rural areas. OBJECTIVE This cross-sectional study investigated the associations between BMI and cognitive impairment among community-dwelling older adults from rural and urban areas. METHODS 8,221 older persons enrolled in the Hubei Memory & Ageing Cohort Study (HMACS) were recruited. Sociodemographic and lifestyle data, comorbidities, physical measurements, and clinical diagnoses of cognitive impairment were analyzed. Logistic regression was performed to assess the associations of BMI categories with cognitive impairment. A series of sensitivity analyses were conducted to test whether reverse causality could influence our results. RESULTS Being underweight in the rural-dwelling participants increased the risk of cognitive impairment. Being overweight was a protective factor in rural-dwelling participants aged 65-69 years and 75-79 years, whereas being underweight was significantly associated with cognitive impairment (OR, 1.37; 95% CI: 1.03-1.83; p < 0.05). Sensitivity analyses support that underweight had an additive effect on the odds of cognitive impairment and was related to risk of dementia. Interaction test revealed that the differences between urban/rural in the relationship between BMI and cognitive impairment are statistically significant. CONCLUSION Associations between BMI and cognitive impairment differ among urban/rural groups. Older people with low BMI living in rural China are at a higher risk for dementia than those living in urban areas.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Lin Li
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Dan Liu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Fei-Fei Hu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Gui-Rong Cheng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Ping-Ting Yan
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Yuan Tian
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Heng Hu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Ya-Fu Yu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Xu-Guang Gan
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Li-Na An
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Jin Qian
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Li-Yan Fu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Xi Cheng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Peng-Fei Lian
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Ming-Jun Zou
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Cong Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| | - Qing-Ming Wu
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
112
|
Genetic and environmental factors in Alzheimer's and Parkinson's diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021; 7:70. [PMID: 34381040 PMCID: PMC8357954 DOI: 10.1038/s41531-021-00213-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are characterized by neuronal impairment and loss of function, and with the major shared histopathological hallmarks of misfolding and aggregation of specific proteins inside or outside cells. Some genetic and environmental factors contribute to the promotion of the development and progression of neurodegenerative diseases. Currently, there are no effective treatments for neurodegenerative diseases. It has been revealed that bidirectional communication exists between the brain and the gut. The gut microbiota is a changeable and experience-dependent ecosystem and can be modified by genetic and environmental factors. The gut microbiota provides potential therapeutic targets that can be regulated as new interventions for neurodegenerative diseases. In this review, we discuss genetic and environmental risk factors for neurodegenerative diseases, summarize the communication among the components of the microbiota-gut-brain axis, and discuss the treatment strategy of fecal microbiota transplantation (FMT). FMT is a promising treatment for neurodegenerative diseases, and restoration of the gut microbiota to a premorbid state is a novel goal for prevention and treatment strategies.
Collapse
|
113
|
Hoscheidt S, Sanderlin AH, Baker LD, Jung Y, Lockhart S, Kellar D, Whitlow C, Hanson AJ, Friedman S, Register T, Leverenz JB, Craft S. Mediterranean and Western diet effects on Alzheimer's disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement 2021; 18:457-468. [PMID: 34310044 PMCID: PMC9207984 DOI: 10.1002/alz.12421] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Introduction Mid‐life dietary patterns are associated with Alzheimer's disease (AD) risk, although few controlled trials have been conducted. Methods Eighty‐seven participants (age range: 45 to 65) with normal cognition (NC, n = 56) or mild cognitive impairment (MCI, n = 31) received isocaloric diets high or low in saturated fat, glycemic index, and sodium (Western‐like/West‐diet vs. Mediterranean‐like/Med‐diet) for 4 weeks. Diet effects on cerebrospinal fluid (CSF) biomarkers, cognition, and cerebral perfusion were assessed to determine whether responses differed by cognitive status. Results CSF amyloid beta (Aβ)42/40 ratios increased following the Med‐diet, and decreased after West‐diet for NC adults, whereas the MCI group showed the reverse pattern. For the MCI group, the West‐diet reduced and the Med‐diet increased total tau (t‐tau), whereas CSF Aβ42/t‐tau ratios increased following the West‐diet and decreased following the Med‐diet. For NC participants, the Med‐diet increased and the West‐diet decreased cerebral perfusion. Discussion Diet response during middle age may highlight early pathophysiological processes that increase AD risk.
Collapse
Affiliation(s)
| | | | - Laura D Baker
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Youngkyoo Jung
- University of California-Davis, Sacramento, California, USA
| | - Samuel Lockhart
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Angela J Hanson
- University of Washington Medical Center, Seattle, Washington, USA
| | - Seth Friedman
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Thomas Register
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James B Leverenz
- Cleveland Clinic Lou Ruovo Center for Brain Health, Cleveland, Ohio, USA
| | - Suzanne Craft
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
114
|
Schneider AC, Moon C, Whitaker K, Zhang D, Carr LJ, Bao W, Xiao Q. Association of Sleep With Risk of Alzheimer's Disease Mortality: NIH-AARP Diet and Health Study. J Appl Gerontol 2021; 41:1057-1065. [PMID: 34109847 DOI: 10.1177/07334648211019207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Alzheimer's disease (AD) and related dementias contribute to one in three senior deaths. Lifestyle factors, including sleep, may contribute to AD risk and mortality; however, current evidence on sleep and AD mortality is mixed. METHODS We used data from the NIH-AARP Diet and Health Study. Sleep duration and napping were self-reported and AD death were ascertained via linkage to the National Death Index. RESULTS Long sleep and napping were both associated with increased AD mortality. Specifically, 9+ hr of sleep was associated with 50% increase (hazard ratio = 1.50, 95% CI = [1.17, 1.92]) in AD mortality when compared 7 to 8 hr, while napping for 1+ hr was associated with 29% increase (1.29 [1.08, 1.55]) when compared with no napping. Results appeared to be stronger in men and remained after removing AD deaths within first 5 years after baseline. DISCUSSION Long sleep and napping may predict higher AD mortality in the older population.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Bao
- University of Iowa, Iowa City, USA
| | - Qian Xiao
- University of Iowa, Iowa City, USA
- The University of Texas Health Science Center at Houston, USA
| |
Collapse
|
115
|
Yang M, Xuan Z, Wang Q, Yan S, Zhou D, Naman CB, Zhang J, He S, Yan X, Cui W. Fucoxanthin has potential for therapeutic efficacy in neurodegenerative disorders by acting on multiple targets. Nutr Neurosci 2021; 25:2167-2180. [PMID: 33993853 DOI: 10.1080/1028415x.2021.1926140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Fucoxanthin, one of the most abundant carotenoids from edible brown seaweeds, for years has been used as a bioactive dietary supplement and functional food ingredient. Recently, fucoxanthin was reported to penetrate the blood-brain barrier, and was superior to other carotenoids to exert anti-neurodegenerative disorder effects via acting on multiple targets, including amyloid protein aggregation, oxidative stress, neuroinflammation, neuronal loss, neurotransmission dysregulation and gut microbiota disorder. However, the concentration of fucoxanthin required for in vivo neuroprotective effects is somewhat high, and the poor bioavailability of this molecule might prevent its clinical use. As such, new strategies have been introduced to overcome these obstacles, and may help to develop fucoxanthin as a novel lead for neurodegenerative disorders. Moreover, it has been shown that some metabolites of fucoxanthin may produce potent in vivo neuroprotective effects. Altogether, these studies suggest the possibility for future development of fucoxanthin as a one-compound-multiple-target or pro-drug type pharmaceutical or nutraceutical treatment for neurodegenerative disorders.Trial registration: ClinicalTrials.gov identifier: NCT03625284.Trial registration: ClinicalTrials.gov identifier: NCT02875392.Trial registration: ClinicalTrials.gov identifier: NCT03613740.Trial registration: ClinicalTrials.gov identifier: NCT04761406.
Collapse
Affiliation(s)
- Mengxiang Yang
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Zhenquan Xuan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| | - Dongsheng Zhou
- Ningbo Kangning Hospital, Ningbo, People's Republic of China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Jinrong Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, People's Republic of China.,Laboratory of Seafood Processing, Innovative and Application Institute, Zhejiang Ocean University, Zhoushan, People's Republic of China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo, People's Republic of China.,Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
116
|
Walker AC, Bhargava R, Vaziriyan-Sani AS, Pourciau C, Donahue ET, Dove AS, Gebhardt MJ, Ellward GL, Romeo T, Czyż DM. Colonization of the Caenorhabditis elegans gut with human enteric bacterial pathogens leads to proteostasis disruption that is rescued by butyrate. PLoS Pathog 2021; 17:e1009510. [PMID: 33956916 PMCID: PMC8101752 DOI: 10.1371/journal.ppat.1009510] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Protein conformational diseases are characterized by misfolding and toxic aggregation of metastable proteins, often culminating in neurodegeneration. Enteric bacteria influence the pathogenesis of neurodegenerative diseases; however, the complexity of the human microbiome hinders our understanding of how individual microbes influence these diseases. Disruption of host protein homeostasis, or proteostasis, affects the onset and progression of these diseases. To investigate the effect of bacteria on host proteostasis, we used Caenorhabditis elegans expressing tissue-specific polyglutamine reporters that detect changes in the protein folding environment. We found that colonization of the C. elegans gut with enteric bacterial pathogens disrupted proteostasis in the intestine, muscle, neurons, and the gonad, while the presence of bacteria that conditionally synthesize butyrate, a molecule previously shown to be beneficial in neurodegenerative disease models, suppressed aggregation and the associated proteotoxicity. Co-colonization with this butyrogenic strain suppressed bacteria-induced protein aggregation, emphasizing the importance of microbial interaction and its impact on host proteostasis. Further experiments demonstrated that the beneficial effect of butyrate depended on the bacteria that colonized the gut and that this protective effect required SKN-1/Nrf2 and DAF-16/FOXO transcription factors. We also found that bacteria-derived protein aggregates contribute to the observed disruption of host proteostasis. Together, these results reveal the significance of enteric infection and gut dysbiosis on the pathogenesis of protein conformational diseases and demonstrate the potential of using butyrate-producing microbes as a preventative and treatment strategy for neurodegenerative disease.
Collapse
Affiliation(s)
- Alyssa C. Walker
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Rohan Bhargava
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Alfonso S. Vaziriyan-Sani
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Christine Pourciau
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Emily T. Donahue
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Autumn S. Dove
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Michael J. Gebhardt
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Garrett L. Ellward
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Tony Romeo
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Daniel M. Czyż
- Department of Microbiology & Cell Science, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
117
|
Martins LB, Malheiros Silveira AL, Teixeira AL. The link between nutrition and Alzheimer's disease: from prevention to treatment. Neurodegener Dis Manag 2021; 11:155-166. [PMID: 33550870 DOI: 10.2217/nmt-2020-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. To date, there is no effective pharmacological strategy to slow or stop disease progression. In this context, multiple alternative therapeutic strategies have been investigated for AD. This review addresses the potential role of nutrition interventions in AD prevention and treatment. Nutritional strategies for AD have been based on four pillars: maintaining a healthy weight (i.e., prevention and/or treatment of obesity, especially in midlife and prevention of weight loss in the later stages of AD); correction of nutritional deficiencies; adequate consumption of micronutrients (vitamins and minerals), especially those implicated in the pathways of AD pathophysiology; and microbiota modulation.
Collapse
Affiliation(s)
- Laís Bhering Martins
- Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil
| | - Ana Letícia Malheiros Silveira
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 30130-100, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Antonio Lúcio Teixeira
- Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| |
Collapse
|
118
|
Fiorini R, Luzzi S, Vignini A. Perspectives on mild cognitive impairment as a precursor of Alzheimer's disease. Neural Regen Res 2020; 15:2039-2040. [PMID: 32394956 PMCID: PMC7716022 DOI: 10.4103/1673-5374.282256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/09/2020] [Accepted: 02/24/2020] [Indexed: 01/20/2023] Open
Affiliation(s)
- Rosamaria Fiorini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Simona Luzzi
- Neurological Clinic, Università Politecnica delle Marche, Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
119
|
Yin W, Löf M, Pedersen NL, Sandin S, Fang F. Mediterranean Dietary Pattern at Middle Age and Risk of Parkinson's Disease: A Swedish Cohort Study. Mov Disord 2020; 36:255-260. [PMID: 33078857 PMCID: PMC7894345 DOI: 10.1002/mds.28314] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background The Mediterranean diet has been proposed to protect against neurodegeneration. Objectives The aim of this study was to assess the association of adherence to Mediterranean dietary pattern (MDP) at middle age with risk for Parkinson's disease (PD) later in life. Method In a population‐based cohort of >47,000 Swedish women, information on diet was collected through a food frequency questionnaire during 1991–1992, from which adherence to MDP was calculated. We also collected detailed information on potential confounders. Clinical diagnosis of PD was ascertained from the Swedish National Patient Register through 2012. Results We observed an inverse association between adherence to MDP and PD, multivariable hazard ratio of 0.54 (95% confidence interval: 0.30–0.98), comparing high with low adherence. The association was noted primarily from age 65 years onward. One unit increase in the adherence score was associated with a 29% lower risk for PD at age ≥ 65 years (95% confidence interval: 0.57–0.89). Conclusion Higher adherence to a Mediterranean diet at middle age was associated with lower risk for PD. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Weiyao Yin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Marie Löf
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Psychiatry, Ichan School of Medicine, Mount Sinai, New York, New York, USA.,Seaver Autism Center for Research and Treatment at Mount Sinai, New York, New York, USA
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
120
|
Ajibawo-Aganbi U, Saleem S, Khan SZA, Veliginti S, Perez Bastidas MV, Lungba RM, Cancarevic I. Can Nutritional Adequacy Help Evade Neurodegeneration in Older Age? A Review. Cureus 2020; 12:e10921. [PMID: 33062461 PMCID: PMC7556684 DOI: 10.7759/cureus.10921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
Abstract
There is an increase in susceptibility to chronic and debilitating diseases with aging. The reason for the underlying neuronal degeneration and normal aging of the brain remains elusive. Different research studies have been conducted to discover how the brain degenerates and the importance of vitamins' role in the neurocognitive decline. Comprehensive literature research was conducted using all relevant data available from PubMed and Google scholar for this article. There has been evidence linking the consumption of essential nutrients to preventing the disease conditions that result in cognitive decline. This article provides the latest scientific advances specific to how dietary nutrients and non-nutrient may affect cognitive aging. An adequate supply of nutrients like vitamin B2 (riboflavin), vitamin B12, vitamin E, essential fatty acid (omega-3 fatty acid), and flavonoids play a vital role in ensuring healthy aging, enhancing memory, and strengthening neuroprotection. These nutrients help in neurodegenerative diseases like Alzheimer's disease and Parkinson's. We recommend more research studies to determine the underlying mechanism of how these essential nutrients work in the prevention of cognitive decline. These studies will help provide the evidence needed for new dietary recommendations for combating these diseases that often affect aging patients.
Collapse
Affiliation(s)
- Uvie Ajibawo-Aganbi
- Health Sciences, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sania Saleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Seyad Zulficar Ali Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Family Medicine, Ministry of Health Oman, Salalah, OMN
| | - Swathi Veliginti
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maria V Perez Bastidas
- Pulmonary Research Department, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Rayan M Lungba
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
121
|
Limongi F, Siviero P, Bozanic A, Noale M, Veronese N, Maggi S. The Effect of Adherence to the Mediterranean Diet on Late-Life Cognitive Disorders: A Systematic Review. J Am Med Dir Assoc 2020; 21:1402-1409. [DOI: 10.1016/j.jamda.2020.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
|
122
|
Bazargan-Hejazi S, Dehghan K, Edwards C, Mohammadi N, Attar S, Sahraian MA, Eskandarieh S. The health burden of non-communicable neurological disorders in the USA between 1990 and 2017. Brain Commun 2020; 2:fcaa097. [PMID: 32954341 PMCID: PMC7472903 DOI: 10.1093/braincomms/fcaa097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/22/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
In this observational study, using the Global Burden of Disease and Risk Factors Study, we aimed to (i) report the magnitude of health loss due to non-communicable neurological disorders in the USA in 2017 by sex, age, years and States and (ii) to identify non-communicable neurological disorders attributable environmental, metabolic and behavioural risk factors. We provide estimates of the burden of non-communicable neurological disorders by reporting disability-adjusted life-years and their trends from 1990 to 2017 by age and sex in the USA. The non-communicable neurological disorders include migraines, tension-type headaches, multiple sclerosis, Alzheimer's disease and other dementias, Parkinson's disease, epilepsy, motor neuron diseases and other neurological disorders. In 2017, the global burdens of non-communicable neurological disorders were 1444.41 per 100 000, compared to the USA burden of 1574.0. Migraine was the leading age-standardized disability-adjusted life-years 704.7 per 100 000, with Alzheimer's disease and other dementias (41.8.7), and epilepsy (123.8) taking the second and third places, respectively. Between 1990 and 2017, the age-standardized disability-adjusted life-years rates for aggregate non-communicable neurological disorders relative to all cause increased by 3.42%. More specifically, this value for motor neuron diseases, Parkinson's disease and multiple sclerosis increase by 20.9%, 4.0%, 2.47%, 3.0% and 1.65%, respectively. In 2017, the age-standardized disability-adjusted life-years rates for the aggregate non-communicable neurological disorders was significantly higher in females than the males (1843.5 versus 1297.3 per 100 000), respectively. The age-standardized disability-adjusted life-years rates for migraine were the largest in both females (968.8) and males were (432.5) compared to other individual non-communicable neurological disorders. In the same year, the leading non-communicable neurological disorders age-standardized disability-adjusted life-years rates among children ≤9 was epilepsy (216.4 per 100 000). Among the adults aged 35-60 years, it was migraine (5792.0 per 100 000), and among the aged 65 and above was Alzheimer's disease and other dementias (78 800.1 per 100 000). High body mass index, smoking, high fasting plasma glaucous and alcohol use were the attributable age-standardized disability-adjusted life-years risks for aggregate and individual non-communicable neurological disorders. Despite efforts to decrease the burden of non-communicable neurological disorders in the USA, they continue to burden the health of the population. Children are most vulnerable to epilepsy-related health burden, adolescents and young adults to migraine, and elderly to Alzheimer's disease and other dementias and epilepsy. In all, the most vulnerable populations to non-communicable neurological disorders are females, young adults and the elderly.
Collapse
Affiliation(s)
- Shahrzad Bazargan-Hejazi
- Department Psychiatry and Human Behavior, Charles R. Drew University of Medicine and Science & David Geffen of Medicine at University of California at Los Angeles, Los Angeles, CA, USA
| | - Kaveh Dehghan
- Psychiatry Department, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Cristina Edwards
- Mathematics and Computer Science Department, Amirkabir University of Technology, Tehran, Iran
| | - Najmeh Mohammadi
- Public Health Program, College of Health and Sciences, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Setareh Attar
- Psychiatry Department, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA, USA
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharareh Eskandarieh
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
123
|
Wang W, Wang S, Liu T, Ma Y, Huang S, Lei L, Wen A, Ding Y. Resveratrol: Multi-Targets Mechanism on Neurodegenerative Diseases Based on Network Pharmacology. Front Pharmacol 2020; 11:694. [PMID: 32477148 PMCID: PMC7240052 DOI: 10.3389/fphar.2020.00694] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2020] [Indexed: 12/11/2022] Open
Abstract
Resveratrol is a natural polyphenol in lots of foods and traditional Chinese medicines, which has shown promising treatment for neurodegenerative diseases (NDs). However, the molecular mechanisms of its action have not been systematically studied yet. In order to elucidate the network pharmacological prospective effects of resveratrol on NDs, we assessed of pharmacokinetics (PK) properties of resveratrol, studied target prediction and network analysis, and discussed interacting pathways using a network pharmacology method. Main PK properties of resveratrol were acquired. A total of 13,612 genes related to NDs, and 138 overlapping genes were determined through matching the 175 potential targets of resveratrol with disease-associated genes. Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were performed to obtain more in-depth understanding of resveratrol on NDs. Accordingly, nodes with high degrees were obtained according using a PPI network, and AKT1, TP53, IL6, CASP3, VEGFA, TNF, MYC, MAPK3, MAPK8, and ALB were identified as hub target genes, which showed better affinity with resveratrol in silico studies. In addition, our experimental results demonstrated that resveratrol markedly enhanced the decreased levels of Bcl-2 and significantly reduced the increased expression of Bax and Caspase-3 in hippocampal neurons induced by glutamate exposure. Western blot results confirmed that resveratrol inhibited glutamate-induced apoptosis of hippocampal neurons partly by regulating the PI3K/AKT/mTOR pathway. In conclusion, we found that resveratrol could target multiple pathways forming a systematic network with pharmacological effects.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Tianlong Liu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacy, 940 Hospital of PLA Joint Logistics Support Forces, Lanzhou, China
| | - Yang Ma
- Department of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, China
| | - Shaojie Huang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Lei
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
124
|
Wang D, Wang P, Bian X, Xu S, Zhou Q, Zhang Y, Ding M, Han M, Huang L, Bi J, Jia Y, Xie Z. Elevated plasma levels of exosomal BACE1‑AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer's disease. Mol Med Rep 2020; 22:227-238. [PMID: 32377715 PMCID: PMC7248487 DOI: 10.3892/mmr.2020.11118] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) and exosomes are involved in the pathological process of Alzheimer's disease (AD), the pathological changes of which are usually first observed in the entorhinal cortex and hippocampus. The aim of the present study was to determine whether the measurement of plasma exosomal lncRNA combined with image data of the entorhinal cortex and hippocampus could be used as a biomarker of AD. A total of 72 patients with AD and 62 controls were recruited, and the expression levels of several lncRNAs were assessed. Of the recruited participants, 22 patients and 26 controls received brain 3D-BRAVO sequence magnetic resonance imaging (MRI) scans, which were analyzed using an automated analysis tool. The plasma exosomal β-site amyloid precursor protein cleaving enzyme-1-antisense transcript (BACE1-AS) levels in patients with AD were significantly higher compared with the controls (P<0.005). Receiver operating characteristic curve analysis revealed that the area under the curve (AUC) was 0.761 for BACE1-AS, the sensitivity was 87.5%, and the specificity was 61.3%. Analysis of MRI images indicated that the right entorhinal cortex volume (P=0.015) and thickness (P=0.022) in patients with AD were significantly smaller. The AUC was 0.688 for the right entorhinal cortex volume, with a sensitivity of 59.1%, and the specificity was 84.6%. The AUC was 0.689 for right entorhinal cortex thickness, with a sensitivity of 80.8%, and the specificity was 59.1%. A series-parallel test which integrated the BACE1-AS with the right entorhinal cortex volume and thickness, raised the specificity and sensitivity to 96.15 and 90.91%, respectively. A logistic regression model demonstrated that combination of the 3 indices provided improved sensitivity and specificity simultaneously, particularly when adjusting for age and sex (AUC, 0.819; sensitivity, 81%; specificity, 73.1%). The results of the present study demonstrated that detection of plasma exosomal BACE1-AS levels combined with the volume and thickness of the right entorhinal cortex may be used as a novel biomarker of AD.
Collapse
Affiliation(s)
- Dewei Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ping Wang
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xianli Bian
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qingbo Zhou
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Zhang
- Center of Evidence‑Based Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Mao Ding
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Min Han
- Department of Geriatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ling Huang
- Department of Radiology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianzhong Bi
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuxiu Jia
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhaohong Xie
- Department of Neurology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
125
|
Exploring the Etiological Links behind Neurodegenerative Diseases: Inflammatory Cytokines and Bioactive Kynurenines. Int J Mol Sci 2020; 21:ijms21072431. [PMID: 32244523 PMCID: PMC7177899 DOI: 10.3390/ijms21072431] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative diseases (NDs), presenting a broad range of symptoms from motor dysfunctions to psychobehavioral manifestations. A common clinical course is the proteinopathy-induced neural dysfunction leading to anatomically corresponding neuropathies. However, current diagnostic criteria based on pathology and symptomatology are of little value for the sake of disease prevention and drug development. Overviewing the pathomechanism of NDs, this review incorporates systematic reviews on inflammatory cytokines and tryptophan metabolites kynurenines (KYNs) of human samples, to present an inferential method to explore potential links behind NDs. The results revealed increases of pro-inflammatory cytokines and neurotoxic KYNs in NDs, increases of anti-inflammatory cytokines in AD, PD, Huntington's disease (HD), Creutzfeldt-Jakob disease, and human immunodeficiency virus (HIV)-associated neurocognitive disorders, and decreases of neuromodulatory KYNs in AD, PD, and HD. The results reinforced a strong link between inflammation and neurotoxic KYNs, confirmed activation of adaptive immune response, and suggested a possible role in the decrease of neuromodulatory KYNs, all of which may contribute to the development of chronic low grade inflammation. Commonalities of multifactorial NDs were discussed to present a current limit of diagnostic criteria, a need for preclinical biomarkers, and an approach to search the initiation factors of NDs.
Collapse
|