101
|
Wang MS, Gong Y, Zhuo LS, Shi XX, Tian YG, Huang CK, Huang W, Yang GF. Distribution- and Metabolism-Based Drug Discovery: A Potassium-Competitive Acid Blocker as a Proof of Concept. Research (Wash D C) 2022; 2022:9852518. [PMID: 35958113 PMCID: PMC9343080 DOI: 10.34133/2022/9852518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
Conventional methods of drug design require compromise in the form of side effects to achieve sufficient efficacy because targeting drugs to specific organs remains challenging. Thus, new strategies to design organ-specific drugs that induce little toxicity are needed. Based on characteristic tissue niche-mediated drug distribution (TNMDD) and patterns of drug metabolism into specific intermediates, we propose a strategy of distribution- and metabolism-based drug design (DMBDD); through a physicochemical property-driven distribution optimization cooperated with a well-designed metabolism pathway, SH-337, a candidate potassium-competitive acid blocker (P-CAB), was designed. SH-337 showed specific distribution in the stomach in the long term and was rapidly cleared from the systemic compartment. Therefore, SH-337 exerted a comparable pharmacological effect but a 3.3-fold higher no observed adverse effect level (NOAEL) compared with FDA-approved vonoprazan. This study contributes a proof-of-concept demonstration of DMBDD and provides a new perspective for the development of highly efficient, organ-specific drugs with low toxicity.
Collapse
Affiliation(s)
- Ming-Shu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yi Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin-Sheng Zhuo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yan-Guang Tian
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chang-Kang Huang
- Nanjing Shuohui Pharmatechnology Co., Ltd., Nanjing 210046, China
| | - Wei Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
102
|
Fan L, Li Y, Zhang X, Wu Y, Song Y, Zhang F, Zhang J, Sun H. Time-resolved proteome and transcriptome of paraquat-induced pulmonary fibrosis. Pulm Pharmacol Ther 2022; 75:102145. [PMID: 35817254 DOI: 10.1016/j.pupt.2022.102145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUNDS Pulmonary fibrosis (PF) is a pathological state presenting at the progressive stage of heterogeneous interstitial lung disease (ILD). The current understanding of the molecular mechanisms involved is incomplete. This clinical toxicology study focused on the pulmonary fibrosis induced by paraquat (PQ), a widely-used herbicide. Using proteo-transcriptome analysis, we identified differentially expressed proteins (DEPs) derived from the initial development of fibrosis to the dissolved stage and provided further functional analysis. METHODS We established a mouse model of progressive lung fibrosis via intratracheal instillation of paraquat. To acquire a comprehensive and unbiased understanding of the onset of pulmonary fibrosis, we performed time-series proteomics profiling (iTRAQ) and RNA sequencing (RNA-Seq) on lung samples from paraquat-treated mice and saline control. The biological functions and pathways involved were evaluated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis. Correlation tests were conducted on comparable groups 7 days and 28 days post-exposure. Differentially expressed proteins and genes following the same trend on the protein and mRNA levels were selected for validation. The functions of the selected molecules were identified in vitro. The protein level was overexpressed by transfecting gene-containing plasmid or suppressed by transfecting specific siRNA in A549 cells. The levels of endothlial-mesenchymal transition (EMT) markers, including E-cadherin, vimentin, FN1, and α-SMA, were determined via western blot to evaluate the fibrotic process. RESULTS We quantified 1358 DEPs on day 7 and 426 DEPs on day 28 post exposure (Fold change >1.2; Q value < 0.05). The top 5 pathways - drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, chemical carcinogenesis, protein digestion and absorption - were involved on both day 7 and day 28. Several pathways, including tight junction, focal adhesion, platelet activation, and ECM-receptor interaction, were more enriched on day 28 than on day 7. Integrative analysis of the proteome and transcriptome revealed a moderate correlation of quantitative protein abundance ratios with RNA abundance ratios (Spearman R = 0.3950 and 0.2477 on days 7 and 28, respectively), indicating that post-transcriptional regulation plays an important role in lung injury and repair. Western blot identified that the protein expressions of FN1, S100A4, and RBM3 were significantly upregulated while that of CYP1A1, FMO3, and PGDH were significantly downregulated on day 7. All proteins generally recovered to baseline on day 28. qPCR showed the mRNA levels of Fn1, S100a4, Rbm3, Cyp1a1, Fmo3, and Hpgd changed following the same trend as the levels of their respective proteins. Further, in vitro experiments showed that RBM3 was upregulated while PGDH was downregulated in an EMT model established in human lung epithelial A549 cells. RBM3 overexpression and PGDH knockout could both induce EMT in A549 cells. RBM3 knockout or PGDH overexpression had no reverse effect on EMT in A549 cells. CONCLUSIONS Our proteo-transcriptomic study determined the proteins responsible for fibrogenesis and uncovers their dynamic regulation from lung injury to repair, providing new insights for the development of biomarkers for diagnosis and treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Lu Fan
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China; Department of Emergency, Clinical Medical College, Yangzhou University, Yangzhou, PR China.
| | - Yuan Li
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Xiaomin Zhang
- Department of Emergency, The Second People's Hospital of Wuxi, Affiliated to Nanjing Medical University, Wuxi, PR China.
| | - Yuxuan Wu
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Yang Song
- Department of Emergency, Nanjing Jiangbei Hospital, Affiliated to Southeast University, Nanjing, PR China.
| | - Feng Zhang
- Department of Emergency, Jiangsu Province Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China.
| | - Jinsong Zhang
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| | - Hao Sun
- Department of Emergency, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
103
|
Liu C, Sun Z, Wang M, Yang Z, Zhang W, Ren Y, Han X, Zhang B, Yao M, Nie S. Mitoquinone mitigates paraquat-induced A549 lung epithelial cell injury by promoting MFN1/MFN2-mediated mitochondrial fusion. J Biochem Mol Toxicol 2022; 36:e23127. [PMID: 35686354 DOI: 10.1002/jbt.23127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/16/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022]
Abstract
Paraquat (PQ) poisoning often leads to severe lung injuries, in which the mitochondria damage plays a critical role. Mitoquinone (MitoQ), a newly designed mitochondria-targeted antioxidant, has been proved for its benefit in mitochondria protection. However, the role of MitoQ in PQ-induced lung injury remains unclear. Thus, this study was performed to investigate the effect of MitoQ on PQ-induced lung injury and its underlying mechanisms. Our work showed that PQ caused the inhibition of A549 lung epithelial cell viability in a dose-dependent manner, while MitoQ remarkably mitigated the PQ-induced cell viability suppression. Besides this, PQ-mediated apoptosis of A549 cells was significantly attenuated by MitoQ, as indicated by the TUNEL assay and mitochondria membrane potential assay. Moreover, the intracellular reactive oxygen species (ROS) production was also dramatically suppressed when cotreated MitoQ with PQ. This could be ascribed to enhanced mitochondrial fusion mediated by Mitofusin 1 (MFN1)/Mitofusin 2 (MFN2), because MitoQ preserved mitochondrial network integrity, as reflected by MitoTracker staining, and MitoQ also increased the expression of MFN1/MFN2 in A549 cells after PQ treatment. Our data suggested MitoQ mitigated PQ-induced lung epithelial cell injury by promoting MFN1/MFN2-mediated mitochondrial fusion, and MitoQ might be a potential candidate drug for the treatment of PQ-induced lung injury.
Collapse
Affiliation(s)
- Chao Liu
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Bo Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Mengya Yao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, PR China
| |
Collapse
|
104
|
He Q, Zhang W, Zhang J, Deng Y. Cannabinoid Analogue WIN 55212-2 Protects Paraquat-Induced Lung Injury and Enhances Macrophage M2 Polarization. Inflammation 2022; 45:2256-2267. [PMID: 35674874 PMCID: PMC9174632 DOI: 10.1007/s10753-022-01688-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/02/2023]
Abstract
WIN 55212-2 is an endocannabinoids analogue that has been reported to have anti-inflammatory and anti-fibrosis effects on different models. In this study, we investigated the protective effects of WIN 55212-2 on paraquat (PQ)-induced poison on mice especially on lung injury. Mice were administrated with different dose of PQ and thereafter treated with 0.2 mg/kg or 1 mg/kg WIN 55212-2. The survival of mice was recorded during 4 weeks of observation. Twenty-eight days after PQ treatment, the cell population and inflammatory factors IL-6, IL-10, and TNF-α were measured in bronchoalveolar lavage fluid (BALF). Pulmonary fibrosis was evaluated by Masson staining. Our results showed that WIN 55212-2 treatment reduced PQ-induced mortality of mice in a dose dependent manner. It decreased the number of inflammation-associated cells, as well as the level of pro-inflammatory factors in BALF (P < 0.05). WIN 55212-2 increased M2 cells in BALF (P < 0.05), improved the lung histology, reduced fibrosis formation, and decreased TGF-β, α-SMA and PDGFRa expression. The protective effects of WIN 55212-2 on PQ-induced lung injury and fibrosis were associated with an increase inM2 cells and increased expressions of IL-10, CD163, and CD206, suggesting that polarization of M2 macrophages may be involved in WIN 55212-2 protective effects on PQ-induced lung injury.
Collapse
Affiliation(s)
- Quan He
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China.
| | - Wen Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Jinjuan Zhang
- Department of Basic Research Institute, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology,Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| | - Yuanyou Deng
- Department of Emergency, the First People's Hospital of Yunnan Province,the Affiliated Hospital of Kunming University of Science and Technology, Xishan District, No.157 Jinbi Road Yunnan Province, Kunming City, China
| |
Collapse
|
105
|
Rahimi A, Alimohammadi M, Faramarzi F, Alizadeh-Navaei R, Rafiei A. The effects of apigenin administration on the inhibition of inflammatory responses and oxidative stress in the lung injury models: a systematic review and meta-analysis of preclinical evidence. Inflammopharmacology 2022; 30:1259-1276. [PMID: 35661071 DOI: 10.1007/s10787-022-00994-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/08/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND/OBJECTIVE Apigenin is a member of the flavonoid family that can regulate various biological processes, which is characterized as a treatment of different inflammatory disorders and pathological problems associated with oxidative stress (OS). Recent research has focused on apigenin immunomodulatory properties as a potential treatment for different types of lung injuries. This meta-analysis was designed to determine the impact of apigenin treatment on inflammatory markers and OS parameters in animal models of lung injuries. METHODS The comprehensive literature search was conducted using electronic databases such as Google Scholar, PubMed, Web of Science, Scopus, and Embase up to August 2021. To assess apigenin's effect on inflammatory mediators and OS biomarkers in lung injury animal models, we used the I2 statistic to determine the heterogeneity. We then pooled data as standardized mean difference (SMD) with a 95% confidence interval (CI). RESULTS Our meta-analysis of the pooled data for inflammatory biomarkers demonstrated that the apigenin administration significantly decreased the NF-κB expression (SMD - 1.60, 95% CI [- 2.93 to - 0.26]; I2 = 89.0%, p < 0.001), IL-1β (SMD - 4.30, 95% CI [- 6.24 to - 2.37]; I2 = 67.3%, p = 0.047), IL-6 (SMD - 4.10, 95% CI [- 5.04 to - 3.16]; I2 = 72.6%, p < 0.001), TNF-α (SMD - 3.74, 95% CI [- 4.67 to - 2.82]; I2 = 84.1%, p < 0.001), and TNF-α gene expression (SMD - 3.44, 95% CI [- 4.44 to - 2.43]; I2 = 0.0%, p = 0.622). This study also indicated the efficacy of apigenin in increasing the level of CAT (SMD 4.56, 95% CI [3.57 to 5.55]; I2 = 15.3%, p = 3.15), GSH (SMD 5.12, 95% CI [3.53 to 6.70]; I2 = 77.6%, p < 0.001), and SOD (SMD 3.45, 95% CI [2.50 to 4.40]; I2 = 79.2%, p < 0.001), and decreasing the level of MDA (SMD - 3.87, 95% CI [- 5.25 to - 2.49]; I2 = 80.3%, p < 0.001) and MPO (SMD - 4.02, 95% CI [- 5.64 to - 2.40]; I2 = 88.9%, p < 0.001), TGF- β (SMD - 3.81, 95% CI [- 4.91 to - 2.70]; I2 = 73.4%, p = 0.001) and W/D level (SMD - 3.22, 95% CI [- 4.47 to - 1.97]; I2 = 82.1%, p < 0.001) than control groups. CONCLUSION Overall, our findings showed the immunomodulatory potential of apigenin as an alternative treatment for the suppression of inflammatory responses and OS in different types of lung injury diseases. Nevertheless, due to the paucity of clinical studies, reliable preclinical models, and clinical settings, evaluating the influence of apigenin on lung injury is required in the future. Before conducting large-scale clinical trials, detailed human pharmacokinetic studies are also needed to establish dosage ranges and determine the initial safety and tolerability of apigenin.
Collapse
Affiliation(s)
- Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Rafiei
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
106
|
Zhou J, Tan Y, Wang R, Li X. Role of Ferroptosis in Fibrotic Diseases. J Inflamm Res 2022; 15:3689-3708. [PMID: 35783244 PMCID: PMC9248952 DOI: 10.2147/jir.s358470] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022] Open
Abstract
Ferroptosis is a unique and pervasive form of regulated cell death driven by iron-dependent phospholipid peroxidation. It results from disturbed cellular metabolism and imbalanced redox homeostasis and is regulated by various cellular metabolic pathways. Recent preclinical studies have revealed that ferroptosis may be an attractive therapeutic target in fibrotic diseases, such as liver fibrosis, pulmonary fibrosis, kidney fibrosis, and myocardial fibrosis. This review summarizes the latest knowledge on the regulatory mechanism of ferroptosis and its roles in fibrotic diseases. These updates may provide a novel perspective for the treatment of fibrotic diseases as well as future research.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yuan Tan
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Rurong Wang
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xuehan Li
- Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Correspondence: Xuehan Li, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, Sichuan Province, 610041, People’s Republic of China, Tel +86 18980099133, Email
| |
Collapse
|
107
|
Song Y, Wang H, Tao YH. Risk factors and optimal predictive scoring system of mortality for children with acute paraquat poisoning. World J Clin Cases 2022; 10:4799-4809. [PMID: 35801032 PMCID: PMC9198859 DOI: 10.12998/wjcc.v10.i15.4799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/31/2021] [Accepted: 03/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is no suitable scoring system that can be used to predict mortality in children with acute paraquat intoxication (APP).
AIM To optimize a predictive scoring system for mortality in children with APP.
METHODS A total of 113 children with APP from January 1, 2010 to January 1, 2020 were enrolled in this study. These patients were divided into survivors and non-survivors. We compared the clinical characteristics between the two groups and analyzed the independent prognostic risk factors. The survival rates of patients with different values of the pediatric critical illness score (PCIS) were assessed using kaplan-meier survival analysis. The best scoring system was established by using the area under the receiver operating characteristic curve analysis.
RESULTS The overall mortality rate was 23.4%. All non-survivors died within 20 days; 48.1% (13/27) died within 3 days, and 70.3% (19/27) died within 7 days. Compared to survivors, the non-survivors were older, had higher white blood cell count, alanine aminotransferase (ALT), aspartate aminotransferase, serum creatinine, blood urea nitrogen, glucose, and pediatric early warning score, and had lower platelet count, albumin, Serum sodium (Na+) and PCIS. ALT and PCIS were the independent prognostic risk factors for children with APP. The survival rate of children classified as extremely critical patients (100%) was lower than that of children classified as critical (60%) or noncritical (6.7%) patients. The specificity of ALT was high (96.51%), but the sensitivity was low (59.26%). The sensitivity and specificity of ALT combined with PCIS were high, 92.59% and 87.21%, respectively. The difference in mortality was significantly higher for ALT combined with PCIS (area under the receiver operating characteristic: 0.937; 95%CI: 0.875-0.974; P < 0.05).
CONCLUSION In our study, ALT and PCIS were independent prognostic risk factors for children with APP. ALT combined with PCIS is an optimal predictive mortality scoring system for children with APP.
Collapse
Affiliation(s)
- Yue Song
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Hong Tao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
108
|
Yuan D, Li Y, Hou L, Yang F, Meng C, Yu Y, Sun C, Duan G, Xu Z, Zhu G, Guo J, Zhang L, Yan G, Chen J, Yang Y, Zhang Y, Gao Y. Metformin Regulates Alveolar Macrophage Polarization to Protect Against Acute Lung Injury in Rats Caused by Paraquat Poisoning. Front Pharmacol 2022; 13:811372. [PMID: 35645808 PMCID: PMC9136134 DOI: 10.3389/fphar.2022.811372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/29/2022] [Indexed: 12/18/2022] Open
Abstract
This study explored the role of metformin (MET) in regulating the polarization of alveolar macrophages to protect against acute lung injury (ALI) in rats caused by paraquat (PQ) poisoning. The in vivo studies showed that the 35 mg/kg dose of MET increased the survival rate of rats, alleviated pathological damages to the lungs and their systemic inflammation, promoted the reduction of the pro-inflammatory factors interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) levels, and increased the anti-inflammatory factor IL-10 levels in the rat serum. At the same time, the MET intervention decreased the expression of M1 macrophage marker iNOS in the lungs of the PQ-poisoned rats while increasing the M2 macrophage marker, Arg1, expression. In vitro, the concentration of MET > 10 mmol/L affected NR8383 viability adversely and was concentration-dependent; however, no adverse impact on NR8383 viability was observed at MET ≤ 10 mmol/L concentration, resisting the reducing effect of PQ on NR8383 vitality. The PQ-induced NR8383 model with MET intervention showed significantly reduced secretions of IL-6 and TNF-α in NR8383, and lowered expressions of M1 macrophage markers iNOS and CD86. Additionally, MET increased IL-10 secretion and the M2 macrophage markers, Arg1 and Mrcl, expressions. Therefore, we speculate that MET could regulate alveolar macrophage polarization to protect against PQ-poisoning caused ALI.
Collapse
Affiliation(s)
- Ding Yuan
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Hou
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Yang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuicui Meng
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanwu Yu
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changhua Sun
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guoyu Duan
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigao Xu
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiying Zhu
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Guo
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leilei Zhang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaiqin Yan
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jihong Chen
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Yang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Zhang
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou, China
- *Correspondence: Yan Zhang, ; Yanxia Gao,
| | - Yanxia Gao
- Department of Emergency Medicine, Henan Key Laboratory of Emergency and Trauma Research Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yan Zhang, ; Yanxia Gao,
| |
Collapse
|
109
|
Liu Z, Huang F, Zhao S, Ma L, Shi Q, Zhou Y. Homicidal paraquat poisoning: Poisoned while drinking. J Forensic Sci 2022; 67:1312-1319. [PMID: 35005788 DOI: 10.1111/1556-4029.14968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
The incidence of paraquat poisoning has significantly decreased with the addition of odorizer and emetics to the liquid concentrate. Paraquat poisonings are usually attributed to suicidal and accidental or occupational exposure. Here, we report an unusual fatal case of homicidal paraquat poisoning. An intoxicated, a 37-year-old man consumed a mixture of white wine and paraquat prepared by his wife. This resulted in intermittent vomiting, which he attributed to being intoxicated. The man was admitted to the hospital for treatment 3 days later. Due to the lack of knowledge of paraquat exposure, the man did not receive effective treatment and died of respiratory failure 22 days later. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to detect paraquat in 16 postmortem specimens: kidney (1.31 ug/g), urine (0.91 ug/ml), liver (0.62 ug/g), lung (0.39 ug/g), muscle (0.35 ug/g), bile (0.32 ug/ml), heart (0.28 ug/g), brain (0.22 ug/g), pancreas (0.22 ug/g), spleen (0.18 ug/g), cardiac blood (0.15 ug/ml), cerebrospinal fluid (0.14 ug/ml), pericardial effusion (0.12 ug/ml), pleural effusion (0.09 ug/ml), peripheral blood (0.08 ug/ml), and vitreous humor (0.06 ug/ml). The highest concentration of paraquat was detected in the kidney followed by the urine in all tissues and body fluids. At present, although the cases of paraquat poisoning have decreased, the high mortality rate resulting from its irreversible lung damage and respiratory failure makes paraquat poisoning, especially occult paraquat poisoning, still needs to be carefully identified in forensic practice and clinical diagnosis.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuquan Zhao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Shi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
110
|
Chen C, Huang Y, Wu P, Pan J, Guo P, Liu S. In vivo microcapillary sampling coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry for real-time monitoring of paraquat and diquat in living vegetables. Food Chem 2022; 388:132998. [PMID: 35453011 DOI: 10.1016/j.foodchem.2022.132998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
An in vivo microcapillary sampling (MCS) method coupled with matrix-assisted laser desorption/ionization fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) analysis was utilized to monitor the real-time bipyridine quaternary ammonium herbicides concentrations and assess their uptake and elimination behaviors in living cabbage plants noninvasively. Under optimized conditions, the proposed method for paraquat (PQ) and diquat (DQ) determination showed wide linear ranges (7.81-500 μg/kg), low limits of detection (0.1-0.9 μg/kg), and good reproducibility. In vivo tracking results demonstrated that different absorption behaviors between PQ and DQ existed in living vegetables and DQ was more easily absorbed. Through decay kinetics model fitting, herbicide half-lives were 1.32 and 1.86 days for PQ and DQ, respectively. To summarize, in vivo MCS method provides valuable information on herbicide risks for agricultural production, which is suitable for temporal, spatial, and longitudinal studies in the same living system and multicompartmental studies in the same organism.
Collapse
Affiliation(s)
- Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Yan Huang
- North China University of Science and Technology Affiliated Hospital, 73 Jianshe South Road, Tangshan 063000, Hebei, China
| | - Peishan Wu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Jiachuan Pan
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Pengran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China
| | - Shuqin Liu
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China.
| |
Collapse
|
111
|
Hong GL, Tang YH, Li WW, Cao KQ, Tan JP, Hu LF, Chen LW, Zhao GJ, Lu ZQ. Vesicle transport related protein Synaptotagmin-1 mediates paraquat transport to antagonize paraquat toxicity. Toxicology 2022; 472:153180. [PMID: 35430322 DOI: 10.1016/j.tox.2022.153180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/28/2022]
Abstract
In this study, A549/PQ cells with moderate resistance to paraquat (PQ) were obtained by treating A549 cells with PQ, their growth rate was slowed down, the accumulation concentration of PQ and the levels of growth inhibition, injury and early apoptosis induced by PQ were significantly lower than those of parental A549 cells. Microarray screening and RT-qPCR detection found that Synaptotagmin-1 (SYT1) expression in drug-resistant cells was significantly increased, and PQ further enhanced its expression. After inhibiting SYT1 expression in A549/PQ cells, cell viability, intracellular PQ concentration and the expression of Bcl-2, SNAP25 and RAB26 were significantly reduced, while the mortality, early apoptosis rate and Bax expression were significantly increased. In vivo experiments also further showed that PQ promoted the expression of SYT1, SNAP25 and RAB26 in PQ-poisoned mice; when inhibiting SYT1 expression, PQ concentration in lung tissues was significantly increased, and the levels of lung injury and apoptosis were also significantly enhanced, while the expression of SNAP25 and RAB26 was significantly reduced. This indicates that PQ poisoning leads to compensatory up-regulation of vesicle transport related proteins such as SYT1 in vivo, thereby promoting PQ transmembrane transport, and then reducing the pulmonary accumulation of PQ and PQ-caused lung injury.
Collapse
Affiliation(s)
- Guang-Liang Hong
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Ya-Hui Tang
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Wen-Wen Li
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Kai-Qiang Cao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Jia-Ping Tan
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Lu-Feng Hu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Long-Wang Chen
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Guang-Ju Zhao
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China
| | - Zhong-Qiu Lu
- Emergency Department, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of emergency and disaster medicine, Wenzhou 325000, China.
| |
Collapse
|
112
|
Ingestion poisoning related lung injury- a pictorial review. Emerg Radiol 2022; 29:757-767. [PMID: 35426004 DOI: 10.1007/s10140-022-02044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Poison ingestion is a medical emergency requiring immediate care in the emergency department. Respiratory symptoms with ingested poisons can occur due to aspiration, cardiopulmonary effects, or direct lung toxicity due to injury of the alveolar epithelium. Chest imaging (chest radiographs/CT) is usually performed in the emergency setting to evaluate such symptoms. It is often impossible to elicit the nature of the poison ingested by the patients due to their unconscious state. Identification of the culprit poison can expedite the patient's management towards a specific antidote or help understand the underlying mechanism causing the pulmonary symptoms. The imaging manifestations depend on the underlying mechanisms, varying for each ingested poison, forming an imaging signature which has not been adequately discussed in existing literature. Poisons like paraquat and organophosphate are important to differentiate as indiscriminate use of oxygen therapy in the former can exacerbate the lung injury caused by redox cycling. In this pictorial assay, we present the chest imaging spectrum of commonly ingested poisons, and further suggest algorithmic approach towards identification of common poisons based on their chest imaging.
Collapse
|
113
|
Li L, Lv S, Li X, Liu J. Wnt-induced secreted proteins-1 play an important role in paraquat-induced pulmonary fibrosis. BMC Pharmacol Toxicol 2022; 23:21. [PMID: 35387687 PMCID: PMC8988378 DOI: 10.1186/s40360-022-00560-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this article is to observe the expression of Wnt-induced secreted proteins-1 (WISP1) in paraquat (PQ)-induced pulmonary fibrosis (PF) to explore the role of WISP1. Methods Healthy individuals were included in the control group. Patients who had acute lung injury or PF were included in the PF group. Venous blood samples were collected from the patients on days 1 and 3 following PQ poisoning to detect the expression levels of the WISP1 gene and protein concentration. Any changes in the patients’ blood gas analysis index were reviewed. In addition, chest computed tomography (CT) and x-ray images were observed to evaluate the relationship between WISP1 expression and disease severity. Results The expression of the WISP1 gene and the serum WISP1 protein concentration were higher in patients with PQ poisoning combined with PF than in patients without PF (P < 0.01). Serum PQ concentration was positively correlated with WISP1 gene expression (r = 0.621, P < 0.01), and serum WISP1 protein concentration (r = 0.596, P < 0.01) was considered a risk factor [odds ratio (OR) = 4.356, P < 0.05] for PQ-induced PF. Concurrently, the results of the adjusted and non-adjusted OR value for WISP1 gene expression and WISP1 protein concentration on day 1 was, respectively, as follows: OR = 12.797, 95% confidence interval (CI) (2.478–66.076), P = 0.002, OR’ = 11.353, P = 0.005; and OR = 1.545, 95% CI (1.197–1.995), P = 0.001, OR’ = 1.487, P = 0.003. The CT scan of a 20-year-old male with PQ-induced PF (20 ml) was observed, and it showed a typical hyaline-like lesion in the lungs on day 22 after poisoning; on day 33 after poisoning, the lungs showed localised consolidation combined with air bronchography. Conclusion The expression of WISP1 was higher in the patients with PQ-induced PF compared with the patients without PF. Accordingly, WISP1 plays an important role in PQ-induced PF.
Collapse
Affiliation(s)
- Lanrong Li
- Emergency Department, Linyi People's Hospital, Linyi, China
| | - Shengnan Lv
- Outpatient Department, Linyi People's Hospital, Linyi, China
| | - Xin Li
- Outpatient Department, Linyi People's Hospital, Linyi, China
| | - Jingyan Liu
- Emergency Department, Longgang District People's Hospital of Shenzhen, No. 53 of Aixin Road, Longgang District, Shenzhen, 518115, Guangdong Province, China.
| |
Collapse
|
114
|
Palipoch S, Punsawad C, Koomhin P, Poonsawat W. Thunbergia laurifolia aqueous leaf extract ameliorates paraquat-induced kidney injury by regulating NADPH oxidase in rats. Heliyon 2022; 8:e09234. [PMID: 35399379 PMCID: PMC8987613 DOI: 10.1016/j.heliyon.2022.e09234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 01/09/2023] Open
Abstract
We aim to study the antioxidant ability of Thunbergia laurifolia (TL) aqueous leaf extract against PQ-induced kidney injury. Rats were divided into four groups (n = 4 per group): control group, the rats received subcutaneous injection of 1 ml/kg body weight (BW) normal saline; PQ group, the rats received subcutaneous injection of 18 mg/kg BW paraquat dichloride; PQ + TL-low dose (LD) group, the rats received subcutaneous injection of 18 mg/kg BW paraquat dichloride and were orally gavaged with TL leaf extract (100 mg/kg BW); and PQ + TL-high dose (HD) group, the rats received subcutaneous injection of 18 mg/kg BW paraquat dichloride and were orally gavaged with TL leaf extract (200 mg/kg BW). This study analyzed blood urea nitrogen (BUN) and creatinine levels, renal malondialdehyde (MDA) levels, kidney histopathology, mRNA expressions of renal NADPH oxidase (NOX) and protein expressions of renal NOX-1 and NOX-4 using immunohistochemistry. The PQ group showed a significant increase in BUN and creatinine levels, renal MDA level, and a upregulation of the mRNA expression of renal NOX compared with the control group. It also demonstrated mild hydropic degeneration of the tubules. Immunohistochemistry displayed a significant increase in the protein expressions of renal NOX-1 and NOX-4 compared with the control group. TL aqueous leaf extract especially in the high dose group significantly reduced the BUN and creatinine levels, the renal MDA level, and downregulated the mRNA expression of renal NOX and protein expressions of renal NOX-1 and NOX-4 compared with the PQ group. Furthermore, it can improve PQ-induced kidney injury. TL aqueous leaf extract can ameliorate PQ-induced kidney injury by regulating oxidative stress through inhibiting NOX, especially NOX-1 and NOX-4 expressions.
Collapse
|
115
|
Palipoch S, Punsawad C, Koomhin P, Na-Ek P, Poonsawat W, Kimseng R, Chotipong P, Bunluepuech K, Yusakul G, Suwannalert P. Aqueous Thunbergia laurifolia leaf extract alleviates paraquat-induced lung injury in rats by inhibiting oxidative stress and inflammation. BMC Complement Med Ther 2022; 22:83. [PMID: 35317802 PMCID: PMC8939148 DOI: 10.1186/s12906-022-03567-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Paraquat (PQ) has been reported to have a high mortality rate. The major target organ of PQ poisoning is the lungs. The pathogenesis of PQ-induced lung injury involves oxidative stress and inflammation. Unfortunately, there is still no effective antidote for PQ poisoning. We hypothesized that aqueous Thunbergia laurifolia (TL) leaf extract is a possible antidote for PQ-induced lung injury. Methods The total phenolic content and caffeic acid content of an aqueous extract of TL leaves were analyzed. Male Wistar rats were randomly divided into four groups (n = 4 per group): the control group (administered normal saline), the PQ group (administered 18 mg/kg body weight (BW) PQ dichloride subcutaneously), the PQ + TL-low-dose (LD) group (administered PQ dichloride subcutaneously and 100 mg/kg BW aqueous TL leaf extract by oral gavage) and the PQ + TL-high-dose (HD) group (administered PQ dichloride subcutaneously and 200 mg/kg BW aqueous TL leaf extract by oral gavage). Malondialdehyde (MDA) levels and lung histopathology were analyzed. In addition, the mRNA expression of NADPH oxidase (NOX), interleukin 1 beta (IL-1β), and tumor necrosis factor alpha (TNF-α) was assessed using reverse transcription-polymerase chain reaction (RT-PCR), and the protein expression of IL-1β and TNF-α was analyzed using immunohistochemistry. Results The total phenolic content of the extract was 20.1 ± 0.39 μg gallic acid equivalents (Eq)/mg extract, and the caffeic acid content was 0.31 ± 0.01 μg/mg. The PQ group showed significantly higher MDA levels and NOX, IL-1β and TNF-α mRNA expression than the control group. Significant pathological changes, including alveolar edema, diffuse alveolar collapse, hemorrhage, leukocyte infiltration, alveolar septal thickening and vascular congestion, were observed in the PQ group compared with the control group. However, the aqueous TL leaf extract significantly attenuated the PQ-induced increases in MDA levels and NOX, IL-1β and TNF-α expressions. Moreover, the aqueous TL leaf extract ameliorated PQ-induced lung pathology. Conclusion This study indicates that aqueous TL leaf extract can ameliorate PQ-induced lung pathology by modulating oxidative stress through inhibition of NOX and by regulating inflammation through inhibition of IL-1β and TNF-α expressions. We suggest that aqueous TL leaf extract can be used as an antidote for PQ-induced lung injury. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03567-4.
Collapse
Affiliation(s)
- Sarawoot Palipoch
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand.
| | - Chuchard Punsawad
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand
| | - Phanit Koomhin
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand
| | - Prasit Na-Ek
- School of Medicine, Walailak University, 222 Thaiburi, Thasala District, Nakhon Si Thammarat, 80161, Thailand
| | - Wasinee Poonsawat
- Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Rungruedi Kimseng
- Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Potiga Chotipong
- Center of Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kingkan Bunluepuech
- School of Medicine, Walailak University, Nakhon Si Thammarat, 80160, Thailand.,Research Excellence Center for Innovation and Health Product, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasit Suwannalert
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
116
|
Human Amnion-Derived MSCs Alleviate Acute Lung Injury and Hinder Pulmonary Fibrosis Caused by Paraquat in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3932070. [PMID: 35345827 PMCID: PMC8957415 DOI: 10.1155/2022/3932070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 12/30/2022]
Abstract
Methods First, the purity of hAD-MSCs was determined by morphological observation and FCM, and the effects on the survival of paraquat-poisoned Sprague-Dawley rats were observed. All rats were randomly divided into three groups, defined as the sham control group (n = 8), model group (n = 15), and hAD-MSC-transplanted group (n = 17). Pneumonocyte damage and inflammatory cell infiltration were investigated in the three groups of rats, untreated control, paraquat only, and paraquat+hAD-MSC transplanted, using H&E staining. Fibrosis was investigated in three groups of rats using Masson's trichrome staining and Sirius red staining. The profibrotic factor TGF-β1, the composition of fibrotic collagen HYP, and the hAD-MSC-secreted immunosuppressive factor HLA-G5 in serum were investigated in the three groups of rats using ELISA. Furthermore, the distribution of hAD-MSCs was investigated in the three groups of rats using immunohistochemistry and hematoxylin staining. Results The hAD-MSCs exhibited typical hallmarks of MSCs, improved the state of being and survival of paraquat-poisoned rats, reduced both lung injury and inflammation, and inhibited the progression of pulmonary fibrosis by decreasing the deposition of collagen and the secretion of both TGF-β1 and HYP. The hAD-MSCs could survive in damaged lungs and secreted appropriate amounts of HLA-G5 into the serum. Conclusion The obtained results indicate that hAD-MSCs used to treat paraquat-induced lung injury may work through anti-inflammatory and immunosuppressive pathways and the downregulation of profibrotic elements. This study suggests that the transplantation of hAD-MSCs is a promising therapeutic approach for the treatment of paraquat-intoxicated patients.
Collapse
|
117
|
Moar JJ, Hill L. Histopathological Findings in a Fatal Case of Paraquat Poisoning. Am J Forensic Med Pathol 2022; 43:69-72. [PMID: 34334620 DOI: 10.1097/paf.0000000000000698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Fatal paraquat ingestion presents many interesting pathological findings for the forensic pathologist. The majority of prior research regarding paraquat poisoning has focused on the lung and liver, this article is further directed to and presents some of the histopathological findings present in the brain. Typical macroscopic and histopathological findings of paraquat poisoning were identified in the liver and lungs. The brain was found to be edematous with widening of the centrum semiovale, whereas histologically, it was found that there was extravasation of erythrocytes into the surrounding Virchow-Robin spaces, a finding normally associated with blunt force head injury and, therefore, commonly interpreted by forensic pathologists as a cortical contusion hemorrhage.
Collapse
Affiliation(s)
| | - Lawrence Hill
- From the Department of Forensic Medicine and Pathology, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand
| |
Collapse
|
118
|
Nunes C, Singh P, Mazidi Z, Murphy C, Bourguignon A, Wellens S, Chandrasekaran V, Ghosh S, Zana M, Pamies D, Thomas A, Verfaillie C, Culot M, Dinnyes A, Hardy B, Wilmes A, Jennings P, Grillari R, Grillari J, Zurich MG, Exner T. An in vitro strategy using multiple human induced pluripotent stem cell-derived models to assess the toxicity of chemicals: A case study on paraquat. Toxicol In Vitro 2022; 81:105333. [PMID: 35182771 DOI: 10.1016/j.tiv.2022.105333] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 01/03/2023]
Abstract
Most OECD guidelines for chemical risk assessment include tests performed on animals, raising financial, ethical and scientific concerns. Thus, the development of human-based models for toxicity testing is highly encouraged. Here, we propose an in vitro multi-organ strategy to assess the toxicity of chemicals. Human induced pluripotent stem cells (hiPSCs)-derived models of the brain, blood-brain barrier, kidney, liver and vasculature were generated and exposed to paraquat (PQ), a widely employed herbicide with known toxic effects in kidneys and brain. The models showed differential cytotoxic sensitivity to PQ after acute exposure. TempO-Seq™ analysis with a set of 3565 probes revealed the deregulation of oxidative stress, unfolded protein response and Estrogen Receptor-mediated signaling pathways, in line with the existing knowledge on PQ mechanisms of action. The main advantages of this strategy are to assess chemical toxicity on multiple tissues/organs in parallel, exclusively in human cells, eliminating the interspecies bias, allowing a better evaluation of the differential sensitivity of the models representing the diverse organs, and increasing the chance to identify toxic compounds. Furthermore, although we focused on the mechanisms of action of PQ shared by the different models, this strategy would also allow for organ-specific toxicity testing, by including more cell type-specific probes for TempO-Seq analyses. In conclusion, we believe this strategy will participate in the further improvement of chemical risk assessment for human health.
Collapse
Affiliation(s)
- Carolina Nunes
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Pranika Singh
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Zahra Mazidi
- Evercyte GmbH, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, BOKU - University of Natural Resource and Life science (BOKU), Vienna, Austria
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Aurore Bourguignon
- BioTalentum Ltd, Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary
| | - Sara Wellens
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Sreya Ghosh
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | | | - David Pamies
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Maxime Culot
- University of Artois, UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, Rue Jean Souvraz SP18, F-62300 Lens, France
| | - Andras Dinnyes
- BioTalentum Ltd, Gödöllő, Hungary; Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Gödöllö, Hungary; Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Barry Hardy
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | | | - Johannes Grillari
- Evercyte GmbH, Vienna, Austria; Institute of Molecular Biotechnology, Department of Biotechnology, BOKU - University of Natural Resource and Life science (BOKU), Vienna, Austria; Ludwig Boltzmann Institute for Traumatology Research Center in cooperation with AUVA, Vienna, Austria
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| | - Thomas Exner
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland; Seven Past Nine d.o.o., Hribljane 10, 1380 Cerknica, Slovenia.
| |
Collapse
|
119
|
Wu Y, Cui S, Wang W, Jian T, Kan B, Jian X. Kidney and lung injury in rats following acute diquat exposure. Exp Ther Med 2022; 23:275. [PMID: 35251341 PMCID: PMC8892614 DOI: 10.3892/etm.2022.11201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 11/30/2022] Open
Abstract
Diquat (1,1'-ethylene-2,2'-bipyridylium) is a type of widely used agricultural chemical, whose toxicity results in damage to numerous tissues, including the lung, liver, kidney and brain. The aim of the present study was to establish a rat model of acute diquat exposure and explore the relationship between diquat concentration, and kidney and lung injury, in order to provide an experimental basis for clinical treatment. A total of 140 healthy adult male Wistar rats were randomly divided into control and exposure groups. The diquat solution was administered intragastrically to the exposure group at 1/2 of the lethal dose (140 mg/kg). An equal volume of water was administered to the control group. The dynamic changes in the plasma and tissue diquat levels were quantitatively determined at 0.5, 1, 2, 4, 8, 16 and 24 h following exposure using liquid chromatography mass spectrometry. The content of hydroxyproline (HYP) in the lung tissues, as well as the levels of blood urea nitrogen (BUN), creatinine (Cr), uric acid (UA), kidney injury molecule-1 (KIM-1) and tumor growth factor (TGF)-β1, were detected using western blot analysis at every time point. Lung and kidney morphology were also assessed. Electron microscopy showed that the degree of renal damage gradually increased with time. Vacuolation gradually increased, some mitochondrial bilayer membrane structures disappeared and lysosomes increased. The lung tissue damage was mild, and the cell membrane integrity and organelles were damaged to varying degrees. The plasma and organ levels of diquat peaked at ~2 h, followed by a steady decrease, depending on the excretion rate. Over time, the serum concentrations of UA, BUN, Cr and KIM-1 were all significantly increased (P<0.05). Serum KIM-1 in rats was increased after 0.5 h, and was significantly increased after 4 h, suggesting that KIM-1 is an effective predictor of early renal injury. Early TGF-β1 expression was clearly observed in renal tissue, while no clear TGF-β1 expression was observed in the lung tissue. In conclusion, the concentration of diquat in the serum and tissue of rats with acute diquat poisoning peaked at an early stage and then rapidly decreased. The renal function damage and pathological changes persisted, the lung tissue was slightly damaged with inflammatory cell infiltration, and early pulmonary fibrosis injury was not obvious.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenjun Wang
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baotian Kan
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Department, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
120
|
Ji P, Li H, Jin Y, Peng Y, Zhao L, Wang X. C. elegans as an in vivo model system for the phenotypic drug discovery for treating paraquat poisoning. PeerJ 2022; 10:e12866. [PMID: 35178301 PMCID: PMC8815376 DOI: 10.7717/peerj.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Paraquat (PQ) is an effective and widely used herbicide and causes numerous fatalities by accidental or voluntary ingestion. However, neither the final cytotoxic mechanism nor effective treatments for PQ poisoning have been discovered. Phenotypic drug discovery (PDD), which does not rely on the molecular mechanism of the diseases, is having a renaissance in recent years owing to its potential to address the incompletely understood complexity of diseases. Herein, the C. elegans PDD model was established to pave the way for the future phenotypic discovery of potential agents for treating PQ poisoning. METHODS C. elegans were treated with PQ-containing solid medium followed by statistical analysis of worm survival, pharyngeal pumping, and movement ability. Furthermore, coenzyme Q10 (CoQ10) was used to test the C. elegans model of PQ poisoning by measuring the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), mitochondrial morphology, and worm survival rate. Additionally, we used the classic mice model of PQ intoxication to evaluate the validity of the C. elegans model of PQ poisoning by measuring the effect of CoQ10 as a potential antidote for PQ poisoning. RESULTS In the C. elegans model of PQ poisoning, 5 mg/mL PQ increased the levels of ROS, MDA content, mitochondrial fragments, which significantly shortened the lifespan, while CoQ10 alleviated these phenotypes. In the mice model of PQ poisoning, CoQ10 increased the chance of survival in PQ poisoned mice while reducing ROS, MDA content in lung tissue and inhibiting PQ-induced lung edema. Moreover, CoQ10 alleviated the lung morphopathological changes induced by PQ. CONCLUSION Here we established a C. elegans model of PQ poisoning, whose validity was confirmed by the classic mice model of PQ intoxication.
Collapse
Affiliation(s)
- Peng Ji
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, China
| | - Yushan Jin
- Department of Immunology and Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Yinghua Peng
- Key Laboratory of Special Animal Molecular Biology of Jilin Province, Specialty Research Institute of Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihui Zhao
- College of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences (CAS), Changchun, China,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
121
|
Kovalchuk N, Jilek JL, Van Winkle LS, Cherrington NJ, Ding X. Role of Lung P450 Oxidoreductase in Paraquat-Induced Collagen Deposition in the Lung. Antioxidants (Basel) 2022; 11:219. [PMID: 35204102 PMCID: PMC8868258 DOI: 10.3390/antiox11020219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Paraquat (PQ) is an agrochemical known to cause pulmonary fibrosis. PQ-induced collagen deposition in the lung is thought to require enzymatic formation of PQ radicals, but the specific enzymes responsible for this bioactivation event in vivo have not been identified. We tested the hypothesis that lung P450 oxidoreductase (POR or CPR) is important in PQ-induced lung fibrosis in mice. A lung-Cpr-null mouse model was utilized, which undergoes doxycycline-induced, Cre recombinase-mediated deletion of the Por gene specifically in airway Club cells and alveolar type 2 cells in the lung. The lungs of lung-Cpr-null mice and their wild-type littermates were collected on day 15 after a single intraperitoneal injection of saline (control) or PQ (20 mg/kg). Lung tissue sections were stained with picrosirius red for detection of collagen fibrils. Fibrotic lung areas were found to be significantly smaller (1.6-fold for males and 1.4-fold for females) in PQ-treated lung-Cpr-null mice than in sex- and treatment-matched wild-type mice. The levels of collagen in lung tissue homogenate were also lower (1.4-2.3-fold; p < 0.05) in PQ-treated lung-Cpr-null mice compared to PQ-treated wild-type mice. In contrast, plasma PQ toxicokinetic profiles were not different between sex-matched wild-type and lung-Cpr-null mice. Taken together, these results indicate that lung POR plays an important role in PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Nataliia Kovalchuk
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (N.K.); (J.L.J.); (N.J.C.)
| | - Joseph L. Jilek
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (N.K.); (J.L.J.); (N.J.C.)
| | - Laura S. Van Winkle
- Department of Anatomy, Physiology and Cell Biology, Center for Comparative Respiratory Biology and Medicine, School of Veterinary Medicine and Center for Health and the Environment, University of California at Davis, Davis, CA 95616, USA;
| | - Nathan J. Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (N.K.); (J.L.J.); (N.J.C.)
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (N.K.); (J.L.J.); (N.J.C.)
| |
Collapse
|
122
|
Qin L, Zhang X, Wu J, Zhang W, Lu X, Sun H, Zhang J, Guo L, Xie J. Quantification and toxicokinetics of paraquat in mouse plasma and lung tissues by internal standard surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2022; 414:2371-2383. [DOI: 10.1007/s00216-022-03875-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 02/02/2023]
|
123
|
Johnson AM, Ou ZYA, Gordon R, Saminathan H. Environmental neurotoxicants and inflammasome activation in Parkinson's disease - A focus on the gut-brain axis. Int J Biochem Cell Biol 2022; 142:106113. [PMID: 34737076 DOI: 10.1016/j.biocel.2021.106113] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Inflammasomes are multi-protein complexes expressed in immune cells that function as intracellular sensors of environmental, metabolic and cellular stress. Inflammasome activation in the brain, has been shown to drive neuropathology and disease progression by multiple mechanisms, making it one of the most attractive therapeutic targets for disease modification in Parkinson's Disease (PD). Extensive inflammasome activation is evident in the brains of people with PD at the sites of dopaminergic degeneration and synuclein aggregation. While substantial progress has been made on validating inflammasome activation as a therapeutic target for PD, the mechanisms by which inflammasome activation is triggered and sustained over the disease course remain poorly understood. A growing body of evidence point to environmental and occupational chemical exposures as possible triggers of inflammasome activation in PD. The involvement of the gastrointestinal system and gut microbiota in PD pathophysiology is beginning to be elucidated, especially the profound link between gut dysbiosis and immune activation. While large cohort studies confirmed specific changes in the gut microbiota in PD patients compared to age-matched healthy controls, recent research suggest that synuclein pathology could be initiated in the gastrointestinal tract. In this review, we present a summarized perspective on current understanding on inflammasome activation and the gut-brain-axis link during PD pathophysiology. We discuss multiple environmental toxicants that are implicated as the etiological agents in causing idiopathic PD and their mechanistic underpinnings during neuroinflammatory events. We additionally present future directions that needs to address the research questions related to the gut-microbiome-brain mechanisms in PD.
Collapse
Affiliation(s)
- Aishwarya M Johnson
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE
| | - Zhen-Yi Andy Ou
- Translational Neuroscience Laboratory, UQ Centre for Clinical Research, The University of Queensland, Australia; School of Biomedical Sciences, University of Queensland, Australia
| | - Richard Gordon
- Translational Neuroscience Laboratory, UQ Centre for Clinical Research, The University of Queensland, Australia; School of Biomedical Sciences, University of Queensland, Australia
| | - Hariharan Saminathan
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, UAE.
| |
Collapse
|
124
|
YE W, ZHANG L, WANG D, HE Y, LI N, JIANG J, MA Y. Effects of Viscum coloratum (Kom.) Nakai f. Lutescens Kitag polysaccharide on fertility, longevity and antioxidant capacity of Drosophila melanogaster. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.09721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wenbin YE
- School of Agriculture and Forestry Technology, China
| | - Long ZHANG
- School of Agriculture and Forestry Technology, China
| | - Duli WANG
- School of Agriculture and Forestry Technology, China
| | - Yufeng HE
- School of Agriculture and Forestry Technology, China
| | - Na LI
- School of Agriculture and Forestry Technology, China
| | - Jing JIANG
- School of Agriculture and Forestry Technology, China
| | - Yingli MA
- School of Agriculture and Forestry Technology, China
| |
Collapse
|
125
|
Luo Q, Chen S, Zhu J, Ye L, Hall ND, Basak S, McElroy JS, Chen Y. Overexpression of EiKCS confers paraquat-resistance in rice (Oryza sativa L.) by promoting the polyamine pathway. PEST MANAGEMENT SCIENCE 2022; 78:246-262. [PMID: 34476895 PMCID: PMC9292836 DOI: 10.1002/ps.6628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Paraquat is used widely as one of the bipyridine herbicides, which generates reactive oxygen species to cause cell death. With a growing number of paraquat-resistant weeds, the mechanism of paraquat-resistance in plants remains unclear. This research verified the functions of a previously confirmed putative paraquat-resistant gene, EiKCS, from paraquat-resistant goosegrass by genetic engineering in a single overexpressing line in rice. RESULTS Overexpression of EiKCS improved paraquat resistance in transgenic rice (KCSox). Pre-applied (12 h) exogenous spermidine (1.5 mmol L-1 ), alleviated the injury of paraquat in rice. Paraquat induced injury in KCSox was 19.57%, which was lower than 32.22% injury it induced in wild-type (WT) rice. The paraquat-resistant mechanism was through the increased activity of antioxidant enzymes and the overproduction of endogenous polyamines. The spermine content in KCSox was more than 30 μg mL-1 , while that in WT rice was less than 5 μg mL-1 . Quantitative proteomics showed that β-ketoacyl-coenzyme A (CoA) synthase (51.81 folds) encoded by the transgenic EiKCS gene promoted the synthesis of the proteins involved with the polyamine pathway. The synthesized putrescine was promoted by the arginine decarboxylase (ADC) pathway. The spermidine synthase I (1.10-fold) and three eceriferum cofactors (CERs) were responsive to the paraquat stress. We validated putrescine (C18 H20 N2 O2 ) spermidine (C28 H31 N3 O3 ), and spermine (C38 H42 N4 O4 ) in this study. CONCLUSION EiKCS encoding β-ketoacyl-CoA synthase from goosegrass has been shown as an ideal candidate gene for engineering genetically modified organism (GMO) crops, as its overexpression does not only bring paraquat-resistance, but also have potential benefits without decreasing yield and rice grain quality. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyu Luo
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Shu Chen
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Jiazheng Zhu
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Laihua Ye
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Nathan Daniel Hall
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Suma Basak
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Joseph Scott McElroy
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Yong Chen
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
126
|
Guo X, Guo W, Li T, Liu F, Zhou J, Guo M. In Vitro and In Vivo evaluation of montmorillonite for paraquat poisoning. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e21600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Xiang Guo
- Shenzhen Prevention and Treatment Center for Occupational Disease, China
| | - Wei Guo
- The First Affiliated Hospital of Nan Chang university, China
| | - Tiandi Li
- Shenzhen Prevention and Treatment Center for Occupational Disease, China
| | - Fen Liu
- Shenzhen Prevention and Treatment Center for Occupational Disease, China
| | - Jinpeng Zhou
- Shenzhen Prevention and Treatment Center for Occupational Disease, China
| | - Meiqiong Guo
- Shenzhen Prevention and Treatment Center for Occupational Disease, China
| |
Collapse
|
127
|
Kumar S, Gupta S, Bansal YS, Bal A, Rastogi P, Muthu V, Arora V. Pulmonary histopathology in fatal paraquat poisoning. Autops Case Rep 2021; 11:e2021342. [PMID: 34926332 PMCID: PMC8676609 DOI: 10.4322/acr.2021.342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 11/23/2022]
Abstract
Paraquat is a potent herbicide widely used in the Indian agriculture industry. Human fatality due to paraquat poisoning is not uncommon in this country. The primary effect of paraquat is on the lungs, and the resultant pulmonary damage leads to the patient's demise. There is a high mortality rate in paraquat poisoning as the treatment is usually supportive with no known antidote. There are limited human studies that have observed the histopathological changes in lungs in paraquat poisoning. The authors have discussed the time-related histopathological changes in lungs in paraquat poisoning on autopsy subjects. The role of anticoagulants and fibrinolytic agents in the treatment of this poisoning has also been discussed.
Collapse
Affiliation(s)
- Senthil Kumar
- Postgraduate Institute of Medical Education and Research, Department of Forensic Medicine, Chandigarh, India
| | - Shikha Gupta
- Postgraduate Institute of Medical Education and Research, Department of Forensic Medicine, Chandigarh, India
| | - Yogender Singh Bansal
- Postgraduate Institute of Medical Education and Research, Department of Forensic Medicine, Chandigarh, India
| | - Amanjit Bal
- Postgraduate Institute of Medical Education and Research, Department of Histopathology, Chandigarh, India
| | - Pulkit Rastogi
- Postgraduate Institute of Medical Education and Research, Department of Histopathology, Chandigarh, India
| | - Valliappan Muthu
- Postgraduate Institute of Medical Education and Research, Department of Pulmonary Medicine, Chandigarh, India
| | - Vanshika Arora
- Postgraduate Institute of Medical Education and Research, Department of Forensic Medicine, Chandigarh, India
| |
Collapse
|
128
|
Wang X, Wang X, Zhu Y, Chen X. ADME/T-based strategies for paraquat detoxification: Transporters and enzymes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118137. [PMID: 34536650 DOI: 10.1016/j.envpol.2021.118137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/26/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Paraquat (PQ) is a toxic, organic herbicide for which there is no specific antidote. Although banned in some countries, it is still used as an irreplaceable weed killer in others. The lack of understanding of the precise mechanism of its toxicity has hindered the development of treatments for PQ exposure. While toxicity is thought to be related to PQ-induced oxidative stress, antioxidants are limited in their ability to ameliorate the untoward biological responses to this agent. Summarized in this review are data on the absorption, distribution, metabolism, excretion, and toxicity (ADME/T) of PQ, focusing on the essential roles of individual transporters and enzymes in these processes. Based on these findings, strategies are proposed to design and test specific and effective antidotes for the clinical management of PQ poisoning.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yanyan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
129
|
Jiao G, Li X, Wu B, Yang H, Zhang G, Ding Z, Zhao G, Chen J. Case Report: Delayed Lung Transplantation With Intraoperative ECMO Support for Herbicide Intoxication-Related Irreversible Pulmonary Fibrosis: Strategy and Outcome. Front Surg 2021; 8:754816. [PMID: 34901140 PMCID: PMC8660696 DOI: 10.3389/fsurg.2021.754816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Lung transplantation is recognized as the only therapeutic option for patients who develop irreversible pulmonary fibrosis after herbicide intoxication. Methods: We have collected and presented clinical course and outcome of four patients who received lung transplantation due to paraquat and diquat intoxication from 2018 to 2021. Another patient who received initial lung transplantation due to paraquat intoxication and re-transplantation due to chronic lung allograft dysfunction in 2019, was further reported. Patients were admitted in lung transplantation centers, including the 1st affiliated hospital of Zhengzhou University and Wuxi Lung transplantation center. Previous reported cases from Europe, Canada and China were also summarized as benchmark. Results: During the period from the year of 2018 to 2021, there have been four patients in China, who received lung transplantation due to herbicide intoxication. Median age of the four patients was 37 (IQR 34.5, 39.75) years old. Median time from intoxication to lung transplantation was 27.5 (IQR 27, 30.5) days. Bilateral lung transplantation was performed in three patients, while one single lung transplantation was performed in an urgent listed patient. Extracorporeal Membrane Oxygenation (ECMO) and hemopurification support were used in all patients (100%). Details of the cases with follow-ups were further presented and analyzed. Conclusions: Late timing of bilateral lung transplantation can be performed successfully for pulmonary fibrosis after paraquat or diquat intoxication. The survival of patients with complex perioperative conditions can be achieved with a multidisciplinary team to manage the irreversible effects of intoxication.
Collapse
Affiliation(s)
- Guohui Jiao
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wu
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hang Yang
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Guoqing Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaofeng Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
130
|
Study on the Efficacy and Safety of Ambroxol Combined with Methylprednisolone in Patients with Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5771101. [PMID: 34877356 PMCID: PMC8645361 DOI: 10.1155/2021/5771101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022]
Abstract
Background There is no better treatment method towards paraquat-induced acute lung injury (ALI) at present. Ambroxol combined with methylprednisolone exhibits a significant improvement effect on ALI treatment, whereas their mechanism in ALI is still unclear. Methods 64 patients with ALI caused by paraquat poisoning brought to our hospital from January 2015 to January 2018 were selected. They were separated into a combined treatment group (CTG) and a routine treatment group (RTG) on the basis of different treatment methods. The survival of patients was observed after 7 days of treatment. Arterial blood gas, oxygen partial pressure (PaO2), partial pressure of carbon dioxide (PaCO2), oxygenation index (PaO2/FiO2), patient's spontaneous respiratory rate (RR), tidal volume (VT), and positive end-expiratory pressure (PEEP) were observed before and after treatment for 7 days. Interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) were analyzed. The differences of indexes between the dead patients and the survivors were observed, and the potential predictive value of death was analyzed. Results After treatment, the indexes of patients were significantly improved in both groups compared with those before therapy. Further comparison showed that the improvement of PaO2, PaCO2, and PaO2/FiO2 in CTG was obviously higher than that in RTG (p < 0.05). The improvement of RR, PEEP, and VT in CTG was obviously higher than that in RTG (p < 0.05). The decreased degree of IL-6 and TNF-α in CTG was higher than that in RTG (p < 0.05). The 7-day mortality rate of 64 patients was 39.06%, and there was no obvious difference in the 7-day survival rate in both groups (p = 0.649). IL-6 and TNF-α were expected to be potential prediction indexes of paraquat-induced ALI. Conclusion Ambroxol combined with methylprednisolone significantly improved the oxygen partial pressure and oxygenation index of patients with paraquat-induced ALI and inhibited the inflammatory response of patients.
Collapse
|
131
|
Yang Z, Wang M, Ren Y, Li L, Cao L, Zhang W, Lv K, Sun Z, Nie S. Inhibition of Wnt10b/β-catenin signaling alleviates pulmonary fibrogenesis induced by paraquat in vivo and in vitro. Life Sci 2021; 286:120027. [PMID: 34627778 DOI: 10.1016/j.lfs.2021.120027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/04/2023]
Abstract
Pulmonary fibrosis (PF) caused by paraquat remains a critical issue, and the molecular mechanisms are still unclear. Epithelial-mesenchymal transition (EMT) is regarded as a hallmark of PF, conferring alveolar epithelial cells partial mesenchymal characteristics, facilitating migration, expressing excessive extracellular matrix components, and participating in lung parenchyma remodeling and stiffening. Aberration of Wnt signaling has been identified in EMT and PF, and Wnt protein family consists of 19 ligands. The relationship of the specific Wnt ligands and fibrogenesis induced by PQ was not well defined. In current study, PQ-induced lung fibrosis rat model and EMT cell model were utilized to investigate the underlying molecular mechanisms both in vivo and in vitro. The results demonstrated that canonical Wnt/β-catenin signaling was highly activated and Wnt10b was the most affected. Additionally, suppression of Wnt10b by RNA interference could reverse EMT in vitro and detain the process of PF in vivo. These data establish Wnt10b as the key regulator of EMT and lung fibrogenesis, and suggest the potential of targeted interference against Wnt10b as a promising therapeutic strategy for lung fibrosis.
Collapse
Affiliation(s)
- Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Liang Li
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Liping Cao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Kongbo Lv
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China.
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, PR China; Department of Emergency Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, PR China.
| |
Collapse
|
132
|
Tang Y, Chen H, Qiu W, Zhou Y, Hong G, Hu L, Zhao G, Chen X, Zhi S, Lu Z. Plasma Concentration After the First Hemoperfusion has a High Predictive Value in Medium Level Acute Paraquat-Poisoned Patients. Ther Drug Monit 2021; 43:797-806. [PMID: 34780392 DOI: 10.1097/ftd.0000000000000889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Paraquat ( PQ) is very poisonous to humans and animals and there is no effective clinical antidote . The efficacy of hemoperfusion (HP) treatment for PQ poisoning remains controversial. To explore new ways to predict the prognosis of patients with acute PQ poisoning and assist in the development of better hemopurification treatment strategies. METHODS The clinical data of patients who were intoxicated with PQ through contact were diagnosed with PQ poisoning by high-performance liquid chromatography. Samples were collected by the Emergency Intensive Care Unit of the First Affiliated Hospital of Wenzhou Medical University from January 2012 to November 2016. Based on the prognosis, the patients were grouped into survival and death groups. Comparisons of the differences in the clinical indexes were performed, including the initial concentration of PQ at admission, PQ concentration after first HP, the number of HP cartridges used for the first hemoperfusion, whether HP was combined with continuous renal replacement therapy, and the number of concurrent organ injuries between the 2 groups. In addition, data were analyzed using multivariate logistic regression models and receiver operating characteristic curves. Moreover, prognostic factors in patients with acute PQ poisoning were analyzed. RESULTS Overall, 128 patients with acute PQ poisoning were enrolled in this study. The median plasma PQ concentrations of the patients at admission were 21 and 834 ng/mL (range: 50-1,099,118 ng/mL). The multiple logistic regression model revealed that the initial concentration of PQ and the PQ concentration after the first perfusion were independent risk factors for death in patients with acute PQ poisoning. The PQ concentration in the survival group after the first HP was <516 ng/mL and was mainly distributed at approximately 100 ng/mL. The percentage of patients whose concentration after the first HP was <516 ng/mL in the death group was only 19%. CONCLUSIONS The initial plasma PQ concentration after admission and PQ concentration after the first HP are risk factors for death in patients with acute PQ poisoning. Moreover, PQ concentration after the first HP had a high predictive value for death. When the initial plasma PQ concentration after admission ranges from 50 ng/mL to 5000 ng/mL, the rapid reduction in plasma PQ concentration after HP treatment could improve the prognosis of patients with acute PQ poisoning.
Collapse
Affiliation(s)
- Yahui Tang
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Hui Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Weiyong Qiu
- Department of Intensive Care Medicine, Yiwu Hospital Affiliated to Wenzhou Medical University
| | - Yanxue Zhou
- Department of Nephrology, Yiwu Hospital Affiliated to Wenzhou Medical University, Yiwu; and
| | - Guangliang Hong
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Lufeng Hu
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Xiaorong Chen
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Shaoce Zhi
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Zhongqiu Lu
- Department of Emergency Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| |
Collapse
|
133
|
Neganova M, Liu J, Aleksandrova Y, Klochkov S, Fan R. Therapeutic Influence on Important Targets Associated with Chronic Inflammation and Oxidative Stress in Cancer Treatment. Cancers (Basel) 2021; 13:6062. [PMID: 34885171 PMCID: PMC8657135 DOI: 10.3390/cancers13236062] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 01/17/2023] Open
Abstract
Chronic inflammation and oxidative stress are the interconnected pathological processes, which lead to cancer initiation and progression. The growing level of oxidative and inflammatory damage was shown to increase cancer severity and contribute to tumor spread. The overproduction of reactive oxygen species (ROS), which is associated with the reduced capacity of the endogenous cell defense mechanisms and/or metabolic imbalance, is the main contributor to oxidative stress. An abnormal level of ROS was defined as a predisposing factor for the cell transformation that could trigger pro-oncogenic signaling pathways, induce changes in gene expression, and facilitate accumulation of mutations, DNA damage, and genomic instability. Additionally, the activation of transcription factors caused by a prolonged oxidative stress, including NF-κB, p53, HIF1α, etc., leads to the expression of several genes responsible for inflammation. The resulting hyperactivation of inflammatory mediators, including TNFα, TGF-β, interleukins, and prostaglandins can contribute to the development of neoplasia. Pro-inflammatory cytokines were shown to trigger adaptive reactions and the acquisition of resistance by tumor cells to apoptosis, while promoting proliferation, invasion, and angiogenesis. Moreover, the chronic inflammatory response leads to the excessive production of free radicals, which further aggravate the initiated reactions. This review summarizes the recent data and progress in the discovery of mechanisms that associate oxidative stress and chronic inflammation with cancer onset and metastasis. In addition, the review provides insights for the development of therapeutic approaches and the discovery of natural substances that will be able to simultaneously inhibit several key oncological and inflammation-related targets.
Collapse
Affiliation(s)
- Margarita Neganova
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Sergey Klochkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou 450000, China; (M.N.); (J.L.)
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
134
|
Zhou N, Liu Q, Qi X, Zhang X, Ru Z, Ma Y, Yu T, Zhang M, Li Y, Zhang Y, Cao Z. Paraquat exposure impairs porcine oocyte meiotic maturation. Theriogenology 2021; 179:60-68. [PMID: 34839230 DOI: 10.1016/j.theriogenology.2021.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022]
Abstract
Paraquat (PQ) is a heterocyclic pesticide that not only damages the testicular development and reduces the quality of semen, but also disturbs the secretion of hormones in the reproductive system. However, the effects of PQ on oocyte maturation and its toxic mechanism have not been yet fully clarified. Here we showed that PQ exposure could have toxic effects on porcine oocyte maturation. PQ exposure with 100 μM inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion during oocyte maturation. PQ-exposed oocytes could not develop to the 2-cell and blastocyst stage. PQ exposure with 100 μM significantly increased abnormal spindle rate (65.2% ± 1.0%) and misaligned chromosome rate (63.2% ± 3.4%) compared to the control group (38.3% ± 1.0% and 38.4% ± 1.0%, respectively; P < 0.05). F-actin also exhibited reduced distribution in PQ-exposed oocytes (10.3% ± 1.0%) compared to the control group (14.4% ± 1.0%, P < 0.05). In addition, PQ exposure reduced the active mitochondria levels, but apparently increased the reactive oxygen species (ROS), rH2AX, and LC3 (autophagy marker) levels. qPCR analyses showed that PQ exposure caused the aberrant expression of genes associated with cumulus cell expansion, but did not affect the expression of apoptosis-related genes. Taken together, these results indicate that PQ exposure impaired oocyte nuclear and cytoplasmic maturation probably through oxidative stress.
Collapse
Affiliation(s)
- Naru Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China; Reproductive and Genetic Branch, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qiuchen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Qi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiangdong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenyuan Ru
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Tong Yu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mianqun Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
135
|
Successful treatment of severe toxic hepatitis and encephalopathy without respiratory failure caused by paraquat intoxication. Am J Med Sci 2021; 363:267-272. [PMID: 34793708 DOI: 10.1016/j.amjms.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/19/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022]
Abstract
Lung damage is a characteristic feature of paraquat intoxication; most deaths resulting from ingesting paraquat are due to progressive respiratory failure. Liver failure caused by paraquat intoxication is rare. A case of orally ingested paraquat intoxication is reported in which serious liver injury and toxic encephalopathy were observed, but little lung damage was found. The principal systemic symptom was severe liver injury, characterized by cholestasis, that gradually became aggravated. In addition to standard treatment, aggressive treatment through liver protection and cholestasis was administered. Finally, liver function returned to normal and central nervous system symptoms were controlled. The patient was successfully discharged. This case suggests that the hepatotoxicity of paraquat intoxication is possibly characterized by cholestasis, and the treatment of cholestasis promotes recovery of severe hepatocyte damage.
Collapse
|
136
|
Chandra A, Shah KA, Mahato S, Bhattacharjee MS, Mandal T. Paraquat poisoning. BMJ Case Rep 2021; 14:e246585. [PMID: 34764128 PMCID: PMC8587599 DOI: 10.1136/bcr-2021-246585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/03/2022] Open
Affiliation(s)
- Atanu Chandra
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Koustav Ali Shah
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| | - Shubhashis Mahato
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| | | | - Tanuka Mandal
- Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India
| |
Collapse
|
137
|
Asaduzzaman M, Chando MR, Ahmed N, Rezwanul Islam KM, Alam MMJ, Roy S. Paraquat-induced acute kidney and liver injury: Case report of a survivor from Bangladesh. Clin Case Rep 2021; 9:e05020. [PMID: 34765204 PMCID: PMC8572334 DOI: 10.1002/ccr3.5020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 10/04/2021] [Indexed: 12/02/2022] Open
Abstract
Despite high fatality following paraquat ingestion, a few percentages of patients survive even after organ damage appears. We need to focus more on careful clinical and laboratory monitoring. Early diagnosis and Supportive therapy are crucial.
Collapse
Affiliation(s)
- Md Asaduzzaman
- Department of MedicineSylhet M.A.G Osmani Medical College HospitalSylhetBangladesh
| | | | - Nasad Ahmed
- Department of MedicineSylhet M.A.G Osmani Medical College HospitalSylhetBangladesh
| | | | | | - Soumitra Roy
- Department of MedicineSylhet M.A.G Osmani Medical College HospitalSylhetBangladesh
| |
Collapse
|
138
|
Zhang Y, Yuan D, Li Y, Yang F, Hou L, Yu Y, Sun C, Duan G, Meng C, Yan H, Li D, Gao Y, Sun T, Zhu C. Paraquat promotes acute lung injury in rats by regulating alveolar macrophage polarization through glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112571. [PMID: 34352584 DOI: 10.1016/j.ecoenv.2021.112571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 05/02/2023]
Abstract
The present study investigates whether paraquat (PQ) regulates polarization of alveolar macrophages through glycolysis and promotes the occurrence of acute lung injury in rats. In vivo, the PQ intraperitoneal injection was used to construct a model of acute lung injury in rats. In vitro, the study measured the effect of different concentrations of PQ on the viability of the alveolar macrophages, and explored the polarization and glycolysis metabolism of alveolar macrophages at different time points after PQ intervention. Compared with the normal control (NC) group, the lung pathological damage in rats increased gradually after PQ poisoning, reaching a significant degree at 48 h after poisoning. The PQ-poisoned rat serum showed increased expressions of interleukin-6 (IL-6), tumor necrosis factor- α (TNF-α), and M1 macrophage marker, iNOS, while the expression of interleukin-10 (IL-10) and M2 macrophage marker, Arg1, decreased. The toxic effect of PQ on alveolar macrophages was dose- and time-dependent. Compared with the NC group, IL-6 and TNF-α in the cell supernatant gradually increased after PQ intervention, while the IL-10 content gradually decreased. The PQ intervention in alveolar macrophages increased the expression of intracellular glycolysis rate-limiting enzyme pyruvate kinase isozymes M1/M2 (PKM1/M2), lactate, lactate/pyruvate ratio, and the polarization of alveolar macrophage towards M1. Inhibition of cellular glycolysis significantly reduced the PQ-induced alveolar macrophage polarization to M1 type. Thus, PQ induced increased polarization of lung macrophages toward M1 and decreased polarization toward M2, promoting acute lung injury. Therefore, it can be concluded that PQ regulates the polarization of alveolar macrophages through glycolysis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Ding Yuan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fang Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Linlin Hou
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Yanwu Yu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Changhua Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Guoyu Duan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Cuicui Meng
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Hongyi Yan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Dongxu Li
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China
| | - Yanxia Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China.
| | - Tongwen Sun
- General ICU, the First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou 450052, China.
| | - Changju Zhu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Emergency and Trauma Research Medicine, Zhengzhou 450000, China.
| |
Collapse
|
139
|
Fransen LFH, Leonard MO. Small Airway Susceptibility to Chemical and Particle Injury. Respiration 2021; 101:321-333. [PMID: 34649249 DOI: 10.1159/000519344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
Small airways (SA) in humans are commonly defined as those conducting airways <2 mm in diameter. They are susceptible to particle- and chemical-induced injury and play a major role in the development of airway disease such as COPD and asthma. Susceptibility to injury can be attributed in part to structural features including airflow dynamics and tissue architecture, but recent evidence may indicate a more prominent role for cellular composition in directing toxicological responses. Animal studies support the hypothesis that inherent cellular differences across the tracheobronchial tree, including metabolic CYP450 expression in the distal conducting airways, can influence SA susceptibility to injury. Currently, there is insufficient information in humans to make similar conclusions, prompting further necessary work in this area. An understanding of why the SA are more susceptible to certain chemical and particle exposures than other airway regions is fundamental to our ability to identify hazardous materials, their properties, and accompanying exposure scenarios that compromise lung function. It is also important for the ability to develop appropriate models for toxicity testing. Moreover, it is central to our understanding of SA disease aetiology and how interventional strategies for treatment may be developed. In this review, we will document the structural and cellular airway regional differences that are likely to influence airway susceptibility to injury, including the role of secretory club cells. We will also describe recent advances in single-cell sequencing of human airways, which have provided unprecedented details of cell phenotype, likely to impact airway chemical and particle injury.
Collapse
Affiliation(s)
| | - Martin Oliver Leonard
- Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
140
|
Anthrahydroquinone-2-6-disulfonate is a novel, powerful antidote for paraquat poisoning. Sci Rep 2021; 11:20159. [PMID: 34635711 PMCID: PMC8505516 DOI: 10.1038/s41598-021-99591-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022] Open
Abstract
Paraquat (PQ) is a widely used fast-acting pyridine herbicide. Accidental ingestion or self-administration via various routes can cause severe organ damage. Currently, no effective antidote is available commercially, and the mortality rate of poisoned patients is exceptionally high. Here, the efficacy of anthrahydroquinone-2-6-disulfonate (AH2QDS) was observed in treating PQ poisoning by constructing in vivo and ex vivo models. We then explored the detoxification mechanism of AH2QDS. We demonstrated that, in a rat model, the PQ concentration in the PQ + AH2QDS group significantly decreased compared to the PQ only group. Additionally, AH2QDS protected the mitochondria of rats and A549 cells and decreased oxidative stress damage, thus improving animal survival and cell viability. Finally, the differentially expressed genes were analysed in the PQ + AH2QDS group and the PQ group by NextGen sequencing, and we verified that Nrf2's expression in the PQ + AH2QDS group was significantly higher than that in the PQ group. Our work identified that AH2QDS can detoxify PQ by reducing PQ uptake and protecting mitochondria while enhancing the body's antioxidant activity.
Collapse
|
141
|
Jindakaraked M, Khan E, Kajitvichyanukul P. Biodegradation of paraquat by Pseudomonas putida and Bacillus subtilis immobilized on ceramic with supplemented wastewater sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117307. [PMID: 33991735 DOI: 10.1016/j.envpol.2021.117307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
This work aimed to study the performance of paraquat removal by cell-immobilized ceramics. Two strains of paraquat degrading bacteria, Pseudomonas putida and Bacillus subtilis, were separately immobilized on the ceramic with and without wastewater sludge addition. Results showed that the ceramic surface with sludge has more functional groups and a more highly negative charge on the surface than the original ceramic. The ceramic with sludge had 2-3-fold of the immobilized cells higher than that of the control (without sludge) and less leaching of the immobilized cells. The sludge addition at 20% (w/w) to the ceramic provided the highest cell adhesion for both P. putida and B. subtilis. The paraquat removal efficiencies were higher than 98%, while the control ceramic could remove only 77 ± 1.2%. The immobilized cells on ceramic with sludge provided a significant degree of dissolved organic nitrogen reduction (82%) during the paraquat removal. Most organic nitrogen in paraquat was biologically mineralized (ammonified). Findings from this work suggest the superiority of ceramic with sludge in mineralizing organic nitrogen associated with paraquat.
Collapse
Affiliation(s)
- Manee Jindakaraked
- Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| | - Eakalak Khan
- Civil and Environmental Engineering and Construction Department, University of Nevada, Las Vegas, NV, 89154-4015, USA
| | - Puangrat Kajitvichyanukul
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
142
|
Rashidipour M, Rasoulian B, Maleki A, Davari B, Pajouhi N, Mohammadi E. Pectin/chitosan/tripolyphosphate encapsulation protects the rat lung from fibrosis and apoptosis induced by paraquat inhalation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104919. [PMID: 34446195 DOI: 10.1016/j.pestbp.2021.104919] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Paraquat poisoning leads to lung injury and pulmonary fibrosis. The effect of paraquat encapsulation by previously described Pectin/Chitosan/Tripolyphosphate nanoparticles on its pulmonary toxicity was investigated in present study in a rat model of poison inhalation. MATERIAL AND METHOD The rats inhaled nebulized different formulation of paraquat (n = 5) for 30 min in various experimental groups. Lung injury and fibrosis scores, Lung tissue enzymatic activities, apoptosis markers were determined compared among groups. RESULTS Encapsulation of paraquat significantly rescued both lung injury and fibrosis scores. Lung MDA level was reduced by encapsulation. Paraquat poisoning led to lung tissue apoptosis as was evidenced by higher Caspase-3 and Bax/Bcl2 expressions in rats subjected to paraquat inhalation instead of normal saline or free nanoparticles. Again, nanoencapsulation reduced these apoptosis markers significantly. Alpha-SMA expression was also reduced by encapsulation. Nanoparticles per se have no or little toxicity as was evidenced by inflammatory and apoptotic markers and histological scores. CONCLUSION In a rat model of inhalation toxicity of paraquat, loading of this herbicide on PEC/CS/TPP nanoparticles reduced acute lung injury and fibrosis. The encapsulation also led to lower apoptosis, oxidative stress and alpha-SMA expression in the lung tissue.
Collapse
Affiliation(s)
- Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Bahram Rasoulian
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Behroz Davari
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Medical Entomology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Naser Pajouhi
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Ebrahim Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
143
|
Chen CK, Chen YC, Mégarbane B, Yeh YT, Chaou CH, Chang CH, Lin CC. The acute paraquat poisoning mortality (APPM) score to predict the risk of death in paraquat-poisoned patients. Clin Toxicol (Phila) 2021; 60:446-450. [PMID: 34543159 DOI: 10.1080/15563650.2021.1979234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Mortality prediction in paraquat poisoning is a major issue since most prediction rules are inapplicable if the exact ingestion time cannot be determined and/or the serum paraquat concentration is not readily available, as in most countries. Therefore, we aimed to develop and validate a new prediction rule not requiring these two parameters. METHODS We designed a 10-year observational cohort study including all consecutive paraquat-poisoned patients managed in two Taiwanese hospitals. We built one cohort to define and one cohort to validate this prediction rule. Parameters independently related to mortality determined using a multivariate analysis were used to formulate the Acute Paraquat Poisoning Mortality (APPM) score. RESULTS Overall, 321 paraquat-poisoned patients were included, 156 in the derivation and 165 in the validation cohort. Mortality rates in the derivation and validation cohorts were 73% and 81%, respectively (p = 0.20). The three parameters chosen of 28-day mortality at presentation were urine paraquat level >10 ppm (using a colorimetric sodium dithionite-based test; odds ratio (OR), 12.70; 95% confidence interval (CI), 2.64-61.24), white blood cells >13.0 G/L (OR, 5.50; CI, 1.41-21.48) and blood glucose >140 mg/dL [7.8 mmol/L] (OR, 7.45; CI, 1.70-32.86). In the derivation cohort, the area under the ROC curve (AUC-ROC) of the APPM score did not significantly differ from AUC-ROCs of serum paraquat (0.95, p = 0.25) and the Severity Index of Paraquat Poisoning (0.95, p = 0.33). AUC-ROCs of the APPM score in the derivation and validation cohorts were 0.91 and 0.94, respectively. CONCLUSION We built and validated a reliable score to predict 28-day mortality in paraquat-poisoned patients at presentation, independently from the ingestion time and serum paraquat measurement.
Collapse
Affiliation(s)
- Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical and Toxicological Critical Care, Lariboisière Hospital, AP-HP, Paris University, Paris, France
| | - Yen-Chia Chen
- Department of Emergency medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, AP-HP, Paris University, Paris, France
| | - Ying-Tse Yeh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Yuli branch, Taiwan
| | - Chung-Hsien Chaou
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsun Chang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
144
|
Allegra A, Sant'Antonio E, Musolino C, Ettari R. New insights into neuropeptides regulation of immune system and hemopoiesis: effects on hematologic malignancies. Curr Med Chem 2021; 29:2412-2437. [PMID: 34521320 DOI: 10.2174/0929867328666210914120228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Several neurotransmitters and neuropeptides were reported to join to or to cooperate with different cells of the immune system, bone marrow, and peripheral cells and numerous data support that neuroactive molecules might control immune system activity and hemopoiesis operating on lymphoid organs, and the primary hematopoietic unit, the hematopoietic niche. Furthermore, many compounds seem to be able to take part to the leukemogenesis and lymphomagenesis process, and in the onset of multiple myeloma. In this review, we will assess the possibility that neurotransmitters and neuropeptides may have a role in the onset of haematological neoplasms, may affect the response to treatment or may represent a useful starting point for a new therapeutic approach. More in vivo investigations are needed to evaluate neuropeptide's role in haematological malignancies and the possible utilization as an antitumor therapeutic target. Comprehending the effect of the pharmacological administration of neuropeptide modulators on hematologic malignancies opens up new possibilities in curing clonal hematologic diseases to achieve more satisfactory outcomes.
Collapse
Affiliation(s)
- Alessandro Allegra
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | | | - Caterina Musolino
- Department of Human Pathology in Adulthood and Childhood, University of Messina. Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Chemistry, University of Messina. Italy
| |
Collapse
|
145
|
Dai Y, Liu X, Gao Y. Aberrant miR-219-5p is correlated with TLR4 and serves as a novel biomarker in patients with multiple organ dysfunction syndrome caused by acute paraquat poisoning. Int J Immunopathol Pharmacol 2021; 34:2058738420974888. [PMID: 33233960 PMCID: PMC7691899 DOI: 10.1177/2058738420974888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the clinical significance of serum
microRNA-219-5p (miR-219-5p) in patients with multiple organ dysfunction
syndrome (MODS) caused by acute paraquat (PQ) poisoning, and its correlation
with Toll-like Receptor 4 (TLR4). Luciferase reporter assay was used to
investigate in vitro the correlation of miR-219-5p with TLR4. Serum miR-219-5p
levels were evaluated by quantitative real-time polymerase chain reaction. Serum
levels of TLR4, IL-1β, and TNF-α were measured by Enzyme-linked immune sorbent
assay (ELISA). ROC analysis was performed to assess the diagnostic significance,
Kaplan-Meier survival curves and Cox regression analysis were used to evaluate
the prognostic value of miR-219-5p in MODS patients. TLR4 was a target gene of
miR-219-5p and was increased in MODS patients. Serum miR-219-5p level was
decreased and negatively correlated with TLR4 level in MODS patients
(r = −0.660, P < 0.001), which had
important diagnostic value and negatively correlated with APACHE II score in
MODS patients. The miR-219-5p expression was markedly associated with the WBC,
ALT, AST, PaCO2, Lac, and APACHE II score. Non-survivals had more
patients with low miR-219-5p expression. Patients with low miR-219-5p expression
had shorter survival time. MiR-219-5p and APACHE II score were two independently
prognostic factors for 28-day survival. MiR-219-5p was negatively correlated
with, while TLR4 was positively correlated with the levels of IL-1β and TNF-α.
The serum miR-219-5p level may be a potential biomarker for acute PQ-induced
MODS diagnosis and prognosis. Furthermore, miR-219-5p may be associated with the
progression of MODS by regulating TLR4-related inflammatory response.
Collapse
Affiliation(s)
- Yunxiang Dai
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Xia Liu
- Radiology Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| | - Yuming Gao
- Emergency Department, Qingdao Jiaozhou Central Hospital, Qingdao, Shandong, China
| |
Collapse
|
146
|
Chen CK, Yeh YT, Mégarbane B, Chen YC, Chen KF, Chang CH, Lin CC. A novel flowchart to predict mortality and analyse effectiveness of routinely used pharmacological regimens in paraquat poisoning. Basic Clin Pharmacol Toxicol 2021; 129:496-503. [PMID: 34478614 DOI: 10.1111/bcpt.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/29/2022]
Abstract
Paraquat is responsible for an extremely high case-fatality rate poisoning. Mortality prediction remains a major issue since evidence to support benefits of routinely used treatments is lacking. We aimed to develop an easy-to-use prediction flowchart not requiring the ingestion time, for which accuracy is frequently questionable, and to evaluate the effectiveness of routinely used pharmacological therapies on mortality. We designed a two-centre cohort study including consecutive paraquat-poisoned adults with confirmed diagnosis based on serum/urine paraquat measurement. We built a flowchart using a multivariate analysis of death predictors and analysed the outcome according to the administered therapies. Overall, 256 patients were enrolled. Mortality rate was 75%. Independent death predictors on admission were serum creatinine (odds ratio [OR], 5.07; 95% confidence interval [CI], 1.97-13.05) and serum paraquat concentration (OR, 2.26; CI, 1.66-3.09). The area-under-the flowchart curve was 0.91. Overall sensitivity and specificity were 81.5% and 94.8%, respectively. More survivors than non-survivors of severe poisoning received methylprednisolone (P = 0.04). While not significantly differing in severity, methylprednisolone-treated patients had better survival (P = 0.04). To conclude, we defined an efficient flowchart to predict mortality in paraquat poisoning at presentation, even if ingestion time is undetermined. Methylprednisolone seems effective to improve the outcome, especially in the most severe cases.
Collapse
Affiliation(s)
- Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Medical and Toxicological Critical Care, Lariboisière Hospital, AP-HP, Paris University, INSERM UMRS-1144, Paris, France
| | - Ying-Tse Yeh
- Department of Emergency Medicine, Taipei Veterans General Hospital, Yuli Branch, Hualian, Taiwan
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, AP-HP, Paris University, INSERM UMRS-1144, Paris, France
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuan-Fu Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Hsun Chang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
147
|
Amin F, Memarzia A, Kazemi Rad H, Shakeri F, Boskabady MH. Systemic inflammation and oxidative stress induced by inhaled paraquat in rat improved by carvacrol, possible role of PPARγ receptors. Biofactors 2021; 47:778-787. [PMID: 34089284 DOI: 10.1002/biof.1761] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022]
Abstract
Control rats were exposed to saline aerosol, two groups were exposed to paraquat (PQ), 27 (PQ-L) and 54 (PQ-H) mg/m3 aerosols and six groups were treated with carvacrol, 20 (C-L) and 80 (C-H) mg/kg/day, pioglitazone, 5 (Pio-L) and 10 (Pio-H) mg/kg/day, C-L+Pio-L and dexamethasone, 0.03 mg/kg/day, for 16 days after the end of exposure to PQ-H. Different variables were measured after the end of treatment period. Total and differential white blood cells counts, nitrite, malondialdehyde, interleukin (IL)-10, and interferon-gamma levels were significant increased, but thiol, superoxide dismutase, catalase, IL-17, and tumor necrosis factor alpha were decreased in the blood due to both doses of PQ (p < 0.05-p < 0.001). Most measured parameters were significantly improved in treated groups with both doses of carvacrol, pioglitazone, the combination of C-L+Pio-L and dexamethasone compared to PQ-H group (p < 0.05-p < 0.001). Treatment with C-L+Pio-L showed significantly higher effects compared to each one alone (p < 0.05-p < 0.001). Systemic oxidative stress and inflammation due to inhaled PQ were improved by carvacrol and pioglitazone. Higher effects of C-L+Pio-L than each one alone suggests carvacrol modulating PPAR-γ receptors.
Collapse
Affiliation(s)
- Fatemeh Amin
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Arghavan Memarzia
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Kazemi Rad
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Shakeri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
148
|
Bacopaside-I Alleviates the Detrimental Effects of Acute Paraquat Intoxication in the Adult Zebrafish Brain. Neurochem Res 2021; 46:3059-3074. [PMID: 34357519 DOI: 10.1007/s11064-021-03416-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Paraquat (PQ), an environmental neurotoxicant, causes acute fatal poisoning upon accidental or intentional ingestion (suicidal cases) worldwide. To date, an effective remedy for PQ toxicity is not available. In this study, we have evaluated the therapeutic efficacy of Bacopaside-I (BS-I), an active compound found in the plant extract of Bacopa monnieri (Brahmi), against acute PQ intoxication using zebrafish as a model organism. Adult zebrafish were injected with a dose of either 30 mg/kg or 50 mg/kg PQ. PQ-intoxicated zebrafish showed an increased rate of mortality and oxidative imbalance in their brain. Also, the proliferation of neural cells in the adult zebrafish brain was inhibited. However, when BS-I pretreated zebrafish were intoxicated with PQ, the toxic effects of PQ were ameliorated. PQ treatment also affected the expression of particular genes concerned with the apoptosis and dopamine signaling, which was not altered by BS-I administration. Our results highlight the efficiency of BS-I as a novel therapeutic agent for PQ intoxication. It further compels us to search and evaluate the molecular mechanisms targeted by BS-I to develop a potent therapy for acute PQ intoxication.
Collapse
|
149
|
Jia R, Li T, Wang N. Long noncoding RNA HOTAIR functions as ceRNA to regulate MMP2 in paraquat induced lung epithelial-mesenchymal transition. Toxicology 2021; 461:152891. [PMID: 34364922 DOI: 10.1016/j.tox.2021.152891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Paraquat (PQ) poisoning induces epithelial-mesenchymal transition (EMT) in the lungs, resulting in pulmonary fibrosis with a poor prognosis. Although competitive endogenous RNA (ceRNA) networks are known to exert post-transcriptional regulatory effects, the roles of such networks in PQ-induced EMT remain unknown. We explored the potential ceRNA network involved in PQ-induced pulmonary EMT. The male BALB/c mice were injected with 10 mg/kg PQ intraperitoneally and the lungs were harvested at 21st day. The A549 cells were treated with 60 μmol/L PQ for 6 days. We determined the expression level of epithelia cadherin (E-cadherin) and α-smooth muscle actin (α-SMA) in the lungs and A549 cells after PQ exposure. We also detected the expression level of the long noncoding RNA (lncRNA) HOX transcript antisense intergenic RNA (HOTAIR), microRNA-17-5p (miR-17-5p), and matrix metalloproteinase 2 (MMP2). We used specific siRNA to determine the influence of HOTAIR on MMP2. We also transfected a mimic or inhibitor of miR-17-5p to explore its role. Moreover, we used the luciferase reporter gene assay to confirm the relationship between miR-17-5p and HOTAIR or MMP2. In this study, we found that MMP2 and HOTAIR were upregulated and miR-17-5p was downregulated in PQ-induced EMT. The knockdown of HOTAIR decreased the expression of MMP2, and the upregulation of miR-17-5p suppressed HOTAIR and MMP2. Apparently, the downregulation of miR-17-5p increased the expression of HOTAIR and MMP2. The expression of α-SMA was negatively regulated by miR-17-5p after PQ exposure. In addition, the luciferase reporter gene assay confirmed that HOTAIR and MMP2 had direct binding sites with miR-17-5p. In conclusion, this study showed that the HOTAIR could act as a ceRNA for miR-17-5p to regulate MMP2 expression in PQ-induced pulmonary EMT.
Collapse
Affiliation(s)
- Rujun Jia
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tiegang Li
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Nana Wang
- Endocrinology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
150
|
Wang T, Li S, Wu Y, Yan X, Zhu Y, Jiang Y, Jiang F, Liu W. Mechanistic Investigation of Xuebijing for Treatment of Paraquat-Induced Pulmonary Fibrosis by Metabolomics and Network Pharmacology. ACS OMEGA 2021; 6:19717-19730. [PMID: 34368559 PMCID: PMC8340419 DOI: 10.1021/acsomega.1c02370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
After paraquat (PQ) poisoning, it is difficult to accurately diagnose patients' condition by only measuring their blood PQ concentration. Therefore, it is important to establish an accurate method to assist in the diagnosis of PQ poisoning, especially in the early stages. In this study, a gas chromatography-mass spectrometry (GC-MS) metabonomics strategy was established to obtain metabolite information. A random forest algorithm was used to search for potential biomarkers of PQ poisoning, and data mining and network pharmacological analysis were used to evaluate the active components, drug-disease targets, and key pathways of Xuebijing (XBJ) injection in the treatment of PQ-induced pulmonary fibrosis. Targets from the network pharmacology analysis and metabolites from plasma metabolomics were jointly analyzed to select crucial metabolic pathways. Finally, molecular docking technology and in vitro experiments were used to verify the pathway targets to further reveal the potential mechanisms underlying the antipulmonary fibrosis effect of XBJ. Metabonomics studies showed that l-valine, glycine, citric acid, d-mannose, d-galactose, maltose, l-tryptophan, and arachidonic acid contributed more to the differentiation of different groups than other metabolites. Compared with the control group, the PQ poisoning group had higher levels of l-valine, glycine, citric acid, l-tryptophan, and arachidonic acid, and lower levels of d-mannose, d-galactose, and maltose. After treatment with XBJ injection, the relative levels of these metabolites were reversed. The network pharmacological analysis screened a total of 180 targets, mainly involving multiple signaling pathways and metabolic pathways, which jointly played an antipulmonary fibrosis effect. Based on the combined analysis of 180 targets and 8 different metabolites, arachidonic acid metabolism was selected as the key metabolic pathway. Molecular docking analysis showed that the XBJ compound had strong binding activity with the target protein. Western blot results showed that XBJ injection could reduce the inflammatory response by downregulating the expressions of p-p65, p-IKBα, and p-IKKβ, thus inhibiting the development of PQ-induced pulmonary fibrosis. In summary, the combined results from metabolomics and network pharmacology studies showed that Xuebijing has the characteristics of multitarget, multichannel, and multicomponent action in the treatment of pulmonary fibrosis caused by PQ.
Collapse
Affiliation(s)
- Tongtong Wang
- Department
of Pharmacy, The First Affiliate Hospital
of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China
| | - Sha Li
- Department
of Pharmacy, Changsha Stomatological Hospital, Changsha 410005, China
| | - Yangke Wu
- Department
of Pharmacy, The First Affiliate Hospital
of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China
| | - Xiao Yan
- Department
of Pharmacy, The First Affiliate Hospital
of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China
| | - Yiming Zhu
- Department
of Pharmacy, The First Affiliate Hospital
of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China
| | - Yu Jiang
- Hunan
Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Changsha 410005, China
| | - Feiya Jiang
- Department
of Pharmacy, The First Affiliate Hospital
of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China
| | - Wen Liu
- Department
of Pharmacy, The First Affiliate Hospital
of Hunan Normal University (Hunan Provincial People’s Hospital), Changsha 410005, China
| |
Collapse
|