101
|
Liu WC, Li CQ, Zhu P, Yang JL, Cheng KD. Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-010-0022-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
102
|
Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-009-0013-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
103
|
de Errasti A, Carmarán CC, Novas MV. Diversity and significance of fungal endophytes from living stems of naturalized trees from Argentina. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-009-0012-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
104
|
Albrectsen BR, Björkén L, Varad A, Hagner Å, Wedin M, Karlsson J, Jansson S. Endophytic fungi in European aspen (Populus tremula) leaves—diversity, detection, and a suggested correlation with herbivory resistance. FUNGAL DIVERS 2010. [DOI: 10.1007/s13225-009-0011-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
105
|
|
106
|
Stefani FOP, Moncalvo JM, Séguin A, Bérubé JA, Hamelin RC. Impact of an 8-year-old transgenic poplar plantation on the ectomycorrhizal fungal community. Appl Environ Microbiol 2009; 75:7527-36. [PMID: 19801471 PMCID: PMC2786396 DOI: 10.1128/aem.01120-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 09/26/2009] [Indexed: 11/20/2022] Open
Abstract
The long-term impact of field-deployed genetically modified trees on soil mutualistic organisms is not well known. This study aimed at evaluating the impact of poplars transformed with a binary vector containing the selectable nptII marker and beta-glucuronidase reporter genes on ectomycorrhizal (EM) fungi 8 years after field deployment. We generated 2,229 fungal internal transcribed spacer (ITS) PCR products from 1,150 EM root tips and 1,079 fungal soil clones obtained from the organic and mineral soil horizons within the rhizosphere of three control and three transformed poplars. Fifty EM fungal operational taxonomic units were identified from the 1,706 EM fungal ITS amplicons retrieved. Rarefaction curves from both the root tips and soil clones were close to saturation, indicating that most of the EM species present were recovered. Based on qualitative and/or quantitative alpha- and beta-diversity measurements, statistical analyses did not reveal significant differences between EM fungal communities associated with transformed poplars and the untransformed controls. However, EM communities recovered from the root tips and soil cloning analyses differed significantly from each other. We found no evidence of difference in the EM fungal community structure linked to the long-term presence of the transgenic poplars studied, and we showed that coupling root tip analysis with a soil DNA cloning strategy is a complementary approach to better document EM fungal diversity.
Collapse
Affiliation(s)
- Franck O P Stefani
- Universite Laval, Faculte de Foresterie et de Geomatique, Quebec, QC G1K 7P4, Canada.
| | | | | | | | | |
Collapse
|
107
|
Wielgoss A, Nechwatal J, Bogs C, Mendgen K. Host plant development, water level and water parameters shape Phragmites australis-associated oomycete communities and determine reed pathogen dynamics in a large lake. FEMS Microbiol Ecol 2009; 69:255-65. [DOI: 10.1111/j.1574-6941.2009.00701.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
108
|
Arnold AE, Miadlikowska J, Higgins KL, Sarvate SD, Gugger P, Way A, Hofstetter V, Kauff F, Lutzoni F. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol 2009; 58:283-97. [PMID: 20525584 DOI: 10.1093/sysbio/syp001] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fungi associated with photosynthetic organisms are major determinants of terrestrial biomass, nutrient cycling, and ecosystem productivity from the poles to the equator. Whereas most fungi are known because of their fruit bodies (e.g., saprotrophs), symptoms (e.g., pathogens), or emergent properties as symbionts (e.g., lichens), the majority of fungal diversity is thought to occur among species that rarely manifest their presence with visual cues on their substrate (e.g., the apparently hyperdiverse fungal endophytes associated with foliage of plants). Fungal endophytes are ubiquitous among all lineages of land plants and live within overtly healthy tissues without causing disease, but the evolutionary origins of these highly diverse symbionts have not been explored. Here, we show that a key to understanding both the evolution of endophytism and the diversification of the most species-rich phylum of Fungi (Ascomycota) lies in endophyte-like fungi that can be isolated from the interior of apparently healthy lichens. These "endolichenic" fungi are distinct from lichen mycobionts or any other previously recognized fungal associates of lichens, represent the same major lineages of Ascomycota as do endophytes, largely parallel the high diversity of endophytes from the arctic to the tropics, and preferentially associate with green algal photobionts in lichen thalli. Using phylogenetic analyses that incorporate these newly recovered fungi and ancestral state reconstructions that take into account phylogenetic uncertainty, we show that endolichenism is an incubator for the evolution of endophytism. In turn, endophytism is evolutionarily transient, with endophytic lineages frequently transitioning to and from pathogenicity. Although symbiotrophic lineages frequently give rise to free-living saprotrophs, reversions to symbiosis are rare. Together, these results provide the basis for estimating trophic transition networks in the Ascomycota and provide a first set of hypotheses regarding the evolution of symbiotrophy and saprotrophy in the most species-rich fungal phylum. [Ancestral state reconstruction; Ascomycota; Bayesian analysis; endolichenic fungi; fungal endophytes; lichens; pathogens; phylogeny; saprotrophy; symbiotrophy; trophic transition network.].
Collapse
|
109
|
Smith ME, Jaffee BA. PCR primers with enhanced specificity for nematode-trapping fungi (Orbiliales). MICROBIAL ECOLOGY 2009; 58:117-128. [PMID: 18931821 DOI: 10.1007/s00248-008-9453-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/21/2008] [Indexed: 05/26/2023]
Abstract
Nematode-trapping fungi, a monophyletic lineage within the Orbiliales (Ascomycota), use specialized structures to capture and consume nematodes in soil, leaf litter, and other substrates. These fungi have been studied both because of their unique predatory life history and because they are potential control agents of important plant- and animal-parasitic nematodes. Ecological studies of nematode-trapping fungi have primarily used culture-based methods, but molecular detection techniques are now available and should be useful for studying this group. We developed Orbiliales-specific PCR primers for the ITS and 28s rDNA to directly detect nematode-trapping fungi without culturing and also to screen fungal isolates for phylogenetic placement in the Orbiliales. We used these primers to selectively amplify, clone, and sequence Orbiliales DNA extracted from soil, litter, and wood, and we compared the results of molecular detection with those obtained using a culture-based method. Of the eight species of nematode-trapping Orbiliales detected with the culture-based assay, only three were detected with PCR. The molecular assay, however, detected 18 species of uncultured Orbiliales, many of which are closely related to nematode-trapping fungi and fungal parasites of nematode eggs. Our results suggest that the combined use of Orbiliales-specific primers and culture-based techniques may benefit future studies of nematophagous fungi.
Collapse
Affiliation(s)
- Matthew E Smith
- Farlow Herbarium and Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
110
|
Peay KG, Kennedy PG, Bruns TD. Fungal Community Ecology: A Hybrid Beast with a Molecular Master. Bioscience 2008. [DOI: 10.1641/b580907] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
111
|
Porter TM, Skillman JE, Moncalvo JM. Fruiting body and soil rDNA sampling detects complementary assemblage of Agaricomycotina (Basidiomycota, Fungi) in a hemlock-dominated forest plot in southern Ontario. Mol Ecol 2008; 17:3037-50. [PMID: 18494767 DOI: 10.1111/j.1365-294x.2008.03813.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This is the first study to assess the diversity and community structure of the Agaricomycotina in an ectotrophic forest using above-ground fruiting body surveys as well as soil rDNA sampling. We recovered 132 molecular operational taxonomic units, or 'species', from fruiting bodies and 66 from soil, with little overlap. Fruiting body sampling primarily recovered fungi from the Agaricales, Russulales, Boletales and Cantharellales. Many of these species are ectomycorrhizal and form large fruiting bodies. Soil rDNA sampling recovered fungi from these groups in addition to taxa overlooked during the fruiting body survey from the Atheliales, Trechisporales and Sebacinales. Species from these groups form inconspicuous, resupinate and corticioid fruiting bodies. Soil sampling also detected fungi from the Hysterangiales that form fruiting bodies underground. Generally, fruiting body and soil rDNA samples recover a largely different assemblage of fungi at the species level; however, both methods identify the same dominant fungi at the genus-order level and ectomycorrhizal fungi as the prevailing type. Richness, abundance, and phylogenetic diversity (PD) identify the Agaricales as the dominant fungal group above- and below-ground; however, we find that molecularly highly divergent lineages may account for a greater proportion of total diversity using the PD measure compared with richness and abundance. Unless an exhaustive inventory is required, the rapidity and versatility of DNA-based sampling may be sufficient for a first assessment of the dominant taxonomic and ecological groups of fungi in forest soil.
Collapse
Affiliation(s)
- Teresita M Porter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
112
|
Host generalists dominate fungal communities associated with seeds of four neotropical pioneer species. JOURNAL OF TROPICAL ECOLOGY 2008. [DOI: 10.1017/s0266467408005026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Most ecological studies of fungi associated with tropical plants have focused on the rhizosphere or phyllosphere of seedlings, saplings and adult trees (Augspurger 1983, 1984; Bell et al. 2006, Gilbert 2002, Gilbert et al. 2002, Husband et al. 2002, Kiers et al. 2000, Mangan et al. 2004). However, fungi also infect the seeds of tropical trees, reducing seed survival and potentially affecting adult distributions (Gallery et al. 2007a, b). Fungicide experiments have shown that fungal and oomyceteous pathogens are the major cause of seed mortality in the soil for a variety of tropical pioneers (Dalling et al. 1998, Gallery et al. 2007b, Murray & Garcia 2002), which depend on recruitment from seed banks to colonize gaps and other disturbances in mature forest (Alvarez-Buylla & Martinez-Ramos 1990, Dalling et al. 1997, Hall & Swaine 1980). Persistence in the soil prolongs exposure of seeds to infection by soil-borne fungi and is especially problematic for small-seeded species with thin fruit or seed walls (Baskin & Baskin 1998, Blaney & Kotanen 2002, Crist & Friese 1993). At present little is known about the host affinity of fungi associated with seeds of tropical trees, and consequently, whether seed-infecting fungi influence plant species coexistence through differential infection of, or effects on, potential hosts.
Collapse
|
113
|
Porras-Alfaro A, Herrera J, Sinsabaugh RL, Odenbach KJ, Lowrey T, Natvig DO. Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 2008; 74:2805-13. [PMID: 18344349 PMCID: PMC2394874 DOI: 10.1128/aem.02769-07] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 03/01/2008] [Indexed: 11/20/2022] Open
Abstract
The broad distribution and high colonization rates of plant roots by a variety of endophytic fungi suggest that these symbionts have an important role in the function of ecosystems. Semiarid and arid lands cover more than one-third of the terrestrial ecosystems on Earth. However, a limited number of studies have been conducted to characterize root-associated fungal communities in semiarid grasslands. We conducted a study of the fungal community associated with the roots of a dominant grass, Bouteloua gracilis, at the Sevilleta National Wildlife Refuge in New Mexico. Internal transcribed spacer ribosomal DNA sequences from roots collected in May 2005, October 2005, and January 2006 were amplified using fungal-specific primers, and a total of 630 sequences were obtained, 69% of which were novel (less than 97% similarity with respect to sequences in the NCBI database). B. gracilis roots were colonized by at least 10 different orders, including endophytic, coprophilous, mycorrhizal, saprophytic, and plant pathogenic fungi. A total of 51 operational taxonomic units (OTUs) were found, and diversity estimators did not show saturation. Despite the high diversity found within B. gracilis roots, the root-associated fungal community is dominated by a novel group of dark septate fungi (DSF) within the order Pleosporales. Microscopic analysis confirmed that B. gracilis roots are highly colonized by DSF. Other common orders colonizing the roots included Sordariales, Xylariales, and Agaricales. By contributing to drought tolerance and nutrient acquisition, DSF may be integral to the function of arid ecosystems.
Collapse
Affiliation(s)
- Andrea Porras-Alfaro
- Department of Biology, MSC03 2020, 1 The University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | | | | | |
Collapse
|
114
|
Moricca S, Ragazzi A. Fungal endophytes in Mediterranean oak forests: a lesson from Discula quercina. PHYTOPATHOLOGY 2008; 98:380-6. [PMID: 18944185 DOI: 10.1094/phyto-98-4-0380] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fungal endophytes that colonize forest trees are widespread, but they are less well known than endophytes infecting grasses. The few studies on endophytes in trees mainly concern the tropical areas and the northernmost latitudes, while similar investigations in the Mediterranean region have so far been scarce and incidental. Endophytes are studied mostly in economically important forests suffering from diseases, such as oak forests. One common endophyte that has received some study on oak is the mitosporic Discula quercina. This paper, after first addressing some basic problems on tree endophytes, examines the ecology of D. quercina in Mediterranean oak stands. D. quercina is usually viewed as a symptomless colonizer of healthy Quercus cerris, infecting new leaves early in the growing season, in an unstable equilibrium between transient mutualism/neutralism and latent pathogenesis. It is postulated here that climatic factors can change the endophytic nature of D. quercina, turning it into a weak pathogen or an opportunistic invader of senescing and indeed healthy trees. It is argued more generally that stochastic events can cause the lifestyle of an endophyte to switch from beneficial/neutral to pathogenic, transforming the tree-endophyte interaction, an interaction that depends in part on the matching genomes of the tree and endophyte, and on the environmental context.
Collapse
Affiliation(s)
- S Moricca
- Dipartimento di Biotecnologie agrarie, Sezione di Patologia vegetale, Universita di Firenze, Firenze, Italy.
| | | |
Collapse
|
115
|
Wijeratne EMK, Paranagama PA, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL. Sesquiterpene quinones and related metabolites from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis of the Sonoran Desert. JOURNAL OF NATURAL PRODUCTS 2008; 71:218-222. [PMID: 18247573 DOI: 10.1021/np070600c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Five new metabolites, (+)-(5 S,10 S)-4'-hydroxymethylcyclozonarone ( 1), 3-ketotauranin ( 3), 3alpha-hydroxytauranin ( 4), 12-hydroxytauranin ( 5), and phyllospinarone ( 6), together with tauranin ( 2), were isolated from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis. The structures of the new compounds were determined on the basis of their 1D and 2D NMR spectroscopic data and chemical interconversions. All compounds were evaluated for inhibition of cell proliferation in a panel of five cancer cell lines, and only tauranin ( 2) showed activity. When tested in a flow cytometry-based assay, tauranin induced apoptosis in PC-3M and NIH 3T3 cell lines.
Collapse
Affiliation(s)
- E M Kithsiri Wijeratne
- SW Center for Natural Products Research and Commercialization, Office of Arid Lands Studies, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706-6800, USA
| | | | | | | | | | | |
Collapse
|
116
|
Paranagama PA, Wijeratne EMK, Burns AM, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL. Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. JOURNAL OF NATURAL PRODUCTS 2007; 70:1700-1705. [PMID: 17988097 DOI: 10.1021/np070466w] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two new heptaketides, corynesporol (1) and 1-hydroxydehydroherbarin (2), along with herbarin (3) were isolated from an endolichenic fungal strain, Corynespora sp. BA-10763, occurring in the cavern beard lichen Usnea cavernosa. The structures of 1-3 were elucidated from their spectroscopic data. Aerial oxidation of corynesporol (1) yielded herbarin (3). Acetylation of 1 afforded the naphthalene derivative 4, whereas acetylation of 3 gave the corresponding naphthoquinone 6 and dehydroherbarin (5). All compounds were evaluated for their cytotoxicity and ability to inhibit migration of human metastatic breast and prostate cancer cell lines MDA-MB-231 and PC-3M, respectively. Dehydroherbarin (5) inhibited migration of both cell lines at concentrations not toxic to these cell lines. This is the first report of metabolites from an endolichenic fungus.
Collapse
Affiliation(s)
- Priyani A Paranagama
- SW Center for Natural Products Research and Commercialization, Office of Arid Lands Studies, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706-6800, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F. Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: A case study of the Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 2007; 44:412-26. [PMID: 17207641 DOI: 10.1016/j.ympev.2006.10.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/10/2006] [Indexed: 11/24/2022]
Abstract
The resolving power and statistical support provided by two protein-coding (RPB1 and RPB2) and three ribosomal RNA-coding (nucSSU, nucLSU, and mitSSU) genes individually and in various combinations were investigated based on maximum likelihood bootstrap analyses on lichen-forming fungi from the class Lecanoromycetes (Ascomycota). Our results indicate that the optimal loci (single and combined) to use for molecular systematics of lichen-forming Ascomycota are protein-coding genes (RPB1 and RPB2). RPB1 and RPB2 genes individually were phylogenetically more efficient than all two- and three-locus combinations of ribosomal loci. The 3rd codon position of each of these two loci provided the most characters in support of phylogenetic relationships within the Lecanoromycetes. Of the three ribosomal loci we used in this study, mitSSU contributed the most to phylogenetic analyses when combined with RPB1 and RPB2. Except for the mitSSU, ribosomal genes were the most difficult to recover because they often contain many introns, resulting in PCR bias toward numerous and intronless co-extracted contaminant fungi (mainly Dothideomycetes, Chaetothyriomycetes, and Sordariomycetes in the Ascomycota, and members of the Basidiomycota), which inhabit lichen thalli. Maximum likelihood analysis on the combined five-locus data set for 82 members of the Lecanoromycetes provided a well resolved and well supported tree compared to existing phylogenies. We confirmed the monophyly of three recognized subclasses in the Lecanoromycetes, the Acarosporomycetidae, Ostropomycetidae, and Lecanoromycetideae; the latter delimited as monophyletic for the first time, with the exclusion of the family Umbilicariaceae and Hypocenomyce scalaris. The genus Candelariella (formerly in the Candelariaceae, currently a member of the Lecanoraceae) represents the first evolutionary split within the Lecanoromycetes, before the divergence of the Acarosporomycetidae. This study provides a foundation necessary to guide the selection of loci for future multilocus phylogenetic studies on lichen-forming and allied ascomycetes.
Collapse
|
118
|
Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F. Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 2007; 42:543-55. [PMID: 17005421 DOI: 10.1016/j.ympev.2006.07.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 07/03/2006] [Accepted: 07/19/2006] [Indexed: 11/28/2022]
Abstract
Although associated with all plants, fungal endophytes (microfungi that live within healthy plant tissues) represent an unknown proportion of fungal diversity. While there is a growing appreciation of their ecological importance and human uses, little is known about their host specificity, geographic structure, or phylogenetic relationships. We surveyed endophytic Ascomycota from healthy photosynthetic tissues of three plant species (Huperzia selago, Picea mariana, and Dryas integrifolia, representing lycophytes, conifers, and angiosperms, respectively) in northern and southern boreal forest (Québec, Canada) and arctic tundra (Nunavut, Canada). Endophytes were recovered from all plant species surveyed, and were present in <1-41% of 2 mm2 tissue segments examined per host species. Sequence data from the nuclear ribosomal internal transcribed spacer region (ITS) were obtained for 280 of 558 isolates. Species-accumulation curves based on ITS genotypes remained non-asymptotic, and bootstrap analyses indicated that a large number of genotypes remain to be found. The majority of genotypes were recovered from only a single host species, and only 6% of genotypes were shared between boreal and arctic communities. Two independent Bayesian analyses and a neighbor-joining bootstrapping analysis of combined data from the nuclear large and small ribosomal subunits (LSUrDNA, SSUrDNA; 2.4 kb) showed that boreal and arctic endophytes represent Dothideomycetes, Sordariomycetes, Chaetothyriomycetidae, Leotiomycetes, and Pezizomycetes. Many well-supported phylotypes contained only endophytes despite exhaustive sampling of available sequences of Ascomycota. Together, these data demonstrate greater than expected diversity of endophytes at high-latitude sites and provide a framework for assessing the evolution of these poorly known but ubiquitous symbionts of living plants.
Collapse
|