101
|
Aktar E, Qu J, Lawrence PJ, Tollenaar MS, Elzinga BM, Bögels SM. Fetal and Infant Outcomes in the Offspring of Parents With Perinatal Mental Disorders: Earliest Influences. Front Psychiatry 2019; 10:391. [PMID: 31316398 PMCID: PMC6610252 DOI: 10.3389/fpsyt.2019.00391] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Mental illness is highly prevalent and runs in families. Mental disorders are considered to enhance the risk for the development of psychopathology in the offspring. This heightened risk is related to the separate and joint effects of inherited genetic vulnerabilities for psychopathology and environmental influences. The early years of life are suggested to be a key developmental phase in the intergenerational psychopathology transmission. Available evidence supports the idea that early exposure to parental psychopathology, during the pregnancy and first postpartum year, may be related to child psychological functioning beyond the postpartum period, up to adulthood years. This not only highlights the importance of intervening early to break the chain of intergenerational transmission of psychopathology but also raises the question of whether early interventions targeting parental mental disorders in this period may alleviate these prolonged adverse effects in the infant offspring. The current article focuses on the specific risk of psychopathology conveyed from mentally ill parents to the offspring during the pregnancy and first postpartum year. We first present a summary of the available evidence on the associations of parental perinatal mental illness with infant psychological outcomes at the behavioral, biological, and neurophysiological levels. Next, we address the effects of early interventions and discuss whether these may mitigate the early intergenerational transmission of risk for psychopathology. The summarized evidence supports the idea that psychopathology-related changes in parents' behavior and physiology in the perinatal period are related to behavioral, biological, and neurophysiological correlates of infant psychological functioning in this period. These alterations may constitute risk for later development of child and/or adult forms of psychopathology and thus for intergenerational transmission. Targeting psychopathology or mother-infant interactions in isolation in the postnatal period may not be sufficient to improve outcomes, whereas interventions targeting both maternal psychopathology and mother-infant interactions seem promising in alleviating the risk of early transmission.
Collapse
Affiliation(s)
- Evin Aktar
- Clinical Psychology Unit, Department of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Jin Qu
- Department of Psychology, Clarion University of Pennsylvania, Clarion, PA, United States
| | - Peter J Lawrence
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, United Kingdom
| | - Marieke S Tollenaar
- Clinical Psychology Unit, Department of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Bernet M Elzinga
- Clinical Psychology Unit, Department of Psychology, Leiden University, Leiden, Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Susan M Bögels
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
- Developmental Psychology, Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
102
|
Goodman JH. Perinatal depression and infant mental health. Arch Psychiatr Nurs 2019; 33:217-224. [PMID: 31227073 DOI: 10.1016/j.apnu.2019.01.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/24/2019] [Indexed: 12/19/2022]
Abstract
A mother's mental health during pregnancy and the first year postpartum is of the utmost importance to the cognitive, social, and emotional development of her child. Perinatal depression is associated with increased risk for wide-ranging adverse child development effects that can affect infant and early childhood mental health. Although effective treatments for perinatal depression exist, it is currently unclear if treatment of maternal depression alone is sufficient to ameliorate the negative effects of maternal depression on child outcomes. Interventions focused on the mother-infant relationship and dyadic interaction may be required to address the potential effect of maternal depression on the child. This paper provides an overview of maternal perinatal depression, the risk it poses for infant/early-childhood mental health, strategies for intervention that include mitigating depression and decreasing risk to the child, and implications for psychiatric nurses who work with perinatal women. Early identification and treatment of perinatal depression are critical to ensure optimal infant development and the child's future mental health.
Collapse
Affiliation(s)
- Janice H Goodman
- MGH Institute of Health Professions, School of Nursing, 36 1st Avenue, Boston, MA 02129, United States of America.
| |
Collapse
|
103
|
DeSocio JE. Reprint of "Epigenetics, maternal prenatal psychosocial stress, and infant mental health". Arch Psychiatr Nurs 2019; 33:232-237. [PMID: 31227075 DOI: 10.1016/j.apnu.2019.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
This paper provides a summary of literature on epigenetic effects and infant health outcomes of maternal psychosocial stress during pregnancy. A search of literature yielded a large body of publications between 2008 and 2018. Relevant articles were selected, and additional sources were located from ancestry searches of reference lists. Results implicate maternal prenatal stress as a source of epigenetic mechanisms that affect fetal brain development and program risk for emotional dysregulation and mental disorders over a lifetime and across generations. Implications for nursing practice are explored at multiple levels of policy advocacy, public education, primary prevention, screening and intervention.
Collapse
|
104
|
Conching AKS, Thayer Z. Biological pathways for historical trauma to affect health: A conceptual model focusing on epigenetic modifications. Soc Sci Med 2019; 230:74-82. [DOI: 10.1016/j.socscimed.2019.04.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
|
105
|
Ong ML, Tuan TA, Poh J, Teh AL, Chen L, Pan H, MacIsaac JL, Kobor MS, Chong YS, Kwek K, Saw SM, Godfrey KM, Gluckman PD, Fortier MV, Karnani N, Meaney MJ, Qiu A, Holbrook JD. Neonatal amygdalae and hippocampi are influenced by genotype and prenatal environment, and reflected in the neonatal DNA methylome. GENES BRAIN AND BEHAVIOR 2019; 18:e12576. [PMID: 31020763 DOI: 10.1111/gbb.12576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 04/13/2019] [Indexed: 12/28/2022]
Abstract
The amygdala and hippocampus undergo rapid development in early life. The relative contribution of genetic and environmental factors to the establishment of their developmental trajectories has yet to be examined. We performed imaging on neonates and examined how the observed variation in volume and microstructure of the amygdala and hippocampus varied by genotype, and compared with prenatal maternal mental health and socioeconomic status. Gene × Environment models outcompeted models containing genotype or environment only to best explain the majority of measures but some, especially of the amygdaloid microstructure, were best explained by genotype only. Models including DNA methylation measured in the neonate umbilical cords outcompeted the Gene and Gene × Environment models for the majority of amygdaloid measures and minority of hippocampal measures. This study identified brain region-specific gene networks associated with individual differences in fetal brain development. In particular, genetic and epigenetic variation within CUX1 was highlighted.
Collapse
Affiliation(s)
- Mei-Lyn Ong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Ta A Tuan
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Joann Poh
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore
| | - Ai L Teh
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Li Chen
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Hong Pan
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,School of Computer Engineering, Nanyang Technological University (NTU), Singapore
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yap S Chong
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Kenneth Kwek
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Seang M Saw
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Peter D Gluckman
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Centre for Human Evolution, Adaptation and disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Marielle V Fortier
- KK Women's and Children's Hospital, Duke National University of Singapore, Singapore
| | - Neerja Karnani
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Michael J Meaney
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore.,Ludmer Centre for Neuroinformatics and Mental Health, Sackler Program for Epigenetics & Psychobiology at McGill University, Douglas University Mental Health Institute, McGill University, Montreal, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering, Clinical Imaging research Centre, National University of Singapore, Singapore.,Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| | - Joanna D Holbrook
- Singapore Institute of Clinical sciences (SICS), A*STAR, Brenner Centre for Molecular Medicine, Singapore
| |
Collapse
|
106
|
Wikenius E, Myhre AM, Page CM, Moe V, Smith L, Heiervang ER, Undlien DE, LeBlanc M. Prenatal maternal depressive symptoms and infant DNA methylation: a longitudinal epigenome-wide study. Nord J Psychiatry 2019; 73:257-263. [PMID: 31070508 DOI: 10.1080/08039488.2019.1613446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Prenatal maternal stress increases the risk of offspring developmental and psychological difficulties. The biological mechanisms behind these associations are mostly unknown. One explanation suggests that exposure of the fetus to maternal stress may influence DNA methylation. However, this hypothesis is largely based on animal studies, and human studies of candidate genes from single timepoints. Aim: The aim of this study was to investigate if prenatal maternal stress, in the form of maternal depressive symptoms, was associated with variation in genome-wide DNA methylation at two timepoints. Methods: One-hundred and eighty-four mother-child dyads were selected from a population of pregnant women in the Little-in-Norway study. The Edinburgh Postnatal Depression Scale (EPDS) measured maternal depressive symptoms. It was completed by the pregnant mothers between weeks 17 and 32 of gestation. DNA was obtained from infant saliva cells at two timepoints (age 6 weeks and 12 months). DNA methylation was measured in 274 samples from 6 weeks (n = 146) and 12 months (n = 128) using the Illumina Infinium HumanMethylation 450 BeadChip. Linear regression analyses of prenatal maternal depressive symptoms and infant methylation were performed at 6 weeks and 12 months separately, and for both timepoints together using a mixed model. Results: The analyses revealed no significant genome-wide association between maternal depressive symptoms and infant DNA methylation in the separate analyses and for both timepoints together. Conclusions: This sample of pregnant women and their infants living in Norway did not reveal associations between maternal depressive symptoms and infant DNA methylation.
Collapse
Affiliation(s)
- Ellen Wikenius
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,b Child & Adolescent Mental Health Research Unit , Oslo University Hospital , Oslo , Norway
| | - Anne Margrethe Myhre
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,b Child & Adolescent Mental Health Research Unit , Oslo University Hospital , Oslo , Norway
| | - Christian Magnus Page
- c Oslo Centre for Biostatistics and Epidemiology , Oslo University Hospital , Oslo , Norway.,d Centre for Fertility and Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Vibeke Moe
- e The Department of Psychology, Faculty of Social Sciences , University of Oslo , Oslo , Norway.,f Center for Child and Adolescent Mental Health , Eastern and Southern Norway (RBUP) , Oslo , Norway
| | - Lars Smith
- e The Department of Psychology, Faculty of Social Sciences , University of Oslo , Oslo , Norway
| | - Einar Røshol Heiervang
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,b Child & Adolescent Mental Health Research Unit , Oslo University Hospital , Oslo , Norway
| | - Dag Erik Undlien
- a Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway.,g Department of Medical Genetics , Oslo University Hospital , Oslo , Norway
| | - Marissa LeBlanc
- c Oslo Centre for Biostatistics and Epidemiology , Oslo University Hospital , Oslo , Norway
| |
Collapse
|
107
|
Schmitz J, Güntürkün O, Ocklenburg S. Building an Asymmetrical Brain: The Molecular Perspective. Front Psychol 2019; 10:982. [PMID: 31133928 PMCID: PMC6524718 DOI: 10.3389/fpsyg.2019.00982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
The brain is one of the most prominent examples for structural and functional differences between the left and right half of the body. For handedness and language lateralization, the most widely investigated behavioral phenotypes, only a small fraction of phenotypic variance has been explained by molecular genetic studies. Due to environmental factors presumably also playing a role in their ontogenesis and based on first molecular evidence, it has been suggested that functional hemispheric asymmetries are partly under epigenetic control. This review article aims to elucidate the molecular factors underlying hemispheric asymmetries and their association with inner organ asymmetries. While we previously suggested that epigenetic mechanisms might partly account for the missing heritability of handedness, this article extends this idea by suggesting possible alternatives for transgenerational transmission of epigenetic states that do not require germ line epigenetic transmission. This is in line with a multifactorial model of hemispheric asymmetries, integrating genetic, environmental, and epigenetic influencing factors in their ontogenesis.
Collapse
Affiliation(s)
- Judith Schmitz
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | | | | |
Collapse
|
108
|
Maternal depressive symptoms during and after pregnancy are associated with poorer sleep quantity and quality and sleep disorders in 3.5-year-old offspring. Sleep Med 2019; 56:201-210. [DOI: 10.1016/j.sleep.2018.10.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 12/13/2022]
|
109
|
Franzago M, Fraticelli F, Stuppia L, Vitacolonna E. Nutrigenetics, epigenetics and gestational diabetes: consequences in mother and child. Epigenetics 2019; 14:215-235. [PMID: 30865571 PMCID: PMC6557546 DOI: 10.1080/15592294.2019.1582277] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gestational Diabetes Mellitus (GDM) is the most common metabolic condition during pregnancy and may result in short- and long-term complications for both mother and offspring. The complexity of phenotypic outcomes seems influenced by genetic susceptibility, nutrient-gene interactions and lifestyle interacting with clinical factors. There is strong evidence that not only the adverse genetic background but also the epigenetic modifications in response to nutritional and environmental factors could influence the maternal hyperglycemia in pregnancy and the foetal metabolic programming. In this view, the correlation between epigenetic modifications and their transgenerational effects represents a very interesting field of study. The present review gives insight into the role of gene variants and their interactions with nutrients in GDM. In addition, we provide an overview of the epigenetic changes and their role in the maternal-foetal transmission of chronic diseases. Overall, the knowledge of epigenetic modifications induced by an adverse intrauterine and perinatal environment could shed light on the potential pathophysiological mechanisms of long-term disease development in the offspring and provide useful tools for their prevention.
Collapse
Affiliation(s)
- Marica Franzago
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy.,b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy
| | - Federica Fraticelli
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Liborio Stuppia
- b Molecular Genetics, Unit , CeSI-Met , Chieti , Italy.,c Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| | - Ester Vitacolonna
- a Department of Medicine and Aging, School of Medicine and Health Sciences , "G. d'Annunzio" University, Chieti-Pescara , Chieti , Italy
| |
Collapse
|
110
|
Ilg L, Kirschbaum C, Li SC, Rosenlöcher F, Miller R, Alexander N. Persistent Effects of Antenatal Synthetic Glucocorticoids on Endocrine Stress Reactivity From Childhood to Adolescence. J Clin Endocrinol Metab 2019; 104:827-834. [PMID: 30285119 DOI: 10.1210/jc.2018-01566] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023]
Abstract
CONTEXT Antenatal synthetic glucocorticoid (sGC) therapy has been identified as a potent programming factor of the hypothalamic-pituitary-adrenal (HPA) axis. We previously observed significantly increased cortisol stress responses in 6- to 11-year-old, term-born children exposed to antenatal sGCs compared with controls. These findings call for longitudinal follow-up studies to evaluate long-term effects of antenatal sGCs, given that adolescence is marked by a substantial shift of HPA axis functioning. OBJECTIVE This study aimed to longitudinally investigate the stability of antenatal sGC-related effects on cortisol stress reactivity from childhood to adolescence. DESIGN, SETTING, AND PARTICIPANTS To evaluate long-term trajectories of antenatal sGCs, we longitudinally followed a subsample (n = 44) of our children's cohort into adolescence (14 to 18 years old) for a second assessment. To this end, 22 adolescents with antenatal sGC exposure and 22 untreated controls underwent a standardized laboratory stressor [Trier Social Stress Test (TSST)]. RESULTS Besides a general increase in HPA axis reactivity from childhood to adolescence (P < 0.05), participants treated with antenatal sGCs showed significantly higher cortisol levels in response to the TSST compared with controls during both developmental stages (P < 0.05). Furthermore, we observed a moderating effect of sGCs on rank-order stability of cortisol stress reactivity from childhood to adolescence (P < 0.05) with a trend (P = 0.07) for higher rank-order stability in sGC-exposed individuals (r = 0.37) compared with controls (r = -0.20). CONCLUSION These findings suggest that antenatal sGCs yield long-term changes of HPA axis reactivity that persist into adolescence and may confer increased vulnerability for developing stress-related disorders.
Collapse
Affiliation(s)
- Liesa Ilg
- Chair for Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Clemens Kirschbaum
- Chair for Biopsychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair for Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Franziska Rosenlöcher
- Vocational School for Obstetric Care, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Robert Miller
- Chair for Biopsychology, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Nina Alexander
- Department of Psychology, Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
111
|
Aroke EN, Joseph PV, Roy A, Overstreet DS, Tollefsbol TO, Vance DE, Goodin BR. Could epigenetics help explain racial disparities in chronic pain? J Pain Res 2019; 12:701-710. [PMID: 30863142 PMCID: PMC6388771 DOI: 10.2147/jpr.s191848] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
African Americans disproportionately suffer more severe and debilitating morbidity from chronic pain than do non-Hispanic Whites. These differences may arise from differential exposure to psychosocial and environmental factors such as adverse childhood experiences, racial discrimination, low socioeconomic status, and depression, all of which have been associated with chronic stress and chronic pain. Race, as a social construct, makes it such that African Americans are more likely to experience different early life conditions, which may induce epigenetic changes that sustain racial differences in chronic pain. Epigenetics is one mechanism by which environmental factors such as childhood stress, racial discrimination, economic hardship, and depression can affect gene expression without altering the underlying genetic sequence. This article provides a narrative review of the literature on epigenetics as a mechanism by which differential environmental exposure could explain racial differences in chronic pain. Most studies of epigenetic changes in chronic pain examine DNA methylation. DNA methylation is altered in the glucocorticoid (stress response) receptor gene, NR3C1, which has been associated with depression, childhood stress, low socioeconomic status, and chronic pain. Similarly, DNA methylation patterns of immune cytokine genes have been associated with chronic stress states. Thus, DNA methylation changes may play an essential role in the epigenetic modulation of chronic pain in different races with a higher incidence of epigenetic alterations contributing to more severe and disabling chronic pain in African Americans.
Collapse
Affiliation(s)
- Edwin N Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA,
| | - Paule V Joseph
- Sensory Science and Metabolism Unit (SenSMet), Division of Intramural Research, National Institute of Nursing Research, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Abhrarup Roy
- Sensory Science and Metabolism Unit (SenSMet), Division of Intramural Research, National Institute of Nursing Research, National Institute of Health, DHHS, Bethesda, MD, USA
| | - Demario S Overstreet
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David E Vance
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL, USA,
| | - Burel R Goodin
- Department of Psychology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
112
|
Exploring the effect of antenatal depression treatment on children's epigenetic profiles: findings from a pilot randomized controlled trial. Clin Epigenetics 2019; 11:18. [PMID: 30717815 PMCID: PMC6360775 DOI: 10.1186/s13148-019-0616-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 01/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Children prenatally exposed to maternal depression more often show behavioral and emotional problems compared to unexposed children, possibly through epigenetic alterations. Current evidence is largely based on animal and observational human studies. Therefore, evidence from experimental human studies is needed. In this follow-up of a small randomized controlled trial (RCT), DNA-methylation was compared between children of women who had received cognitive behavioral therapy (CBT) for antenatal depression and children of women who had received treatment as usual (TAU). Originally, 54 women were allocated to CBT or TAU. A beneficial treatment effect was found on women’s mood symptoms. Findings We describe DNA methylation findings in buccal swab DNA of the 3–7-year-old children (CBT(N) = 12, TAU(N) = 11), at a genome-wide level at 770,668 CpG sites and at 729 CpG sites spanning 16 a priori selected candidate genes, including the glucocorticoid receptor (NR3C1). We additionally explored associations with women’s baseline depression and anxiety symptoms and offspring DNA methylation, regardless of treatment. Children from the CBT group had overall lower DNA methylation compared to children from the TAU group (mean ∆β = − 0.028, 95% CI − 0.035 to − 0.022). Although 68% of the promoter-associated NR3C1 probes were less methylated in the CBT group, with cg26464411 as top most differentially methylated CpG site (p = 0.038), mean DNA methylation of all NR3C1 promoter-associated probes did not differ significantly between the CBT and TAU groups (mean ∆β = 0.002, 95%CI − 0.010 to 0.011). None of the effects survived correction for multiple testing. There were no differences in mean DNA methylation between the children born to women with more severe depression or anxiety compared to children born to women with mild symptoms of depression or anxiety at baseline (mean ∆β (depression) = 0.0008, 95% CI − 0.007 to 0.008; mean ∆β (anxiety) = 0.0002, 95% CI − 0.004 to 0.005). Conclusion We found preliminary evidence of a possible effect of CBT during pregnancy on widespread methylation in children’s genomes and a trend toward lower methylation of a CpG site previously shown by others to be linked to depression and child maltreatment. However, none of the effects survived correction for multiple testing and larger studies are warranted. Trial registration Trial registration of the original RCT: ACTRN12607000397415. Registered on 2 August 2007.
Collapse
|
113
|
Fetal programming of neuropsychiatric disorders by maternal pregnancy depression: a systematic mini review. Pediatr Res 2019; 85:134-145. [PMID: 30297878 DOI: 10.1038/s41390-018-0173-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Maternal depression complicates a large proportion of pregnancies. Current evidence shows numerous harmful effects on the offspring. Reviews, which include depression, concluded that stress has harmful effects on the offspring's outcomes neuro-cognitive development, temperament traits, and mental disorders. OBJECTIVE This mini review of recent studies, sought to narrow the scope of exposure and identify studies specifically assessing prenatal depression and offspring neuropsychiatric outcomes. STUDY ELIGIBILITY CRITERIA The review included longitudinal, cohort, cross-sectional, clinical, quasi-experimental, epidemiological, or intervention study designs published in English from 2014 to 2018. PARTICIPANTS Study populations included mother-child dyads, mother-father-child triads, mother-alternative caregiver-child triads, and family studies utilizing sibling comparisons. METHODS We searched PubMED and Web of Science. Study inclusion and data extraction were based on standardized templates. The quality of evidence was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS Thirteen studies examining neuropsychiatric outcomes were included. We judged the evidence to be moderate to high quality. CONCLUSIONS Our review supports that maternal prenatal depression is associated with neuropsychiatric adversities in children. IMPLICATIONS Future investigations should unravel the biological underpinnings and target timely interventions as early in pregnancy as possible to prevent offspring neuropsychiatric harms.
Collapse
|
114
|
Papadopoulou Z, Vlaikou AM, Theodoridou D, Markopoulos GS, Tsoni K, Agakidou E, Drosou-Agakidou V, Turck CW, Filiou MD, Syrrou M. Stressful Newborn Memories: Pre-Conceptual, In Utero, and Postnatal Events. Front Psychiatry 2019; 10:220. [PMID: 31057437 PMCID: PMC6482218 DOI: 10.3389/fpsyt.2019.00220] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Early-life stressful experiences are critical for plasticity and development, shaping adult neuroendocrine response and future health. Stress response is mediated by the autonomous nervous system and the hypothalamic-pituitary-adrenal (HPA) axis while various environmental stimuli are encoded via epigenetic marks. The stress response system maintains homeostasis by regulating adaptation to the environmental changes. Pre-conceptual and in utero stressors form the fetal epigenetic profile together with the individual genetic profile, providing the background for individual stress response, vulnerability, or resilience. Postnatal and adult stressful experiences may act as the definitive switch. This review addresses the issue of how preconceptual in utero and postnatal events, together with individual differences, shape future stress responses. Putative markers of early-life adverse effects such as prematurity and low birth weight are emphasized, and the epigenetic, mitochondrial, and genomic architecture regulation of such events are discussed.
Collapse
Affiliation(s)
- Zoe Papadopoulou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Angeliki-Maria Vlaikou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Daniela Theodoridou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantina Tsoni
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Eleni Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Vasiliki Drosou-Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, Medical Faculty, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Syrrou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
115
|
DeSocio JE. Epigenetics, maternal prenatal psychosocial stress, and infant mental health. Arch Psychiatr Nurs 2018; 32:901-906. [PMID: 30454636 DOI: 10.1016/j.apnu.2018.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
This paper provides a summary of literature on epigenetic effects and infant health outcomes of maternal psychosocial stress during pregnancy. A search of literature yielded a large body of publications between 2008 and 2018. Relevant articles were selected, and additional sources were located from ancestry searches of reference lists. Results implicate maternal prenatal stress as a source of epigenetic mechanisms that affect fetal brain development and program risk for emotional dysregulation and mental disorders over a lifetime and across generations. Implications for nursing practice are explored at multiple levels of policy advocacy, public education, primary prevention, screening and intervention.
Collapse
|
116
|
Maternal Lifetime Trauma and Birthweight: Effect Modification by In Utero Cortisol and Child Sex. J Pediatr 2018; 203:301-308. [PMID: 30197200 PMCID: PMC6398337 DOI: 10.1016/j.jpeds.2018.07.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate associations between maternal lifetime traumatic stress and offspring birthweight and examine modifying effects of third trimester cortisol and fetal sex. STUDY DESIGN Analyses included 314 mother-infant dyads from an ethnically mixed pregnancy cohort. Maternal lifetime trauma was reported via the Life Stressor Checklist-Revised. Fenton birthweight for gestational age z-scores (BWGA-z) were calculated. A 3-cm scalp-nearest maternal hair segment collected at birth was assayed to reflect cumulative third trimester cortisol secretion. Multivariable regression was used to investigate associations between maternal lifetime trauma and BWGA-z and examine 2- and 3-way interactions with cortisol and fetal sex. Because subjects with low or high cortisol levels could represent susceptible populations, varying coefficient models that relax the linearity assumption on cortisol level were used to assess the modification of maternal lifetime trauma associations with BWGA-z as a function of cortisol. RESULTS Women were primarily minorities (41% Hispanic, 26% black) with ≤12 years education (63%); 63% reported ≥1 traumatic event. Prenatal cortisol modified the association between maternal lifetime trauma and birthweight. Women with higher lifetime trauma and increased cortisol had significantly lower birthweight infants in males; among males exposed to the 90th percentile of cortisol, a 1-unit increase in trauma score was associated with a 0.19-unit decrease in BWGA-z (95% CI, -0.34 to -0.04). Associations among females were nonsignificant, regardless of cortisol level. CONCLUSIONS These findings underscore the need to consider complex interactions among maternal trauma, disrupted in utero cortisol production, and fetal sex to fully elucidate intergenerational effects of maternal lifetime trauma.
Collapse
|
117
|
Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: A review of sex differences. Clin Psychol Rev 2018; 66:69-79. [DOI: 10.1016/j.cpr.2018.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 01/10/2023]
|
118
|
Lemche E. Early Life Stress and Epigenetics in Late-onset Alzheimer's Dementia: A Systematic Review. Curr Genomics 2018; 19:522-602. [PMID: 30386171 PMCID: PMC6194433 DOI: 10.2174/1389202919666171229145156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/27/2017] [Accepted: 12/12/2017] [Indexed: 11/22/2022] Open
Abstract
Involvement of life stress in Late-Onset Alzheimer's Disease (LOAD) has been evinced in longitudinal cohort epidemiological studies, and endocrinologic evidence suggests involvements of catecholamine and corticosteroid systems in LOAD. Early Life Stress (ELS) rodent models have successfully demonstrated sequelae of maternal separation resulting in LOAD-analogous pathology, thereby supporting a role of insulin receptor signalling pertaining to GSK-3beta facilitated tau hyper-phosphorylation and amyloidogenic processing. Discussed are relevant ELS studies, and findings from three mitogen-activated protein kinase pathways (JNK/SAPK pathway, ERK pathway, p38/MAPK pathway) relevant for mediating environmental stresses. Further considered were the roles of autophagy impairment, neuroinflammation, and brain insulin resistance. For the meta-analytic evaluation, 224 candidate gene loci were extracted from reviews of animal studies of LOAD pathophysiological mechanisms, of which 60 had no positive results in human LOAD association studies. These loci were combined with 89 gene loci confirmed as LOAD risk genes in previous GWAS and WES. Of the 313 risk gene loci evaluated, there were 35 human reports on epigenomic modifications in terms of methylation or histone acetylation. 64 microRNA gene regulation mechanisms were published for the compiled loci. Genomic association studies support close relations of both noradrenergic and glucocorticoid systems with LOAD. For HPA involvement, a CRHR1 haplotype with MAPT was described, but further association of only HSD11B1 with LOAD found; however, association of FKBP1 and NC3R1 polymorphisms was documented in support of stress influence to LOAD. In the brain insulin system, IGF2R, INSR, INSRR, and plasticity regulator ARC, were associated with LOAD. Pertaining to compromised myelin stability in LOAD, relevant associations were found for BIN1, RELN, SORL1, SORCS1, CNP, MAG, and MOG. Regarding epigenetic modifications, both methylation variability and de-acetylation were reported for LOAD. The majority of up-to-date epigenomic findings include reported modifications in the well-known LOAD core pathology loci MAPT, BACE1, APP (with FOS, EGR1), PSEN1, PSEN2, and highlight a central role of BDNF. Pertaining to ELS, relevant loci are FKBP5, EGR1, GSK3B; critical roles of inflammation are indicated by CRP, TNFA, NFKB1 modifications; for cholesterol biosynthesis, DHCR24; for myelin stability BIN1, SORL1, CNP; pertaining to (epi)genetic mechanisms, hTERT, MBD2, DNMT1, MTHFR2. Findings on gene regulation were accumulated for BACE1, MAPK signalling, TLR4, BDNF, insulin signalling, with most reports for miR-132 and miR-27. Unclear in epigenomic studies remains the role of noradrenergic signalling, previously demonstrated by neuropathological findings of childhood nucleus caeruleus degeneration for LOAD tauopathy.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
119
|
Bleker LS, van Dammen L, Leeflang MMG, Limpens J, Roseboom TJ, de Rooij SR. Hypothalamic-pituitary-adrenal axis and autonomic nervous system reactivity in children prenatally exposed to maternal depression: A systematic review of prospective studies. Neurosci Biobehav Rev 2018; 117:243-252. [PMID: 30366609 DOI: 10.1016/j.neubiorev.2018.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022]
Abstract
Depression is a common condition affecting up to 20% of all pregnant women, and is associated with subsequent developmental and behavioral problems in children, such as conduct disorder and ADHD. One proposed mechanism underlying these associations is modification of the fetal hypothalamic pituitary adrenal (HPA)-axis and the autonomic nervous system (ANS), resulting in altered responses to stress. This review examined the evidence regarding altered HPA-axis and ANS reactivity in children prenatally exposed to high maternal depressive symptoms. A systematic search was conducted in the electronic databases MEDLINE, EMBASE and PsycINFO, for studies published till 25 July 2017. A total of 13 studies comprising 2271 mother-infant dyads were included. None of the studies were suitable for meta-analysis. Risk of bias assessment showed low risk for four studies. Only three studies described an independent association between exposure to high maternal prenatal depressive symptoms and altered stress reactivity in children. There is limited evidence of an independent association between prenatal exposure to maternal depression and altered HPA or ANS reactivity in children.
Collapse
Affiliation(s)
- Laura S Bleker
- Academic Medical Centre, Departments of Obstetrics and Gynaecology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Centre, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Lotte van Dammen
- University of Groningen - University Medical Centre Groningen, Department of Obstetrics and Gynaecology, 9713 GZ, Groningen, The Netherlands; University of Groningen - University Medical Centre Groningen, Department of Epidemiology, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Mariska M G Leeflang
- Academic Medical Centre, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jacqueline Limpens
- Academic Medical Centre, Department of Research Support - Medical Library, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Academic Medical Centre, Departments of Obstetrics and Gynaecology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands; Academic Medical Centre, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Academic Medical Centre, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
120
|
Maternal antenatal mood and child development: an exploratory study of treatment effects on child outcomes up to 5 years. J Dev Orig Health Dis 2018; 10:221-231. [PMID: 30303063 DOI: 10.1017/s2040174418000739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Effective treatment of maternal antenatal depression may ameliorate adverse neurodevelopmental outcomes in offspring. We performed two follow-up rounds of children at age 2 and age 5 whose mothers had received either specialized cognitive-behavioural therapy or routine care for depression while pregnant. Of the original cohort of 54 women, renewed consent was given by 28 women for 2-year follow-up and by 24 women for 5-year follow-up. Child assessments at the 2-year follow-up included the Parenting Stress Index (PSI), Bayley Scales of Infant Development (BSID-III) and the Child Behaviour Checklist (CBCL). The 5-year follow-up included the Wechsler Preschool and Primary Scales of Intelligence (WPPSI-III) and again the CBCL. Treatment during pregnancy showed significant benefits for children's development at age 2, but not at age 5. At 2 years, intervention effects were found with lower scores on the PSI Total score, Parent Domain and Child domain (d=1.44, 1.47, 0.96 respectively). A non-significant trend favoured the intervention group on most subscales of the CBCL and the BSID-III (most notably motor development: d =0.52). In contrast, at 5-year follow-up, no intervention effects were found. Also, irrespective of treatment allocation, higher depression or anxiety during pregnancy was associated with higher CBCL and lower WPPSI-III scores at 5 years. This is one of the first controlled studies to evaluate the long-term effect of antenatal depression treatment on infant neurodevelopmental outcomes, showing some benefit. Nevertheless, caution should be taken interpreting the results because of a small sample size, and larger studies are warranted.
Collapse
|
121
|
Early Life Socioeconomic Disadvantage and Epigenetic Programming of a Pro-inflammatory Phenotype: a Review of Recent Evidence. CURR EPIDEMIOL REP 2018. [DOI: 10.1007/s40471-018-0169-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
122
|
Hanna CW, Demond H, Kelsey G. Epigenetic regulation in development: is the mouse a good model for the human? Hum Reprod Update 2018; 24:556-576. [PMID: 29992283 PMCID: PMC6093373 DOI: 10.1093/humupd/dmy021] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/20/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Over the past few years, advances in molecular technologies have allowed unprecedented mapping of epigenetic modifications in gametes and during early embryonic development. This work is allowing a detailed genomic analysis, which for the first time can answer long-standing questions about epigenetic regulation and reprogramming, and highlights differences between mouse and human, the implications of which are only beginning to be explored. OBJECTIVE AND RATIONALE In this review, we summarise new low-cell molecular methods enabling the interrogation of epigenetic information in gametes and early embryos, the mechanistic insights these have provided, and contrast the findings in mouse and human. SEARCH METHODS Relevant studies were identified by PubMed search. OUTCOMES We discuss the levels of epigenetic regulation, from DNA modifications to chromatin organisation, during mouse gametogenesis, fertilisation and pre- and post-implantation development. The recently characterised features of the oocyte epigenome highlight its exceptionally unique regulatory landscape. The chromatin organisation and epigenetic landscape of both gametic genomes are rapidly reprogrammed after fertilisation. This extensive epigenetic remodelling is necessary for zygotic genome activation, but the mechanistic link remains unclear. While the vast majority of epigenetic information from the gametes is erased in pre-implantation development, new insights suggest that repressive histone modifications from the oocyte may mediate a novel mechanism of imprinting. To date, the characterisation of epigenetics in human development has been almost exclusively limited to DNA methylation profiling; these data reinforce that the global dynamics are conserved between mouse and human. However, as we look closer, it is becoming apparent that the mechanisms regulating these dynamics are distinct. These early findings emphasise the importance of investigations of fundamental epigenetic mechanisms in both mouse and humans. WIDER IMPLICATIONS Failures in epigenetic regulation have been implicated in human disease and infertility. With increasing maternal age and use of reproductive technologies in countries all over the world, it is becoming ever more important to understand the necessary processes required to establish a developmentally competent embryo. Furthermore, it is essential to evaluate the extent to which these epigenetic patterns are sensitive to such technologies and other adverse environmental exposures.
Collapse
Affiliation(s)
- Courtney W Hanna
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Hannah Demond
- Epigenetics programme, Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics programme, Babraham Institute, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
123
|
Maternal and neonatal characteristics of a Canadian urban cohort receiving treatment for opioid use disorder during pregnancy. J Dev Orig Health Dis 2018; 10:132-137. [PMID: 30113278 DOI: 10.1017/s2040174418000478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The epidemic of prescription and non-prescription opioid misuse is of particular importance in pregnancy. The Society of Obstetricians and Gynaecologists of Canada currently recommends opioid replacement therapy with methadone or buprenorphine for opioid-dependent women during pregnancy. This vulnerable segment of the population has been shown to be at increased risk of blood-borne infectious diseases, nutritional insecurity and stress. The objective of this study was to describe an urban cohort of pregnant women on opioid replacement therapy and to evaluate potential effects on the fetus. A retrospective chart review of all women on opioid replacement therapy and their infants who delivered at The Ottawa Hospital General and Civic campuses between January 1, 2013 and March 24, 2017 was conducted. Data were collected on maternal characteristics, pregnancy outcomes, neonatal outcomes and corresponding placental pathology. Maternal comorbidities identified included high rates of infection, tobacco use and illicit substance use, as well as increased rates of placental abruption compared with national averages. Compared with national baseline averages, the mean neonatal birth weight was low, and the incidence of small for gestational age infants and congenital anomalies was high. The incidence of NAS was comparable with estimates from other studies of similar cohorts. Findings support existing literature that calls for a comprehensive interdisciplinary risk reduction approach including dietary, social, domestic, psychological and other supports to care for opioid-dependent women in pregnancy.
Collapse
|
124
|
Brunst KJ, Tignor N, Just A, Liu Z, Lin X, Hacker MR, Bosquet Enlow M, Wright RO, Wang P, Baccarelli AA, Wright RJ. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics 2018; 13:665-681. [PMID: 30001177 DOI: 10.1080/15592294.2018.1497387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Evolving evidence links maternal stress exposure to changes in placental DNA methylation of specific genes regulating placental function that may have implications for the programming of a host of chronic disorders. Few studies have implemented an epigenome-wide approach. Using the Infinium HumanMethylation450 BeadChip (450K), we investigated epigenome-wide placental DNA methylation in relation to maternal experiences of traumatic and non-traumatic stressors over her lifetime assessed using the Life Stressor Checklist-Revised (LSC-R) survey (n = 207). We found differential DNA methylation at epigenome-wide statistical significance (FDR = 0.05) for 112 CpGs. Additionally, we observed three clusters that exhibited differential methylation in response to high maternal lifetime stress. Enrichment analyses, conducted at an FDR = 0.20, revealed lysine degradation to be the most significant pathway associated with maternal lifetimes stress exposure. Targeted enrichment analyses of the three largest clusters of probes, identified using the gap statistic, were enriched for genes associated with endocytosis (i.e., SMAP1, ANKFY1), tight junctions (i.e., EPB41L4B), and metabolic pathways (i.e., INPP5E, EEF1B2). These pathways, also identified in the top 10 KEGG pathways associated with maternal lifetime stress exposure, play important roles in multiple physiological functions necessary for proper fetal development. Further, two genes were identified to exhibit multiple probes associated with maternal lifetime stress (i.e., ANKFY1, TM6SF1). The methylation status of the probes belonging to each cluster and/or genes exhibiting multiple hits, may play a role in the pathogenesis of adverse health outcomes in children born to mothers with increased lifetime stress exposure.
Collapse
Affiliation(s)
- Kelly J Brunst
- a Department of Environmental Health , University of Cincinnati College of Medicine , Cincinnati , OH , USA
| | - Nicole Tignor
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Allan Just
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Zhonghua Liu
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Xihong Lin
- d Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Michele R Hacker
- e Department of Obstetrics and Gynecology , Beth Israel Deaconess Medical Center , Boston , MA , USA.,f Department of Obstetrics , Gynecology and Reproductive Biology, Harvard Medical School , Boston , MA , USA
| | - Michelle Bosquet Enlow
- g Department of Psychiatry, Program for Behavioral Science, Boston Children's Hospital and Department of Psychiatry , Harvard Medical School , Boston , MA , USA
| | - Robert O Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Pei Wang
- b Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai One Gustave L. Levy Place , New York , NY , USA
| | - Andrea A Baccarelli
- h Department of Environmental Health Sciences , Mailman School of Public Health, Columbia University , New York , NY , USA
| | - Rosalind J Wright
- c Department of Environmental Medicine and Public Health , Icahn School of Medicine at Mount Sinai , New York , NY , USA.,i Department of Pediatrics , Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
125
|
Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental Lead Exposure and Prenatal Stress Result in Sex-Specific Reprograming of Adult Stress Physiology and Epigenetic Profiles in Brain. Toxicol Sci 2018; 163:478-489. [PMID: 29481626 PMCID: PMC5974781 DOI: 10.1093/toxsci/kfy046] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Developmental exposure to lead (Pb) and prenatal stress (PS) both impair cognition, which could derive from their joint targeting of the hypothalamic-pituitary-adrenal axis and the brain mesocorticolimbic (MESO) system, including frontal cortex (FC) and hippocampus (HIPP). Glucocorticoids modulate both FC and HIPP function and associated mediation of cognitive and other behavioral functions. This study sought to determine whether developmental Pb ± PS exposures altered glucocorticoid-related epigenetic profiles in brain MESO regions in offspring of female mice exposed to 0 or 100 ppm Pb acetate drinking water from 2 mos prior to breeding until weaning, with half further exposed to prenatal restraint stress from gestational day 11-18. Overall, changes in females occured in response to Pb exposure. In males, however, Pb-induced neurotoxicity was modulated by PS. Changes in serum corticosterone levels were seen in males, while glucocorticoid receptor changes were seen in both sexes. In contrast, both Pb and PS broadly impacted brain DNA methyltransferases and binding proteins, particularly DNMT1, DNMT3a and methyl-CpG-binding protein 2, with patterns that differed by sex and brain regions. Specifically, in males, effects on FC epigenetic modifiers were primarily influenced by Pb, whereas extensive changes in HIPP were produced by PS. In females, Pb exposure and not PS primarily altered epigenetic modifiers in both FC and HIPP. Collectively, these findings indicate that epigenetic mechanisms may underlie associated neurotoxicity of Pb and of PS, particularly associated cognitive deficits. However, mechanisms by which this may occur will be different in males versus females.
Collapse
Affiliation(s)
- Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York,To whom correspondence should be addressed at Department of Environmental Medicine, University of Rochester School of Medicine, University of Rochester Medical Center, Box EHSC, Rochester, NY 14642. Fax: 585-256-2591; E-mail:
| | - Garima Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Beth Adams
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David W Anderson
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jay S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, New York
| |
Collapse
|
126
|
Magnus MC, Wright RJ, Røysamb E, Parr CL, Karlstad Ø, Page CM, Nafstad P, Håberg SE, London SJ, Nystad W. Association of Maternal Psychosocial Stress With Increased Risk of Asthma Development in Offspring. Am J Epidemiol 2018; 187:1199-1209. [PMID: 29244063 PMCID: PMC5982733 DOI: 10.1093/aje/kwx366] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/22/2017] [Indexed: 12/21/2022] Open
Abstract
Prenatal maternal psychosocial stress might influence the development of childhood asthma. Evaluating paternal psychosocial stress and conducting a sibling comparison could provide further insight into the role of unmeasured confounding. We examined the associations of parental psychosocial stress during and after pregnancy with asthma at age 7 years in the Norwegian Mother and Child Cohort Study (n = 63,626; children born in 2000-2007). Measures of psychosocial stress included lifetime major depressive symptoms, current anxiety/depression symptoms, use of antidepressants, anxiolytics, and/or hypnotics, life satisfaction, relationship satisfaction, work stress, and social support. Childhood asthma was associated with maternal lifetime major depressive symptoms (adjusted relative risk (aRR) = 1.19, 95% confidence interval (CI): 1.09, 1.30), in addition to symptoms of anxiety/depression during pregnancy (aRR = 1.17, 95% CI: 1.06, 1.29) and 6 months after delivery (aRR = 1.17, 95% CI: 1.07, 1.28). Maternal negative life events during pregnancy (aRR = 1.10, 95% CI: 1.06, 1.13) and 6 months after delivery (aRR = 1.14, 95% CI: 1.11, 1.18) were also associated with asthma. These associations were not replicated when evaluated within sibling groups. There were no associations with paternal psychosocial stress. In conclusion, maternal anxiety/depression and negative life events were associated with offspring asthma, but this might be explained by unmeasured maternal background characteristics that remain stable across deliveries.
Collapse
Affiliation(s)
- Maria C Magnus
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Department of Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Rosalind J Wright
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Espen Røysamb
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Oslo, Norway
| | - Christine L Parr
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Øystein Karlstad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Christian M Page
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Per Nafstad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Siri E Håberg
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Wenche Nystad
- Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
127
|
Frasch MG, Lobmaier SM, Stampalija T, Desplats P, Pallarés ME, Pastor V, Brocco MA, Wu HT, Schulkin J, Herry CL, Seely AJE, Metz GAS, Louzoun Y, Antonelli MC. Non-invasive biomarkers of fetal brain development reflecting prenatal stress: An integrative multi-scale multi-species perspective on data collection and analysis. Neurosci Biobehav Rev 2018; 117:165-183. [PMID: 29859198 DOI: 10.1016/j.neubiorev.2018.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Prenatal stress (PS) impacts early postnatal behavioural and cognitive development. This process of 'fetal programming' is mediated by the effects of the prenatal experience on the developing hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS). We derive a multi-scale multi-species approach to devising preclinical and clinical studies to identify early non-invasively available pre- and postnatal biomarkers of PS. The multiple scales include brain epigenome, metabolome, microbiome and the ANS activity gauged via an array of advanced non-invasively obtainable properties of fetal heart rate fluctuations. The proposed framework has the potential to reveal mechanistic links between maternal stress during pregnancy and changes across these physiological scales. Such biomarkers may hence be useful as early and non-invasive predictors of neurodevelopmental trajectories influenced by the PS as well as follow-up indicators of success of therapeutic interventions to correct such altered neurodevelopmental trajectories. PS studies must be conducted on multiple scales derived from concerted observations in multiple animal models and human cohorts performed in an interactive and iterative manner and deploying machine learning for data synthesis, identification and validation of the best non-invasive detection and follow-up biomarkers, a prerequisite for designing effective therapeutic interventions.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA.
| | - Silvia M Lobmaier
- Frauenklinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Tamara Stampalija
- Unit of Fetal Medicine and Prenatal Diagnosis, Institute for Mother and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Paula Desplats
- University of California, Departments of Neurosciences and Pathology, San Diego, USA
| | - María Eugenia Pallarés
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Verónica Pastor
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Marcela A Brocco
- Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Hau-Tieng Wu
- Department of Mathematics and Department of Statistical Science, Duke University, Durham, NC, USA; Mathematics Division, National Center for Theoretical Sciences, Taipei, Taiwan
| | - Jay Schulkin
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | | | | | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yoram Louzoun
- Bar-Ilan University, Department of Applied Mathematics, Israel
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
128
|
Palma-Gudiel H, Córdova-Palomera A, Tornador C, Falcón C, Bargalló N, Deco G, Fañanás L. Increased methylation at an unexplored glucocorticoid responsive element within exon 1 D of NR3C1 gene is related to anxious-depressive disorders and decreased hippocampal connectivity. Eur Neuropsychopharmacol 2018; 28:579-588. [PMID: 29650294 DOI: 10.1016/j.euroneuro.2018.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 12/21/2022]
Abstract
Among the major psychiatric disorders, anxious-depressive disorders stand out as one of the more prevalent and more frequently associated with hypothalamic-pituitary-adrenal (HPA) axis abnormalities. Methylation at the exon 1F of the glucocorticoid receptor gene NR3C1 has been associated with both early stress exposure and risk for developing a psychiatric disorder; however, other NR3C1 promoter regions have been underexplored. Exon 1D emerges as a suggestive new target in stress-related disorders epigenetically sensitive to early adversity. After assessment of 48 monozygotic twin pairs (n=96 subjects) informative for lifetime history of anxious-depressive disorders, they were classified as concordant, discordant or healthy in function of whether both, one or neither twin in each pair had a lifetime diagnosis of anxious-depressive disorders. DNA for epigenetic analysis was extracted from peripheral blood. Exon 1F and exon 1D CpG-specific methylation was analysed by means of pyrosequencing technology. Functional magnetic resonance imaging was available for 54 subjects (n=27 twin pairs). Exon 1D CpG-specific methylation within a glucocorticoid responsive element (GRE) was correlated with familial burden of anxious-depressive disorders (r=0.35, z=2.26, p=0.02). Right hippocampal connectivity was significantly associated with CpG-specific GRE methylation (β=-2.33, t=-2.85, p=0.01). Exon 1F was uniformly hypomethylated across all subgroups of the present sample. GRE hypermethylation at exon 1D of the NR3C1 gene in monozygotic twins concordant for anxious-depressive disorders suggests this region plays a role in increasing vulnerability to psychosocial stress, partly mediated by altered hippocampal connectivity.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Aldo Córdova-Palomera
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain
| | - Cristian Tornador
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Carles Falcón
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomedicina y Nanomedicina (CIBER-BBN), Zaragoza, Spain; BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Medical Image Core facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Bargalló
- Medical Image Core facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Diagnóstico por Imagen, Hospital Clínico, Barcelona, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lourdes Fañanás
- Anthropology Section, Department of Evolutionary Biology, Ecology and Environmental Sciences, Biomedicine Institute (IBUB), University of Barcelona (UB), Barcelona, Spain; Biomedical Research Networking Center of Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
129
|
DNA methylation of the glucocorticoid receptor gene promoter in the placenta is associated with blood pressure regulation in human pregnancy. J Hypertens 2018; 35:2276-2286. [PMID: 28817493 DOI: 10.1097/hjh.0000000000001450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blood pressure (BP) regulation during pregnancy is influenced by hormones of placental origin. It was shown that the glucocorticoid system is altered in hypertensive pregnancy disorders such as preeclampsia. Epigenetic mechanism might influence the activity of genes involved in placental hormone/hormone receptor synthesis/action during pregnancy. METHOD In the current study, we analyzed the association of 5'-C-phosphate-G-3' (CpG) site methylation of different glucocorticoid receptor gene (NR3C1) promoter regions with BP during pregnancy. The study was performed as a nested case-control study (n = 80) out of 1045 mother/child pairs from the Berlin Birth Cohort. Placental DNA was extracted and bisulfite converted. Nested PCR products from six NR3C1 proximal promoter regions [glucocorticoid receptor gene promotor region B (GR-1B), C (GR-1C), D (GR-1D), E (GR-1E), F (GR-1F), and H (GR-1H)] were analyzed by next generation sequencing. RESULTS NR3C1 promoter regions GR-1D and GR-1E had a much higher degree of DNA methylation as compared to GR-1B, GR-1F or GR-1H when analyzing the entire study population. Comparison of placental NR3C1 CpG site methylation among hypotensive, normotensive and hypertensive mothers revealed several differently methylated CpG sites in the GR-1F promoter region only. Both hypertension and hypotension were associated with increased DNA methylation of GR-1F CpG sites. These associations were independent of confounding factors, such as family history of hypertension, smoking status before pregnancy and prepregnancy BMI. Assessment of placental glucocorticoid receptor expression by western blot showed that observed DNA methylation differences were not associated with altered levels of placental glucocorticoid receptor expression. However, correlation matrices of all NR3C1 proximal promoter regions demonstrated different correlation patterns of intraregional and interregional DNA methylation in the three BP groups, putatively indicating altered transcriptional control of glucocorticoid receptor isoforms. CONCLUSION Our study provides evidence of an independent association between placental NR3C1 proximal promoter methylation and maternal BP. Furthermore, we observed different patterns of NR3C1 promoter methylation in normotensive, hypertensive and hypotensive pregnancy.
Collapse
|
130
|
Koss KJ, Gunnar MR. Annual Research Review: Early adversity, the hypothalamic-pituitary-adrenocortical axis, and child psychopathology. J Child Psychol Psychiatry 2018; 59:327-346. [PMID: 28714126 PMCID: PMC5771995 DOI: 10.1111/jcpp.12784] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research on early adversity, stress biology, and child development has grown exponentially in recent years. FINDINGS We review the current evidence for the hypothalamic-pituitary-adrenocortical (HPA) axis as a stress-mediating mechanism between various forms of childhood adversity and psychopathology. We begin with a review of the neurobiology of the axis and evidence for relations between early adversity-HPA axis activity and HPA axis activity-psychopathology, as well as discuss the role of regulatory mechanisms and sensitive periods in development. CONCLUSIONS We call attention to critical gaps in the literature to highlight next steps in this research including focus on developmental timing, sex differences, stress buffering, and epigenetic regulation. A better understanding of individual differences in the adversity-HPA axis-psychopathology associations will require continued work addressing how multiple biological and behavioral systems work in concert to shape development.
Collapse
Affiliation(s)
- Kalsea J. Koss
- Center for Research on Child Wellbeing, Office of Population Research, Department of Molecular Biology, Princeton, Princeton University, NJ, USA
| | - Megan R. Gunnar
- Center for Research on Child Wellbeing, Office of Population Research, Department of Molecular Biology, Princeton, Princeton University, NJ, USA
| |
Collapse
|
131
|
Glucocorticoid receptor gene methylation moderates the association of childhood trauma and cortisol stress reactivity. Psychoneuroendocrinology 2018; 90:68-75. [PMID: 29433075 DOI: 10.1016/j.psyneuen.2018.01.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/03/2023]
Abstract
Exposure to childhood trauma (CT) has been linked to sustained dysregulations of major stress response systems, including findings of both exaggerated and attenuated hypothalamus-pituitary-adrenal (HPA) axis activity. Likewise, CT constitutes a common risk factor for a broad range of psychiatric conditions that involve distinct neuroendocrine profiles. In this study, we investigated the role of epigenetic variability in a stress-related gene as a potential mediator or moderator of such differential trajectories in CT survivors. For this, we screened adult volunteers for CT and recruited a healthy sample of 98 exposed (67 with mild-moderate, 31 with moderate-severe exposure) and 102 control individuals, with an equal number of males and females in each group. DNA methylation (DNAM) levels of the glucocorticoid receptor exon 1F promoter (NR3C1-1F) at functionally relevant sites were analyzed via bisulfite pyrosequencing from whole blood samples. Participants were exposed to a laboratory stressor (Trier Social Stress Test) to assess salivary cortisol stress responses. The major finding of this study indicates that DNAM in a biologically relevant region of NR3C1-1F moderates the specific direction of HPA-axis dysregulation (hypo- vs. hyperreactivity) in adults exposed to moderate-severe CT. Those trauma survivors with increased NR3C1-1F DNAM displayed, on average, 10.4 nmol/l (62.3%) higher peak cortisol levels in response to the TSST compared to those with low DNAM. In contrast, unexposed and mildly-moderately exposed individuals displayed moderately sized cortisol stress responses irrespective of NR3C1-1F DNAM. Contrary to some prior work, however, our data provides no evidence for a direct association of CT and NR3C1-1F DNAM status. According to this study, epigenetic changes of NR3C1-1F may provide a more in-depth understanding of the highly variable neuroendocrine and pathological sequelae of CT.
Collapse
|
132
|
Sosnowski DW, Booth C, York TP, Amstadter AB, Kliewer W. Maternal prenatal stress and infant DNA methylation: A systematic review. Dev Psychobiol 2018; 60:127-139. [PMID: 29344930 DOI: 10.1002/dev.21604] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Maternal prenatal stress has been linked to a variety of infant postnatal outcomes, partially through alterations in fetal HPA axis functioning; yet the underlying pathobiology remains elusive. Current literature posits DNA methylation as a candidate mechanism through which maternal prenatal stress can influence fetal HPA axis functioning. The goal of this systematic review was to summarize the literature examining the associations among maternal prenatal stress, DNA methylation of commonly studied HPA axis candidate genes, and infant HPA axis functioning. Results from the review provided evidence for a link between various maternal prenatal stressors, NR3C1 methylation, and infant stress reactivity, but findings among other genes were limited, with mixed results. An original study quality review tool revealed that a majority of studies in the review are adequate, and emphasizes the need for future research to consider study quality when interpreting research findings.
Collapse
Affiliation(s)
- David W Sosnowski
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| | - Carolyn Booth
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| | - Timothy P York
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
| | - Wendy Kliewer
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
133
|
Kubota T. Epigenetic Effect of Environmental Factors on Neurodevelopmenal Disorders. Nihon Eiseigaku Zasshi 2018; 71:200-207. [PMID: 27725423 DOI: 10.1265/jjh.71.200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetics is an important mechanism of gene regulation that is dependent on the chromatin structure, which is determined by the epigenetic chemical modification of DNA and histone proteins. It is known that the failure of epigenetic mechanisms causes congenital neurodevelopmental disorders (NDs), and that early life exposure to mental stress and endocrine disrupting chemicals, such as phthalates, bisphenol A, and tobacco, can change epigenetic mechanism and gene expression in the brain and cause NDs. Moreover, environmentally induced epigenetic changes are not erased during gametogenesis and are transmitted to subsequent generations, leading to changes in behavior phenotypes. However, epigenetics has a reversible nature because it is based on the addition or removal of chemical residues, and thus the original epigenetic status may be restored. Indeed, several drugs used for mental disorders and NDs restore the epigenetic state and gene expression. Improved epigenetic understanding of NDs will provide important clues for the development of new drugs that take advantage of epigenetic reversibility.
Collapse
Affiliation(s)
- Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi
| |
Collapse
|
134
|
Palma-Gudiel H, Cirera F, Crispi F, Eixarch E, Fañanás L. The impact of prenatal insults on the human placental epigenome: A systematic review. Neurotoxicol Teratol 2018; 66:80-93. [PMID: 29307795 DOI: 10.1016/j.ntt.2018.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023]
Abstract
The placenta is the first human organ to reach full development during pregnancy. It serves as a barrier but also as an interchange surface. Epigenetic changes observed in placental tissue may reflect intrauterine insults while also pointing to physiological pathways altered under exposure to such environmental threats. By means of a systematic search of the literature, 39 papers assessing human placental epigenetic signatures in association with either (i) psychosocial stress, (ii) maternal psychopathology, (iii) maternal smoking during pregnancy, and (iv) exposure to environmental pollutants, were identified. Their findings revealed placental tissue as a unique source of epigenetic variability that does not correlate with epigenetic patterns observed in maternal or newborn blood, tissues which are typically analyzed regarding prenatal stress. Studies regarding prenatal stress and psychopathology during pregnancy were scarce and exploratory in nature revealing inconsistent findings. Of note, there was a marked tendency towards placental hypomethylation in studies assessing either tobacco use during pregnancy or exposure to environmental pollutants suggesting the interaction between contaminant-derived metabolites and epigenetic machinery. This review highlights the need for further prospective longitudinal studies assessing long-term health effects of placental epigenetic signatures derived from exposure to several prenatal stressors.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Flors Cirera
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Fátima Crispi
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Elisenda Eixarch
- Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Lourdes Fañanás
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain.
| |
Collapse
|
135
|
Neuroepigenetics of Prenatal Psychological Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:83-104. [DOI: 10.1016/bs.pmbts.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
136
|
McGowan PO, Matthews SG. Prenatal Stress, Glucocorticoids, and Developmental Programming of the Stress Response. Endocrinology 2018; 159:69-82. [PMID: 29136116 DOI: 10.1210/en.2017-00896] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023]
Abstract
The early environment has a major impact on the developing embryo, fetus, and infant. Parental adversity (maternal and paternal) and glucocorticoid exposure before conception and during pregnancy have profound effects on the development and subsequent function of the hypothalamic-pituitary-adrenal axis and related behaviors. These effects are species-, sex-, and age-specific and depend on the timing and duration of exposure. The impact of these early exposures can extend across multiple generations, via both the maternal and paternal lineage, and recent studies have begun to determine the mechanisms by which this occurs. Improved knowledge of the mechanisms by which adversity and glucocorticoids program stress systems will allow development of strategies to ameliorate and/or reverse these long-term effects.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Biological Sciences, University of Toronto, Toronto, Ontario, Canada
- Center for Environmental Epigenetics and Development, University of Toronto, Toronto, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
137
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
138
|
Isgut M, Smith AK, Reimann ES, Kucuk O, Ryan J. The impact of psychological distress during pregnancy on the developing fetus: biological mechanisms and the potential benefits of mindfulness interventions. J Perinat Med 2017; 45:999-1011. [PMID: 28141546 DOI: 10.1515/jpm-2016-0189] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/05/2016] [Indexed: 02/03/2023]
Abstract
The in utero environment plays an essential role in shaping future growth and development. Psychological distress during pregnancy has been shown to perturb the delicate physiological milieu of pregnancy, and has been associated with negative repercussions in the offspring, including adverse birth outcomes, long-term defects in cognitive development, behavioral problems during childhood and high baseline levels of stress-related hormones. Fetal epigenetic programming, involving epigenetic processes, may help explain the link between maternal prenatal stress and its negative effects on the child. Given the potential long-term effects of early-life stress on a child's health, it is crucial to minimize maternal distress during pregnancy. A number of recent studies have examined the usefulness of mindfulness-based programs to reduce prenatal psychological stress and improve maternal psychological health, and these are reviewed here. Overall, the findings are promising, but more research is needed with large studies using randomized controlled study designs. It remains unclear whether or not such interventions could also improve child health outcomes, and whether these changes are modulated at the epigenetic level during fetal development. Further studies in this area are needed.
Collapse
|
139
|
Vangeel EB, Pishva E, Hompes T, van den Hove D, Lambrechts D, Allegaert K, Freson K, Izzi B, Claes S. Newborn genome-wide DNA methylation in association with pregnancy anxiety reveals a potential role for GABBR1. Clin Epigenetics 2017; 9:107. [PMID: 29026448 PMCID: PMC5627482 DOI: 10.1186/s13148-017-0408-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/24/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is increasing evidence for the role of prenatal stress in shaping offspring DNA methylation and disease susceptibility. In the current study, we aimed to identify genes and pathways associated with pregnancy anxiety using a genome-wide DNA methylation approach. METHODS We selected 22 versus 23 newborns from our Prenatal Early Life Stress (PELS) cohort, exposed to the lowest or highest degree of maternal pregnancy anxiety, respectively. Cord blood genome-wide DNA methylation was assayed using the HumanMethylation450 BeadChip (HM450, n = 45) and candidate gene methylation using EpiTYPER (n = 80). Cortisol levels were measured at 2, 4, and 12 months of age to test infant stress system (re)activity. RESULTS Data showed ten differentially methylated regions (DMR) when comparing newborns exposed to low versus high pregnancy anxiety scores. We validated a top DMR in the GABA-B receptor subunit 1 gene (GABBR1) revealing the association with pregnancy anxiety particularly in male newborns (most significant CpG Pearson R = 0.517, p = 0.002; average methylation Pearson R = 0.332, p = 0.039). Cord blood GABBR1 methylation was associated with infant cortisol levels in response to a routine vaccination at 4 months old. CONCLUSIONS In conclusion, our results show that pregnancy anxiety is associated with differential DNA methylation patterns in newborns and that our candidate gene GABBR1 is associated with infant hypothalamic-pituitary-adrenal axis response to a stressor. Our findings reveal a potential role for GABBR1 methylation in association with stress and provide grounds for further research.
Collapse
Affiliation(s)
- Elise Beau Vangeel
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Titia Hompes
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- University Psychiatric Center, Leuven, Belgium
| | - Daniel van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, Laboratory of Translational Neuroscience, University of Wuerzburg, Wuerzburg, Germany
| | - Diether Lambrechts
- Department of Oncology, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
- Vesalius Research Center (VRC), VIB, Leuven, Belgium
| | - Karel Allegaert
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Intensive Care and Department of Pediatric Surgery, Erasmus MC—Sophia’s Children’s Hospital, Rotterdam, The Netherlands
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology (CMVB), KU Leuven, Leuven, Belgium
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS Instituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Stephan Claes
- Department of Neurosciences, Genetic Research About Stress and Psychiatry (GRASP), KU Leuven, Leuven, Belgium
- University Psychiatric Center, Leuven, Belgium
| |
Collapse
|
140
|
Maternal depression and anxiety and fetal-neonatal growth. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2017. [DOI: 10.1016/j.jpedp.2017.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
141
|
Togher KL, Treacy E, O'Keeffe GW, Kenny LC. Maternal distress in late pregnancy alters obstetric outcomes and the expression of genes important for placental glucocorticoid signalling. Psychiatry Res 2017; 255:17-26. [PMID: 28511050 DOI: 10.1016/j.psychres.2017.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/13/2017] [Accepted: 05/07/2017] [Indexed: 12/18/2022]
Abstract
The experience of maternal distress in pregnancy is often linked with poorer obstetric outcomes for women as well as adverse outcomes for offspring. Alterations in placental glucocorticoid signalling and subsequent increased fetal exposure to cortisol have been suggested to underlie this relationship. In the current study, 121 pregnant women completed the Perceived Stress Scale, State Trait Anxiety Inventory and Edinburgh Postnatal Depression Scale in the third trimester of pregnancy. Placental samples were collected after delivery. Maternal history of psychiatric illness and miscarriage were significant predictors of poorer mental health in pregnancy. Higher anxiety was associated with an increase in women delivering via elective Caesarean Section, and an increase in bottle-feeding. Birth temperature was mildly reduced among infants of women with high levels of depressive symptomology. Babies of mothers who scored high in all stress (cumulative distress) measures had reduced 5-min Apgar scores. High cumulative distress reduced the expression of placental HSD11B2 mRNA and increased the expression of placental NR3C1 mRNA. These data support a role for prenatal distress as a risk factor for altered obstetric outcomes. The alterations in placental gene expression support a role for altered placental glucocorticoid signalling in the relationship between maternal prenatal distress and adverse outcomes.
Collapse
Affiliation(s)
- Katie L Togher
- Irish Centre for Fetal and Neonatal Translation Research (INFANT), Cork University Maternity Hospital, University College Cork, Cork, Ireland; Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Eimear Treacy
- Irish Centre for Fetal and Neonatal Translation Research (INFANT), Cork University Maternity Hospital, University College Cork, Cork, Ireland; Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard W O'Keeffe
- Irish Centre for Fetal and Neonatal Translation Research (INFANT), Cork University Maternity Hospital, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Louise C Kenny
- Irish Centre for Fetal and Neonatal Translation Research (INFANT), Cork University Maternity Hospital, University College Cork, Cork, Ireland; Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, University College Cork, Cork, Ireland.
| |
Collapse
|
142
|
Howland MA, Sandman CA, Glynn LM. Developmental origins of the human hypothalamic-pituitary-adrenal axis. Expert Rev Endocrinol Metab 2017; 12:321-339. [PMID: 30058893 PMCID: PMC6334849 DOI: 10.1080/17446651.2017.1356222] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The developmental origins of disease or fetal programming model predicts that intrauterine exposures have life long consequences for physical and psychological health. Prenatal programming of the fetal hypothalamic-pituitary-adrenal (HPA) axis is proposed as a primary mechanism by which early experiences are linked to later disease risk. Areas covered: This review describes the development of the fetal HPA axis, which is determined by an intricately timed cascade of endocrine events during gestation and is regulated by an integrated maternal-placental-fetal steroidogenic unit. Mechanisms by which stress-induced elevations in hormones of maternal, fetal, or placental origin influence the structure and function of the emerging fetal HPA axis are discussed. Recent prospective studies documenting persisting associations between prenatal stress exposures and altered postnatal HPA axis function are summarized, with effects observed beginning in infancy into adulthood. Expert commentary: The results of these studies are synthesized, and potential moderating factors are discussed. Promising areas of further research highlighted include epigenetic mechanisms and interactions between pre and postnatal influences.
Collapse
Affiliation(s)
- Mariann A. Howland
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA
| | - Laura M. Glynn
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA
- Department of Psychology, Chapman University, Orange, CA, USA
| |
Collapse
|
143
|
Pinto TM, Caldas F, Nogueira-Silva C, Figueiredo B. Maternal depression and anxiety and fetal-neonatal growth. J Pediatr (Rio J) 2017; 93:452-459. [PMID: 28219626 DOI: 10.1016/j.jped.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Maternal depression and anxiety have been found to negatively affect fetal and neonatal growth. However, the independent effects of maternal depression and anxiety on fetal-neonatal growth outcomes and trajectories remain unclear. This study aimed to analyze simultaneously the effects of maternal prenatal depression and anxiety on (1) neonatal growth outcomes, and (2), on fetal-neonatal growth trajectories, from the 2nd trimester of pregnancy to childbirth. METHODS A sample of 172 women was recruited and completed self-reported measures of depression and anxiety during the 2nd and 3rd trimesters of pregnancy, and at childbirth. Fetal and neonatal biometrical data were collected from clinical reports at the same assessment moments. RESULTS Neonates of prenatally anxious mothers showed lower weight (p=0.006), length (p=0.025), and ponderal index (p=0.049) at birth than neonates of prenatally non-anxious mothers. Moreover, fetuses-neonates of high-anxiety mothers showed a lower increase of weight from the 2nd trimester of pregnancy to childbirth than fetuses-neonates of low-anxiety mothers (p<0.001). Considering maternal depression and anxiety simultaneously, only the effect of maternal anxiety was found on these markers of fetal-neonatal growth outcomes and trajectories. CONCLUSION This study demonstrates the independent longitudinal effect of maternal anxiety on major markers of fetal-neonatal growth outcomes and trajectories, simultaneously considering the effect of maternal depression and anxiety.
Collapse
Affiliation(s)
| | - Filipa Caldas
- Universidade do Minho, Escola de Ciências da Saúde, Braga, Portugal
| | - Cristina Nogueira-Silva
- Universidade do Minho, Escola de Ciências da Saúde, Instituto de Pesquisa em Ciências de Vida e Saúde (ICVS), Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Hospital de Braga, Departamento de Obstetrícia e Ginecologia, Braga, Portugal
| | | |
Collapse
|
144
|
Nemoda Z, Szyf M. Epigenetic Alterations and Prenatal Maternal Depression. Birth Defects Res 2017; 109:888-897. [DOI: 10.1002/bdr2.1081] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zsofia Nemoda
- Department of Pharmacology & Therapeutics; McGill University; Montreal Quebec Canada
- Institute of Medical Chemistry, Molecular Biology and Pathobiochemistry; Semmelweis University; Budapest Hungary
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics; McGill University; Montreal Quebec Canada
- Sackler Program for Epigenetics and Psychobiology; McGill University; Montreal Quebec Canada
| |
Collapse
|
145
|
Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism. Int J Genomics 2017; 2017:7526592. [PMID: 28567415 PMCID: PMC5439185 DOI: 10.1155/2017/7526592] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/02/2017] [Indexed: 01/07/2023] Open
Abstract
The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD), calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD) hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates), persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.
Collapse
|
146
|
Buss C, Entringer S, Moog NK, Toepfer P, Fair DA, Simhan HN, Heim CM, Wadhwa PD. Intergenerational Transmission of Maternal Childhood Maltreatment Exposure: Implications for Fetal Brain Development. J Am Acad Child Adolesc Psychiatry 2017; 56:373-382. [PMID: 28433086 PMCID: PMC5402756 DOI: 10.1016/j.jaac.2017.03.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Growing evidence suggests the deleterious consequences of exposure to childhood maltreatment (CM) not only might endure over the exposed individual's lifespan but also might be transmitted across generations. The time windows, mechanisms, and targets of such intergenerational transmission are poorly understood. The prevailing paradigm posits that mother-to-child transmission of the effects of maternal CM likely occurs after her child's birth. The authors seek to extend this paradigm and advance a transdisciplinary framework that integrates the concepts of biological embedding of life experiences and fetal origins of health and disease risk. METHOD The authors posit that the period of embryonic and fetal life represents a particularly sensitive time for intergenerational transmission; that the developing brain represents a target of particular interest; and that stress-sensitive maternal-placental-fetal biological (endocrine, immune) pathways represent leading candidate mechanisms of interest. RESULTS The plausibility of this model is supported by theoretical considerations and empirical findings in humans and animals. The authors synthesize several research areas and identify important knowledge gaps that might warrant further study. CONCLUSION The scientific and public health relevance of this effort relates to achieving a better understanding of the "when," "what," and "how" of intergenerational transmission of CM, with implications for early identification of risk, prevention, and intervention.
Collapse
Affiliation(s)
- Claudia Buss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH); the University of California-Irvine; and the University of California-Irvine Development, Health and Disease Research Program, Orange, CA.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol Psychiatry 2017; 22:640-646. [PMID: 28289275 DOI: 10.1038/mp.2017.35] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.
Collapse
|
148
|
Stonawski V, Frey S, Golub Y, Moll GH, Heinrich H, Eichler A. [Epigenetic modifications in children associated with maternal emotional stress during pregnancy]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2017; 46:155-167. [PMID: 28256157 DOI: 10.1024/1422-4917/a000515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Besides typical physical and hormonal changes during pregnancy, this life period is often associated with an increased emotional and mental stress for women. For the child, the time in utero is regarded as a critical developmental period since adverse stimuli during pregnancy can have lasting consequences for the fetal and postnatal health and development. Thus, prenatal depression, anxiety and stress are considered as risk factors for developmental delay, emotional and behavioral problems. Epigenetic modifications, especially modifications in DNA methylation, are discussed as a possible biological mechanism that could explain the association between prenatal emotional stress and altered developmental and health outcomes of the child. This review summarizes evidence for DNA methylation changes related to prenatal emotional stress from studies with a candidate-gene approach as well as epigenome-wide association studies. Problematic issues are discussed and recommendations for future research are presented.
Collapse
Affiliation(s)
- Valeska Stonawski
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.,2 Lehrstuhl für Gesundheitspsychologie, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Stefan Frey
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Yulia Golub
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.,3 Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und Jugendalters der Johann Wolfgang Goethe-Universität, Frankfurt a. M
| | - Gunther H Moll
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| | - Hartmut Heinrich
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg.,4 kbo-Heckscher-Klinikum, München
| | - Anna Eichler
- 1 Kinder- und Jugendabteilung für Psychische Gesundheit, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg
| |
Collapse
|
149
|
Abstract
PURPOSE OF REVIEW African Americans disproportionately suffer from leading causes of morbidity and mortality including cardiovascular disease (CVD), cancer, and preterm birth. Disparities can arise from multiple social and environmental exposures, but how the human body responds to these exposures to result in pathophysiologic states is incompletely understood. RECENT FINDINGS Epigenetic mechanisms, particularly DNA methylation, can be altered in response to exposures such as air pollution, psychosocial stress, and smoking. Each of these exposures has been linked to the above health states (CVD, cancer, and preterm birth) with striking racial disparities in exposure levels. DNA methylation patterns have also been shown to be associated with each of these health outcomes. SUMMARY Whether DNA methylation mediates exposure-disease relationships and can help explain racial disparities in health is not known. However, because many environmental and adverse social exposures disproportionately affect minorities, understanding the role that epigenetics plays in the human response to these exposures that often result in disease, is critical to reducing disparities in morbidity and mortality.
Collapse
Affiliation(s)
- Alexis D. Vick
- Department of Neonatology, Beth Israel Deaconess Medical
Center, Boston, MA
- University of Toledo College of Medicine, Toledo, OH
| | - Heather H. Burris
- Department of Neonatology, Beth Israel Deaconess Medical
Center, Boston, MA
- Departments of Pediatrics and Obstetrics, Gynecology, and
Reproductive Biology, Harvard Medical School, Boston, MA
- Department of Environmental Health, Harvard TH Chan School
of Public Health, Boston, MA
| |
Collapse
|
150
|
Field T. Prenatal Depression Risk Factors, Developmental Effects and Interventions: A Review. JOURNAL OF PREGNANCY AND CHILD HEALTH 2017; 4:301. [PMID: 28702506 PMCID: PMC5502770 DOI: 10.4172/2376-127x.1000301] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This narrative review based on a literature search in PubMed and PsycInfo on the two terms prenatal and antenatal depression includes empirical studies, reviews and meta-analyses that have been published during the last 5 years on risk factors, developmental effects and interventions for prenatal depression. Risk factor studies that met criteria feature demographic measures (lower socioeconomic status, less education, non-marital status, non-employment, less social support and health locus of control, unintended pregnancy, partner violence and history of child abuse) and physiological variables (cortisol, amylase, and pro-inflammatory cytokines and intrauterine artery resistance). The negative effects include postpartum depression, paternal depression, and prematurity and low birth weight. Negative effects on infants include greater right frontal EEG, amygdala connectivity, cortical thinning and more difficult temperament. In childhood, externalizing and internalizing problems have been reported. The data on prenatal antidepressants (specifically SSRIs) reveal negative effects including internalizing problems as well as a greater risk for autism spectrum disorder. Prenatal interventions that have been effective include interpersonal psychotherapy, peer support, massage therapy, yoga, tai chi, and aerobic exercise. Potential underlying mechanisms are discussed as well as methodological limitations including homogeneity of samples and lack of randomization to intervention groups. Despite these limitations, the literature highlights the need for prenatal depression screening and intervention.
Collapse
Affiliation(s)
- Tiffany Field
- University of Miami/Miller School of Medicine, Fielding Graduate University, USA
| |
Collapse
|