101
|
Awasthi MK, Sindhu R, Sirohi R, Kumar V, Ahluwalia V, Binod P, Juneja A, Kumar D, Yan B, Sarsaiya S, Zhang Z, Pandey A, Taherzadeh MJ. Agricultural waste biorefinery development towards circular bioeconomy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 158:112122. [DOI: 10.1016/j.rser.2022.112122] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
102
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
103
|
Abstract
The facultative chemolithoautotroph Cupriavidus necator H16 is able to grow aerobically either with organic substrates or H2 and CO2 s and it can accumulate large amounts of (up to 90%) poly (3-hydroxybutyrate), a polyhydroxyalkanoate (PHA) biopolymer. The ability of this organism to co-utilize volatile fatty acids (VFAs) and CO2 as sources of carbon under mixotrophic growth conditions was investigated and PHA production was monitored. PHA accumulation was assessed under aerobic conditions, with either individual VFAs or in mixtures, under three different conditions—with CO2 as additional carbon source, without CO2 and with CO2 and H2 as additional sources of carbon and energy. VFAs utilisation rates were slower in the presence of CO2. PHA production was significantly higher when cultures were grown mixotrophically and with H2 as an additional energy source compared to heterotrophic or mixotrophic growth conditions, without H2. Furthermore, a two-step VFA feeding regime was found to be the most effective method for PHA accumulation. It was used for PHA production mixotrophically using CO2, H2 and VFA mixture derived from an anaerobic digestor (AD). The data obtained demonstrated that process parameters need to be carefully monitored to avoid VFA toxicity and low product accumulation.
Collapse
|
104
|
Awasthi MK, Singh E, Binod P, Sindhu R, Sarsaiya S, Kumar A, Chen H, Duan Y, Pandey A, Kumar S, Taherzadeh MJ, Li J, Zhang Z. Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2022; 156:111987. [DOI: 10.1016/j.rser.2021.111987] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
105
|
Harirchi S, Wainaina S, Sar T, Nojoumi SA, Parchami M, Parchami M, Varjani S, Khanal SK, Wong J, Awasthi MK, Taherzadeh MJ. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 2022; 13:6521-6557. [PMID: 35212604 PMCID: PMC8973982 DOI: 10.1080/21655979.2022.2035986] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 11/02/2022] Open
Abstract
In the past decades, considerable attention has been directed toward anaerobic digestion (AD), which is an effective biological process for converting diverse organic wastes into biogas, volatile fatty acids (VFAs), biohydrogen, etc. The microbial bioprocessing takes part during AD is of substantial significance, and one of the crucial approaches for the deep and adequate understanding and manipulating it toward different products is process microbiology. Due to highly complexity of AD microbiome, it is critically important to study the involved microorganisms in AD. In recent years, in addition to traditional methods, novel molecular techniques and meta-omics approaches have been developed which provide accurate details about microbial communities involved AD. Better understanding of process microbiomes could guide us in identifying and controlling various factors in both improving the AD process and diverting metabolic pathway toward production of selective bio-products. This review covers various platforms of AD process that results in different final products from microbiological point of view. The review also highlights distinctive interactions occurring among microbial communities. Furthermore, assessment of these communities existing in the anaerobic digesters is discussed to provide more insights into their structure, dynamics, and metabolic pathways. Moreover, the important factors affecting microbial communities in each platform of AD are highlighted. Finally, the review provides some recent applications of AD for the production of novel bio-products and deals with challenges and future perspectives of AD.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Milad Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Mohsen Parchami
- Swedish Centre for Resource Recovery, University of Borås, 50190Borås, Sweden
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, Gujarat, India
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Jonathan Wong
- Department of Biology, Institute of Bioresource and Agriculture and, Hong Kong Baptist University, Hong Kong
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 712100, China
| | | |
Collapse
|
106
|
Awasthi SK, Kumar M, Sarsaiya S, Ahluwalia V, Chen H, Kaur G, Sirohi R, Sindhu R, Binod P, Pandey A, Rathour R, Kumar S, Singh L, Zhang Z, Taherzadeh MJ, Awasthi MK. Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. JOURNAL OF CLEANER PRODUCTION 2022; 341:130862. [DOI: 10.1016/j.jclepro.2022.130862] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
107
|
Awasthi MK, Kumar V, Yadav V, Sarsaiya S, Awasthi SK, Sindhu R, Binod P, Kumar V, Pandey A, Zhang Z. Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review. CHEMOSPHERE 2022; 290:133310. [PMID: 34919909 DOI: 10.1016/j.chemosphere.2021.133310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Poly-3-hydroxyalkanoates (PHA) are biodegradable and compostable polyesters. This review is aimed to provide a unique approach that can help think tanks to frame strategies aiming for clean technology by utilizing cutting edge biotechnological advances to convert fruit and vegetable waste to biopolymer. A PHA manufacturing method based on watermelon waste residue that does not require extensive pretreatment provides a more environmentally friendly and sustainable approach that utilizes an agricultural waste stream. Incorporating fruit processing industry by-products and water, and other resource conservation methods would not only make the manufacturing of microbial bio-plastics like PHA more eco-friendly, but will also help our sector transition to a bioeconomy with circular product streams. The final and most critical element of this review is an in-depth examination of the several hazards inherent in PHA manufacturing.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
108
|
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas MY, Pandey A, Taherzadeh MJ. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152253. [PMID: 34902412 DOI: 10.1016/j.scitotenv.2021.152253] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The dairy industry generates excessive amounts of waste and by-products while it gives a wide range of dairy products. Alternative biotechnological uses of these wastes need to be determined to aerobic and anaerobic treatment systems due to their high chemical oxygen demand (COD) levels and rich nutrient (lactose, protein and fat) contents. This work presents a critical review on the fermentation-engineering aspects based on defining the effective use of dairy effluents in the production of various microbial products such as biofuel, enzyme, organic acid, polymer, biomass production, etc. In addition to microbial processes, techno-economic analyses to the integration of some microbial products into the biorefinery and feasibility of the related processes have been presented. Overall, the inclusion of dairy wastes into the designed microbial processes seems also promising for commercial approaches. Especially the digestion of dairy wastes with cow manure and/or different substrates will provide a positive net present value (NPV) and a payback period (PBP) less than 10 years to the plant in terms of biogas production.
Collapse
Affiliation(s)
- Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran
| | - Gülru Bulkan
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Meltem Yesilcimen Akbas
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze-Kocaeli 41400, Turkey
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | | |
Collapse
|
109
|
Xin G, Yang J, Li R, Gao Q, Li R, Wang J, Zhang J, Wang J. Dietary supplementation of hemp oil in teddy dogs: Effect on apparent nutrient digestibility, blood biochemistry and metabolomics. Bioengineered 2022; 13:6173-6187. [PMID: 35200081 PMCID: PMC8974180 DOI: 10.1080/21655979.2022.2043018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Present study aimed to evaluate the influence of distinct concentration of dietary supplements hemp oil on apparent nutrient digestibility, blood biochemical parameters and metabolomics of teddy dogs. A total of 25 healthy teddy dogs were selected and divided into five treatments according to diet supplements hemp oil at a rate of 0% (A), 0.5% (B), 1% (C), 2% (D), and 4% (E). Appropriate added hemp oil improved apparent nutrient digestibility of dry matter, crude protein and crude fat (86.32–88.08%, 86.87–88.87% and 96.76–97.43%). The hemp oil significantly increased blood biochemical of utilization related total protein, albumin and globulin (61.33–69.54, 35.08–40.38 and 26.53–31.63 g/L), immunity capacity related immunoglobulin E and γ-interferon (203–347kU/L and 23.04–25.78ng/L), energy-related thyroxine and triiodothyronine (27.11–36.75 and 0.94–1.67 nmol/L). In addition, hemp oil improved superoxide dismutation (26.47–33.02 U/ml) and reduced malondialdehyde (5.30–3.28 nmol/ml). The differential metabolites mainly included nucleotides and metabolites of oxidized lipids, bile and other fatty acids, coenzymes and vitamins. The main metabolic pathways included purine and arachidonic acid metabolism, bile and unsaturated fatty acid biosynthesis, cell oxidative phosphorylation and rheumatoid arthritis. Overall, appropriate dietary supplements hemp oil positively to nutrient digestibility and blood metabolism, immunity and antioxidant capacity, 1% to 2% hemp oil supplements was recommended for teddy dog diet.
Collapse
Affiliation(s)
- Guosheng Xin
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Jie Yang
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Ruiguo Li
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Qiaoxian Gao
- School of Life Science, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China.,Ningxia Feed Engineering Technology Research Center, Ningxia University, Yinchuan, Ningxia Hui Autonomous, China
| | - Ronglin Li
- Petpal Pet Nutrition Technology Co., Ltd, Hangzhou, Zhejiang province, China
| | - Jianguo Wang
- Petpal Pet Nutrition Technology Co., Ltd, Hangzhou, Zhejiang province, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jing Wang
- Ningxia Hiby Analysis & Testing Institute, Yinchuan, Ningxia Hui Autonomous, China
| |
Collapse
|
110
|
Al-Mallahi J, Ishii K. Attempts to alleviate inhibitory factors of anaerobic digestate for enhanced microalgae cultivation and nutrients removal: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114266. [PMID: 34906810 DOI: 10.1016/j.jenvman.2021.114266] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion is a well-established process that is applied to treat organic wastes and convert the carbon to valuable methane gas as a source of energy. The digestate that comes out as a by-product is of a great challenge due to its high nutrient content that can be toxic in case of improper disposal to the environment. Several attempts have been done to valorize this digestate. Digestate has been considered as an interesting medium to cultivate microalgae. The nutrients available in the digestate, mainly nitrogen and phosphorus, can be an interesting supplement for microalgae growth requirement. The main obstacles of using digestate as a medium to cultivate microalgae are the dark color and the high ammonium-nitrogen concentration. The focus of this review is to discuss in detail the major attempts in research to overcome inhibition and enhance microalgae cultivation in digestate. This review initially discussed the obstacles of digestate as a medium for microalgae cultivation. Different processes to overcome inhibition were discussed including dilution, supplying additional carbon source, favoring mixotrophic cultivation and pretreatment. More emphasis in this review was given to digestate pretreatment. Among the pretreatment methods, filtration, and centrifugation were of the most applied ones. These strategies were found to be effective for turbidity and chromaticity reduction. For ammonium nitrogen removal, ammonia stripping and biological pretreatment methods were found to play a vital role. Adsorption could work both ways depending on the material used. Combining different pretreatment methods as well as including selected microalgae stains were found interesting strategies to facilitate microalgae cultivation with no dilution. This study recommend that more study should investigate the optimization of microalgae cultivation in anaerobic digestate without the need for dilution.
Collapse
Affiliation(s)
- Jumana Al-Mallahi
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kazuei Ishii
- Faculty of Engineering, Hokkaido University, N13, W18, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
111
|
Lagoa-Costa B, Kennes C, Veiga MC. Influence of feedstock mix ratio on microbial dynamics during acidogenic fermentation for polyhydroxyalkanoates production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114132. [PMID: 34863075 DOI: 10.1016/j.jenvman.2021.114132] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The nature of microbial populations plays an essential role in the production of volatile fatty acids (VFA) during acidogenesis, the first stage in polyhydroxyalkanoates (PHA) production using mixed cultures. However, the composition of microbial communities is generally affected by substrate alterations. This work aimed to unravel the microbial dynamics in response to a gradual change in the feedstock composition in an acidogenic reactor, with subsequent PHA production. To achieve this, co-digestion of cheese whey and brewery wastewater (BW) was carried out for the production of VFA, in which the ratio of these feedstocks was varied by gradually increasing the proportion of BW from 0 up to 50% of the organic content. Bacteria such as Megasphaera, Bifidobacterium or Caproiciproducens were the most abundant in the first stages of the co-digestion. However, when BW reached 25% of the organic load, new taxa emerged and displaced the former ones; like Selenomonas, Ethanoligenens or an undefined member of the Bacteroidales order. Accordingly, the production of butyric acid dropped from 52 down to 27%, while the production of acetic acid increased from 36 up to 52%. Furthermore, the gradual increase of the BW ratio led to a progressive drop in the degree of acidification, from 72 down to 57%. In a subsequent approach, the VFA-rich streams, obtained from the co-digestion, were used as substrates in PHA accumulation tests. All the tests yielded similar PHA contents, but with slightly different monomeric composition. The overall results confirmed that the microbiome was altered by a gradual change in the feedstock composition and, consequently, the VFA profile and the monomeric composition of the biopolymer also did.
Collapse
Affiliation(s)
- Borja Lagoa-Costa
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Centre for Advanced Scientific Research (CICA), University of A Coruña, Rúa da Fraga 10, 15008, A Coruña, Spain.
| |
Collapse
|
112
|
Chakraborty D, Karthikeyan OP, Selvam A, Palani SG, Ghangrekar MM, Wong JWC. Two-phase anaerobic digestion of food waste: Effect of semi-continuous feeding on acidogenesis and methane production. BIORESOURCE TECHNOLOGY 2022; 346:126396. [PMID: 34822991 DOI: 10.1016/j.biortech.2021.126396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023]
Abstract
In present investigation, effect of diverting acidogenic off-gas from leached bed reactor (LBR) to up-flow anaerobic sludge blanket (UASB) reactor during semi-continuous food waste (FW) anaerobic digestion was evaluated. In test LBR headspace pressure (3.3 psi) was maintained with intermittent headspace gas transfer into UASB. In control, same headspace pressure was maintained without gas transfer. The semi-continuous FW addition affected the characteristics and production of leachate in control and test LBR. The cumulative COD, total soluble products and methane yields were 1.26, 1.37 and 3 times higher in the test LBR than the control. The acetate and methane yields from test LBR were 697.8 g·kgVSadded-1 and 167.55 mL·gCOD-1feeding. Acidogenic gas transfer maintained low partial pressure of hydrogen and the hydrogen to carbon-di-oxide ratio in the headspace of LBR, which were thermodynamically favorable for microbial metabolism and concomitant high-rate production of acetate-rich volatile fatty acid and methane-rich biogas from FW.
Collapse
Affiliation(s)
- Debkumar Chakraborty
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; School of Environmental Science and Engineering, IIT Kharagpur, Kharagpur 721302, India
| | - Obulisamy Parthiba Karthikeyan
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Ammaiyappan Selvam
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Department of Plant Science, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli 627 012, Tamil Nadu, India
| | - Sankar Ganesh Palani
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, India
| | - Makarand M Ghangrekar
- School of Environmental Science and Engineering, IIT Kharagpur, Kharagpur 721302, India
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Bioresource and Agriculture, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
113
|
Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste in Plug-Flow Reactors: Focus on Bacterial Community Metabolic Pathways. WATER 2022. [DOI: 10.3390/w14020195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study is to investigate the performance of a pilot-scale plug-flow reactor (PFR) as a biorefinery system to recover chemicals (i.e., volatile fatty acids (VFAs)), and biogas during the dry thermophilic anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). The effects of the hydraulic retention time (HRT) on both outputs were studied, reducing the parameter from 22 to 16 days. In addition, VFA variation along the PFR was also evaluated to identify a section for a further valorization of VFA-rich digestate stream. A particular focus was dedicated for characterizing the community responsible for the production of VFAs during hydrolysis and acidogenesis. The VFA concentration reached 4421.8 mg/L in a section located before the end of the PFR when the HRT was set to 16 days. Meanwhile, biogas production achieved 145 NLbiogas/d, increasing 2.7 times when compared to the lowest HRT tested. Defluviitoga sp. was the most abundant bacterial genus, contributing to 72.7% of the overall bacterial population. The genus is responsible for the hydrolysis of complex polysaccharides at the inlet and outlet sections since a bimodal distribution of the genus was found. The central zone of the reactor was distinctly characterized by protein degradation, following the same trend of propionate production.
Collapse
|
114
|
Lin M, Wang A, Ren L, Qiao W, Wandera SM, Dong R. Challenges of pathogen inactivation in animal manure through anaerobic digestion: a short review. Bioengineered 2022; 13:1149-1161. [PMID: 35258411 PMCID: PMC8805936 DOI: 10.1080/21655979.2021.2017717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Animal manure is the main source of bioenergy production by anaerobic digestion (AD). However, the pathogenic bacteria in manure may pose a high risk to human health by contaminating the environment if not effectively inactivated during AD. Worldwide, more than 20,000 biogas plants are running for the treatment of animal manure. AD has been playing the important role in establishing a circular economy in the agricultural sector and may contribute to the United Nations sustainable development goal (UN SDG). Nevertheless, whether AD is a reliable approach for pathogens inactivation has been challenged. A comprehensive understanding of the coping mechanisms of pathogens with adverse conditions and the challenges of establishing the AD process to inactivate effectively pathogens are yet to be analyzed. In this review, the diversity and resistance of pathogens in animal manure are summarized. The efficiencies and the difficulties of their inactivations in AD are also analyzed. In particular, three forms of pathogens i.e. sporing-forming pathogens, viable but non-culturable (VBNC) pathogens, and persistent pathogens are discussed. The factors influencing the pathogens’ inactivation and AD efficiencies are analyzed. The trade-off between energy production and pathogens inactivation in an AD system was consequently pointed out. This review concluded that the development of anaerobic processes should meet the goals of high efficient bioenergy production and deep hygienization.
Collapse
Affiliation(s)
- Min Lin
- College of Engineering, China Agricultural University, Beijing, China
| | - Aijie Wang
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Lijuan Ren
- College of Engineering, China Agricultural University, Beijing, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Simon Mdondo Wandera
- Department of Civil, Construction & Environmental Engineering, Jomo Kenyatta University of Agriculture & Technology, Nairobi, Kenya
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
115
|
Modeling biogas production from anaerobic wastewater treatment plants using radial basis function networks and differential evolution. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
116
|
Agnihotri S, Yin DM, Mahboubi A, Sapmaz T, Varjani S, Qiao W, Koseoglu-Imer DY, Taherzadeh MJ. A Glimpse of the World of Volatile Fatty Acids Production and Application: A review. Bioengineered 2022; 13:1249-1275. [PMID: 34738864 PMCID: PMC8805862 DOI: 10.1080/21655979.2021.1996044] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Sustainable provision of chemicals and materials is undoubtedly a defining factor in guaranteeing economic, environmental, and social stability of future societies. Among the most sought-after chemical building blocks are volatile fatty acids (VFAs). VFAs such as acetic, propionic, and butyric acids have numerous industrial applications supporting from food and pharmaceuticals industries to wastewater treatment. The fact that VFAs can be produced synthetically from petrochemical derivatives and also through biological routes, for example, anaerobic digestion of organic mixed waste highlights their provision flexibility and sustainability. In this regard, this review presents a detailed overview of the applications associated with petrochemically and biologically generated VFAs, individually or in mixture, in industrial and laboratory scale, conventional and novel applications.
Collapse
Affiliation(s)
- Swarnima Agnihotri
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Dong-Min Yin
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Tugba Sapmaz
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | | - Wei Qiao
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
| | - Derya Y. Koseoglu-Imer
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | | |
Collapse
|
117
|
Innard N, Chong JPJ. The challenges of monitoring and manipulating anaerobic microbial communities. BIORESOURCE TECHNOLOGY 2022; 344:126326. [PMID: 34780902 DOI: 10.1016/j.biortech.2021.126326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Mixed anaerobic microbial communities are a key component in valorization of waste biomass via anaerobic digestion. Similar microbial communities are important as soil and animal microbiomes and have played a critical role in shaping the planet as it is today. Understanding how individual species within communities interact with others and their environment is important for improving performance and potential applications of an inherently green technology. Here, the challenges associated with making measurements critical to assessing the status of anaerobic microbial communities are considered. How these measurements could be incorporated into control philosophies and augment the potential of anaerobic microbial communities to produce different and higher value products from waste materials are discussed. The benefits and pitfalls of current genetic and molecular approaches to measuring and manipulating anaerobic microbial communities and the challenges which should be addressed to realise the potential of this exciting technology are explored.
Collapse
Affiliation(s)
- Nathan Innard
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK.
| |
Collapse
|
118
|
Kumar Awasthi M, Paul A, Kumar V, Sar T, Kumar D, Sarsaiya S, Liu H, Zhang Z, Binod P, Sindhu R, Kumar V, Taherzadeh MJ. Recent trends and developments on integrated biochemical conversion process for valorization of dairy waste to value added bioproducts: A review. BIORESOURCE TECHNOLOGY 2022; 344:126193. [PMID: 34710613 DOI: 10.1016/j.biortech.2021.126193] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
In this review article, discuss the many ways utilized by the dairy sector to treat pollutants, emphasizing their influence on the quality and efficiency with which contamination is removed. It focuses on biotechnology possibilities for valorizing dairy waste in particular. The findings revealed that dairy waste may be treated using physicochemical, biological, and biotechnological techniques. Notably, this article highlighted the possibility of dairy waste being used as a feedstock not only for the generation of biogas, bioethanol, biohydrogen, microbial fuel cells, lactic acid, and fumaric acid via microbial technology but also for the production of biooil and biochar by pyrolysis. In addition, this article critically evaluates the many treatment techniques available for recovering energy and materials from dairy waste, their combinations, and implementation prospects. Valorization of dairy waste streams presents an opportunity to extend the dairy industry's presence in the fermented functional beverage sector.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Anindita Paul
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Taner Sar
- (f)Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210,USA
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala 695019, India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | | |
Collapse
|
119
|
Saravanan A, Senthil Kumar P, Khoo KS, Show PL, Femina Carolin C, Fetcia Jackulin C, Jeevanantham S, Karishma S, Show KY, Lee DJ, Chang JS. Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. BIORESOURCE TECHNOLOGY 2021; 342:126021. [PMID: 34600315 DOI: 10.1016/j.biortech.2021.126021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability. Appropriate pretreatments are required to enhance the performance of biohydrogen from complex organic wastes. Biohydrogen production could also be enhanced by optimizing operation conditions and the addition of essential nutrients and nanoparticles. This review describes the pathways of biohydrogen production, discusses the effect of organic waste sources used and microbes involved on biohydrogen production, along with addressing the key parameters, advantages, and difficulties in each biohydrogen production pathway.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau-Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - C Femina Carolin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - C Fetcia Jackulin
- Department of Chemical Engineering, Adhiyamaan College of Engineering (Autonomous), Hosur 635130, Tamil Nadu, India
| | - S Jeevanantham
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | - Kuan-Yeow Show
- Puritek Research Institute, Puritec Co., Ltd., Nanjing, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
120
|
Kumar Awasthi M, Wainaina S, Mahboubi A, Zhang Z, Taherzadeh MJ. Methanogen and nitrifying genes dynamics in immersed membrane bioreactors during anaerobic co-digestion of different organic loading rates food waste. BIORESOURCE TECHNOLOGY 2021; 342:125920. [PMID: 34534942 DOI: 10.1016/j.biortech.2021.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
This work was aimed to evaluate the distinctive food waste (FW) organic loading rates (OLR) on methanogen and nitrifying genes dynamics and its correlation with identified relative abundance of bacterial dynamics during the anaerobic digestion. This experiment were carried out in the digesters at high OLR of food wastes at (4 to 8 g volatile solids/liter/day reactor R1) and (6 to 10 g volatile solids/liter/day reactor R2). The results shown that the relative abundance of mcrA, mcrB and mcrG genes were richest in the first day of both R1 and R2. In addition, the most of nitrifying genes were greater in after 34 days digestion in R2, while these genes did not show the specific regularity in R1. Finally, the correlation figure shows that Clostridium and Lactobacillus genera were significantly correlated with the different organic acids and methanogen and nitrifying genes dynamics.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
121
|
Liu H, Kumar V, Yadav V, Guo S, Sarsaiya S, Binod P, Sindhu R, Xu P, Zhang Z, Pandey A, Kumar Awasthi M. Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered 2021; 12:10269-10301. [PMID: 34709979 PMCID: PMC8809956 DOI: 10.1080/21655979.2021.1993536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/25/2022] Open
Abstract
Biochar's ability to mediate and facilitate microbial contamination degradation, as well as its carbon-sequestration potential, has sparked interest in recent years. The scope, possible advantages (economic and environmental), and future views are all evaluated in this review. We go over the many designed processes that are taking place and show why it is critical to look into biochar production for resource recovery and the role of bioengineered biochar in waste recycling. We concentrate on current breakthroughs in the fields of engineered biochar application techniques to systematically and sustainable technology. As a result, this paper describes the use of biomass for biochar production using various methods, as well as its use as an effective inclusion material to increase performance. The impact of biochar amendments on microbial colonisation, direct interspecies electron transfer, organic load minimization, and buffering maintenance is explored in detail. The majority of organic and inorganic (heavy metals) contaminants in the environment today are caused by human activities, such as mining and the use of chemical fertilizers and pesticides, which can be treated sustainably by using engineered biochar to promote the establishment of a sustainable engineered process by inducing the circular bioeconomy.
Collapse
Affiliation(s)
- Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology(IIT) Roorkee, Roorkee, India
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, YanglingChina
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, PR China
| |
Collapse
|
122
|
Xu RZ, Fang S, Zhang L, Huang W, Shao Q, Fang F, Feng Q, Cao J, Luo J. Distribution patterns of functional microbial community in anaerobic digesters under different operational circumstances: A review. BIORESOURCE TECHNOLOGY 2021; 341:125823. [PMID: 34454239 DOI: 10.1016/j.biortech.2021.125823] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) processes are promising to effectively recover resources from organic wastes or wastewater. As a microbial-driven process, the functional anaerobic species played critical roles in AD. However, the lack of effective understanding of the correlations of varying microbial communities with different operational factors hinders the microbial regulation to improve the AD performance. In this paper, the main anaerobic functional microorganisms involved in different stages of AD processes were first demonstrated. Then, the response of anaerobic microbial community to different operating parameters, exogenous interfering substances and digestion substrates, as well as the digestion efficiency, were discussed. Finally, the research gaps and future directions on the understanding of functional microorganisms in AD were proposed. This review provides insightful knowledge of distribution patterns of functional microbial community in anaerobic digesters, and gives critical guidance to regulate and enrich specific functional microorganisms to accumulate certain AD products.
Collapse
Affiliation(s)
- Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Le Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qianqi Shao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
123
|
Enhanced Volatile Fatty Acid Production from Oil Palm Empty Fruit Bunch through Acidogenic Fermentation—A Novel Resource Recovery Strategy for Oil Palm Empty Fruit Bunch. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The glucan-rich fraction, hemicellulosic compounds-rich fraction, and a mixture of both fractions obtained from organosolv pretreatment of oil palm empty fruit bunch (OPEFB) were used as substrates to produce volatile fatty acids (VFAs) in acidogenic fermentation. In this study, the effects of medium adjustment (carbon to nitrogen ratio and trace elements supplementation) and methanogenesis inhibition (through the addition of 2-bromoethanesulfonate or by heat shock) to enhance VFAs yield were investigated. The highest VFA yield was 0.50 ± 0.00 g VFAs/g volatile solid (VS), which was obtained when methanogens were inhibited by heat shock and cultivated in a mixture of glucan-rich and hemicellulosic compounds-rich fractions. Under these conditions, the fermentation produced acetic acid as the only VFA. Based on the results, the mass balance of the whole process (from pretreatment and fermentation) showed the possibility to obtain 30.4 kg acetic acid and 20.3 kg lignin with a 70% purity from 100 kg OPEFB.
Collapse
|
124
|
Oladzad S, Fallah N, Mahboubi A, Afsham N, Taherzadeh MJ. Date fruit processing waste and approaches to its valorization: A review. BIORESOURCE TECHNOLOGY 2021; 340:125625. [PMID: 34332444 DOI: 10.1016/j.biortech.2021.125625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
In the Middle East and North Africa, dates are a traditional and economically valuable crop, playing an essential role in people's daily diets. Date fruit production and related processing industry generate a large quantity of waste; for illustration, the date juicing industry produces roughly 17-28% Date press cake (DPC), which is mainly discarded in open lands and drains. Considering the generation volume and the nutrient content of DPC, this organic by-product stream can be valorized through the production of a wide range of products with a great market appeal, such as volatile fatty acids, activated carbon, organic acids, etc. To provide an insight into the feasibility of the application DPC as a green precursor for various chemical and biological processes, the chemical and nutritional composition of dates and DPC, an overview of the date processing industries, and common practices conducted for DPC valorization addressed and thoroughly discussed, in this review.
Collapse
Affiliation(s)
- Sepideh Oladzad
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden; Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | | |
Collapse
|
125
|
Qin S, Wainaina S, Liu H, Soufiani AM, Pandey A, Zhang Z, Awasthi MK, Taherzadeh MJ. Microbial dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. FUEL 2021; 303:121276. [DOI: 10.1016/j.fuel.2021.121276] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
126
|
Santhosh J, Sarkar O, Venkata Mohan S. Green Hydrogen-Compressed natural gas (bio-H-CNG) production from food waste: Organic load influence on hydrogen and methane fusion. BIORESOURCE TECHNOLOGY 2021; 340:125643. [PMID: 34375791 DOI: 10.1016/j.biortech.2021.125643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Biogenic hydrogen (bioH2) enriched compressed natural gas (bio-H-CNG or biohythane) is emerging interest due to its feasibility to use in the existing transportation infrastructure with induced environmental benefits. This study evaluated the production of bioH2and biomethane (bioCH4) towards bio-H-CNG formation at a varying organic load (OL: 30,40,50 g COD/L) of food waste (FW). Acidogenic reactor operated with FW at 40 g COD/L showed the highest cumulative bioH2production while elevated OL (50 g COD/L)showedhigher cumulative bioCH4production (CMP: 11.92 L) from the methanogenic reactor. BioH2 and bioCH4 produced at different time intervals were combined to assess bio-H-CNG. The nature of biocatalyst and OLsignificantly regulated the composition of bio-H-CNG varying between 0.1 and 0.3 of H2/(H2+CH4) ratio accounting for5-12.6 kJ/g COD. Chain elongation, converting short (C2-C4) to medium-chain fatty acids(Caproic acid,1.16 g/L) was specifically observed during the acidogenic process.
Collapse
Affiliation(s)
- J Santhosh
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Omprakash Sarkar
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
127
|
Uwineza C, Mahboubi A, Atmowidjojo A, Ramadhani A, Wainaina S, Millati R, Wikandari R, Niklasson C, Taherzadeh MJ. Cultivation of edible filamentous fungus Aspergillus oryzae on volatile fatty acids derived from anaerobic digestion of food waste and cow manure. BIORESOURCE TECHNOLOGY 2021; 337:125410. [PMID: 34157433 DOI: 10.1016/j.biortech.2021.125410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
In a circular economy approach, edible filamentous fungi (single cell protein) can be cultivated on volatile fatty acids (VFAs) derived from anaerobic digestion (AD) of organic-rich waste streams. In this study, the effect of pH, concentration/distribution of VFAs, nutrient supplementation, and type of waste on Aspergillus oryzae cultivation on synthetic VFAs, and actual VFAs derived from AD of food waste and cow manure were investigated. The optimal pH for A. oryzae growth on VFAs were 6 and 7 with maximum acetic acid consumption rates of 0.09 g/L.h. The fungus could thrive on high concentrations of acetic (up to 9 g/L) yielding 0.29 g dry biomass/gVFAsfed. In mixed VFAs cultures, A. oryzae primarily consumed caproic and acetic acids reaching a biomass yield of 0.26 g dry biomass/gVFAsfed (containing up to 41% protein). For waste-derived VFAs at pH 6, the fungus successfully consumed 81-100% of caproic, acetic, and butyric acids.
Collapse
Affiliation(s)
- Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Amelia Atmowidjojo
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Alya Ramadhani
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Ria Millati
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Rachma Wikandari
- Department of Food and Agricultural Product Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Claes Niklasson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | |
Collapse
|
128
|
Singh T, Alhazmi A, Mohammad A, Srivastava N, Haque S, Sharma S, Singh R, Yoon T, Gupta VK. Integrated biohydrogen production via lignocellulosic waste: Opportunity, challenges & future prospects. BIORESOURCE TECHNOLOGY 2021; 338:125511. [PMID: 34274587 DOI: 10.1016/j.biortech.2021.125511] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen production through biological route is the cleanest, renewable and potential way to sustainable energy generation. Productions of hydrogen via dark and photo fermentations are considered to be more sustainable and economical approach over numerous existing biological modes. Nevertheless, both the biological modes suffer from certain limitations like low yield and production rate, and because of these practical implementations are still far away. Therefore, the present review provides an assessment and feasibility of integrated biohydrogen production strategy by combining dark and photo-fermentation as an advanced biochemical processing while using lignocellulosics biomass to improve and accelerate the biohydrogen production technology in a sustainable manner. This review also evaluates practical viability of the integrated approach for biohydrogen production along with the analysis of the key factors which significantly influence to elevate this technology on commercial ground with the implementation of various environment friendly and innovative approaches.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Alaa Alhazmi
- Medical Laboratory Technology Department Jazan University, Jazan, Saudi Arabia; SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005 India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059, Nilüfer, Bursa, Turkey
| | - Shalini Sharma
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India
| | - Taeho Yoon
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongbuk 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
129
|
Zhao D, Yan B, Liu C, Yao B, Luo L, Yang Y, Liu L, Wu F, Zhou Y. Mitigation of acidogenic product inhibition and elevated mass transfer by biochar during anaerobic digestion of food waste. BIORESOURCE TECHNOLOGY 2021; 338:125531. [PMID: 34274583 DOI: 10.1016/j.biortech.2021.125531] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Anaerobic digestion (AD) of food waste is widely accepted as a promising technology for both waste disposal and resource recovery. With the advancing of AD technology, to exploit the capacity of organic waste for maximum energy/resource recovery becomes the new focus and hence, improve the viability of this technology for practical application. Product inhibition and mass transfer are the common limitations encountered during AD of putrescible organic waste. Biochar materials have been widely used to promote AD process in recent years. This review summarizes the mechanism and regulation strategies of biochar and its modified derivatives in promoting AD of solid waste (mainly food waste) from the three aspects of hydrolysis, syntrophic acetogenesis, and methane production. At the same time, the relationship between carbon materials and electron transfer among anaerobic microbes is summarized from the perspective of microbial community. In addition, the market application of this technology was evaluated.
Collapse
Affiliation(s)
- Danyang Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Binghua Yan
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Chao Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Bin Yao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lin Luo
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yang Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Lichao Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Fan Wu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
130
|
da Silva DB, Fernandes BS, da Silva AJ. Effect of initial pH and substrate concentration on the lactic acid production from cassava wastewater fermentation by an enriched culture of acidogenic microorganisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1925-1933. [PMID: 33073475 DOI: 10.1002/wer.1467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Recently, cassava processing wastewater has been considered an alternative substrate for lactic acid production due to its appreciable carbohydrate levels. The authors carried out different batch reactor trials aiming to favor the production of lactic acid through the fermentation of non-sterilized cassava wastewater by an enriched culture of acidogenic microorganisms. To this end, the impact of different initial pHs (4.5, 5.0, 5.7, 6.5, and 7.0) and different initial substrate concentrations (10, 15.8, 30, 44.2, and 50 g/L) in terms of glucose on lactic acid production yield (Y) was evaluated by applying the design of experiment (DoE) known as central composite rotatable design (CCRD). The highest rate of lactic acid production (40 g/L) occurred with an initial pH of 6.5 and an initial substrate concentration of 50 g/L. The maximum yield was higher in trials T1, T2, T4, T5, and T8, reaching values of 0.80, 0.62, 0.60, 0.96, and 0.70 g/g, respectively. The maximum lactic acid productivity (P), of 0.60 and 0.73 g L-1 hr-1 , was observed in trials T5 and T8, respectively. The enriched culture of acidogenic microorganisms was shown to favor the production of lactic acid, since the production of other acids, such as acetic and propionic acid, did not exceed 3.5 and 4.5 g/L, respectively. © 2020 Water Environment Federation PRACTITIONER POINTS: Cassava wastewater presented potential to lactic acid production. The CCRD showed that highest lactic acid concentrations (40 g/L). The adoption of cassava wastewater or manipueira as a substrate resulted in important information on the tendency to obtain value-added products such as lactic acid.
Collapse
Affiliation(s)
- Douglas B da Silva
- School of Agricultural Engineering, State University of Campinas, Campinas, Brazil
| | | | - Ariovaldo J da Silva
- School of Agricultural Engineering, State University of Campinas, Campinas, Brazil
| |
Collapse
|
131
|
Liu YC, Kang JH, Ahn JH. Improved mesophilic anaerobic digestion of swine wastewater by ammonia stripping with microwave irradiation. ENVIRONMENTAL TECHNOLOGY 2021; 44:591-599. [PMID: 34516343 DOI: 10.1080/09593330.2021.1980826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3) stripping by microwave irradiation was used to increase the efficiency of anaerobic digestion. The effects of final temperature (FT) (80 ≤ FT ≤ 100°C) and microwave irradiation time (MIT) (2.5 ≤ MIT ≤ 5.5 min) of NH3 stripping, and hydraulic retention time (HRT) (7 ≤ HRT ≤ 20 d) in anaerobic digester were quantified. NH3 concentration decreased from 2794 to 140 mg/L within 5.5 min at FT = 100°C. The highest cumulative biogas production (>1800 mL/L) and efficiency of volatile solid removal (> 68%) were achieved at FT = 100°C and MIT = 5.5 min. The removal efficiency of volatile solid in digesters fed with untreated swine wastewater (control) and swine wastewater treated by NH3 stripping decreased as HRT decreased. The highest relative improvement of properties compared to the control occurred at 10 or 15 d HRT. Increases in biogas production compared to the control increased with the NH3 stripping as HRT was reduced to 10 d (243% higher at 10 d). The methane content of the produced biogas was 64-69% for control and 68-75% with NH3 stripping in the range of 10-20 d HRT. NH3 stripping using microwave irradiation is an effective pretreatment to improve the anaerobic digestion of swine wastewater.
Collapse
Affiliation(s)
- Yu-Chen Liu
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Korea
| | - Jang-Hyun Kang
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Korea
| | - Johng-Hwa Ahn
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Chuncheon, Korea
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
132
|
Duque AF, Campo R, Val del Rio A, Amorim CL. Wastewater Valorization: Practice around the World at Pilot- and Full-Scale. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189466. [PMID: 34574414 PMCID: PMC8472693 DOI: 10.3390/ijerph18189466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
Over the last few years, wastewater treatment plants (WWTPs) have been rebranded as water resource recovery facilities (WRRFs), which recognize the resource recovery potential that exists in wastewater streams. WRRFs contribute to a circular economy by not only producing clean water but by recovering valuable resources such as nutrients, energy, and other bio-based materials. To this aim, huge efforts in technological progress have been made to valorize sewage and sewage sludge, transforming them into valuable resources. This review summarizes some of the widely used and effective strategies applied at pilot- and full-scale settings in order to valorize the wastewater treatment process. An overview of the different technologies applied in the water and sludge line is presented, covering a broad range of resources, i.e., water, biomass, energy, nutrients, volatile fatty acids (VFA), polyhydroxyalkanoates (PHA), and exopolymeric substances (EPS). Moreover, guidelines and regulations around the world related to water reuse and resource valorization are reviewed.
Collapse
Affiliation(s)
- Anouk F. Duque
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 1099-085 Lisboa, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 1099-085 Lisboa, Portugal
| | - Riccardo Campo
- DICEA—Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Firenze, Via di S. Marta 3, 50139 Florence, Italy;
| | - Angeles Val del Rio
- Department of Chemical Engineering, CRETUS Institute, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, E-15705 Santiago de Compostela, Spain;
| | - Catarina L. Amorim
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Correspondence: ; Tel.: +351-226-196-200
| |
Collapse
|
133
|
Gao Y, Zhao J, Qin C, Yuan Q, Zhu J, Sun Y, Lu C. Evaluating the effect of fluoxetine on mesophilic anaerobic dark biohydrogen fermentation of excess sludge. BIORESOURCE TECHNOLOGY 2021; 336:125320. [PMID: 34034011 DOI: 10.1016/j.biortech.2021.125320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Recently, the influence behavior of new pollutants in the environment has been widely concerned. However, the effect of antidepressants widely detected in excess sludge (ES) on biohydrogen production from anaerobic dark fermentation has never been explored. To fill this gap, fluoxetine (FLX), a typical antidepressant, was selected to evaluate its effect on ES mesophilic anaerobic dark biohydrogen fermentation. The results showed that FLX reduced biohydrogen production even at low content (0.1 mg/Kg). The biohydrogen yield was only 12.8 mL/g in the 1.8 mg/Kg (based on total suspended solids) FLX group, decreased by about 34.7%, compared with the control group (without FLX). Further mechanism investigation implied that high levels (more than 0.6 mg/Kg) of FLX reduced every step associated with the biohydrogen production. FLX reduced the concentration of ammonia nitrogen and phosphate in fermentation broth. FLX also had a significant negative effect on enzyme activity in ES dark fermentation.
Collapse
Affiliation(s)
- Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jianwei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Chengzhi Qin
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Qingjiang Yuan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| |
Collapse
|
134
|
Qin S, Wainaina S, Awasthi SK, Mahboubi A, Liu T, Liu H, Zhou Y, Liu H, Zhang Z, Taherzadeh MJ, Awasthi MK. Fungal dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. BIORESOURCE TECHNOLOGY 2021; 335:125296. [PMID: 34022478 DOI: 10.1016/j.biortech.2021.125296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
In this study, the influence of distinct hydraulic retention times (HRT) and organic loading rates (OLRs) on fungal dynamics during food waste anaerobic digestion in immersed membrane-based bio-reactors (iMBR) were investigated. The organic loading rate 4-8 g VS/L/d (R1) and 6-10 g VS/L/d (R2) were set in two iMBR. T1 (1d), T2 (15d) and T3 (34d) samples collected from each bioreactor were analyzed fungal community by using 18s rDNA. In R2, T2 had the most abundant Ascomycota, Basidiomycota, Chytridiomycota and Mucoromycota. As for R1, T3 also had the richest Cryptomycota except above four kinds of fungi. Subsequently, the Principal Component Analysis (PCA) and Non-Metric Multi-Dimensional Scaling (NMDS) indicated that fungal diversity was varied among the all three phases (T1, T2, and T3) and each treatment (R1 and R2). Finally, the results showed that different OLRs and HRT have significantly influenced the fungal community.
Collapse
Affiliation(s)
- Shiyi Qin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Huimin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| |
Collapse
|
135
|
Volatile Fatty Acid Production from Food Waste Leachate Using Enriched Bacterial Culture and Soil Bacteria as Co-Digester. SUSTAINABILITY 2021. [DOI: 10.3390/su13179606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The production of volatile fatty acids (VFAs) from waste stream has been recently getting attention as a cost-effective and environmentally friendly approach in mechanical–biological treatment plants. This is the first study to explore the use of a functional bacterium, AM5 isolated from forest soil, which is capable of enhancing the production of VFAs in the presence of soil bacteria as a co-digester in non-strict anaerobic fermentation processes of food waste leachates. Batch laboratory-scale trials were conducted under thermophilic conditions at 55 °C and different pH values ranging from approximately 5 to 11, as well as under uncontrolled pH for 15 days. Total solid content (TS) and volatile solid content (VS) were observed with 58.42% and 65.17% removal, respectively. An effluent with a VFA concentration of up to 33,849 mg/L (2365.57 mg/g VS; 2244.45 mg/g chemical oxygen demand (COD)-VFA VS; 1249 mg/g VSremoved) was obtained at pH 10.5 on the second day of the batch culture. The pH resulted in a significant effect on VFA concentration and composition at various values. Additionally, all types of VFAs were produced under pH no-adjustment (approximately 5) and at pH 10.5. This research might lead to interesting questions and ideas for further studies on the complex metabolic pathways of microbial communities in the mixture of a soil solution and food waste leachate.
Collapse
|
136
|
Volatile Fatty Acid Production from Organic Waste with the Emphasis on Membrane-Based Recovery. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, interest in the biorefinery concept has emerged in the utilization of volatile fatty acids (VFAs) produced by acidogenic fermentation as precursors for various biotechnological processes. This has attracted substantial attention to VFA production from low-cost substrates such as organic waste and membrane based VFA recovery techniques to achieve cost-effective and environmentally friendly processes. However, there are few reviews which emphasize the acidogenic fermentation of organic waste into VFAs, and VFA recovery. Therefore, this article comprehensively summarizes VFA production, the factors affecting VFA production, and VFA recovery strategies using membrane-based techniques. Additionally, the outlook for future research on VFA production is discussed.
Collapse
|
137
|
High-Solid Anaerobic Digestion: Reviewing Strategies for Increasing Reactor Performance. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-solid and solid-state anaerobic digestion are technologies capable of achieving high reactor productivity. The high organic load admissible for this type of configuration makes these technologies an ideal ally in the conversion of waste into bioenergy. However, there are still several factors associated with these technologies that result in low performance. The economic model based on a linear approach is unsustainable, and changes leading to the development of a low-carbon model with a high degree of circularity are necessary. Digestion technology may represent a key driver leading these changes but it is undeniable that the profitability of these plants needs to be increased. In the present review, the digestion process under high-solid-content configurations is analyzed and the different strategies for increasing reactor productivity that have been studied in recent years are described. Percolating reactor configurations and the use of low-cost adsorbents, nanoparticles and micro-aeration seem the most suitable approaches to increase volumetric production and reduce initial capital investment costs.
Collapse
|
138
|
One waste and two products: choosing the best operational temperature and hydraulic retention time to recover hydrogen or 1,3-propanediol from glycerol fermentation. Bioprocess Biosyst Eng 2021; 44:2491-2502. [PMID: 34387720 DOI: 10.1007/s00449-021-02620-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
This study aimed to compare the production of hydrogen and 1,3-propanediol from crude glycerol (10 g/L) in mesophilic (30 °C) and thermophilic (55 °C) anaerobic fluidized bed reactors, namely AFBR30 °C and AFBR55 °C, respectively, at hydraulic retention times (HRT) reduced from 8 to 1 h. In AFBR30 °C, the absence or low hydrogen yields can be attributed to the production of 1,3-propanediol (maximum of 651 mmol/mol glycerol), and the formation of caproic acid (maximum of 1097 mg/L) at HRTs between 8 and 2 h. In AFBR55 °C, the hydrogen yield of 1.20 mol H2/mol glycerol consumed was observed at the HRT of 1 h. The maximum yield of 1,3-propanediol in AFBR55 °C was equal to 804 mmol/mol glycerol at the HRT of 6 h and was concomitant with the production of hydrogen (0.87 mol H2/mol glycerol consumed) and butyric acid (1447 mg/L).
Collapse
|
139
|
Sun J, Zhang L, Loh KC. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. BIORESOUR BIOPROCESS 2021; 8:68. [PMID: 38650255 PMCID: PMC10992391 DOI: 10.1186/s40643-021-00420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
Lignocellulosic biomass wastes are abundant resources that are usually valorized for methane-rich biogas via anaerobic digestion. Conversion of lignocellulose into volatile fatty acids (VFA) rather than biogas is attracting attention due to the higher value-added products that come with VFA utilization. This review consolidated the latest studies associated with characteristics of lignocellulosic biomass, the effects of process parameters during acidogenic fermentation, and the intensification strategies to accumulate more VFA. The differences between anaerobic digestion technology and acidogenic fermentation technology were discussed. Performance-enhancing strategies surveyed included (1) alkaline fermentation; (2) co-digestion and high solid-state fermentation; (3) pretreatments; (4) use of high loading rate and short retention time; (5) integration with electrochemical technology, and (6) adoption of membrane bioreactors. The recommended operations include: mesophilic temperature (thermophilic for high loading rate fermentation), C/N ratio (20-40), OLR (< 12 g volatile solids (VS)/(L·d)), and the maximum HRT (8-12 days), alkaline fermentation, membrane technology or electrodialysis recovery. Lastly, perspectives were put into place based on critical analysis on status of acidogenic fermentation of lignocellulosic biomass wastes for VFA production.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore.
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore.
| |
Collapse
|
140
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
141
|
Sun K, Ueno M, Imaeda K, Ueno K, Sawamura M, Shimizu Y. Visible-Light-Driven α-Allylation of Carboxylic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02558] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Sun
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masato Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Keisuke Imaeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kosei Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yohei Shimizu
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
142
|
Ceron-Chafla P, Chang YT, Rabaey K, van Lier JB, Lindeboom REF. Directional Selection of Microbial Community Reduces Propionate Accumulation in Glycerol and Glucose Anaerobic Bioconversion Under Elevated pCO 2. Front Microbiol 2021; 12:675763. [PMID: 34220760 PMCID: PMC8242345 DOI: 10.3389/fmicb.2021.675763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Volatile fatty acid accumulation is a sign of digester perturbation. Previous work showed the thermodynamic limitations of hydrogen and CO2 in syntrophic propionate oxidation under elevated partial pressure of CO2 (pCO2). Here we study the effect of directional selection under increasing substrate load as a strategy to restructure the microbial community and induce cross-protection mechanisms to improve glucose and glycerol conversion performance under elevated pCO2. After an adaptive laboratory evolution (ALE) process, viable cell density increased and predominant microbial groups were modified: an increase in Methanosaeta and syntrophic propionate oxidizing bacteria (SPOB) associated with the Smithella genus was found with glycerol as the substrate. A modest increase in SPOB along with a shift in the predominance of Methanobacterium toward Methanosaeta was observed with glucose as the substrate. The evolved inoculum showed affected diversity within archaeal spp. under 5 bar initial pCO2; however, higher CH4 yield resulted from enhanced propionate conversion linked to the community shifts and biomass adaptation during the ALE process. Moreover, the evolved inoculum attained increased cell viability with glucose and a marginal decrease with glycerol as the substrate. Results showed differences in terms of carbon flux distribution using the evolved inoculum under elevated pCO2: glucose conversion resulted in a higher cell density and viability, whereas glycerol conversion led to higher propionate production whose enabled conversion reflected in increased CH4 yield. Our results highlight that limited propionate conversion at elevated pCO2 resulted from decreased cell viability and low abundance of syntrophic partners. This limitation can be mitigated by promoting alternative and more resilient SPOB and building up biomass adaptation to environmental conditions via directional selection of microbial community.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Yu-Ting Chang
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
143
|
Dark Fermentation of Sweet Sorghum Stalks, Cheese Whey and Cow Manure Mixture: Effect of pH, Pretreatment and Organic Load. Processes (Basel) 2021. [DOI: 10.3390/pr9061017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to determine the optimal conditions for dark fermentation using agro-industrial liquid wastewaters mixed with sweet sorghum stalks (i.e., 55% sorghum, 40% cheese whey, and 5% liquid cow manure). Batch experiments were performed to investigate the effect of controlled pH (5.0, 5.5, 6.0, 6.5) on the production of bio-hydrogen and volatile fatty acids. According to the obtained results, the maximum hydrogen yield of 0.52 mol H2/mol eq. glucose was measured at pH 5.5 accompanied by the highest volatile fatty acids production, whereas similar hydrogen productivity was also observed at pH 6.0 and 6.5. The use of heat-treated anaerobic sludge as inoculum had a positive impact on bio-hydrogen production, exhibiting an increased yield of 1.09 mol H2/mol eq. glucose. On the other hand, the pretreated (ensiled) sorghum, instead of a fresh one, led to a lower hydrogen production, while the organic load decrease did not affect the process performance. In all experiments, the main fermentation end-products were volatile fatty acids (i.e., acetic, propionic, butyric), ethanol and lactic acid.
Collapse
|
144
|
Raychaudhuri A, Behera M. Enhancement of bioelectricity generation by integrating acidogenic compartment into a dual-chambered microbial fuel cell during rice mill wastewater treatment. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
145
|
Awasthi MK, Ferreira JA, Sirohi R, Sarsaiya S, Khoshnevisan B, Baladi S, Sindhu R, Binod P, Pandey A, Juneja A, Kumar D, Zhang Z, Taherzadeh MJ. A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 143:110972. [DOI: 10.1016/j.rser.2021.110972] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
146
|
Yin DM, Mahboubi A, Wainaina S, Qiao W, Taherzadeh MJ. The effect of mono- and multiple fermentation parameters on volatile fatty acids (VFAs) production from chicken manure via anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 330:124992. [PMID: 33744736 DOI: 10.1016/j.biortech.2021.124992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 05/21/2023]
Abstract
Although the high nitrogen content of chicken manure (CM) poses major challenges for methane production through anaerobic digestion, on the bright side, it has a great potential for production of value-added intermediate products, such as volatile fatty acids (VFAs). However, in order to enhance VFAs yield, methane formation should be substantially suppressed. In the current research, individual and multiple effects of initial pH, heat-shock pretreatment, chemical methanogens inhibitor and the inoculum to substrate ratio (ISR) on optimization VFAs fermentation from CM were evaluated via batch assays. In this regard, the highest net VFAs yield, 0.53 g-VFA/g-VS, was achieved at conditions with heat-shocked inoculum and CM at ISR 1:6 and pH uncontrolled. Acetate dominated the VFAs mixture, accounting for up to 75% of total. Increased inoculum content enhanced the bioconversion efficiency to 78% at ISR 1:3. The study results suggest that alkalinity is a key promoter of VFAs production from CM.
Collapse
Affiliation(s)
- Dong-Min Yin
- Biomass Engineering Center, College of Engineering, China Agricultural University, Beijing 100083, China; Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden.
| | - Steven Wainaina
- Swedish Centre for Resource Recovery, University of Borås, Borås, Sweden
| | - Wei Qiao
- Biomass Engineering Center, College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Centre for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | | |
Collapse
|
147
|
Damtie MM, Shin J, Jang HM, Cho HU, Wang J, Kim YM. Effects of biological pretreatments of microalgae on hydrolysis, biomethane potential and microbial community. BIORESOURCE TECHNOLOGY 2021; 329:124905. [PMID: 33676351 DOI: 10.1016/j.biortech.2021.124905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Parameters of temperature-phased anaerobic digestion (TPAD) were varied to study their effects on hydrolysis, biomethane potential (BMP), and microbial diversity of microalgae biodegradation. Anaerobic pretreatments at 85 °C demonstrated the release of soluble carbohydrate and protein molecules under low microbial metabolic activity. However, at 55 °C, anaerobic pretreatments showed superior performance in methane yield, nutrient release, and volatile fatty acids (VFAs) production due to dominant Clostridium. Furthermore, the highest destruction of volatile solids (VS) was observed during aerobic pretreatments at 55 °C under the influence of various quantities of these genera - Luteimonas, Symbiobacterium, Soehngenia, Thermobacillus, and Ureibacillus. Statistical analysis revealed that hydrolysis and BMP were not correlated. However, soluble nitrogen and phosphorous showed strong correlation with methane (r = 0.623 and 0.948, respectively) under thermo-anaerobic pretreatment, while VS removal and concentrations of acetic and butyric acids and lipids were positively correlated with each other under thermo-aerobic pretreatment.
Collapse
Affiliation(s)
- Mekdimu Mezmir Damtie
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyun Min Jang
- Department of Environment & Energy and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 57896, Republic of Korea
| | - Hyun Uk Cho
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong, Gyeongnam 53064, Republic of Korea
| | - Jinhua Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
148
|
Sun H, Xu M, Wu S, Dong R, Angelidaki I, Zhang Y. Innovative air-cathode bioelectrochemical sensor for monitoring of total volatile fatty acids during anaerobic digestion. CHEMOSPHERE 2021; 273:129660. [PMID: 33497985 DOI: 10.1016/j.chemosphere.2021.129660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/15/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Bioelectrochemical sensors have proven attractive as simple and low-cost methods with high potential for online monitoring of volatile fatty acids (VFA) in the anaerobic digestion (AD) process. Herein, an innovative dual-chamber air-cathode microbial fuel cell was developed as biosensor for VFA monitoring. The response of the biosensor was nonlinear and increased along with the concentration of VFA mixture increase (2.8-112 mM). Meanwhile, the relationship was linear with low VFA levels (<14 mM) within 2-5 h reaction. High concentrations of bicarbonate decreased the voltage. Stirring speeded up the response and amplified the signal but reduced the saturation concentration (approximately 30 mM) and therefore narrowed the detection range. The applicability of the biosensor was further validated with the effluents from an AD reactor during a start-up period. The VFA concentrations measured by the biosensor were well correlated with the gas chromatographic measurement. The results demonstrate that this biosensor with a novel design could be used for VFA monitoring during the AD process. Based on the 16S rRNA gene sequencing, the dominant microbiomes in the biofilm were identified as Geobacter, Hydrogenophaga, Pelobacter, Chryseobacterium, Oryzomicrobium, and Dysgonomonas.
Collapse
Affiliation(s)
- Hao Sun
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark; College of Engineering, China Agricultural University, Beijing, 100083, PR China.
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Shubiao Wu
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, DK-8000, Aarhus C, Denmark
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
149
|
Hunter SM, Blanco E, Borrion A. Expanding the anaerobic digestion map: A review of intermediates in the digestion of food waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144265. [PMID: 33422959 DOI: 10.1016/j.scitotenv.2020.144265] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion is a promising technology as a renewable source of energy products, but these products have low economic value and process control is challenging. Identifying intermediates formed throughout the process could enhance understanding and offer opportunities for improved monitoring, control, and valorisation. In this review, intermediates present in the anaerobic digestion process are identified and discussed, including the following: volatile fatty acids, carboxylic acid, amino acids, furans, terpenes and phytochemicals. The key limitations associated with exploiting these intermediates are also addressed including challenging mixed cultures of microbiology, complex feedstocks, and difficult extraction and separation techniques.
Collapse
Affiliation(s)
- Sarah M Hunter
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK
| | - Edgar Blanco
- Anaero Technology Limited, Cowley Road, Cambridge, UK
| | - Aiduan Borrion
- Department of Civil, Environmental and Geomatic Engineering, University College London, UK.
| |
Collapse
|
150
|
Liang J, Zhang H, Zhang P, Zhang G, Cai Y, Wang Q, Zhou Z, Ding Y, Zubair M. Effect of substrate load on anaerobic fermentation of rice straw with rumen liquid as inoculum: Hydrolysis and acidogenesis efficiency, enzymatic activities and rumen bacterial community structure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 124:235-243. [PMID: 33636425 DOI: 10.1016/j.wasman.2021.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 06/12/2023]
Abstract
Rumen liquid is excellent to effectively degrade lignocellulose. In this study, the suitable rice straw load during anaerobic fermentation of rice straw with rumen liquid as inoculum was explored to improve volatile fatty acid (VFA) production. At 10.0% rice straw load, the highest VFA concentration reached 10821.4 mg/L, and acetic acid and propionic acid were the main components. In 10.0% rice straw load system, high concentration of soluble chemical oxygen demand (SCOD) was also observed, and the enzymatic activities at 48 h were higher than those at other rice straw loads. At 10.0% rice straw load, lower diversity and richness of rumen bacteria were found than those at other rice straw loads. Bacteroides, Prevotella, and Ruminococcus were the main rumen bacteria during rice straw degradation, and the rumen bacteria might secret effective lignocellulolytic enzymes to enhance the hydrolysis and acidogenesis of rice straw. The determination of suitable rice straw load will be beneficial to the application of rumen liquid as inoculum in actual production.
Collapse
Affiliation(s)
- Jinsong Liang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Haibo Zhang
- College of Urban and Rural Construction, Shanxi Agricultural University, Taigu 030801, China
| | - Panyue Zhang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yajing Cai
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qingyan Wang
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zeyan Zhou
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yiran Ding
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Muhammad Zubair
- College of Environmental Science & Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|