101
|
Abstract
PMPs (peroxisome membrane proteins) play essential roles in organelle biogenesis and in co-ordinating peroxisomal metabolism with pathways in other subcellular compartments through transport of metabolites and the operation of redox shuttles. Although the import of soluble proteins into the peroxisome matrix has been well studied, much less is known about the trafficking of PMPs. Pex3 and Pex19 (and Pex16 in mammals) were identified over a decade ago as critical components of PMP import; however, it has proved surprisingly difficult to produce a unified model for their function in PMP import and peroxisome biogenesis. It has become apparent that each of these peroxins has multiple functions and in the present review we focus on both the classical and the more recently identified roles of Pex19 and Pex3 as informed by structural, biochemical and live cell imaging studies. We consider the different models proposed for peroxisome biogenesis and the role of PMP import within them, and propose that the differences may be more perceived than real and may reflect the highly dynamic nature of peroxisomes.
Collapse
|
102
|
Yagita Y, Hiromasa T, Fujiki Y. Tail-anchored PEX26 targets peroxisomes via a PEX19-dependent and TRC40-independent class I pathway. ACTA ACUST UNITED AC 2013; 200:651-66. [PMID: 23460677 PMCID: PMC3587837 DOI: 10.1083/jcb.201211077] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tail-anchored (TA) proteins are anchored into cellular membranes by a single transmembrane domain (TMD) close to the C terminus. Although the targeting of TA proteins to peroxisomes is dependent on PEX19, the mechanistic details of PEX19-dependent targeting and the signal that directs TA proteins to peroxisomes have remained elusive, particularly in mammals. The present study shows that PEX19 formed a complex with the peroxisomal TA protein PEX26 in the cytosol and translocated it directly to peroxisomes by interacting with the peroxisomal membrane protein PEX3. Unlike in yeast, the adenosine triphosphatase TRC40, which delivers TA proteins to the endoplasmic reticulum, was dispensable for the peroxisomal targeting of PEX26. Moreover, the basic amino acids within the luminal domain of PEX26 were essential for binding to PEX19 and thereby for peroxisomal targeting. Finally, our results suggest that a TMD that escapes capture by TRC40 and is followed by a highly basic luminal domain directs TA proteins to peroxisomes via the PEX19-dependent route.
Collapse
Affiliation(s)
- Yuichi Yagita
- Graduate School of Systems Life Sciences, Faculty of Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | |
Collapse
|
103
|
Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:260-73. [PMID: 23457718 DOI: 10.1016/j.bbamcr.2012.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Benjamin L Weis
- Goether University, Cluster of Excellence Macromolecular Complexes, Institute for Molecular Biosciences, Max-von-Laue Str. 9, D-60438 Frankfort, Germany
| | | | | |
Collapse
|
104
|
Gasser B, Prielhofer R, Marx H, Maurer M, Nocon J, Steiger M, Puxbaum V, Sauer M, Mattanovich D. Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 2013; 8:191-208. [DOI: 10.2217/fmb.12.133] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pichia pastoris is the most frequently used yeast system for heterologous protein production today. The last few years have seen several products based on this platform reach approval as biopharmaceutical drugs. Successful glycoengineering to humanize N-glycans is further fuelling this development. However, detailed understanding of the yeast’s physiology, genetics and regulation has only developed rapidly in the last few years since published genome sequences have become available. An expanding toolbox of genetic elements and strains for the improvement of protein production is being generated, including promoters, gene copy-number enhancement, gene knockout and high-throughput methods. Protein folding and secretion have been identified as significant bottlenecks in yeast expression systems, pinpointing a major target for strain optimization. At the same time, it has become obvious that P. pastoris, as an evolutionarily more ‘ancient’ yeast, may in some cases be a better model for human cell biology and disease than Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Brigitte Gasser
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Roland Prielhofer
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Hans Marx
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Michael Maurer
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
- University of Applied Sciences FH-Campus Vienna, School of Bioengineering, 1190 Vienna, Austria
| | - Justyna Nocon
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| | - Matthias Steiger
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Verena Puxbaum
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Michael Sauer
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), 1190 Vienna, Austria
| | - Diethard Mattanovich
- University of Natural Resources & Life Sciences (BOKU), Department of Biotechnology, 1190 Vienna, Austria
| |
Collapse
|
105
|
Rodrigo-Brenni MC, Hegde RS. Design principles of protein biosynthesis-coupled quality control. Dev Cell 2013; 23:896-907. [PMID: 23153486 DOI: 10.1016/j.devcel.2012.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protein biosynthetic machinery, composed of ribosomes, chaperones, and localization factors, is increasingly found to interact directly with factors dedicated to protein degradation. The coupling of these two opposing processes facilitates quality control of nascent polypeptides at each stage of their maturation. Sequential checkpoints maximize the overall fidelity of protein maturation, minimize the exposure of defective products to the bulk cellular environment, and protect organisms from protein misfolding diseases.
Collapse
|
106
|
Martínez-Salgado JL, León-Ramírez CG, Pacheco AB, Ruiz-Herrera J, de la Rosa APB. Analysis of the regulation of the Ustilago maydis proteome by dimorphism, pH or MAPK and GCN5 genes. J Proteomics 2013; 79:251-62. [PMID: 23305952 DOI: 10.1016/j.jprot.2012.12.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/23/2012] [Accepted: 12/30/2012] [Indexed: 11/18/2022]
Abstract
Ustilago maydis is a dimorphic corn pathogenic basidiomycota whose haploid cells grow in yeast form at pH7, while at pH3 they grow in the mycelial form. Two-dimensional gel electrophoresis (2-DE) coupled with LC-ESI/MS-MS was used to analyze the differential accumulation of proteins in yeast against mycelial morphologies. 2-DE maps were obtained in the pH range of 5-8 and 404 total protein spots were separated. From these, 43 were differentially accumulated when comparing strains FB2wt, constitutive yeast CL211, and constitutive mycelial GP25 growing at pH7 against pH3. Differentially accumulated proteins in response to pH are related with defense against reactive oxygen species or toxic compounds. Up-accumulation of CipC and down-accumulation of Hmp1 were specifically related with mycelial growth. Changes in proteins that were affected by mutation in the gene encoding the adaptor of a MAPK pathway (CL211 strain) were UM521* and transcription factors Btf3, Sol1 and Sti1. Mutation of GCN5 (GP25 strain) affected the accumulation of Rps19-ribosomal protein, Mge1-heath shock protein, and Lpd1-dihydrolipoamide dehydrogenase. Our results complement the information about the genes and proteins related with the dimorphic transition in U. maydis and changes in proteins affected by mutations in a MAPK pathway and GCN5 gene.
Collapse
Affiliation(s)
- José L Martínez-Salgado
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica. Camino a La Presa San José No. 2055, Lomas 4ª Sección, 78216, San Luis Potosí, SLP, Mexico
| | | | | | | | | |
Collapse
|
107
|
Blower MD. Molecular insights into intracellular RNA localization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:1-39. [PMID: 23351709 DOI: 10.1016/b978-0-12-407699-0.00001-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Localization of mRNAs to specific destinations within a cell or an embryo is important for local control of protein synthesis. mRNA localization is well known to function in very large and polarized cells such as neurons, and to facilitate embryonic patterning during early development. However, recent genome-wide studies have revealed that mRNA localization is more widely utilized than previously thought to control gene expression. Not only can transcripts be localized asymmetrically within the cytoplasm, they are often also localized to symmetrically distributed organelles. Recent genetic, cytological, and biochemical studies have begun to provide molecular insight into how cells select RNAs for transport, move them to specific destinations, and control their translation. This chapter will summarize recent insights into the mechanisms and function of RNA localization with a specific emphasis on molecular insights into each step in the mRNA localization process.
Collapse
Affiliation(s)
- Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
108
|
Essential roles of peroxisomally produced and metabolized biomolecules in regulating yeast longevity. Subcell Biochem 2013; 69:153-67. [PMID: 23821148 DOI: 10.1007/978-94-007-6889-5_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The essential role of the peroxisome in oxidizing fatty acids, maintaining reactive oxygen species homeostasis and replenishing tricarboxylic acid cycle intermediates is well known. Recent findings have broadened a spectrum of biomolecules that are synthesized and metabolized in peroxisomes. Emergent evidence supports the view that, by releasing various biomolecules known to modulate essential cellular processes, the peroxisome not only operates as an organizing platform for several developmental and differentiation programs but is also actively involved in defining the replicative and chronological age of a eukaryotic cell. The scope of this chapter is to summarize the evidence that the peroxisome defines yeast longevity by operating as a system controller that: (1) modulates levels of non-esterified fatty acids and diacylglycerol; (2) replenishes tricarboxylic acid cycle intermediates destined for mitochondria; and (3) contributes to the synthesis of polyamines. We critically evaluate molecular mechanisms underlying the essential role of peroxisomally produced and metabolized biomolecules in governing cellular aging in yeast.
Collapse
|
109
|
Abstract
Peroxisomes are ubiquitous and versatile cell organelles. They consist of a single membrane that encloses a proteinaceous matrix. Conserved functions are fatty acid β-oxidation and hydrogen peroxide metabolism. In filamentous fungi, many other metabolic functions have been identified. Also, they contain highly specialized peroxisome-derived structures termed Woronin bodies, which have a structural function in plugging septal pores in order to prevent cytoplasmic bleeding of damaged hyphae.In filamentous fungi peroxisomes play key roles in the production of a range of secondary metabolites such as antibiotics. Most likely the atlas of fungal peroxisomal metabolic pathways is still far from complete. Relative recently discovered functions include their role in biotin biosynthesis as well as in the production of several toxins, among which polyketides. Finally, in filamentous fungi peroxisomes are important for development and pathogenesis.In this contribution we present an overview of our current knowledge on fungal peroxisome formation as well as on their functional diversity.
Collapse
Affiliation(s)
- Ida J van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, 11103, 9700CC, Groningen, The Netherlands,
| | | |
Collapse
|
110
|
Amaral A, Castillo J, Estanyol JM, Ballescà JL, Ramalho-Santos J, Oliva R. Human sperm tail proteome suggests new endogenous metabolic pathways. Mol Cell Proteomics 2012; 12:330-42. [PMID: 23161514 DOI: 10.1074/mcp.m112.020552] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proteomic studies are contributing greatly to our understanding of the sperm cell, and more detailed descriptions are expected to clarify additional cellular and molecular sperm attributes. The aim of this study was to characterize the subcellular proteome of the human sperm tail and, hopefully, identify less concentrated proteins (not found in whole cell proteome studies). Specifically, we were interested in characterizing the sperm metabolic proteome and gaining new insights into the sperm metabolism issue. Sperm were isolated from normozoospermic semen samples and depleted of any contaminating leukocytes. Tail fractions were obtained by means of sonication followed by sucrose-gradient ultracentrifugation, and their purity was confirmed via various techniques. Liquid chromatography and tandem mass spectrometry of isolated sperm tail peptides resulted in the identification of 1049 proteins, more than half of which had not been previously described in human sperm. The categorization of proteins according to their function revealed two main groups: proteins related to metabolism and energy production (26%), and proteins related to sperm tail structure and motility (11%). Interestingly, a great proportion of the metabolic proteome (24%) comprised enzymes involved in lipid metabolism, including enzymes for mitochondrial beta-oxidation. Unexpectedly, we also identified various peroxisomal proteins, some of which are known to be involved in the oxidation of very long chain fatty acids. Analysis of our data using Reactome suggests that both mitochondrial and peroxisomal pathways might indeed be active in sperm, and that the use of fatty acids as fuel might be more preponderant than previously thought. In addition, incubation of sperm with the fatty acid oxidation inhibitor etomoxir resulted in a significant decrease in sperm motility. Contradicting a common concept in the literature, we suggest that the male gamete might have the capacity to obtain energy from endogenous pools, and thus to adapt to putative exogenous fluctuations.
Collapse
Affiliation(s)
- Alexandra Amaral
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
111
|
Tanaka K, Soeda M, Hashimoto Y, Takenaka S, Komori M. Identification of phosphorylation sites in Hansenula polymorpha Pex14p by mass spectrometry. FEBS Open Bio 2012; 3:6-10. [PMID: 23847754 PMCID: PMC3668515 DOI: 10.1016/j.fob.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/25/2012] [Accepted: 11/01/2012] [Indexed: 12/20/2022] Open
Abstract
Pex14p is a peroxisomal membrane protein that is involved in both peroxisome biogenesis and selective peroxisome degradation. Previously, we showed that Hansenula polymorpha Pex14p was phosphorylated in vivo. In this study, we identified its phosphorylation site by mass spectrometry. Recombinant His-tagged Pex14p (H6-Pex14p) was overexpressed and purified from the yeast. The protein band corresponding to H6-Pex14p was in-gel digested with trypsin and subjected to LC/MS. As a result of LC/MS, Thr(248) and Ser(258) were identified as the phosphorylated sites. To confirm the phosphorylation sites and explore its functions, we made Ala mutants of the candidate amino acids. In the western blot analysis with anti-Pex14p, S258A mutant gave doublet bands while wild type (WT) and T248A mutants gave triplet bands. Moreover, the double mutant (T248A/S258A) gave a single band. WT and all mutant Pex14p labeled with [(32)P] orthophosphate were immunoprecipitated and analyzed by autoradiography. The phosphorylation of Pex14p was suppressed in S258A mutant, but enhanced in T248A mutant compared to WT. Moreover, the phosphorylated Pex14p was not detected in the T248A/S258A double mutant. All mutants were able to grow on methanol and their matrix proteins (alcohol oxidase and amine oxidase) were mostly localized in peroxisomes. Furthermore all mutants showed selective degradation of peroxisome like WT during the glucose-induced macropexophagy.
Collapse
Affiliation(s)
- Katsuhiro Tanaka
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka 598-8531, Japan
| | | | | | | | | |
Collapse
|
112
|
Molusky MM, Ma D, Buelow K, Yin L, Lin JD. Peroxisomal localization and circadian regulation of ubiquitin-specific protease 2. PLoS One 2012; 7:e47970. [PMID: 23133608 PMCID: PMC3487853 DOI: 10.1371/journal.pone.0047970] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 09/20/2012] [Indexed: 11/18/2022] Open
Abstract
Temporal regulation of nutrient and energy metabolism is emerging as an important aspect of metabolic homeostasis. The regulatory network that integrates the timing cues and nutritional signals to drive diurnal metabolic rhythms remains poorly defined. The 45-kDa isoform of ubiquitin-specific protease 2 (USP2-45) is a deubiquitinase that regulates hepatic gluconeogenesis and glucose metabolism. In this study, we found that USP2-45 is localized to peroxisomes in hepatocytes through a canonical peroxisome-targeting motif at its C-terminus. Clustering analysis indicates that the expression of a subset of peroxisomal genes exhibits robust diurnal rhythm in the liver. Despite this, nuclear hormone receptor PPARα, a known regulator of peroxisome gene expression, does not induce USP2-45 in hepatocytes and is dispensible for its expression during starvation. In contrast, a functional liver clock is required for the proper nutritional and circadian regulation of USP2-45 expression. At the molecular level, transcriptional coactivators PGC-1α and PGC-1β and repressor E4BP4 exert opposing effects on USP2-45 promoter activity. These studies provide insights into the subcellular localization and transcriptional regulation of a clock-controlled deubiquitinase that regulates glucose metabolism.
Collapse
Affiliation(s)
- Matthew M. Molusky
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Di Ma
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Katie Buelow
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
113
|
A critical appraisal of quantitative studies of protein degradation in the framework of cellular proteostasis. Biochem Res Int 2012; 2012:823597. [PMID: 23119163 PMCID: PMC3483835 DOI: 10.1155/2012/823597] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/18/2012] [Indexed: 11/21/2022] Open
Abstract
Protein homeostasis, proteostasis, is essential to understand cell function. Protein degradation is a crucial component of the proteostatic mechanisms of the cell. Experiments on protein degradation are nowadays present in many investigations in the field of molecular and cell biology. In the present paper, we focus on the different experimental approaches to study protein degradation and present a critical appraisal of the results derived from steady-state and kinetic experiments using detection of unlabelled and labelled protein methodologies with a proteostatic perspective. This perspective allows pinpointing the limitations in interpretation of results and the need of further experiments and/or controls to establish “definitive evidence” for the role of protein degradation in the proteostasis of a given protein or the entire proteome. We also provide a spreadsheet for simple calculations of mRNA and protein decays for mimicking different experimental conditions and a checklist for the analysis of experiments dealing with protein degradation studies that may be useful for researchers interested in the area of protein turnover.
Collapse
|
114
|
Pieuchot L, Jedd G. Peroxisome Assembly and Functional Diversity in Eukaryotic Microorganisms. Annu Rev Microbiol 2012; 66:237-63. [DOI: 10.1146/annurev-micro-092611-150126] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laurent Pieuchot
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| | - Gregory Jedd
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 117604 Singapore; ,
| |
Collapse
|
115
|
Chua CEL, Lim YS, Lee MG, Tang BL. Non-classical membrane trafficking processes galore. J Cell Physiol 2012; 227:3722-30. [DOI: 10.1002/jcp.24082] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
116
|
Heilmann M, Iven T, Ahmann K, Hornung E, Stymne S, Feussner I. Production of wax esters in plant seed oils by oleosomal cotargeting of biosynthetic enzymes. J Lipid Res 2012; 53:2153-2161. [PMID: 22878160 PMCID: PMC3435548 DOI: 10.1194/jlr.m029512] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wax esters are neutral lipids exhibiting desirable properties for lubrication. Natural sources have traditionally been whales. Additionally some plants produce wax esters in their seed oil. Currently there is no biological source available for long chain length monounsaturated wax esters that are most suited for industrial applications. This study aimed to identify enzymatic requirements enabling their production in oilseed plants. Wax esters are generated by the action of fatty acyl-CoA reductase (FAR), generating fatty alcohols and wax synthases (WS) that esterify fatty alcohols and acyl-CoAs to wax esters. Based on their substrate preference, a FAR and a WS from Mus musculus were selected for this study (MmFAR1 and MmWS). MmWS resides in the endoplasmic reticulum (ER), whereas MmFAR1 associates with peroxisomes. The elimination of a targeting signal and the fusion to an oil body protein yielded variants of MmFAR1 and MmWS that were cotargeted and enabled wax ester production when coexpressed in yeast or Arabidopsis. In the fae1 fad2 double mutant, rich in oleate, the cotargeted variants of MmFAR1 and MmWS enabled formation of wax esters containing >65% oleyl-oleate. The data suggest that cotargeting of unusual biosynthetic enzymes can result in functional interplay of heterologous partners in transgenic plants.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37077 Göttingen, Germany; and
| | - Tim Iven
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37077 Göttingen, Germany; and
| | - Katharina Ahmann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37077 Göttingen, Germany; and
| | - Ellen Hornung
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37077 Göttingen, Germany; and
| | - Sten Stymne
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, S-23053 Alnarp, Sweden
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, D-37077 Göttingen, Germany; and.
| |
Collapse
|
117
|
Beach A, Burstein MT, Richard VR, Leonov A, Levy S, Titorenko VI. Integration of peroxisomes into an endomembrane system that governs cellular aging. Front Physiol 2012; 3:283. [PMID: 22936916 PMCID: PMC3424522 DOI: 10.3389/fphys.2012.00283] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/28/2012] [Indexed: 01/01/2023] Open
Abstract
The peroxisome is an organelle that has long been known for its essential roles in oxidation of fatty acids, maintenance of reactive oxygen species (ROS) homeostasis and anaplerotic replenishment of tricarboxylic acid (TCA) cycle intermediates destined for mitochondria. Growing evidence supports the view that these peroxisome-confined metabolic processes play an essential role in defining the replicative and chronological age of a eukaryotic cell. Much progress has recently been made in defining molecular mechanisms that link cellular aging to fatty acid oxidation, ROS turnover, and anaplerotic metabolism in peroxisomes. Emergent studies have revealed that these organelles not only house longevity-defining metabolic reactions but can also regulate cellular aging via their dynamic communication with other cellular compartments. Peroxisomes communicate with other organelles by establishing extensive physical contact with lipid bodies, maintaining an endoplasmic reticulum (ER) to peroxisome connectivity system, exchanging certain metabolites, and being involved in the bidirectional flow of some of their protein and lipid constituents. The scope of this review is to summarize the evidence that peroxisomes are dynamically integrated into an endomembrane system that governs cellular aging. We discuss recent progress in understanding how communications between peroxisomes and other cellular compartments within this system influence the development of a pro- or anti-aging cellular pattern. We also propose a model for the integration of peroxisomes into the endomembrane system governing cellular aging and critically evaluate several molecular mechanisms underlying such integration.
Collapse
Affiliation(s)
- Adam Beach
- Department of Biology, Concordia University, Montreal PQ, Canada
| | | | | | | | | | | |
Collapse
|
118
|
Schmidt F, Dietrich D, Eylenstein R, Groemping Y, Stehle T, Dodt G. The role of conserved PEX3 regions in PEX19-binding and peroxisome biogenesis. Traffic 2012; 13:1244-60. [PMID: 22624858 DOI: 10.1111/j.1600-0854.2012.01380.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 01/10/2023]
Abstract
The human peroxins PEX3 and PEX19 are essential for peroxisome biogenesis. They mediate the import of membrane proteins as well as the de novo formation of peroxisomes. PEX19 binds newly synthesized peroxisomal membrane proteins post-translationally and directs them to peroxisomes by engaging PEX3, a protein anchored in the peroxisomal membrane. After protein insertion into the lipid bilayer, PEX19 is released back to the cytosol. Crystallographic analysis provided detailed insights into the PEX3-PEX19 interaction and identified three highly conserved regions, the PEX19-binding region, a hydrophobic groove and an acidic cluster, on the surface of PEX3. Here, we used site-directed mutagenesis and biochemical and functional assays to determine the role of these regions in PEX19-binding and peroxisome biogenesis. Mutations in the PEX19-binding region reduce the affinity for PEX19 and destabilize PEX3. Furthermore, we provide evidence for a crucial function of the PEX3-PEX19 complex during de novo formation of peroxisomes in peroxisome-deficient cells, pointing to a dual function of the PEX3-PEX19 interaction in peroxisome biogenesis. The maturation of preperoxisomes appears to require the hydrophobic groove near the base of PEX3, presumably by its involvement in peroxisomal membrane protein insertion, while the acidic cluster does not appear to be functionally relevant.
Collapse
Affiliation(s)
- Friederike Schmidt
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
119
|
Saffian D, Grimm I, Girzalsky W, Erdmann R. ATP-dependent assembly of the heteromeric Pex1p-Pex6p-complex of the peroxisomal matrix protein import machinery. J Struct Biol 2012; 179:126-32. [PMID: 22710083 DOI: 10.1016/j.jsb.2012.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 06/01/2012] [Accepted: 06/07/2012] [Indexed: 01/27/2023]
Abstract
The peroxisomal matrix protein import is facilitated by soluble receptor molecules which cycle between cytosol and the peroxisomal membrane. At the end of the receptor cycle, the import receptors are exported back to the cytosol in an ATP-dependent manner catalyzed by Pex1p and Pex6p, two AAA (ATPases associated with various cellular activities) type ATPases. Pex1p and Pex6p interact and form a heteromeric complex. In order to gain more insight into the stoichiometry and mechanism of assembly of the complex, we heterologously expressed and purified Saccharomyces cerevisiae Pex1p and Pex6p. Size exclusion chromatography studies of the recombinant proteins demonstrate that they form a hexameric complex in a one-to-one ratio of both AAA-proteins. The recombinant AAA-complex exhibits an ATPase activity with a k(m) of 0.17 mM and V(max) of 0.35 nmol min(-1) μg(-1). In the presence of N-ethylmaleimide, ATPase activity of the peroxisomal AAA-complex is drastically decreased and the complex dissociates. Disassembly of the complex into its Pex1p and Pex6p subunits is also observed upon ATP-depletion, indicating that formation of the Pex1p/Pex6p-complex requires the presence of ATP.
Collapse
Affiliation(s)
- Delia Saffian
- Abteilung für Systembiochemie, Medizinische Fakultät der Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | |
Collapse
|
120
|
Recent advances in peroxisomal matrix protein import. Curr Opin Cell Biol 2012; 24:484-9. [PMID: 22683191 DOI: 10.1016/j.ceb.2012.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022]
Abstract
Peroxisomes are essential organelles responsible for many metabolic reactions, such as the oxidation of very long chain and branched fatty acids, D-amino acids and polyamines, as well as the production and turnover of hydrogen peroxide. They comprise a class of organelles called microbodies, including glycosomes, glyoxysomes and Woronin bodies. Dysfunction of human peroxisomes causes severe and often fatal peroxisome biogenesis disorders (PBDs). Peroxisomal matrix protein import is mediated by receptors that shuttle between the cytosol and peroxisomal matrix using ubiquitination/deubiquitination reactions and ATP hydrolysis for receptor recycling. We focus on the machinery involved in the peroxisomal matrix protein import cycle, highlighting recent advances in peroxisomal matrix protein import, cargo release and receptor recycling/degradation.
Collapse
|
121
|
van der Zand A, Gent J, Braakman I, Tabak HF. Biochemically distinct vesicles from the endoplasmic reticulum fuse to form peroxisomes. Cell 2012; 149:397-409. [PMID: 22500805 DOI: 10.1016/j.cell.2012.01.054] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/18/2011] [Accepted: 01/26/2012] [Indexed: 12/31/2022]
Abstract
As a rule, organelles in eukaryotic cells can derive only from pre-existing organelles. Peroxisomes are unique because they acquire their lipids and membrane proteins from the endoplasmic reticulum (ER), whereas they import their matrix proteins directly from the cytosol. We have discovered that peroxisomes are formed via heterotypic fusion of at least two biochemically distinct preperoxisomal vesicle pools that arise from the ER. These vesicles each carry half a peroxisomal translocon complex. Their fusion initiates assembly of the full peroxisomal translocon and subsequent uptake of enzymes from the cytosol. Our findings demonstrate a remarkable mechanism to maintain biochemical identity of organelles by transporting crucial components via different routes to their final destination.
Collapse
Affiliation(s)
- Adabella van der Zand
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
122
|
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 2012; 31:2852-68. [PMID: 22643220 PMCID: PMC3395097 DOI: 10.1038/emboj.2012.151] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 05/02/2012] [Indexed: 11/16/2022] Open
Abstract
Pexophagy, peroxysome autophagy, is regulated in Saccharomyces cerevisiae by Atg36 by direct binding to peroxysome regulator Pex3, Atg8 and Atg11 of the core autophagy machinery. Peroxisomes undergo rapid, selective autophagic degradation (pexophagy) when the metabolic pathways they contain are no longer required for cellular metabolism. Pex3 is central to the formation of peroxisomes and their segregation because it recruits factors specific for these functions. Here, we describe a novel Saccharomyces cerevisiae protein that interacts with Pex3 at the peroxisomal membrane. We name this protein Atg36 as its absence blocks pexophagy, and its overexpression induces pexophagy. We have isolated pex3 alleles blocked specifically in pexophagy that cannot recruit Atg36 to peroxisomes. Atg36 is recruited to mitochondria if Pex3 is redirected there, where it restores mitophagy in cells lacking the mitophagy receptor Atg32. Furthermore, Atg36 binds Atg8 and the adaptor Atg11 that links receptors for selective types of autophagy to the core autophagy machinery. Atg36 delivers peroxisomes to the preautophagosomal structure before being internalised into the vacuole with peroxisomes. We conclude that Pex3 recruits the pexophagy receptor Atg36. This reinforces the pivotal role played by Pex3 in coordinating the size of the peroxisome pool, and establishes its role in pexophagy in S. cerevisiae.
Collapse
|
123
|
Affiliation(s)
- Adabella van der Zand
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
124
|
Terlecky SR, Terlecky LJ, Giordano CR. Peroxisomes, oxidative stress, and inflammation. World J Biol Chem 2012; 3:93-7. [PMID: 22649571 PMCID: PMC3362841 DOI: 10.4331/wjbc.v3.i5.93] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 02/05/2023] Open
Abstract
Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions. Included among these are the metabolism of hydrogen peroxide and other reactive species, molecules whose levels help define the oxidative state of cells. Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease. The goal of this article is to review evidence for connections between peroxisome function, oxidative stress, and inflammation in the context of human health and degenerative disease. Dysregulated points in this nexus are identified and potential remedial approaches are presented.
Collapse
Affiliation(s)
- Stanley R Terlecky
- Stanley R Terlecky, Laura J Terlecky, Courtney R Giordano, Department of Pharmacology, Wayne State University School of Medicine, 540 E. Canfield Ave., Detroit, MI 48201, United States
| | | | | |
Collapse
|
125
|
From networks of protein interactions to networks of functional dependencies. BMC SYSTEMS BIOLOGY 2012; 6:44. [PMID: 22607727 PMCID: PMC3434018 DOI: 10.1186/1752-0509-6-44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 05/20/2012] [Indexed: 11/23/2022]
Abstract
Background As protein-protein interactions connect proteins that participate in either the same or different functions, networks of interacting and functionally annotated proteins can be converted into process graphs of inter-dependent function nodes (each node corresponding to interacting proteins with the same functional annotation). However, as proteins have multiple annotations, the process graph is non-redundant, if only proteins participating directly in a given function are included in the related function node. Results Reasoning that topological features (e.g., clusters of highly inter-connected proteins) might help approaching structured and non-redundant understanding of molecular function, an algorithm was developed that prioritizes inclusion of proteins into the function nodes that best overlap protein clusters. Specifically, the algorithm identifies function nodes (and their mutual relations), based on the topological analysis of a protein interaction network, which can be related to various biological domains, such as cellular components (e.g., peroxisome and cellular bud) or biological processes (e.g., cell budding) of the model organism S. cerevisiae. Conclusions The method we have described allows converting a protein interaction network into a non-redundant process graph of inter-dependent function nodes. The examples we have described show that the resulting graph allows researchers to formulate testable hypotheses about dependencies among functions and the underlying mechanisms.
Collapse
|
126
|
Giordano CR, Terlecky SR. Peroxisomes, cell senescence, and rates of aging. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1358-62. [PMID: 22497955 DOI: 10.1016/j.bbadis.2012.03.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/02/2012] [Accepted: 03/22/2012] [Indexed: 12/31/2022]
Abstract
The peroxisome is functionally integrated into an exquisitely complex network of communicating endomembranes which is only beginning to be appreciated. Despite great advances in identifying essential components and characterizing molecular mechanisms associated with the organelle's biogenesis and function, there is a large gap in our understanding of how peroxisomes are incorporated into metabolic pathways and subcellular communication networks, how they contribute to cellular aging, and where their influence is manifested on the initiation and progression of degenerative disease. In this review, we summarize recent evidence pointing to the organelle as an important regulator of cellular redox balance with potentially far-reaching effects on cell aging and the genesis of human disease. The roles of the organelle in lipid homeostasis, anaplerotic reactions, and other critical metabolic and biochemical processes are addressed elsewhere in this volume. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.
Collapse
Affiliation(s)
- Courtney R Giordano
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
127
|
Pexophagy: the selective degradation of peroxisomes. Int J Cell Biol 2012; 2012:512721. [PMID: 22536249 PMCID: PMC3320016 DOI: 10.1155/2012/512721] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 11/23/2011] [Indexed: 12/18/2022] Open
Abstract
Peroxisomes are single-membrane-bounded organelles present in the majority of eukaryotic cells. Despite the existence of great diversity among different species, cell types, and under different environmental conditions, peroxisomes contain enzymes involved in β-oxidation of fatty acids and the generation, as well as detoxification, of hydrogen peroxide. The exigency of all eukaryotic cells to quickly adapt to different environmental factors requires the ability to precisely and efficiently control peroxisome number and functionality. Peroxisome homeostasis is achieved by the counterbalance between organelle biogenesis and degradation. The selective degradation of superfluous or damaged peroxisomes is facilitated by several tightly regulated pathways. The most prominent peroxisome degradation system uses components of the general autophagy core machinery and is therefore referred to as “pexophagy.” In this paper we focus on recent developments in pexophagy and provide an overview of current knowledge and future challenges in the field. We compare different modes of pexophagy and mention shared and distinct features of pexophagy in yeast model systems, mammalian cells, and other organisms.
Collapse
|
128
|
Cytosolic events involved in chloroplast protein targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:245-52. [PMID: 22450030 DOI: 10.1016/j.bbamcr.2012.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 12/12/2022]
Abstract
Chloroplasts are unique organelles that are responsible for photosynthesis. Although chloroplasts contain their own genome, the majority of chloroplast proteins are encoded by the nuclear genome. These proteins are transported to the chloroplasts after translation in the cytosol. Chloroplasts contain three membrane systems (outer/inner envelope and thylakoid membranes) that subdivide the interior into three soluble compartments known as the intermembrane space, stroma, and thylakoid lumen. Several targeting mechanisms are required to deliver proteins to the correct chloroplast membrane or soluble compartment. These mechanisms have been extensively studied using purified chloroplasts in vitro. Prior to targeting these proteins to the various compartments of the chloroplast, they must be correctly sorted in the cytosol. To date, it is not clear how these proteins are sorted in the cytosol and then targeted to the chloroplasts. Recently, the cytosolic carrier protein AKR2 and its associated cofactor Hsp17.8 for outer envelope membrane proteins of chloroplasts were identified. Additionally, a mechanism for controlling unimported plastid precursors in the cytosol has been discovered. This review will mainly focus on recent findings concerning the possible cytosolic events that occur prior to protein targeting to the chloroplasts. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
|
129
|
Islinger M, Grille S, Fahimi HD, Schrader M. The peroxisome: an update on mysteries. Histochem Cell Biol 2012; 137:547-74. [DOI: 10.1007/s00418-012-0941-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2012] [Indexed: 12/31/2022]
|
130
|
Kovacs WJ, Charles KN, Walter KM, Shackelford JE, Wikander TM, Richards MJ, Fliesler SJ, Krisans SK, Faust PL. Peroxisome deficiency-induced ER stress and SREBP-2 pathway activation in the liver of newborn PEX2 knock-out mice. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:895-907. [PMID: 22441164 DOI: 10.1016/j.bbalip.2012.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 01/20/2012] [Accepted: 02/29/2012] [Indexed: 12/26/2022]
Abstract
Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. We previously demonstrated that peroxisomes are critical for maintaining cholesterol homeostasis, using peroxisome-deficient Pex2(-/-) mice on a hybrid Swiss Webster×129S6/SvEv (SW/129) genetic background. Peroxisome deficiency activates hepatic endoplasmic reticulum (ER) stress pathways, leading to dysregulation of the endogenous sterol response mechanism. Herein, we demonstrate a more profound dysregulation of cholesterol homeostasis in newborn Pex2(-/-) mice congenic on a 129S6/SvEv (129) genetic background, and substantial differences between newborn versus postnatal Pex2(-/-) mice in factors that activate ER stress. These differences extend to relationships between activation of genes regulated by SREBP-2 versus PPARα. The SREBP-2 pathway is induced in neonatal Pex2(-/-) livers from 129 and SW/129 strains, despite normal hepatic cholesterol levels. ER stress markers are increased in newborn 129 Pex2(-/-) livers, which occurs in the absence of hepatic steatosis or accumulation of peroxins in the ER. Moreover, the induction of SREBP-2 and ER stress pathways is independent of PPARα activation in livers of newborn 129 and SW/129 Pex2(-/-) mice. Two-week-old wild-type mice treated with the peroxisome proliferator WY-14,643 show strong induction of PPARα-regulated genes and decreased expression of SREBP-2 and its target genes, further demonstrating that SREBP-2 pathway induction is not dependent on PPARα activation. Lastly, there is no activation of either SREBP-2 or ER stress pathways in kidney and lung of newborn Pex2(-/-) mice, suggesting a parallel induction of these pathways in peroxisome-deficient mice. These findings establish novel associations between SREBP-2, ER stress and PPARα pathway inductions.
Collapse
Affiliation(s)
- Werner J Kovacs
- Institute of Cell Biology, ETH Zuerich, CH-8093 Zuerich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Morita M, Imanaka T. Peroxisomal ABC transporters: structure, function and role in disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1387-96. [PMID: 22366764 DOI: 10.1016/j.bbadis.2012.02.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
ATP-binding cassette (ABC) transporters belong to one of the largest families of membrane proteins, and are present in almost all living organisms from eubacteria to mammals. They exist on plasma membranes and intracellular compartments such as the mitochondria, peroxisomes, endoplasmic reticulum, Golgi apparatus and lysosomes, and mediate the active transport of a wide variety of substrates in a variety of different cellular processes. These include the transport of amino acids, polysaccharides, peptides, lipids and xenobiotics, including drugs and toxins. Three ABC transporters belonging to subfamily D have been identified in mammalian peroxisomes. The ABC transporters are half-size and assemble mostly as a homodimer after posttranslational transport to peroxisomal membranes. ABCD1/ALDP and ABCD2/ALDRP are suggested to be involved in the transport of very long chain acyl-CoA with differences in substrate specificity, and ABCD3/PMP70 is involved in the transport of long and branched chain acyl-CoA. ABCD1 is known to be responsible for X-linked adrenoleukodystrophy (X-ALD), an inborn error of peroxisomal β-oxidation of very long chain fatty acids. Here, we summarize recent advances and important points in our advancing understanding of how these ABC transporters target and assemble to peroxisomal membranes and perform their functions in physiological and pathological processes, including the neurodegenerative disease, X-ALD.
Collapse
Affiliation(s)
- Masashi Morita
- Department of Biological Chemistry, University of Toyama, Toyama, Japan
| | | |
Collapse
|
132
|
Velikkakath AKG, Nishimura T, Oita E, Ishihara N, Mizushima N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol Biol Cell 2012; 23:896-909. [PMID: 22219374 PMCID: PMC3290647 DOI: 10.1091/mbc.e11-09-0785] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an intracellular degradation process that is mediated by autophagosomes. Mammalian Atg2 proteins Atg2A and Atg2B are identified and characterized as essential for autophagy. They are also present on lipid droplets and are involved in regulation of lipid droplet volume and distribution. Macroautophagy is an intracellular degradation system by which cytoplasmic materials are enclosed by the autophagosome and delivered to the lysosome. Autophagosome formation is considered to take place on the endoplasmic reticulum and involves functions of autophagy-related (Atg) proteins. Here, we report the identification and characterization of mammalian Atg2 homologues Atg2A and Atg2B. Simultaneous silencing of Atg2A and Atg2B causes a block in autophagic flux and accumulation of unclosed autophagic structures containing most Atg proteins. Atg2A localizes on the autophagic membrane, as well as on the surface of lipid droplets. The Atg2A region containing amino acids 1723–1829, which shows relatively high conservation among species, is required for localization to both the autophagic membrane and lipid droplet and is also essential for autophagy. Depletion of both Atg2A and Atg2B causes clustering of enlarged lipid droplets in an autophagy-independent manner. These data suggest that mammalian Atg2 proteins function both in autophagosome formation and regulation of lipid droplet morphology and dispersion.
Collapse
Affiliation(s)
- Anoop Kumar G Velikkakath
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
133
|
Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol 2011; 12:787-98. [PMID: 22086371 DOI: 10.1038/nrm3226] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Membrane proteins are inserted into the endoplasmic reticulum (ER) by two highly conserved parallel pathways. The well-studied co-translational pathway uses signal recognition particle (SRP) and its receptor for targeting and the SEC61 translocon for membrane integration. A recently discovered post-translational pathway uses an entirely different set of factors involving transmembrane domain (TMD)-selective cytosolic chaperones and an accompanying receptor at the ER. Elucidation of the structural and mechanistic basis of this post-translational membrane protein insertion pathway highlights general principles shared between the two pathways and key distinctions unique to each.
Collapse
|
134
|
Peraza-Reyes L, Arnaise S, Zickler D, Coppin E, Debuchy R, Berteaux-Lecellier V. The importomer peroxins are differentially required for peroxisome assembly and meiotic development in Podospora anserina: insights into a new peroxisome import pathway. Mol Microbiol 2011; 82:365-77. [PMID: 21895788 DOI: 10.1111/j.1365-2958.2011.07816.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome biogenesis relies on two known peroxisome matrix protein import pathways that are mediated by the receptors PEX5 and PEX7. These pathways converge at the importomer, a peroxisome-membrane complex that is required for protein translocation into peroxisomes and consists of docking and RING-finger subcomplexes. In the fungus Podospora anserina, the RING-finger peroxins are crucial for meiocyte formation, while PEX5, PEX7 or the docking peroxin PEX14 are not. Here we show that PEX14 and the PEX14-related protein PEX14/17 are differentially involved in peroxisome import during development. PEX14/17 activity does not compensate for loss of PEX14 function, and elimination of both proteins has no effect on meiocyte differentiation. In contrast, the docking peroxin PEX13, and the peroxins implicated in peroxisome membrane biogenesis PEX3 and PEX19, are required for meiocyte formation. Remarkably, the PTS2 coreceptor PEX20 is also essential for meiocyte differentiation and this function does not require PEX5 or PEX7. This finding suggests that PEX20 can mediate the import receptor activity of specific peroxisome matrix proteins. Our results suggest a new pathway for peroxisome import, which relies on PEX20 as import receptor and which seems critically required for specific developmental processes, like meiocyte differentiation in P. anserina.
Collapse
Affiliation(s)
- Leonardo Peraza-Reyes
- Institut de Génétique et Microbiologie, Univ. Paris-Sud, UMR8621, F-91405 Orsay, France.
| | | | | | | | | | | |
Collapse
|
135
|
Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol 2011; 23:564-72. [PMID: 21865020 DOI: 10.1016/j.coi.2011.08.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/03/2011] [Indexed: 12/11/2022]
Abstract
Sensing of RNA virus infection by the RIG-I-like receptors (RLRs) engages a complex signaling cascade that utilizes the mitochondrial antiviral signaling (MAVS) adapter protein to orchestrate the innate host response to pathogen, ultimately leading to the induction of antiviral and inflammatory responses mediated by type I interferon (IFN) and NF-κB pathways. MAVS is localized to the outer mitochondrial membrane, and has been associated with peroxisomes, the endoplasmic reticulum and autophagosomes, where it coordinates signaling events downstream of RLRs. MAVS not only plays a pivotal role in the induction of antiviral and inflammatory pathways but is also involved in the coordination of apoptotic and metabolic functions. This review summarizes recent findings related to the MAVS adapter and its essential role in the innate immune response to RNA viruses.
Collapse
|
136
|
Tani K, Tagaya M, Yonekawa S, Baba T. Dual function of Sec16B: Endoplasmic reticulum-derived protein secretion and peroxisome biogenesis in mammalian cells. CELLULAR LOGISTICS 2011; 1:164-167. [PMID: 22279616 DOI: 10.4161/cl.1.4.18341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/07/2011] [Accepted: 10/07/2011] [Indexed: 12/26/2022]
Abstract
The origin of peroxisomes has long been disputed. However, recent evidence suggests that peroxisomes can be formed de novo from the endoplasmic reticulum (ER) in yeast and higher eukaryotes. Sec16A and Sec16B, mammalian orthologs of yeast Sec16, are scaffold proteins that organize ER exit sites by interacting with COPII components. We recently demonstrated that Sec16B, but not Sec16A, regulates the transport of peroxisomal biogenesis factors from the ER to peroxisomes in mammalian cells. The C-terminal region of Sec16B, which is not conserved in Sec16A, is required for this function. The data suggest that Sec16B in ER areas other than ER exit sites plays this role. Our findings provide an unexpected connection between at least part of the COPII machinery and the formation of preperoxisomal vesicles at the ER, and offer an explanation of how secretory and peroxisomal trafficking from the ER are distinguished.
Collapse
Affiliation(s)
- Katsuko Tani
- School of Life Sciences; Tokyo University of Pharmacy and Life Sciences; Hachioji, Tokyo Japan
| | | | | | | |
Collapse
|
137
|
Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 2011; 4:659-72. [PMID: 21669930 PMCID: PMC3180231 DOI: 10.1242/dmm.007419] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human peroxisome biogenesis disorders are lethal genetic diseases in which abnormal peroxisome assembly compromises overall peroxisome and cellular function. Peroxisomes are ubiquitous membrane-bound organelles involved in several important biochemical processes, notably lipid metabolism and the use of reactive oxygen species for detoxification. Using cultured cells, we systematically characterized the peroxisome assembly phenotypes associated with dsRNA-mediated knockdown of 14 predicted Drosophila homologs of PEX genes (encoding peroxins; required for peroxisome assembly and linked to peroxisome biogenesis disorders), and confirmed that at least 13 of them are required for normal peroxisome assembly. We also demonstrate the relevance of Drosophila as a genetic model for the early developmental defects associated with the human peroxisome biogenesis disorders. Mutation of the PEX1 gene is the most common cause of peroxisome biogenesis disorders and is one of the causes of the most severe form of the disease, Zellweger syndrome. Inherited mutations in Drosophila Pex1 correlate with reproducible defects during early development. Notably, Pex1 mutant larvae exhibit abnormalities that are analogous to those exhibited by Zellweger syndrome patients, including developmental delay, poor feeding, severe structural abnormalities in the peripheral and central nervous systems, and early death. Finally, microarray analysis defined several clusters of genes whose expression varied significantly between wild-type and mutant larvae, implicating peroxisomal function in neuronal development, innate immunity, lipid and protein metabolism, gamete formation, and meiosis.
Collapse
Affiliation(s)
- Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|