101
|
Cannabinoids Transmogrify Cancer Metabolic Phenotype via Epigenetic Reprogramming and a Novel CBD Biased G Protein-Coupled Receptor Signaling Platform. Cancers (Basel) 2023; 15:cancers15041030. [PMID: 36831374 PMCID: PMC9954791 DOI: 10.3390/cancers15041030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The concept of epigenetic reprogramming predicts long-term functional health effects. This reprogramming can be activated by exogenous or endogenous insults, leading to altered healthy and different disease states. The exogenous or endogenous changes that involve developing a roadmap of epigenetic networking, such as drug components on epigenetic imprinting and restoring epigenome patterns laid down during embryonic development, are paramount to establishing youthful cell type and health. This epigenetic landscape is considered one of the hallmarks of cancer. The initiation and progression of cancer are considered to involve epigenetic abnormalities and genetic alterations. Cancer epigenetics have shown extensive reprogramming of every component of the epigenetic machinery in cancer development, including DNA methylation, histone modifications, nucleosome positioning, non-coding RNAs, and microRNA expression. Endocannabinoids are natural lipid molecules whose levels are regulated by specific biosynthetic and degradative enzymes. They bind to and activate two primary cannabinoid receptors, type 1 (CB1) and type 2 (CB2), and together with their metabolizing enzymes, form the endocannabinoid system. This review focuses on the role of cannabinoid receptors CB1 and CB2 signaling in activating numerous receptor tyrosine kinases and Toll-like receptors in the induction of epigenetic landscape alterations in cancer cells, which might transmogrify cancer metabolism and epigenetic reprogramming to a metastatic phenotype. Strategies applied from conception could represent an innovative epigenetic target for preventing and treating human cancer. Here, we describe novel cannabinoid-biased G protein-coupled receptor signaling platforms (GPCR), highlighting putative future perspectives in this field.
Collapse
|
102
|
Zhao M, Meng Q, Zhang M. Urinary insulin signaling pathway related proteins may serve as potential biomarkers for monitoring diabetes mellitus without hypertension and hyperlipidemia. Medicine (Baltimore) 2023; 102:e32862. [PMID: 36749274 PMCID: PMC9901961 DOI: 10.1097/md.0000000000032862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The insulin signaling pathway plays an important role in the development of diabetes mellitus. The expression of insulin signaling pathway related proteins in the urine of diabetic patients has not been reported. The aim of this study was to analyze and verify the expression of insulin signaling pathway related proteins in the urine of diabetic patients without hypertension and hyperlipidemia, and to explore their clinical application value. Based on data-independent acquisition proteomics technology and bioinformatics, the urinary protein expression profile of diabetic patients without hypertension and hyperlipidemia was established. Western blot and enzyme-linked immunoassay were performed to verify the expression of insulin signaling pathway related proteins in the urine of diabetic patients. Sixteen proteins related to the insulin signaling pathway were screened in urine, and 7 of them were differentially expressed in the urine of diabetic patients without hypertension and hyperlipidemia. Further quantitative analysis showed that the downregulation of protein kinase CAMP-dependent type II regulatory subunit α, growth factor receptor bound protein 2, and guanine nucleotide-binding protein G(s) in the urine of diabetic patients without hyperlipidemia and hypertension was consistent with the preliminary screening results. In this exploratory study, we detected the expression of insulin signaling pathway related proteins in the urine of diabetic patients without hypertension and hyperlipidemia. protein kinase CAMP-dependent type II regulatory subunit α, growth factor receptor bound protein 2, and guanine nucleotide-binding protein G(s) in the urine of diabetic patients were downregulated, which was associated with diabetes. They may be promising noninvasive biomarkers for monitoring diabetes.
Collapse
Affiliation(s)
- Man Zhao
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Qian Meng
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- * Correspondence: Man Zhang, Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Community, Haidian District, Beijing 100038, China (e-mail: )
| |
Collapse
|
103
|
Creatine kinase is associated with glycated haemoglobin in a nondiabetic population. The Tromsø study. PLoS One 2023; 18:e0281239. [PMID: 36730257 PMCID: PMC9894408 DOI: 10.1371/journal.pone.0281239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Creatine kinase (CK) has been associated with insulin resistance and identified as a risk marker of cardiovascular disease largely by its relationship with hypertension and increased body mass index. This study determined whether CK is a predictor of glycated haemoglobin (HbA1C) in a nondiabetic general population. METHODS Associations between CK and the outcome variable HbA1C (%) were performed by variance and multivariate analyses in 11662 nondiabetic subjects defined as HbA1C (%) <6.5 who participated in the population based Tromsø study (Tromsø 6) in Norway. RESULTS Abnormal elevated CK was detected in 543/11662 participants (4.66%). Mean HbA1C (%) in the "high CK" group was 5.62 (SD = 0.33) compared to 5.52 (SD = 0.36) in the "normal CK" group, P <0.001. CK increased significantly and linearly with higher levels of HbA1C (%) quartiles in women (P <0.001) and non-linearly in men (P <0.001). In a multivariate analysis, CK was independently associated with HbA1C (%) after adjusting for age, sex, body mass index, blood pressure, glucose, lipids, C-reactive protein, creatinine, alanine transaminase and aspartate aminotransferase. A 1-unit increase in log CK was associated with a 0.17-unit increase in HbA1C (%). CONCLUSION These data demonstrate a positive and independent association between CK and glycated haemoglobin in a nondiabetic general population.
Collapse
|
104
|
Modulation of Unfolded Protein Response Restores Survival and Function of β-Cells Exposed to the Endocrine Disruptor Bisphenol A. Int J Mol Sci 2023; 24:ijms24032023. [PMID: 36768343 PMCID: PMC9916570 DOI: 10.3390/ijms24032023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a metabolic disease that currently affects nearly half a billion people worldwide. β-cells dysfunction is one of the main causes of diabetes. Exposure to endocrine-disrupting chemicals is correlated with increased diabetes incidence. We hypothesized that treatment with bisphenol A (BPA) induces endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR), leading to impaired function of the β-cells, which over time, can cause diabetes. In this study, we aimed to evaluate UPR pathways activation under BPA treatment in β-cells and possible recovery of ER homeostasis. MIN6 cells (mouse insulinoma cell line) and isolated pancreatic islets from NOR (non-obese diabetes resistant) mice were treated with BPA. We analyzed the impact of BPA on β-cell viability, the architecture of the early secretory pathway, the synthesis and processing of insulin and the activation of UPR sensors and effectors. We found that the addition of the chemical chaperone TUDCA rescues the deleterious effects of BPA, resulting in improved viability, morphology and function of the β-cells. In conclusion, we propose that modulators of UPR can be used as therapeutic interventions targeted towards regaining β-cells homeostasis.
Collapse
|
105
|
Avelino DC, da Silva A, Chaves LO, Carraro JCC, de Carvalho Vidigal F, Bressan J. Triglyceride-glucose index is associated with poor sleep quality in apparently healthy subjects: A cross-sectional study. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:73-91. [PMID: 36155123 PMCID: PMC9983794 DOI: 10.20945/2359-3997000000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective We aimed to evaluate the association between the triglyceride glucose index (TyG index) and sleep quality and to establish a cut-off value for the TyG index based on the prevalence of subjects with insulin resistance (IR). Methods This cross-sectional study involved Brazilian health professionals (20-59 years). A total of 138 subjects answered the Pittsburgh Sleep Quality questionnaire to evaluate sleep quality. They were categorized into two groups: good sleep quality (global score ≤ 5 points) and poor sleep quality (global score ≥ 6 points). Also, we classified the subjects as having a high (>8.08 or >4.38) or low TyG index (≤ 8.08 or ≤4.38). Results The majority of the subjects (70%) with high TyG index values (>8.08 or >4.38) reported poor sleep quality (p ≤ 0.001). Those with poor sleep quality had a 1.44-fold higher prevalence of IR (TyG index >8.08 or >4.38) compared to those with good sleep quality, regardless of sex, total cholesterol, LDL/HDL ratio, insulin, complement C3, CRP, and adiponectin (p ≤ 0.001). Conclusion Our data showed a positive and significant association between the TyG index and poor sleep quality. Thus, these findings support the association between poor sleep quality and IR.
Collapse
Affiliation(s)
| | - Alessandra da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | | | | | | | - Josefina Bressan
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| |
Collapse
|
106
|
Yu Z, Zhang J, Liang Z, Wu J, Liu K, You G. Pancreatic Hormone Insulin Modulates Organic Anion Transporter 1 in the Kidney: Regulation via Remote Sensing and Signaling Network. AAPS J 2023; 25:13. [PMID: 36627500 PMCID: PMC10695010 DOI: 10.1208/s12248-022-00778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Organic anion transporter 1 (OAT1) expressed in the kidney plays an important role in the elimination of numerous anionic drugs used in the clinic. We report here that insulin, a pancreas-secreted hormone, regulated the expression and activity of kidney-specific OAT1 both in cultured cells and in rats. We showed that treatment of OAT1-expressing cells with insulin led to an increase in OAT1 expression, transport activity, and SUMOylation. Such insulin-induced increase was blocked by afuresertib, a specific inhibitor for protein kinase B (PKB), suggesting insulin regulates OAT1 through PKB signaling pathway. Furthermore, insulin stimulated transport activity and SUMOylation of endogenously expressed OAT1 in rat kidneys. In conclusion, our data support a remote sensing and signaling model, in which OAT1 plays an essential role in intercellular and inter-organ communication and in maintaining local and whole-body homeostasis. Such complex and dedicated communication is carried out by insulin, and PKB signaling and membrane sorting.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Jinghui Zhang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey, 08854, USA.
| |
Collapse
|
107
|
Abstract
The global prevalences of obesity and type 2 diabetes mellitus have reached epidemic status, presenting a heavy burden on society. It is therefore essential to find novel mechanisms and targets that could be utilized in potential treatment strategies and, as such, intracellular membrane trafficking has re-emerged as a regulatory tool for controlling metabolic homeostasis. Membrane trafficking is an essential physiological process that is responsible for the sorting and distribution of signalling receptors, membrane transporters and hormones or other ligands between different intracellular compartments and the plasma membrane. Dysregulation of intracellular transport is associated with many human diseases, including cancer, neurodegeneration, immune deficiencies and metabolic diseases, such as type 2 diabetes mellitus and its associated complications. This Review focuses on the latest advances on the role of endosomal membrane trafficking in metabolic physiology and pathology in vivo, highlighting the importance of this research field in targeting metabolic diseases.
Collapse
Affiliation(s)
- Jerome Gilleron
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1065 C3M, Team Cellular and Molecular Pathophysiology of Obesity, Nice, France.
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
108
|
Li J, Xie J, Guo X, Fu R, Wang Y, Guan X. Effects of Mind-Regulation Acupuncture Therapy on Serum Ghrelin, Gastric Inhibitory Polypeptide, Leptin, and Insulin Levels in Breast Cancer Survivors with Cancer-Related Fatigue: A Randomized Controlled Trial. Int J Gen Med 2023; 16:1017-1027. [PMID: 36974064 PMCID: PMC10039657 DOI: 10.2147/ijgm.s405977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Aim The aim of this research is to analyze the effects of mind-regulation acupuncture on serum ghrelin, gastric inhibitory polypeptide, leptin, and insulin levels, fatigue, quality of sleep, depression, and quality of life in survivors of breast cancer with cancer-related fatigue. Methods Total 136 breast cancer survivors with cancer-related fatigue were randomly allocated to the mind-regulation acupuncture group and the control group in a 1:1 ratio, with 68 cases in each group. Finally, 57 cases each in both groups completed the study. The serum ghrelin, gastric inhibitory polypeptide, leptin, and insulin levels were measured in pre-treatment and post-treatment. The 20-item Multidimensional Fatigue Symptom Inventory, Pittsburgh Sleep Quality Index, Hamilton Depression Scale, and Karnofsky Performance Status were used to evaluate patients' fatigue, quality of sleep, symptoms of depression, and quality of life, respectively. Results In post-treatment, the serum ghrelin, gastric inhibitory polypeptide, leptin, and insulin levels significantly reduced, 20-item Multidimensional Fatigue Symptom Inventory, Pittsburgh Sleep Quality Index, and Hamilton Depression scores were remarkably decreased, whereas the Karnofsky Performance Status scores were significantly increased in mind-regulation acupuncture group and control group comparing to those pre-treatment, while those in mind-regulation acupuncture group changed more significantly. The 20-item Multidimensional Fatigue Symptom Inventory, Pittsburgh Sleep Quality Index, and Hamilton Depression scores were remarkably lower, and remarkably higher Karnofsky Performance Status scores in the mind-regulation acupuncture group were seen than those in the control group. Conclusion Mind-regulation acupuncture could reduce serum ghrelin, gastric inhibitory polypeptide, leptin, and insulin levels of breast cancer survivors with cancer-related fatigue. In addition, it alleviates cancer-related fatigue, sleep disturbance, and depression in these survivors and improves their quality of life. Therefore, mind-regulation acupuncture may have potential as an alternative and complementary therapy for breast cancer survivors with cancer-related fatigue.
Collapse
Affiliation(s)
- Jinxia Li
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Jingjun Xie
- The First People’s Hospital of Huzhou, Huzhou, Zhejiang, 313000, People’s Republic of China
- Correspondence: Jingjun Xie, Email
| | - Xiaoqing Guo
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Ruiyang Fu
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Yaling Wang
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, 313000, People’s Republic of China
| | - Xinjun Guan
- Huzhou Hospital of Traditional Chinese Medicine, Affiliated to Zhejiang Chinese Medical University, Huzhou, Zhejiang, 313000, People’s Republic of China
| |
Collapse
|
109
|
Kiserud T. Diabetes mellitus impact on fetal liver circulation, and new diagnostic options. REVISTA MÉDICA CLÍNICA LAS CONDES 2023. [DOI: 10.1016/j.rmclc.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
110
|
Chen S, E Y, Zhang X, Wei B, Wang S, Xu Z, Gong P, Xie Y, Qin C, Zhang Y. A Novel Metabolic Score for Insulin Resistance and Symptomatic Intracranial Hemorrhage in Ischemic Stroke Patients After Endovascular Thrombectomy. Neuropsychiatr Dis Treat 2023; 19:321-328. [PMID: 36778533 PMCID: PMC9910208 DOI: 10.2147/ndt.s394438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Insulin resistance plays a pivotal role in the pathophysiology of ischemic stroke. This study aimed to determine the relationship between the novel metabolic score for insulin resistance (METS-IR) and symptomatic intracranial hemorrhage (sICH) after endovascular thrombectomy (EVT) in stroke patients. METHODS We retrospectively included patients with large artery occlusion in the anterior circulation and treated by EVT from 2 stroke centers (Nanjing First Hospital from September 2019 to April 2022, and Jinling Hospital from September 2019 to July 2021). The METS-IR was used as an alternative marker of insulin resistance and calculated using laboratory data after admission. sICH was diagnosed according to the Heidelberg Bleeding Classification. RESULTS Of the 410 enrolled patients (mean age, 69.8 ± 11.7 years; 60.7% men), 50 (12.2%) were diagnosed as sICH. After adjusting for demographic characteristics, poor collateral status, and other potential confounders, higher METS-IR was revealed to be independently associated with sICH (odds ratio, 1.076; 95% confidence interval, 1.034-1.120; P = 0.001). Similar significant results were obtained when defining METS-IR as a categorical variable. The restricted cubic spline uncovered a linear relationship between METS-IR and sICH (P < 0.001 for linearity). Furthermore, adding METS-IR to the conventional model significantly improved the risk prediction for sICH (net reclassification improvement = 15.8%, P = 0.035; integrated discrimination index = 2.6%; P = 0.017). CONCLUSION This study demonstrated a significant association between METS-IR score and sICH in ischemic stroke patients treated with EVT. It could help monitor and manage sICH in patients after EVT.
Collapse
Affiliation(s)
- Shuaiyu Chen
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yan E
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaohao Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Wei
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Siyu Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhaohan Xu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Pengyu Gong
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Chunhua Qin
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yingdong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
111
|
Rodríguez IA, Serafini M, Alves IA, Lang KL, Silva FRMB, Aragón DM. Natural Products as Outstanding Alternatives in Diabetes Mellitus: A Patent Review. Pharmaceutics 2022; 15:85. [PMID: 36678714 PMCID: PMC9867152 DOI: 10.3390/pharmaceutics15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic syndrome that can be considered a growing health problem in the world. High blood glucose levels are one of the most notable clinical signs. Currently, new therapeutic alternatives have been tackled from clinicians' and scientists' points of view. Natural products are considered a promising source, due to the huge diversity of metabolites with pharmaceutical applications. Therefore, this review aimed to uncover the latest advances in this field as a potential alternative to the current therapeutic strategies for the treatment of DM. This purpose is achieved after a patent review, using the Espacenet database of the European Patent Office (EPO) (2016-2022). Final screening allowed us to investigate 19 patents, their components, and several technology strategies in DM. Plants, seaweeds, fungi, and minerals were used as raw materials in the patents. Additionally, metabolites such as tannins, organic acids, polyphenols, terpenes, and flavonoids were found to be related to the potential activity in DM. Moreover, the cellular transportation of active ingredients and solid forms with special drug delivery profiles is also considered a pharmaceutical technology strategy that can improve their safety and efficacy. From this perspective, natural products can be a promissory source to obtain new drugs for DM therapy.
Collapse
Affiliation(s)
- Ingrid Andrea Rodríguez
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| | - Mairim Serafini
- Departamento de Farmácia, Universidade Federal de Sergipe, Sao Cristovao 49100-000, SE, Brazil
| | - Izabel Almeida Alves
- Department of Medicines, Faculty of Pharmacy, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| | - Karen Luise Lang
- Departamento de Farmácia, Campus Governador Valadares, Universidade Federal de Juiz de Fora, Governador Valadares, Juiz de Fora 36038-330, MG, Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica—Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, Florianópolis 88037-000, SC, Brazil
| | - Diana Marcela Aragón
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 110321, D.C., Colombia
| |
Collapse
|
112
|
Antidiabetic Properties of Chitosan and Its Derivatives. Mar Drugs 2022; 20:md20120784. [PMID: 36547931 PMCID: PMC9782916 DOI: 10.3390/md20120784] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder. In addition to taking medication, adjusting the composition of the diet is also considered one of the effective methods to control the levels of blood glucose. Chitosan and its derivatives are natural and versatile biomaterials with health benefits. Chitosan has the potential to alleviate diabetic hyperglycemia by reducing hepatic gluconeogenesis and increasing skeletal muscle glucose uptake and utility. Scientists also focus on the glucose-lowering effect of chitosan oligosaccharide (COS). COS supplementation has the potential to alleviate abnormal glucose metabolism in diabetic rats by inhibiting gluconeogenesis and lipid peroxidation in the liver. Both high and low molecular weight chitosan feeding reduced insulin resistance by inhibiting lipid accumulation in the liver and adipose tissue and ameliorating chronic inflammation in diabetic rats. COS can reduce insulin resistance but has less ability to reduce hepatic lipids in diabetic rats. A clinical trial showed that a 3-month administration of chitosan increased insulin sensitivity and decreased body weight and triglycerides in obese patients. Chitosan and COS are considered Generally Recognized as Safe; however, they are still considered to be of safety concerns. This review highlights recent advances of chitosan and its derivatives in the glucose-lowering/antidiabetic effects and the safety.
Collapse
|
113
|
Yang W, Lyu Y, Xiang R, Yang J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int J Mol Sci 2022; 23:ijms232416054. [PMID: 36555704 PMCID: PMC9785789 DOI: 10.3390/ijms232416054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Insulin resistance (IR), designated as the blunted response of insulin target tissues to physiological level of insulin, plays crucial roles in the development and progression of diabetes, nonalcoholic fatty liver disease (NAFLD) and other diseases. So far, the distinct mechanism(s) of IR still needs further exploration. Long non-coding RNA (lncRNA) is a class of non-protein coding RNA molecules with a length greater than 200 nucleotides. LncRNAs are widely involved in many biological processes including cell differentiation, proliferation, apoptosis and metabolism. More recently, there has been increasing evidence that lncRNAs participated in the pathogenesis of IR, and the dysregulated lncRNA profile played important roles in the pathogenesis of metabolic diseases including obesity, diabetes and NAFLD. For example, the lncRNAs MEG3, H19, MALAT1, GAS5, lncSHGL and several other lncRNAs have been shown to regulate insulin signaling and glucose/lipid metabolism in various tissues. In this review, we briefly introduced the general features of lncRNA and the methods for lncRNA research, and then summarized and discussed the recent advances on the roles and mechanisms of lncRNAs in IR, particularly focused on liver, skeletal muscle and adipose tissues.
Collapse
Affiliation(s)
- Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Yixiang Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-Coding RNA Medicine, Beijing 100191, China
- Correspondence:
| |
Collapse
|
114
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
115
|
Gai Y, Li J, Jian T, Ding X, Lyu H, Liu Y, Li J, Ren B, Chen J, Li W. An integrative exploration of loquat leaf total sesquiterpene glycosides in treating insulin-resistant mice by serum and urine untargeted metabolomics analysis. Heliyon 2022; 8:e12126. [PMID: 36561668 PMCID: PMC9764190 DOI: 10.1016/j.heliyon.2022.e12126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Loquat leaf is approved to be beneficial in the treatment of diabetes. Total sesquiterpene glycosides (TSG), a major chemical component cluster, has potential ability to improve insulin-resistant diabetes syndrome. Its therapeutic mechanism using metabolomics in vivo is worth to be investigated. This study aimed to reveal the underlying therapeutic mechanism of TSG on insulin-resistant mice by untargeted metabolomics, and to explore the lipid metabolism differences in vivo. High-fat diet was used to induce insulin-resistant mice model. Biochemical indicators were applied to evaluate the model validity and related treatment effect. Ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry was utilized to accomplish serum and urine untargeted metabolomics. Oral administration of TSG had a therapeutic effect on high-fat diet induced insulin-resistant mice. Four hundred forty-two metabolites in serum and 1732 metabolites in urine were annotated. Principal component analysis screened 324 differential metabolic signatures in serum sample and 1408 in urine sample. The pathway mainly involved purine metabolism and biosynthesis of unsaturated fatty acids. Lipidomic analysis of urine and serum confirmed that most lipid metabolites were fatty acyls, sterol lipids and polyketides.
Collapse
Affiliation(s)
- Yanan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jiawei Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tunyu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiaoqin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Han Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bingru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weilin Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
116
|
Richter LR, Albert BI, Zhang L, Ostropolets A, Zitsman JL, Fennoy I, Albers DJ, Hripcsak G. Data assimilation on mechanistic models of glucose metabolism predicts glycemic states in adolescents following bariatric surgery. Front Physiol 2022; 13:923704. [PMID: 36518108 PMCID: PMC9744230 DOI: 10.3389/fphys.2022.923704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/11/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus is a complex and under-treated disorder closely intertwined with obesity. Adolescents with severe obesity and type 2 diabetes have a more aggressive disease compared to adults, with a rapid decline in pancreatic β cell function and increased incidence of comorbidities. Given the relative paucity of pharmacotherapies, bariatric surgery has become increasingly used as a therapeutic option. However, subsets of this population have sub-optimal outcomes with either inadequate weight loss or little improvement in disease. Predicting which patients will benefit from surgery is a difficult task and detailed physiological characteristics of patients who do not respond to treatment are generally unknown. Identifying physiological predictors of surgical response therefore has the potential to reveal both novel phenotypes of disease as well as therapeutic targets. We leverage data assimilation paired with mechanistic models of glucose metabolism to estimate pre-operative physiological states of bariatric surgery patients, thereby identifying latent phenotypes of impaired glucose metabolism. Specifically, maximal insulin secretion capacity, σ, and insulin sensitivity, SI, differentiate aberrations in glucose metabolism underlying an individual's disease. Using multivariable logistic regression, we combine clinical data with data assimilation to predict post-operative glycemic outcomes at 12 months. Models using data assimilation sans insulin had comparable performance to models using oral glucose tolerance test glucose and insulin. Our best performing models used data assimilation and had an area under the receiver operating characteristic curve of 0.77 (95% confidence interval 0.7665, 0.7734) and mean average precision of 0.6258 (0.6206, 0.6311). We show that data assimilation extracts knowledge from mechanistic models of glucose metabolism to infer future glycemic states from limited clinical data. This method can provide a pathway to predict long-term, post-surgical glycemic states by estimating the contributions of insulin resistance and limitations of insulin secretion to pre-operative glucose metabolism.
Collapse
Affiliation(s)
- Lauren R. Richter
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Benjamin I. Albert
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Linying Zhang
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Anna Ostropolets
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| | - Jeffrey L. Zitsman
- Division of Pediatric Surgery, Department of Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Ilene Fennoy
- Division of Pediatric Endocrinology, Metabolism, and Diabetes, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, United States
| | - David J. Albers
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
117
|
Cheng D, Lee JS, Brown M, Ebert MS, McGrath PT, Tomioka M, Iino Y, Bargmann CI. Insulin/IGF signaling regulates presynaptic glutamate release in aversive olfactory learning. Cell Rep 2022; 41:111685. [DOI: 10.1016/j.celrep.2022.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/06/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
|
118
|
Single-agent FOXO1 inhibition normalizes glycemia and induces gut β-like cells in streptozotocin-diabetic mice. Mol Metab 2022; 66:101618. [PMID: 36283677 PMCID: PMC9676376 DOI: 10.1016/j.molmet.2022.101618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Insulin treatment remains the sole effective intervention for Type 1 Diabetes. Here, we investigated the therapeutic potential of converting intestinal epithelial cells to insulin-producing, glucose-responsive β-like cells by targeted inhibition of FOXO1. We have previously shown that this can be achieved by genetic ablation in gut Neurogenin3 progenitors, adenoviral or shRNA-mediated inhibition in human gut organoids, and chemical inhibition in Akita mice, a model of insulin-deficient diabetes. METHODS We profiled two novel FOXO1 inhibitors in reporter gene assays, and hepatocyte gene expression studies, and in vivo pyruvate tolerance test (PTT) for their activity and specificity. We evaluated their glucose-lowering effect in mice rendered insulin-deficient by administration of streptozotocin. RESULTS We provide evidence that two novel FOXO1 inhibitors, FBT432 and FBT374 have glucose-lowering and gut β-like cell-inducing properties in mice. FBT432 is also highly effective in combination with a Notch inhibitor in this model. CONCLUSION The data add to a growing body of evidence suggesting that FOXO1 inhibition be pursued as an alternative treatment to insulin administration in diabetes.
Collapse
|
119
|
Ding H, Zhang Y, Ma X, Zhang Z, Xu Q, Liu C, Li B, Dong S, Li L, Zhu J, Zhong M, Zhang G. Bariatric surgery for diabetic comorbidities: A focus on hepatic, cardiac and renal fibrosis. Front Pharmacol 2022; 13:1016635. [PMID: 36339532 PMCID: PMC9634081 DOI: 10.3389/fphar.2022.1016635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/06/2022] [Indexed: 07/29/2024] Open
Abstract
Continuously rising trends in diabetes render this disease spectrum an epidemic proportion worldwide. As the disease progresses, the pathological effects of diabetes may impair the normal function of several vital organs, eventually leading to increase the risk of other diabetic comorbidities with advanced fibrosis such as non-alcoholic fatty liver disease, diabetic cardiomyopathy, and diabetic kidney disease. Currently, lifestyle changes and drug therapies of hypoglycemic and lipid-lowering are effective in improving multi-organ function, but therapeutic efficacy is difficult to maintain due to poor compliance and drug reactions. Bariatric surgery, including sleeve gastrectomy and Roux-en-Y gastric bypass surgery, has shown better results in terms of prognosis for diabetes through long-term follow-up. Moreover, bariatric surgery has significant long-term benefits on the function of the heart, liver, kidneys, and other organs through mechanisms associated with reversal of tissue fibrosis. The aim of this review is to describe the impact of type 2 diabetes mellitus on hepatic, cardiac and renal fibrosis and to summarize the potential mechanisms by which bariatric surgery improves multiple organ function, particularly reversal of fibrosis.
Collapse
Affiliation(s)
- Huanxin Ding
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaomin Ma
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Zhongwen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Qian Xu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Chuxuan Liu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Bingjun Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Shuohui Dong
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Linchuan Li
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Mingwei Zhong
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Guangyong Zhang
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
120
|
Pszczolkowski VL, Hu H, Zhang J, Connelly MK, Munsterman AS, Arriola Apelo SI. Effects of methionine, leucine, and insulin on circulating concentrations and mammary extraction of energy substrates and amino acids in lactating dairy cows. Domest Anim Endocrinol 2022; 81:106730. [PMID: 35580513 DOI: 10.1016/j.domaniend.2022.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
The aim of this experiment was to test whether insulin potentiates the effects of two abomasally infused amino acids (AA), leucine and methionine (LM), on mammary extraction efficiency of energetic and nitrogenous nutrients. Six lactating Holstein cows (155 ± 9 DIM) were ruminally-cannulated and had the right carotid artery subcutaneously transposed. Cows were fed a 20% metabolizable protein-restricted diet and abomasally infused with water (8 L/d) or AA (Met 26 g/d, Leu 70 g/d) for 8 h/d, for 7 days. On the last day of each period, cows were intravenously infused with saline (0.9% NaCl, 110 mL/h) or subjected to 8 h hyperinsulinemic clamp (IC) alongside abomasal infusions. For IC, insulin was infused at 1 µg/kg/h. Normoglycemia was maintained by varying glucose (50% w/v in water) infusion rate based on coccygeal vein glucose concentration. Carotid arterial and subcutaneous abdominal (mammary) vein blood samples were collected at 0, 1, 2, 4, and 6 h from the start of infusions. Milk weights and samples for baseline measurements of production were taken on day 5 PM, day 6 AM and PM, and day 7 AM of the experimental period. A final milk weight and sample was taken immediately after abomasal and intravenous infusions on day 7 PM for assessing the interaction between insulin and the infused AA. The experiment had an incompletely replicated Latin square design with a 2 × 2 factorial arrangement of treatments (abomasal and intravenous infusion). Baseline milk production when cows were only receiving abomasal infusions was largely unaffected by LM, but milk protein yield tended to be decreased. On day 7, LM tended to positively increase milk fat and de novo fatty acid content, and IC tended to decrease milk protein content. Both milk urea nitrogen and plasma urea nitrogen were decreased by IC. Circulating AA concentrations in plasma were decreased by both LM and IC, but mammary extraction efficiency was affected by neither. Infusion of LM had no effect on any energy metabolite analyzed. Circulating non-esterified fatty acid concentration was decreased by IC, with no effect on mammary extraction efficiency. Mammary extraction efficiency of both acetate and β-hydroxybutyrate were decreased by IC. Overall, while both circulating concentrations of energy metabolites and amino acids were decreased in response to treatments, this was not due to improved mammary extraction efficiency.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA
| | - Haowen Hu
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA
| | - Jun Zhang
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA; College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Meghan K Connelly
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA; Vita Plus Corporation, Madison, WI, 53713, USA
| | - Amelia S Munsterman
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, 53706, USA; Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin, 1675 Observatory Dr, Madison, WI, 53706, USA.
| |
Collapse
|
121
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
122
|
Moyers JS, Hansen RJ, Day JW, Dickinson CD, Zhang C, Ruan X, Ding L, Brown RM, Baker HE, Beals JM. Preclinical Characterization of LY3209590, a Novel Weekly Basal Insulin Fc-Fusion Protein. J Pharmacol Exp Ther 2022; 382:346-355. [PMID: 35840338 DOI: 10.1124/jpet.122.001105] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
The benefit of once-weekly basal insulin is less frequent dosing, which has the potential to reduce the barrier to injection therapy and impact patient activation, adherence and compliance, quality of life, and outcomes. Basal Insulin Fc (BIF, LY3209590, or insulin efsitora alfa) is a once-weekly basal insulin in clinical testing for type 1 and type 2 diabetes mellitus. BIF is comprised of a novel single-chain variant of insulin fused to a human IgG2 fragment crystallizable region of an antibody domain using a peptide linker. The in vitro binding affinity of BIF for the human insulin receptor (IR) was two orders of magnitude weaker relative to human insulin. BIF stimulated IR phosphorylation in cells with reduced potency, yet full agonism, and exhibited a significantly faster dephosphorylation kinetic profile than human insulin or AspB10 insulin. BIF stimulated de novo lipogenesis in 3T3-L1 adipocytes and cell proliferation in SAOS-2 and H4IIE cells with ≥70-fold reduction in in vitro potency compared with human insulin. BIF possessed markedly reduced binding to hIGF-1R, making definitive measurements unattainable. In vivo pharmacology studies using streptozotocin-treated diabetic rats demonstrated a significant decrease in blood glucose compared with vehicle-treated animals 24 hours post-injection, persisting through 336 hours following subcutaneous administration. In streptozotocin-treated rats, BIF reached time at maximum concentration at 48 hours and possessed a clearance rate of ∼0.85 ml/h per kg, with a terminal half-life of ∼120 hours following subcutaneous administration. These results demonstrate BIF has an in vitro pharmacological profile similar to native insulin, with significantly reduced potency and an extended time-action profile in vivo that supports once-weekly dosing in humans. SIGNIFICANCE STATEMENT: BIF is a novel basal insulin Fc-fusion protein designed for once-weekly dosing. In this study, we demonstrate that BIF has an in vitro pharmacological profile similar to human insulin, but with weaker potency across assays for IR binding and activity. BIF has a PD and PK profile in STZ-treated rats supportive of weekly dosing in humans.
Collapse
Affiliation(s)
- Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Ryan J Hansen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Jonathan W Day
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Craig D Dickinson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Chen Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Xiaoping Ruan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Liyun Ding
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Robin M Brown
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - Hana E Baker
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| | - John M Beals
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana (J.S.M., R.J.H., J.W.D., C.Z., X.R., L.D., R.M.B., H.E.B.) and San Diego, California (C.D.D., J.M.B.)
| |
Collapse
|
123
|
An overview of recent advances in insulin delivery and wearable technology for effective management of diabetes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
124
|
Huo F, Liu Q, Liu H. Contribution of muscle satellite cells to sarcopenia. Front Physiol 2022; 13:892749. [PMID: 36035464 PMCID: PMC9411786 DOI: 10.3389/fphys.2022.892749] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Sarcopenia, a disorder characterized by age-related muscle loss and reduced muscle strength, is associated with decreased individual independence and quality of life, as well as a high risk of death. Skeletal muscle houses a normally mitotically quiescent population of adult stem cells called muscle satellite cells (MuSCs) that are responsible for muscle maintenance, growth, repair, and regeneration throughout the life cycle. Patients with sarcopenia are often exhibit dysregulation of MuSCs homeostasis. In this review, we focus on the etiology, assessment, and treatment of sarcopenia. We also discuss phenotypic and regulatory mechanisms of MuSC quiescence, activation, and aging states, as well as the controversy between MuSC depletion and sarcopenia. Finally, we give a multi-dimensional treatment strategy for sarcopenia based on improving MuSC function.
Collapse
Affiliation(s)
- Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, China
- *Correspondence: Hailiang Liu,
| |
Collapse
|
125
|
Najjar SM, Abdolahipour R, Ghadieh HE, Jahromi MS, Najjar JA, Abuamreh BAM, Zaidi S, Kumarasamy S, Muturi HT. Regulation of Insulin Clearance by Non-Esterified Fatty Acids. Biomedicines 2022; 10:biomedicines10081899. [PMID: 36009446 PMCID: PMC9405499 DOI: 10.3390/biomedicines10081899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin stores lipid in adipocytes and prevents lipolysis and the release of non-esterified fatty acids (NEFA). Excessive release of NEFA during sustained energy supply and increase in abdominal adiposity trigger systemic insulin resistance, including in the liver, a major site of insulin clearance. This causes a reduction in insulin clearance as a compensatory mechanism to insulin resistance in obesity. On the other hand, reduced insulin clearance in the liver can cause chronic hyperinsulinemia, followed by downregulation of insulin receptor and insulin resistance. Delineating the cause–effect relationship between reduced insulin clearance and insulin resistance has been complicated by the fact that insulin action and clearance are mechanistically linked to insulin binding to its receptors. This review discusses how NEFA mobilization contributes to the reciprocal relationship between insulin resistance and reduced hepatic insulin clearance, and how this may be implicated in the pathogenesis of non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence: ; Tel.: +1-740-593-2376; Fax: +1-740-593-2320
| | - Raziyeh Abdolahipour
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Balamand P.O. Box 100, Lebanon
| | - Marziyeh Salehi Jahromi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John A. Najjar
- Department of Internal Medicine, College of Medicine, University of Toledo, Toledo, OH 43606, USA
| | - Basil A. M. Abuamreh
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sobia Zaidi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Sivarajan Kumarasamy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
126
|
Čater M, Bombek LK. Protective Role of Mitochondrial Uncoupling Proteins against Age-Related Oxidative Stress in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2022; 11:antiox11081473. [PMID: 36009191 PMCID: PMC9404801 DOI: 10.3390/antiox11081473] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The accumulation of oxidative damage to DNA and other biomolecules plays an important role in the etiology of aging and age-related diseases such as type 2 diabetes mellitus (T2D), atherosclerosis, and neurodegenerative disorders. Mitochondrial DNA (mtDNA) is especially sensitive to oxidative stress. Mitochondrial dysfunction resulting from the accumulation of mtDNA damage impairs normal cellular function and leads to a bioenergetic crisis that accelerates aging and associated diseases. Age-related mitochondrial dysfunction decreases ATP production, which directly affects insulin secretion by pancreatic beta cells and triggers the gradual development of the chronic metabolic dysfunction that characterizes T2D. At the same time, decreased glucose oxidation in skeletal muscle due to mitochondrial damage leads to prolonged postprandial blood glucose rise, which further worsens glucose homeostasis. ROS are not only highly reactive by-products of mitochondrial respiration capable of oxidizing DNA, proteins, and lipids but can also function as signaling and effector molecules in cell membranes mediating signal transduction and inflammation. Mitochondrial uncoupling proteins (UCPs) located in the inner mitochondrial membrane of various tissues can be activated by ROS to protect cells from mitochondrial damage. Mitochondrial UCPs facilitate the reflux of protons from the mitochondrial intermembrane space into the matrix, thereby dissipating the proton gradient required for oxidative phosphorylation. There are five known isoforms (UCP1-UCP5) of mitochondrial UCPs. UCP1 can indirectly reduce ROS formation by increasing glutathione levels, thermogenesis, and energy expenditure. In contrast, UCP2 and UCP3 regulate fatty acid metabolism and insulin secretion by beta cells and modulate insulin sensitivity. Understanding the functions of UCPs may play a critical role in developing pharmacological strategies to combat T2D. This review summarizes the current knowledge on the protective role of various UCP homologs against age-related oxidative stress in T2D.
Collapse
Affiliation(s)
- Maša Čater
- Correspondence: (M.Č.); (L.K.B.); Tel.: +386-2-2345-847 (L.K.B.)
| | | |
Collapse
|
127
|
Canal MP, Nini KA, Baez MV. Impaired fasting glucose, oxidative distress, and cognitive impairment. Is this the starting point on DBT cognitive decline? Front Aging Neurosci 2022; 14:911331. [PMID: 35959297 PMCID: PMC9360412 DOI: 10.3389/fnagi.2022.911331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Different studies performed in human patients, animal models, and in vitro cell cultures, show a correlation between type 2 diabetes (DBT2) and certain neurodegenerative pathologies. Also, it was proposed that increased inflammation and- or oxidative distress are a possible cause of DBT2-accelerated cognitive decline. The onset of DBT2 is characterized by an increase in blood glucose levels due to (an inability of the body's cells to use insulin properly) called impaired fasting glucose (IFG). Genetic and/or molecular causes of IFG have not yet been established, but metabolic syndrome, obesity, unbalanced diets, and sedentary lifestyle would be responsible, at least in part, for the multiplication in the number of this disease. It has been proposed that hyperglycemia itself causes an imbalance in the redox state and could compromise blood-brain barrier (BBB) causing neurodegeneration. For this reason, we propose, in this review, to evaluate the available data about redox state and neurocognitive studies during the IFG period.
Collapse
Affiliation(s)
- María Pilar Canal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Karen Agustina Nini
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Maria Verónica Baez
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN, CONICET-UBA), Buenos Aires, Argentina
- 1°UA de Histologia, Embriología, Biologia Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
128
|
Zheng Q, Lee B, Kebede MT, Ivancic VA, Kemeh MM, Brito HL, Spratt DE, Lazo ND. Exchange Broadening Underlies the Enhancement of IDE-Dependent Degradation of Insulin by Anionic Membranes. ACS OMEGA 2022; 7:24757-24765. [PMID: 35874268 PMCID: PMC9301717 DOI: 10.1021/acsomega.2c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Insulin-degrading enzyme (IDE) is an evolutionarily conserved ubiquitous zinc metalloprotease implicated in the efficient degradation of insulin monomer. However, IDE also degrades monomers of amyloidogenic peptides associated with disease, complicating the development of IDE inhibitors. In this work, we investigated the effects of the lipid composition of membranes on the IDE-dependent degradation of insulin. Kinetic analysis based on chromatography and insulin's helical circular dichroic signal showed that the presence of anionic lipids in membranes enhances IDE's activity toward insulin. Using NMR spectroscopy, we discovered that exchange broadening underlies the enhancement of IDE's activity. These findings, together with the adverse effects of anionic membranes in the self-assembly of IDE's amyloidogenic substrates, suggest that the lipid composition of membranes is a key determinant of IDE's ability to balance the levels of its physiologically and pathologically relevant substrates and achieve proteostasis.
Collapse
Affiliation(s)
| | | | | | - Valerie A. Ivancic
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Merc M. Kemeh
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Henrique Lemos Brito
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Donald E. Spratt
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| | - Noel D. Lazo
- Gustaf H. Carlson School
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States
| |
Collapse
|
129
|
Gołacki J, Matuszek M, Matyjaszek-Matuszek B. Link between Insulin Resistance and Obesity—From Diagnosis to Treatment. Diagnostics (Basel) 2022; 12:diagnostics12071681. [PMID: 35885586 PMCID: PMC9321808 DOI: 10.3390/diagnostics12071681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/09/2022] [Indexed: 11/25/2022] Open
Abstract
Insulin resistance (IR) has become a common health issue in medical practice. There are no detailed data on IR prevalence, but it is an increasing problem due to its close association with obesity. However, IR is not considered as a separate nosological entity and the diagnostic criteria are not well defined, which leads to overdiagnosis of IR and an inappropriate approach. This review aims to summarize the available literature on IR pathophysiology, its relationship with obesity, as well as diagnostic methods, clinical presentation and treatment. Excessive energy intake results in cell overload that triggers mechanisms to protect cells from further energy accumulation by reducing insulin sensitivity. Additionally, hypertrophied adipocytes and macrophage infiltration causes local inflammation that may result in general inflammation that induces IR. The clinical picture varies from skin lesions (e.g., acanthosis nigricans) to metabolic disorders such as diabetes mellitus or metabolic-associated fatty liver disease. There are numerous IR laboratory markers with varying sensitivities and specificities. Nutrition changes and regular physical activity are crucial for IR management because a reduction in adipose tissue may reverse the inflammatory state and consequently reduce the severity of insulin resistance. In cases of obesity, anti-obesity medications can be used.
Collapse
Affiliation(s)
- Jakub Gołacki
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
- Correspondence:
| | - Małgorzata Matuszek
- Student’s Scientific Society at the Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Beata Matyjaszek-Matuszek
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
130
|
Gvazava IG, Karimova MV, Vasiliev AV, Vorotelyak EA. Type 2 Diabetes Mellitus: Pathogenic Features and Experimental Models in Rodents. Acta Naturae 2022; 14:57-68. [PMID: 36348712 PMCID: PMC9611859 DOI: 10.32607/actanaturae.11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder (90%) in the world; it has numerous clinical, immunological, and genetic differences from type 1 diabetes mellitus. The pathogenesis of T2DM is complex and not fully clear. To date, animal models remain the main tool by which to study the pathophysiology and therapy of T2DM. Rodents are considered the best choice among animal models, because they are characterized by a small size, short induction period, easy diabetes induction, and economic efficiency. This review summarizes data on experimental models of T2DM that are currently used, evaluates their advantages and disadvantages vis-a-vis research, and describes in detail the factors that should be taken into account when using these models. Selection of a suitable model for tackling a particular issue is not always trivial; it affects study results and their interpretation.
Collapse
Affiliation(s)
- I. G. Gvazava
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - M. V. Karimova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - A. V. Vasiliev
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| | - E. A. Vorotelyak
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234 Russia
| |
Collapse
|
131
|
Shaukat A, Hussain G, Irfan S, Ijaz MU, Anwar H. Therapeutic Potential of MgO and MnO Nanoparticles Within the Context of Thyroid Profile and Pancreatic Histology in a Diabetic Rat Model. Dose Response 2022; 20:15593258221128743. [PMID: 36158742 PMCID: PMC9500299 DOI: 10.1177/15593258221128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 12/01/2022] Open
Abstract
Magnesium oxide (MgO) and manganese oxide (MnO) have been reported to be effective against Diabetes Mellitus (DM). However, their nanoparticulate form has not been evaluated for antidiabetic effect. MgO and MnO nanoparticles (15–35 nm) were synthesized and subsequently characterized by ultraviolet-visible spectroscopy (UV-VIS), zeta sizer, and scanning electron microscopy. 6–7 weeks old rats weighing 200–220 mg were divided into 07 equal groups (n = 8), namely, negative control (NC), positive control (PC), standard control (Std-C), MgO high dose group (MgO-300) and low dose group (MgO-150), and MnO nanoparticle high dose (MnO-30) and low dose group (MnO-15). Diabetes was chemically induced (streptozotocin 60 mg/kg B.W) in all groups except the NC. Animals were given CMD and water was ad libitum. Nanoparticles were supplemented for 30 days after the successful induction of diabetes. Blood and tissue samples were collected after the 30th day of the trial. The mean serum glucose, insulin, and glucagon levels were improved maximally in the MgO-300 group followed by MgO-150 and MnO-30 groups. Whereas the MnO-15 group fails to show any substantial improvement in the levels of glucose, insulin, and glucagon as compared to the positive control group. Interesting the serum triiodothyronine, thyroxine, and thyroid-stimulating hormone levels were markedly improved in all the nanoparticle treatment groups and were found to be similar to the standard control group. These results highlight the modulatory properties of MgO and MnO nanoparticles and merit further studies delineating the molecular mechanisms through which these nanoparticles induce antidiabetic effects.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Ghulam Hussain
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
132
|
Wooldridge LK, Keane JA, Rhoads ML, Ealy AD. Bioactive supplements influencing bovine in vitro embryo development. J Anim Sci 2022; 100:6620796. [PMID: 35772761 DOI: 10.1093/jas/skac091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ovum pickup and in vitro production (IVP) of bovine embryos are replacing traditional multiple ovulation embryo transfer (MOET) as the primary means for generating transferable embryos from genetically elite sires and dams. However, inefficiencies in the IVP process limit the opportunities to produce large numbers of transferable embryos. Also, the post-transfer competency of IVP embryos is inferior to embryos produced by artificial insemination or MOET. Numerous maternal, paternal, embryonic, and culture-related factors can have adverse effects on IVP success. This review will explore the various efforts made on describing how IVP embryo development and post-transfer competency may be improved by supplementing hormones, growth factors, cytokines, steroids and other bioactive factors found in the oviduct and uterus during early pregnancy. More than 40 of these factors, collectively termed as embryokines, are reviewed here. Several embryokines contain abilities to promote embryo development, including improving embryo survivability, improving blastomere cell numbers, and altering the distribution of blastomere cell types in blastocysts. A select few embryokines also can benefit pregnancy retention after IVP embryo transfer and improve neonatal calf health and performance, although very few embryokine-supplemented embryo transfer studies have been completed. Also, supplementing several embryokines at the same time holds promise for improving IVP embryo development and competency. However, more work is needed to explore the post-transfer consequences of adding these putative embryokines for any adverse outcomes, such as large offspring syndrome and poor postnatal health, and to specify the specific embryokine combinations that will best represent the ideal conditions found in the oviduct and uterus.
Collapse
Affiliation(s)
- Lydia K Wooldridge
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jessica A Keane
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michelle L Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
133
|
Trafficking regulator of GLUT4-1 (TRARG1) is a GSK3 substrate. Biochem J 2022; 479:1237-1256. [PMID: 35594055 PMCID: PMC9284383 DOI: 10.1042/bcj20220153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022]
Abstract
Trafficking regulator of GLUT4-1, TRARG1, positively regulates insulin-stimulated GLUT4 trafficking and insulin sensitivity. However, the mechanism(s) by which this occurs remain(s) unclear. Using biochemical and mass spectrometry analyses we found that TRARG1 is dephosphorylated in response to insulin in a PI3K/Akt-dependent manner and is a novel substrate for GSK3. Priming phosphorylation of murine TRARG1 at serine 84 allows for GSK3-directed phosphorylation at serines 72, 76 and 80. A similar pattern of phosphorylation was observed in human TRARG1, suggesting that our findings are translatable to human TRARG1. Pharmacological inhibition of GSK3 increased cell surface GLUT4 in cells stimulated with a submaximal insulin dose, and this was impaired following Trarg1 knockdown, suggesting that TRARG1 acts as a GSK3-mediated regulator in GLUT4 trafficking. These data place TRARG1 within the insulin signaling network and provide insights into how GSK3 regulates GLUT4 trafficking in adipocytes.
Collapse
|
134
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
135
|
Lubawy M, Formanowicz D. Insulin Resistance and Urolithiasis as a Challenge for a Dietitian. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127160. [PMID: 35742405 PMCID: PMC9223170 DOI: 10.3390/ijerph19127160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023]
Abstract
Many obesity and diet-related diseases have been observed in recent years. Insulin resistance (IR), a state of tissue resistance to insulin due to its impaired function, is a common coexisting condition. The most important predisposing factors are excessive visceral fat and chronic low-grade inflammatory response. However, IR’s pathogenesis is not fully understood. Hence, the diagnosis of IR should be carried out carefully because many different diagnostic paths do not always give equivalent results. An additional disease that is often associated with IR is urolithiasis. The common feature of these two conditions is metabolic acidosis and mild inflammation. A patient diagnosed with IR and urolithiasis is a big challenge for a dietitian. It is necessary to check a thorough dietary history, make an appropriate anthropometric measurement, plan a full-fledged diet, and carry out the correct nutritional treatment. It is also essential to conduct proper laboratory diagnostics to plan nutritional treatment, which is often a big challenge for dietitians. The diet’s basic assumptions are based on the appropriate selection of carbohydrates, healthy fats, and wholesome protein sources. It is also essential to properly compose meals, prepare them, and plan physical activities tailored to the abilities. The study aims to summarise the necessary information on IR with concomitant urolithiasis, which may be helpful in dietary practice.
Collapse
|
136
|
Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, Zhang L, Yang L, Gu C, Huang X, Wang Z, Zhu X. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther 2022; 30:2342-2353. [PMID: 35192934 PMCID: PMC9171149 DOI: 10.1016/j.ymthe.2022.02.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus (DM2) is associated closely with non-alcoholic fatty liver disease (NAFLD) by affecting lipid metabolism, which may lead to non-alcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC). N6-methyladenosine (m6A) RNA methylation is an important epigenetic regulation for gene expression and is related to HCC development. We developed a new NAFLD model oriented from DM2 mouse, which spontaneously progressed to histological features of NASH, fibrosis, and HCC with high incidence. By RNA sequencing, protein expression and methylated RNA immunoprecipitation (MeRIP)-qPCR analysis, we found that enhanced expression of ACLY and SCD1 in this NAFLD model and human HCC samples was due to excessive m6A modification, but not elevation of mature SREBP1. Moreover, targeting METTL3/14 in vitro increases protein level of ACLY and SCD1 as well as triglyceride and cholesterol production and accumulation of lipid droplets. m6A sequencing analysis revealed that overexpressed METTL14 binds to mRNA of ACLY and SCD1 and alters their expression pattern. Our findings demonstrate a new NAFLD mouse model that provides a study platform for DM2-related NAFLD and reveals a unique epitranscriptional regulating mechanism for lipid metabolism via m6A-modified protein expression of ACLY and SCD1.
Collapse
Affiliation(s)
- Yeming Yang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jingshu Cai
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Xue Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kaifang Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Kuanxiang Sun
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Chun Gu
- Department of Hepatobiliary & Pancreatic Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Department of Hepatobiliary & Pancreatic Center, Chinese Academy of Medical Sciences and Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan 610072, China
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Ziyan Wang
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
| | - Xianjun Zhu
- Health Management Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Henan Eye Institute, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072 China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China.
| |
Collapse
|
137
|
Yu Y, Xie R, He Y, Zhao F, Zhang Q, Wang W, Zhang Y, Hu J, Luo D, Peng W. Dual-core coaxial bioprinting of double-channel constructs with a potential for perfusion and interaction of cells. Biofabrication 2022; 14. [PMID: 35616388 DOI: 10.1088/1758-5090/ac6e88] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
Abstract
Coaxial bioprinting of hydrogel tubes has tremendous potential in the fabrication of highly complex large-scale vascularized structures, however, constructs with bioinks of simultaneous weak printability and perfusable networks have not been reported. Here, we report a coaxial printing method in which double-channel filaments are three-dimensional (3D) extrusion-bioprinted using a customized dual-core coaxial nozzle. The filament in one channel can perform core/shell role and the other channel can play a role in perfusion. These parallel channels within filaments are separated by an interval wall of alginate, whose thickness (∼50μm) is beneficial to supplement nutrients via perfusion. Different cell-laden hydrogels of weak mechanics were used to test the adaptability and perfusability of our method, and the results showed that dynamic perfusion maintained higher viability and functions than static culture. By combining with a bioprinter, 8-layer perfusable double-channel constructs were fabricated, and the cell viabilities gradually decreased with the reduction in nutrients and oxygen in the downstream medium. Furthermore, the double-channel filaments were tested as a platform to mimic dynamic functions between cells through sequential perfusion by using Mouse insulinoma 6 (Min6) and Hepatocellular carcinoma (HepG2) as the model cells. These results demonstrated the insulin secreted by Min6 upstream simulated and increased the uptake of glucose by the downstream HepG2 cells. In conclusion, our study provided evidence for the probability of all-in-one fabrication of 3D double-channel perfusable constructs with high simplicity, expansibility, and versability. Our strategy has significant potential for building large-scale tissue constructs for applications in tissue engineering, possibly even in drug screening and regenerative medicine.
Collapse
Affiliation(s)
- Yanrong Yu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmacy, Nanchang University, Nanchang, People's Republic of China.,Jiangxi Provincal Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, People's Republic of China
| | - Renjian Xie
- Jiangxi Provincal Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, People's Republic of China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China.,School of Medical Information Engineering, Gannan Medical University, Ganzhou, People's Republic of China
| | - Yueteng He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, School of Pharmacy, Nanchang University, Nanchang, People's Republic of China.,Jiangxi Provincal Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, People's Republic of China
| | - Furong Zhao
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Quan Zhang
- Jiangxi Academy of Medical Science, Nanchang University, Nanchang, People's Republic of China
| | - Wei Wang
- Jiangxi Academy of Medical Science, Nanchang University, Nanchang, People's Republic of China
| | - Yong Zhang
- Jiangxi Academy of Medical Science, Nanchang University, Nanchang, People's Republic of China
| | - Jiawei Hu
- Jiangxi Provincal Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, People's Republic of China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China
| | - Dan Luo
- Department of Physiology, School of Basic Medicine, Nanchang University, Nanchang, People's Republic of China
| | - Weijie Peng
- Jiangxi Provincal Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou, People's Republic of China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People's Republic of China.,Jiangxi Academy of Medical Science, Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
138
|
Pietrzak D, Kasperek K, Rękawek P, Piątkowska-Chmiel I. The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:1952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer's disease and Parkinson's disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
Affiliation(s)
- Diana Pietrzak
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| | | | | | - Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (K.K.); (P.R.)
| |
Collapse
|
139
|
St Pierre CL, Macias-Velasco JF, Wayhart JP, Yin L, Semenkovich CF, Lawson HA. Genetic, epigenetic, and environmental mechanisms govern allele-specific gene expression. Genome Res 2022; 32:1042-1057. [PMID: 35501130 PMCID: PMC9248887 DOI: 10.1101/gr.276193.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/14/2022] [Indexed: 12/03/2022]
Abstract
Allele-specific expression (ASE) is a phenomenon in which one allele is preferentially expressed over the other. Genetic and epigenetic factors cause ASE by altering the final composition of a gene's product, leading to expression imbalances that can have functional consequences on phenotypes. Environmental signals also impact allele-specific expression, but how they contribute to this cross talk remains understudied. Here, we explored how genotype, parent-of-origin, tissue, sex, and dietary fat simultaneously influence ASE biases. Male and female mice from a F1 reciprocal cross of the LG/J and SM/J strains were fed a high or low fat diet. We harnessed strain-specific variants to distinguish between two ASE classes: parent-of-origin-dependent (unequal expression based on parental origin) and sequence-dependent (unequal expression based on nucleotide identity). We present a comprehensive map of ASE patterns in 2853 genes across three tissues and nine environmental contexts. We found that both ASE classes are highly dependent on tissue and environmental context. They vary across metabolically relevant tissues, between males and females, and in response to dietary fat. We also found 45 genes with inconsistent ASE biases that switched direction across tissues and/or environments. Finally, we integrated ASE and QTL data from published intercrosses of the LG/J and SM/J strains. Our ASE genes are often enriched in QTLs for metabolic and musculoskeletal traits, highlighting how this orthogonal approach can prioritize candidate genes. Together, our results provide novel insights into how genetic, epigenetic, and environmental mechanisms govern allele-specific expression, which is an essential step toward deciphering the genotype-to-phenotype map.
Collapse
Affiliation(s)
| | | | | | - Li Yin
- Washington University in Saint Louis
| | | | | |
Collapse
|
140
|
Mietelska-Porowska A, Domańska J, Want A, Więckowska-Gacek A, Chutorański D, Koperski M, Wojda U. Induction of Brain Insulin Resistance and Alzheimer's Molecular Changes by Western Diet. Int J Mol Sci 2022; 23:ijms23094744. [PMID: 35563135 PMCID: PMC9102094 DOI: 10.3390/ijms23094744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The term Western diet (WD) describes the consumption of large amounts of highly processed foods, rich in simple sugars and saturated fats. Long-term WD feeding leads to insulin resistance, postulated as a risk factor for Alzheimer’s disease (AD). AD is the main cause of progressive dementia characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles consisting of the hyperphosphorylated tau (p-Tau) protein in the brain, starting from the entorhinal cortex and the hippocampus. In this study, we report that WD-derived impairment in insulin signaling induces tau and Aβ brain pathology in wild-type C57BL/6 mice, and that the entorhinal cortex is more sensitive than the hippocampus to the impairment of brain insulin signaling. In the brain areas developing WD-induced insulin resistance, we observed changes in p-Tau(Thr231) localization in neuronal subcellular compartments, indicating progressive tauopathy, and a decrease in amyloid precursor protein levels correlating with the appearance of Aβ peptides. These results suggest that WD promotes the development of AD and may be considered not only a risk factor, but also a modifiable trigger of AD.
Collapse
|
141
|
Takagishi M, Aleogho BM, Okumura M, Ushida K, Yamada Y, Seino Y, Fujimura S, Nakashima K, Shindo A. Nutritional control of thyroid morphogenesis through gastrointestinal hormones. Curr Biol 2022; 32:1485-1496.e4. [PMID: 35196509 DOI: 10.1016/j.cub.2022.01.075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Developing animals absorb nutrients either through the placenta or from ingested food; however, the mechanisms by which embryos use external nutrients for individual organ morphogenesis remain to be elucidated. In this study, we assessed nutrient-dependent thyroid follicle morphogenesis in Xenopus laevis and investigated the role of secreted gastrointestinal (GI) hormones post-feeding. We found that feeding triggers thyroid follicle formation, and the thyroid cells showed transient inactivation of cell proliferation after feeding. In addition, the thyroid cells with multi-lumina were frequently observed in the fed tadpoles. The expression of the particular GI hormone incretin, glucose-dependent insulinotropic polypeptide (GIP), responded to feeding in the intestines of Xenopus tadpoles. Inhibition of dipeptidyl peptidase 4 (Dpp4), a degradative enzyme of incretin, increased the size of the thyroid follicles by facilitating follicular lumina connection, whereas inhibition of the sodium-glucose cotransporter (SGLT) reversed the effects of Dpp4 inhibition. Furthermore, injection of GIP peptide in unfed tadpoles initiated thyroid follicle formation-without requiring feeding-and injection of an incretin receptor antagonist suppressed follicle enlargement in the fed tadpoles. Lastly, GIP receptor knockout in neonatal mice showed smaller follicles in the thyroid, suggesting that the GI hormone-dependent thyroid morphogenesis is conserved in mammals. In conclusion, our study links external nutrients to thyroid morphogenesis and provides new insights into the function of GI hormone as a regulator of organ morphology in developing animals.
Collapse
Affiliation(s)
- Maki Takagishi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Binta Maria Aleogho
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Masako Okumura
- Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kaori Ushida
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichiro Yamada
- Kansai Electric Power Medical Research Institute, 2-1-7 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Yusuke Seino
- Department of Endocrinology, Diabetes and Metabolism, Fujita Health University, 1-98 Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Sayoko Fujimura
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kaoru Nakashima
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Asako Shindo
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; Division of Biological Sciences, Department of Molecular Biology, Nagoya University Graduate School of Science, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
142
|
Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Cells 2022; 11:1228. [PMID: 35406791 PMCID: PMC8998118 DOI: 10.3390/cells11071228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE's functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Rebecca Deprez-Poulain
- INSERM U1177 Drugs and Molecules for Living Systems, Institut Pasteur de Lille, European Genomic Institute for Diabetes, University of Lille, F-59000 Lille, France; (L.L.); (F.L.); (B.D.)
| | | |
Collapse
|
143
|
Zhang X, Schalkwijk CG, Wouters K. Immunometabolism and the modulation of immune responses and host defense: A role for methylglyoxal? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166425. [DOI: 10.1016/j.bbadis.2022.166425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022]
|
144
|
Kitabayashi N, Nakao S, Mita Y, Arisawa K, Hoshi T, Toyama T, Ishii KA, Takamura T, Noguchi N, Saito Y. Role of selenoprotein P expression in the function of pancreatic β cells: Prevention of ferroptosis-like cell death and stress-induced nascent granule degradation. Free Radic Biol Med 2022; 183:89-103. [PMID: 35318102 DOI: 10.1016/j.freeradbiomed.2022.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023]
Abstract
Selenoprotein P (SELENOP) is a major selenium (Se)-containing protein (selenoprotein) in human plasma that is mainly synthesized in the liver. SELENOP transports Se to the cells, while SELENOP synthesized in peripheral tissues is incorporated in a paracrine/autocrine manner to maintain the levels of cellular selenoproteins, called the SELENOP cycle. Pancreatic β cells, responsible for the synthesis and secretion of insulin, are known to express SELENOP. Here, using MIN6 cells as a mouse model for pancreatic β cells and Selenop small interfering (si)RNA, we found that Selenop gene knockdown (KD) resulted in decreased cell viability, cellular pro/insulin levels, insulin secretion, and levels of several cellular selenoproteins, including glutathione peroxidase 4 (Gpx4) and selenoprotein K (Selenok). These dysfunctions induced by Selenop siRNA were recovered by the addition of Se. Ferroptosis-like cell death, regulated by Gpx4, was involved in the decrease of cell viability by Selenop KD, while stress-induced nascent granule degradation (SINGD), regulated by Selenok, was responsible for the decrease in proinsulin. SINGD was also observed in the pancreatic β cells of Selenop knockout mice. These findings indicate a significant role of SELENOP expression for the function of pancreatic β cells by maintaining the levels of cellular selenoproteins such as GPX4 and SELENOK.
Collapse
Affiliation(s)
- Nanako Kitabayashi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Shohei Nakao
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuichiro Mita
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kotoko Arisawa
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takayuki Hoshi
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Takashi Toyama
- Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan
| | - Kiyo-Aki Ishii
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Toshinari Takamura
- Department of Endocrinology and Metabolism, Kanazawa University Graduate School of Medical Sciences, Kanazawa, 920-8640, Japan
| | - Noriko Noguchi
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yoshiro Saito
- The Systems Life Sciences Laboratory, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan; Laboratory of Molecular Biology and Metabolism, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
145
|
van Baar MJB, van Bommel EJM, Smits MM, Touw DJ, Nieuwdorp M, Ten Kate RW, Joles JA, van Raalte DH. Whole-body insulin clearance in people with type 2 diabetes and normal kidney function: Relationship with glomerular filtration rate, renal plasma flow, and insulin sensitivity. J Diabetes Complications 2022; 36:108166. [PMID: 35221224 DOI: 10.1016/j.jdiacomp.2022.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Kidney insulin clearance, proposed to be the main route of extra-hepatic insulin clearance, occurs in tubular cells following glomerular filtration and peritubular uptake, a process that may be impaired in people with type 2 diabetes (T2D) and/or impaired kidney function. Human studies that investigated kidney insulin clearance are limited by the invasive nature of the measurement. Instead, we evaluated relationships between whole-body insulin clearance, and gold-standard measured kidney function and insulin sensitivity in adults with T2D and normal kidney function. RESEARCH DESIGN AND METHODS We determined insulin, inulin/iohexol and para-aminohippuric acid (PAH) clearances during a hyperinsulinemic-euglycemic clamp to measure whole-body insulin clearance and kidney function. Insulin sensitivity was expressed by glucose infusion rate (M value). Associations between whole-body insulin clearance, kidney function and insulin sensitivity were examined using univariable and multivariable linear regressions models. RESULTS We investigated 44 predominantly male (77%) T2D adults aged 63 ± 7, with fat mass 34.5 ± 9 kg, lean body mass 63.0 ± 11.8 kg, and HbA1c 7.4 ± 0.6%. Average whole-body insulin clearance was 1188 ± 358 mL/min. Mean GFR was 110 ± 22 mL/min, mean ERPF 565 ± 141 mL/min, and M value averaged 3.9 ± 2.3 mg/min. Whole-body insulin clearance was positively correlated with lean body mass, ERPF and insulin sensitivity, but not with GFR. ERPF explained 6% of the variance when entered in a nested multivariable linear regression model op top of lean body mass (25%) and insulin sensitivity (15%). CONCLUSIONS In adults with T2D and normal kidney function, whole-body insulin clearance was predicted best by lean body mass and insulin sensitivity, and to a lesser extent by ERPF. GFR was not associated with whole-body insulin clearance. In contrast to prior understanding, this suggests that in this population kidney insulin clearance may not play such a dominant role in whole-body insulin clearance.
Collapse
Affiliation(s)
- Michaël J B van Baar
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands.
| | - Erik J M van Bommel
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands
| | - Mark M Smits
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - Max Nieuwdorp
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands
| | - Reinier W Ten Kate
- Department of Internal Medicine, Spaarne Gasthuis, Haarlem, the Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, the Netherlands
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Centers, Location VUMC, Amsterdam, the Netherlands
| |
Collapse
|
146
|
Hare KS, Penner GB, Steele MA, Wood KM. Oversupplying metabolizable protein during late gestation to beef cattle does not influence ante- or postpartum glucose-insulin kinetics but does affect prepartum insulin resistance indices and colostrum insulin content. J Anim Sci 2022; 100:6556069. [PMID: 35353892 PMCID: PMC9113283 DOI: 10.1093/jas/skac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate whether oversupplying metabolizable protein (MP) during late gestation influences glucose and insulin concentrations, and insulin resistance (IR) in late gestation and early lactation. Crossbred Hereford, first-lactation heifers were individually fed diets to supply 133% (HMP, n = 11) or 100% (CON, n = 10) of their predicted MP requirements for 55 ± 4 d (mean ± SD) prior to calving. All heifers received a common lactation ration formulated to meet postpartum requirements (103% MP and 126% ME). After feed was withheld for 12 h, cattle underwent an intravenous glucose tolerance test (IVGTT) on d -6.7 ± 0.9 and 14.3 ± 0.4 by infusing a 50% dextrose solution (1.36 g glucose/kg BW 0.75) through a jugular catheter with plasma collected at -10, 0 (immediately after infusion), 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, and 120 min, respective to the infusion. Glucose and insulin concentrations were assessed. Insulin resistance indices (homeostasis model of insulin resistance [HOMA-IR], quantitative insulin sensitivity check index [QUICKI], revised quantitative insulin sensitivity check index [RQUICK], and RQUICKI incorporating serum beta-hydroxybutyrate concentrations [RQUICKIBHB]) were calculated from measurements of serum non-esterified fatty acids and beta-hydroxybutyrate and plasma glucose and insulin concentrations on d -34 ± 4, -15 ± 4, 7 ± 1, 28 ± 3, 70 ± 3, and 112 ± 3. Colostrum samples were collected within an hour of calving (prior to suckling) and analyzed for insulin concentration. Data were analyzed as a randomized block design using the PROC GLIMMIX of SAS, accounting for repeated measurements when necessary. Baseline (-10 min) plasma glucose and insulin concentrations were elevated (P ≤ 0.038) for HMP heifers during the antepartum IVGTT, but not (P ≥ 0.25) during the postpartum IVGTT. Plasma glucose and insulin concentrations throughout the antepartum or postpartum IVGTT did not differ (P ≥ 0.18) by prepartum treatment, nor did other glucose and insulin IVGTT parameters (i.e., max concentration and time to reach max concentration, nadir values, clearance rates and half-lives, area-under-the-curve, and insulin sensitivity index; P ≥ 0.20). Antepartum IVGTT IR indices indicated that HMP heifers were more (P ≤ 0.011) IR than their counterparts. Similarly, the prepartum HOMA-IR was greater (P = 0.033) for HMP heifers, suggesting increased IR. Postpartum IR indices did not (P ≥ 0.25) indicate that prepartum MP consumption impacted postpartum IR. Colostrum insulin concentration was increased (P = 0.004) by nearly 2-fold for HMP relative to CON heifers. These data demonstrate that prepartum MP overfeeding alters baseline glucose-insulin concentrations in late-pregnant beef heifers and increases colostrum insulin content without having carry-over effects on postpartum glucose-insulin concentrations and IR.
Collapse
Affiliation(s)
- Koryn S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| | - Gregory B Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| | - Katharine M Wood
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| |
Collapse
|
147
|
Dysmetabolism and Neurodegeneration: Trick or Treat? Nutrients 2022; 14:nu14071425. [PMID: 35406040 PMCID: PMC9003269 DOI: 10.3390/nu14071425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests the existence of a strong link between metabolic syndrome and neurodegeneration. Indeed, epidemiologic studies have described solid associations between metabolic syndrome and neurodegeneration, whereas animal models contributed for the clarification of the mechanistic underlying the complex relationships between these conditions, having the development of an insulin resistance state a pivotal role in this relationship. Herein, we review in a concise manner the association between metabolic syndrome and neurodegeneration. We start by providing concepts regarding the role of insulin and insulin signaling pathways as well as the pathophysiological mechanisms that are in the genesis of metabolic diseases. Then, we focus on the role of insulin in the brain, with special attention to its function in the regulation of brain glucose metabolism, feeding, and cognition. Moreover, we extensively report on the association between neurodegeneration and metabolic diseases, with a particular emphasis on the evidence observed in animal models of dysmetabolism induced by hypercaloric diets. We also debate on strategies to prevent and/or delay neurodegeneration through the normalization of whole-body glucose homeostasis, particularly via the modulation of the carotid bodies, organs known to be key in connecting the periphery with the brain.
Collapse
|
148
|
Martinou E, Stefanova I, Iosif E, Angelidi AM. Neurohormonal Changes in the Gut-Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci 2022; 23:3339. [PMID: 35328759 PMCID: PMC8954280 DOI: 10.3390/ijms23063339] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity is a complex, multifactorial disease that is a major public health issue worldwide. Currently approved anti-obesity medications and lifestyle interventions lack the efficacy and durability needed to combat obesity, especially in individuals with more severe forms or coexisting metabolic disorders, such as poorly controlled type 2 diabetes. Bariatric surgery is considered an effective therapeutic modality with sustained weight loss and metabolic benefits. Numerous genetic and environmental factors have been associated with the pathogenesis of obesity, while cumulative evidence has highlighted the gut-brain axis as a complex bidirectional communication axis that plays a crucial role in energy homeostasis. This has led to increased research on the roles of neuroendocrine signaling pathways and various gastrointestinal peptides as key mediators of the beneficial effects following weight-loss surgery. The accumulate evidence suggests that the development of gut-peptide-based agents can mimic the effects of bariatric surgery and thus is a highly promising treatment strategy that could be explored in future research. This article aims to elucidate the potential underlying neuroendocrine mechanisms of the gut-brain axis and comprehensively review the observed changes of gut hormones associated with bariatric surgery. Moreover, the emerging role of post-bariatric gut microbiota modulation is briefly discussed.
Collapse
Affiliation(s)
- Eirini Martinou
- Department of Upper Gastrointestinal Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Irena Stefanova
- Department of General Surgery, Frimley Health NHS Foundation Trust, Camberley GU16 7UJ, UK;
| | - Evangelia Iosif
- Department of General Surgery, Royal Surrey County Hospital, Guildford GU2 7XX, UK;
| | - Angeliki M. Angelidi
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
149
|
Ghosh S, Leng W, Wilsch-Bräuninger M, Barrera-Velázquez M, Léopold P, Eaton S. A local insulin reservoir in Drosophila alpha cell homologs ensures developmental progression under nutrient shortage. Curr Biol 2022; 32:1788-1797.e5. [PMID: 35316653 DOI: 10.1016/j.cub.2022.02.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022]
Abstract
Insulin/insulin-like growth factor (IGF) signaling (IIS) controls many aspects of development and physiology. In Drosophila, a conserved family of insulin-like peptides called Dilps is produced by brain neurosecretory cells, and it regulates organismal growth and developmental timing. To accomplish these systemic functions, the Dilps are secreted into the general circulation, and they signal to peripheral tissues in an endocrine fashion. Here, we describe the local uptake and storage of Dilps in the corpora cardiaca (CC), an endocrine organ composed of alpha cell homologs known to produce the glucagon-like adipokinetic hormone (AKH). We show that Dilp uptake by the CC relies on the expression of an IGF-binding protein called ImpL2. Following their uptake, immunogold staining demonstrates that Dilps are co-packaged with AKH in dense-core vesicles for secretion. In response to nutrient shortage, this specific Dilp reservoir is released and activates IIS in a paracrine manner in the prothoracic gland. This stimulates the production of the steroid hormone ecdysone and initiates entry into pupal development. We therefore uncover a sparing mechanism whereby insulin stores in CC serve to locally activate IIS and the production of ecdysone in the PG, accelerating developmental progression in adverse food conditions.
Collapse
Affiliation(s)
- Suhrid Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| | - Weihua Leng
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Michaela Wilsch-Bräuninger
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mariana Barrera-Velázquez
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Undergraduate Program on Genomic Sciences, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos 62210, Mexico
| | - Pierre Léopold
- Institut Curie, PSL Research University, CNRS UMR3215, Inserm U934, 26 Rue d'Ulm, 75005 Paris, France.
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany; Biotechnologisches Zentrum, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| |
Collapse
|
150
|
Pradhan SK, Li Y, Gantenbein AR, Angst F, Lehmann S, Shaban H. Wen Dan Tang: A Potential Jing Fang Decoction for Headache Disorders? MEDICINES (BASEL, SWITZERLAND) 2022; 9:22. [PMID: 35323721 PMCID: PMC8955743 DOI: 10.3390/medicines9030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Chinese herbal medicine is considered relatively safe, inexpensive, and easily accessible. Wen Dan Tang (WDT), a Jing Fang ancient classical Chinese herbal formula with a broad indication profile has been used for several centuries in China to treat various illnesses. QUESTION Are there evidence-based clinical trials that show that WDT has a significant impact on the treatment of various diseases, especially in patients with migraine and tension-type headaches (TTH)? METHODS This study is based on an online database search using PubMed, Medline, Cochrane Library, AcuTrials, Embase, Semantic Scholar, Jstor, internet research, and review of ancient and modern Chinese medical textbooks regarding WDT and its compounds. RESULTS There were no studies on WDT in migraine and TTH; therefore, this work gathers and describes data for every single compound in the formula. CONCLUSION This study suggests that the bioactive compounds found in WDT composition show potential in treating patients with neurological, psychiatric disorders, cardiovascular diseases, metabolic syndrome, and digestive disorders. Some coherence between WDT in headache reduction and improvements in the quality of life in patients with migraines and TTH could be evaluated, showing positive results of WDT in these patients.
Collapse
Affiliation(s)
- Saroj K. Pradhan
- Research Department Rehaklinik, TCM Ming Dao, ZURZACH Care, 5330 Bad Zurzach, Switzerland;
- Research Department, Swiss TCM Academy, 5330 Bad Zurzach, Switzerland
- Research Department, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yiming Li
- Research Department Rehaklinik, TCM Ming Dao, ZURZACH Care, 5330 Bad Zurzach, Switzerland;
- Research Department, Swiss TCM Academy, 5330 Bad Zurzach, Switzerland
- Research Department, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Andreas R. Gantenbein
- Neurology & Neurorehabilitation Department Rehaklinik, ZURZACH Care, 5330 Bad Zurzach, Switzerland;
| | - Felix Angst
- Research Department Rehaklinik, ZURZACH Care, 5330 Bad Zurzach, Switzerland; (F.A.); (S.L.)
| | - Susanne Lehmann
- Research Department Rehaklinik, ZURZACH Care, 5330 Bad Zurzach, Switzerland; (F.A.); (S.L.)
| | - Hamdy Shaban
- Department of Private Psychiatry Clinic of UPK, University Psychiatric Clinics, 4002 Basel, Switzerland;
| |
Collapse
|