101
|
Gold MR. Intermediary signaling effectors coupling the B-cell receptor to the nucleus. Curr Top Microbiol Immunol 1999; 245:77-134. [PMID: 10533311 DOI: 10.1007/978-3-642-57066-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
102
|
Aifantis I, Pivniouk VI, Gärtner F, Feinberg J, Swat W, Alt FW, von Boehmer H, Geha RS. Allelic exclusion of the T cell receptor beta locus requires the SH2 domain-containing leukocyte protein (SLP)-76 adaptor protein. J Exp Med 1999; 190:1093-102. [PMID: 10523607 PMCID: PMC2195661 DOI: 10.1084/jem.190.8.1093] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/1999] [Accepted: 08/10/1999] [Indexed: 01/18/2023] Open
Abstract
Signaling via the pre-T cell receptor (TCR) is required for the proliferative expansion and maturation of CD4(-)CD8(-) double-negative (DN) thymocytes into CD4(+)CD8(+) double-positive (DP) cells and for TCR-beta allelic exclusion. The adaptor protein SH2 domain-containing leukocyte protein (SLP)-76 has been shown to play a crucial role in thymic development, because thymocytes of SLP-76(-/-) mice are arrested at the CD25(+)CD44(-) DN stage. Here we show that SLP-76(-/-) DN thymocytes express the pre-TCR on their surfaces and that introduction of a TCR-alpha/beta transgene into the SLP-76(-/-) background fails to cause expansion of DN thymocytes or developmental progression to the DP stage. Moreover, analysis of TCR-beta rearrangement in SLP-76(-/-) TCR-transgenic mice or in single CD25(+)CD44(-) DN cells from SLP-76(-/-) mice indicates an essential role of SLP-76 in TCR-beta allelic exclusion.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Alleles
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Cell Line
- Flow Cytometry
- Gene Expression Regulation
- Gene Rearrangement
- Mice
- Mice, Transgenic
- Phosphoproteins/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Signal Transduction/immunology
- src Homology Domains/immunology
Collapse
Affiliation(s)
- Iannis Aifantis
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Vadim I. Pivniouk
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frank Gärtner
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jacqueline Feinberg
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Wojciech Swat
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick W. Alt
- Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Harald von Boehmer
- Institut National de la Santé et Recherche Medicale (INSERM) U373, Hôpital Necker Enfants-Malades, Paris cedex 15, France
| | - Raif S. Geha
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
103
|
Marie-Cardine A, Schraven B. Coupling the TCR to downstream signalling pathways: the role of cytoplasmic and transmembrane adaptor proteins. Cell Signal 1999; 11:705-12. [PMID: 10574324 DOI: 10.1016/s0898-6568(99)00047-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Engagement of the T-cell receptor (TCR) complex initiates a cascade of intracellular events ultimately leading to T-cell proliferation and differentiation. One of the first detectable consequences of TCR triggering is the activation of cytoplasmic protein kinases which, through phosphorylation of specific substrates, couple the TCR to downstream signalling cascades. Although it is well established that activation of the Ras- and the calcium-dependent calcineurin pathway is required for the achievement of T-cell activation, the precise mechanism as to how the TCR is connected to these intracellular effector molecules is still unclear. Major progress has been made in this regard with the molecular characterization of novel cytoplasmic and transmembrane molecules called adaptor proteins which integrate TCR-mediated signals at the intracellular level thus allowing fine tuning of T-cell responses.
Collapse
Affiliation(s)
- A Marie-Cardine
- Immunomodulation Laboratory of the Institute for Immunology, Ruprecht-Karls University of Heidelberg, Germany
| | | |
Collapse
|
104
|
Sanzenbacher R, Kabelitz D, Janssen O. SLP-76 Binding to p56 lck: A Role for SLP-76 in CD4-Induced Desensitization of the TCR/CD3 Signaling Complex. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Nonreceptor protein tyrosine kinases and associated substrates play a pivotal role in Ag receptor stimulation of resting cells and in the initiation of activation-induced cell death (AICD) of preactivated T cells. CD4-associated p56lck has been implicated not only in the activation of primary T cells, but also in the inhibition of T cell responses. We have previously shown that CD4+ T cell clones can be rescued from AICD when surface CD4 is engaged before the TCR stimulus. In this study, we show that prevention of AICD is associated with a CD4-dependent inhibition of TCR-triggered tyrosine phosphorylation of the Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76) and Vav. We provide evidence for a SLP-76 interaction with Src homology 3 domains of p56lck and identify amino acids 185–194 of SLP-76 as relevant docking site. In view of the multiple functions of p56lck and SLP-76/Vav in the initiation of TCR/CD3/CD4 signaling, we propose a model for the CD4-dependent inhibition of TCR signaling and AICD of preactivated T cells. Our data suggest that preformed activation complexes of adapter proteins and enzymes in the vicinity of the CD4/p56lck complex are no longer available for the TCR signal when CD4 receptors are engaged before TCR stimulation.
Collapse
Affiliation(s)
| | - Dieter Kabelitz
- Department of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| | - Ottmar Janssen
- Department of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
105
|
Chau LA, Madrenas J. Phospho-LAT-Independent Activation of the Ras-Mitogen-Activated Protein Kinase Pathway: A Differential Recruitment Model of TCR Partial Agonist Signaling. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Stimulation of mature T cells with agonist ligands of the Ag receptor (TCR) causes rapid phosphorylation of tyrosine-based activation motifs in the intracellular portion of TCR-ζ and CD3 and activation of several intracellular signaling cascades. Coordinate activation of these pathways is dependent on Lck- and ZAP-70-mediated tyrosine phosphorylation of a 36-kDa linker for activation of T cells and subsequent recruitment of phospholipase C-γ1, Grb2-SOS, and SLP-76-vav. Here, we show that TCR partial agonist ligands can selectively activate one of these pathways, the Ras-mitogen-activated protein kinase pathway, by inducing recruitment of Grb2-SOS complexes to incompletely phosphorylated p21 phospho-TCR-ζ. This bypasses the need for activation of Lck and ZAP-70, and for phosphorylation of the linker for activation of T cells to activate Ras. We propose a general model in which differential recruitment of activating complexes away from transmembrane linker proteins may determine selective activation of a given signaling pathway.
Collapse
Affiliation(s)
- Luan A. Chau
- *Transplantation and Immunobiology Group, John P. Robarts Research Institute, and
| | - Joaquín Madrenas
- *Transplantation and Immunobiology Group, John P. Robarts Research Institute, and
- †Departments of Microbiology and Immunology and of Medicine, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
106
|
Portolés P, de Ojeda G, Criado G, Fernández-Centeno E, Rojo JM. Antibody-induced CD3-CD4 coligation inhibits TCR/CD3 activation in the absence of costimulatory signals in normal mouse CD4(+) T lymphocytes. Cell Immunol 1999; 195:96-109. [PMID: 10448009 DOI: 10.1006/cimm.1999.1529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of CD3-CD4 coligation on CD3-mediated activation of normal mouse CD4(+) T lymphocytes has been analyzed in the absence of exogenous lymphokines. If anti-CD3 and anti-CD4 antibodies are adsorbed to culture wells by means of previously adsorbed anti-Ig antibodies (indirect binding), CD3-CD4 coligation inhibits activation measured as cell proliferation or as secretion of IL-2, IL-4, and IFN-gamma. Addition of IL-2, anti-CD28 antibodies, or phorbol esters, but not IL-1, IL-4, or ionomycin, blocked CD4-mediated inhibition and restored the response to levels equal or higher than those of cultures activated by anti-CD3 alone. In contrast, CD3-CD4 coligation by antibodies directly adsorbed to culture wells potentiated anti-CD3-induced activation, either in the absence or in the presence of exogenous costimuli. Similar results were observed when CD4(+) T cells of naive phenotype (CD44(low), CD45RB(high)) were used in the experiments. The analysis of early tyrosine phosphorylation in CD4(+) T cells shows that phosphorylation of many cell substrates is clearly enhanced upon CD3-CD4 coligation using indirectly or directly bound antibodies, yet certain substrates are mainly phosphorylated under inhibitory conditions. Although CD28 ligation does not produce any clear change in the tyrosine phosphorylation pattern in lysates from cells activated by indirectly bound anti-CD3 plus anti-CD4 antibodies, the analysis of active forms of the MAP kinase ERK suggests that downstream signaling pathways involved in IL-2 gene activation can be differentially activated depending on the direct or indirect CD3-CD4 adsorption and CD28 ligation.
Collapse
Affiliation(s)
- P Portolés
- Centro Nacional de Biología Fundamental, Instituto de Salud Carlos III-C.S.I.C., Madrid, E-28220, Spain
| | | | | | | | | |
Collapse
|
107
|
Wiest DL, Berger MA, Carleton M. Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand? Semin Immunol 1999; 11:251-62. [PMID: 10441211 DOI: 10.1006/smim.1999.0181] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Beta-selection refers to a developmental checkpoint linking thymocyte survival to the outcome of antigen receptor gene rearrangement. Immature thymocytes that productively rear-range the gene segments of the TCRbeta locus undergo proliferative expansion and mature to the CD4(+)CD8(+)stage; those failing to do so die by apoptosis. How are these precursor cells alerted that TCRbeta rearrangement has been productive? While it is clear that this process involves signals transduced by a surrogate form of the TCR termed the pre-TCR, it remains unclear how pre-TCR signals are triggered. In this review, we will discuss the implications of recent experimental attempts to address this issue, as well as how pre-TCR activation is linked to the changes in gene expression that underlie thymocyte development.
Collapse
Affiliation(s)
- D L Wiest
- Division of Basic Sciences, Immunobiology Working Group, Fox Chase Cancer Center, 7701 Burholme Ave., Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
108
|
Gross BS, Melford SK, Watson SP. Evidence that phospholipase C-gamma2 interacts with SLP-76, Syk, Lyn, LAT and the Fc receptor gamma-chain after stimulation of the collagen receptor glycoprotein VI in human platelets. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:612-23. [PMID: 10469124 DOI: 10.1046/j.1432-1327.1999.00560.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet activation by collagen is mediated by the sequential tyrosine phosphorylation of the Fc receptor gamma-chain (FcR gamma-chain), which is part of the collagen receptor glycoprotein VI, the tyrosine kinase Syk and phospholipase C-gamma2 (PLC-gamma2). In this study tyrosine-phosphorylated proteins that associate with PLC-gamma2 after stimulation by a collagen-related peptide (CRP) were characterized using glutathione S-transferase fusion proteins of PLC-gamma2 Src homology (SH) domains and by immunoprecipitation of endogenous PLC-gamma2. The majority of the tyrosine-phosphorylated proteins that associate with PLC-gamma2 bind to its C-terminal SH2 domain. These were found to include PLC-gamma2, Syk, SH2-domain-containing leucocyte protein of 76 kDa (SLP-76), Lyn, linker for activation of T cells (LAT) and the FcR gamma-chain. Direct association was detected between PLC-gamma2 and SLP-76, and between PLC-gamma2 and LAT upon CRP stimulation of platelets by far-Western blotting. FcR gamma-chain and Lyn were found to co-immunoprecipitate with PLC-gamma2 as well as with unidentified 110-kDa and 75-kDa phosphoproteins. The absence of an in vivo association between Syk and PLC-gamma2 in platelets is in contrast with that for PLC-gamma1 and Syk in B cells. The in vivo function of PLC-gamma2 SH2 domains was examined through measurement of Ca2+ increases in mouse megakaryocytes that had been microinjected with recombinant proteins. This revealed that the C-terminal SH2 domain is involved in the regulation of PLC-gamma2. These data indicate that the C-terminal SH2 domain of PLC-gamma2 is important for PLC-gamma2 regulation through possible interactions with SLP-76, Syk, Lyn, LAT and the FcR gamma-chain.
Collapse
Affiliation(s)
- B S Gross
- Department of Pharmacology, University of Oxford, UK
| | | | | |
Collapse
|
109
|
Abstract
The developmental fate of T cells is largely controlled by the nature and success of signals mediated by the pre-T cell receptor (TCR) and TCR complexes. These intracellular signals are regulated by cascades of protein tyrosine phosphorylations initiated following ligand binding to the pre-TCR or TCR complexes. The phosphorylation cascades are primarily orchestrated by two distinct families of protein tyrosine kinases (PTKs), the Src- and the Syk/ZAP-70-families. Germline gene targeting experiments, several human immunodeficiencies, and somatic cell mutants have all contributed to our understanding of how these families of kinases coordinate their actions to promote signaling. Upon activation, the PTKs transmit their signals to a number of newly described adaptor proteins including LAT, SLP-76, and vav, among others. The following review combines results derived from different experimental strategies to examine the contributions of the PTKs and the adaptor molecules to pre-TCR and TCR signaling processes.
Collapse
Affiliation(s)
- N S van Oers
- Center for Immunology and the Department of Microbiology, UT Southwestern Medical Center, Room NA7.201, 6000 Harry Hines Blvd., Dallas, TX 75235-9093, USA
| |
Collapse
|
110
|
Raab M, Kang H, da Silva A, Zhu X, Rudd CE. FYN-T-FYB-SLP-76 interactions define a T-cell receptor zeta/CD3-mediated tyrosine phosphorylation pathway that up-regulates interleukin 2 transcription in T-cells. J Biol Chem 1999; 274:21170-9. [PMID: 10409671 DOI: 10.1074/jbc.274.30.21170] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinases p56(Lck), SYK, and ZAP-70 and downstream adaptors LAT and SLP-76 have been implicated as essential components in T-cell activation. Another lymphoid-specific adaptor FYB/SLAP has also been identified as a predominant binding partner of SLP-76 and the Src kinase FYN-T, although its role in the activation process has been unclear. In this study, we demonstrate that FYN-T selectively phosphorylates FYB providing a template for the recruitment of FYN-T and SLP-76 SH2 domain binding. This interaction is unusual in its distinct cytoplasmic localization and its long term stable kinetics of phosphorylation. Furthermore, we demonstrate for the first time that the co-expression of all three components of the FYN-T-FYB-SLP-76 matrix can synergistically up-regulate T-cell receptor-driven interleukin 2 transcription activity. These findings document the existence of a T-cell receptor-regulated FYN-T-FYB pathway that interfaces with the adaptor SLP-76 and up-regulates lymphokine production in T-cells.
Collapse
Affiliation(s)
- M Raab
- Division of Tumor Immunology, Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
111
|
Abstract
The adapter protein SLP-76 is required for T cell development and TCR signal transduction. SLP-76 is also expressed in NK cells, yet splenic populations of NK cells develop normally in SLP-76-deficient mice. We examined the effects of SLP-76 deficiency upon cellular activation through studies of NK function in SLP-76(-/-) mice. This study presents evidence that NK populations in both spleen and liver of SLP-76(-/-) mice remain intact. Natural cytotoxic responses of SLP-76(-/-) splenocytes proceed in a manner comparable to those of wild-type control splenocytes. Similar to controls, SLP-76(-/-) splenocytes exhibit enhanced survival and augmented cytotoxic capacity after in vitro culture with IL-2. IL-2-stimulated SLP-76(-/-) splenocytes also retain normal antibody-dependent cellular cytotoxicity and the ability to secrete IFN-gamma in response to IL-12 stimulation. These results indicate that, unlike events stimulated by TCR engagement, signaling cascades engaged by IL-2 and IL-12 receptors, by Fc gammaRIIIA (which mediates antibody-dependent cellular cytotoxicity), and by natural cytotoxicity-associated receptors on murine NK cells can occur independently of SLP-76.
Collapse
Affiliation(s)
- E J Peterson
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | |
Collapse
|
112
|
Yamazaki T, Hamano Y, Tashiro H, Itoh K, Nakano H, Miyatake S, Saito T. CAST, a novel CD3epsilon-binding protein transducing activation signal for interleukin-2 production in T cells. J Biol Chem 1999; 274:18173-80. [PMID: 10373416 DOI: 10.1074/jbc.274.26.18173] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigen recognition through T cell receptor (TCR)-CD3 complex transduces signals into T cells, which regulate activation, function, and differentiation of T cells. The TCR-CD3 complex is composed of two signaling modules represented by CD3zeta and CD3epsilon. Signaling through CD3zeta has been extensively analyzed, but that via CD3epsilon, which is also crucial in immature thymocyte development, is still not clearly understood. We isolated cDNA encoding a novel CD3epsilon-binding protein CAST. CAST specifically interacts in vivo and in vitro with CD3epsilon but not with CD3zeta or FcRgamma via a unique membrane-proximal region of CD3epsilon. CAST is composed of 512 amino acids including a single tyrosine and undergoes tyrosine phosphorylation upon TCR stimulation. Overexpression of two dominant-negative types of CAST, a minimum CD3epsilon-binding domain and a tyrosine-mutant, strongly suppressed NFAT activation and interleukin-2 production. These results demonstrate that CAST serves as a component of preformed TCR complex and transduces activation signals upon TCR stimulation and represents a new signaling pathway via the CD3epsilon-containing TCR signaling module.
Collapse
Affiliation(s)
- T Yamazaki
- Department of Molecular Genetics, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | |
Collapse
|
113
|
Pivniouk VI, Martin TR, Lu-Kuo JM, Katz HR, Oettgen HC, Geha RS. SLP-76 deficiency impairs signaling via the high-affinity IgE receptor in mast cells. J Clin Invest 1999; 103:1737-43. [PMID: 10377180 PMCID: PMC408386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
SLP-76 is an adapter protein expressed in T cells and myeloid cells that is a substrate for ZAP-70 and Syk. SLP-76-deficient mice exhibit a profound block in T-cell development. We found that although SLP-76 is expressed in mouse mast cells, SLP-76(-/-) mice have normal numbers of mast cells in their skin and bronchi. SLP-76(-/-) mice are resistant to IgE-mediated passive anaphylaxis. SLP-76(-/-) mice sensitized with IgE anti-dinitrophenyl (DNP) and then challenged with DNP-HSA developed only mild and transient tachycardia, failed to increase their plasma histamine level, and all survived the antigen challenge. Bone marrow-derived mast cells (BMMCs) from SLP76(-/-) mice failed to release beta-hexosaminidase and to secrete IL-6 after FcepsilonRI cross-linking. Tyrosine phosphorylation of phospholipase C-gamma1 (but not of Syk) and calcium mobilization in response to IgE cross-linking were reduced in SLP-76-deficient BMMCs. These results suggest that SLP-76 plays an important role in FcepsilonRI-mediated signaling in mast cells.
Collapse
Affiliation(s)
- V I Pivniouk
- Division of Immunology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
114
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
115
|
Clements JL, Boerth NJ, Lee JR, Koretzky GA. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu Rev Immunol 1999; 17:89-108. [PMID: 10358754 DOI: 10.1146/annurev.immunol.17.1.89] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The initiation of biochemical signal transduction following ligation of surface receptors with intrinsic cytoplasmic tyrosine kinase activity is common for many cell types. T lymphocytes also require activation of tyrosine kinases following T cell receptor (TCR) ligation for maximal stimulation. However, the TCR has no intrinsic tyrosine kinase activity. Instead, the TCR must rely on cytoplasmic tyrosine kinases that localize to the TCR complex and initiate TCR-mediated signaling events. Although much has been learned regarding how these cytosolic tyrosine kinases are activated and recruited to the TCR complex, relatively little is understood about how these initial events are translated into transcriptional activation of genes that regulate cytokine production, cell proliferation, and cell death. Recently, it has become clear that the class of intracellular molecules known collectively as adapter proteins, molecules with modular domains capable of recruiting additional proteins but that exhibit no intrinsic enzymatic activity, serve to couple proximal biochemical events initiated by TCR ligation with more distal signaling pathways.
Collapse
Affiliation(s)
- J L Clements
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA.
| | | | | | | |
Collapse
|
116
|
Fang N, Koretzky GA. SLP-76 and Vav function in separate, but overlapping pathways to augment interleukin-2 promoter activity. J Biol Chem 1999; 274:16206-12. [PMID: 10347175 DOI: 10.1074/jbc.274.23.16206] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SLP-76 and Vav, two hematopoietic cell specific molecules, are critical for T cell development and activation. Following T cell antigen receptor stimulation, SLP-76 and Vav both undergo tyrosine phosphorylation and associate with each other via the SH2 domain of Vav and phosphorylated tyrosines of SLP-76. Furthermore, SLP-76 and Vav have a synergistic effect on interleukin (IL)-2 promoter activity in T cells. In this report, we show that two tyrosines, Tyr-113 and Tyr-128, of SLP-76 are required for its binding to Vav, both in vitro and in intact cells. Surprisingly, we find also that the interaction between SLP-76 and Vav is not required for their cooperation in augmenting IL-2 promoter activity, as the two molecules appear to function in different signaling pathways upstream of IL-2 gene expression. Overexpression of SLP-76 in the Jurkat T cell line potentiates the activities of both nuclear factor of activated T cells and AP-1 transcription factors. In contrast, overexpression of Vav leads to enhanced nuclear factor of activated T cells activity without affecting AP-1. Additionally, overexpression of Vav, but not SLP-76, augments CD28-induced IL-2 promoter activity. These findings suggest that the synergy between SLP-76 and Vav in regulating IL-2 gene expression reflects the cooperation between different signaling pathways.
Collapse
Affiliation(s)
- N Fang
- Graduate Program in Immunology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
117
|
Wollscheid B, Reth M, Wienands J. Characterization of the B cell-specific adaptor SLP-65 and other protein tyrosine kinase substrates by two-dimensional gel electrophoresis. Immunol Lett 1999; 68:95-9. [PMID: 10397162 DOI: 10.1016/s0165-2478(99)00036-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The identification of substrates for protein tyrosine kinases in B cells is a critical step to a better understanding of the molecular mechanism(s) of lymphocyte activation through the antigen receptor. The substrate proteins were immunopurified from stimulated B cells and separated by two-dimensional gel electrophoresis techniques using either the isoelectric focussing (IEF)/SDS-PAGE or the non-equilibrium PH gradient electrophoresis (NEPHGE)/SDS-PAGE method. The biochemical characteristics of the proteins (isoelectric point and relative molecular mass) obtained and the subsequent use of antibodies that are specific for different cellular proteins confirmed the participation of HS1, Vav, Ig-alpha, Lyn and Btk in antigen receptor-mediated signal transduction. The heat shock cognate protein HSC70 was identified as a novel substrate protein in activated B cells. An important signaling function has previously been suggested for a 65-kDa protein (p65), whose phosphorylation can be detected before that of other substrate proteins. The analysis identified p65 as a so far unknown protein. Based on p65 peptide sequences, the full length cDNA was isolated and found to encode a B cell-specific adaptor protein, called SLP-65.
Collapse
Affiliation(s)
- B Wollscheid
- Department of Molecular Immunology, Biology III, University of Freiburg and Max-Planck-Institute for Immunobiology, Germany
| | | | | |
Collapse
|
118
|
Asada H, Ishii N, Sasaki Y, Endo K, Kasai H, Tanaka N, Takeshita T, Tsuchiya S, Konno T, Sugamura K. Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J Exp Med 1999; 189:1383-90. [PMID: 10224278 PMCID: PMC2193052 DOI: 10.1084/jem.189.9.1383] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We molecularly cloned a new Grb2 family member, named Grf40, containing the common SH3-SH2-SH3 motif. Expression of Grf40 is predominant in hematopoietic cells, particularly T cells. Grf40 binds to the SH2 domain-containing leukocyte protein of 76 kD (SLP-76) via its SH3 domain more tightly than Grb2. Incidentally, Grf40 binds to linker for activation of T cells (LAT) possibly via its SH2 domain. Overexpression of wild-type Grf40 in Jurkat cells induced a significant increase of SLP-76-dependent interleukin (IL)-2 promoter and nuclear factor of activated T cell (NF-AT) activation upon T cell receptor (TCR) stimulation, whereas the COOH-terminal SH3-deleted Grf40 mutant lacked any recognizable increase in IL-2 promoter activity. Furthermore, the SH2-deleted Grf40 mutant led to a marked inhibition of these regulatory activities, the effect of which is apparently stronger than that of the SH2-deleted Grb2 mutant. Our data suggest that Grf40 is an adaptor molecule involved in TCR-mediated signaling through a more efficient interaction than Grb2 with SLP-76 and LAT.
Collapse
Affiliation(s)
- H Asada
- Department of Microbiology and Immunology, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Boerth NJ, Koretzky GA. Adapter molecules in T cell receptor signaling. Inflamm Bowel Dis 1999; 5:107-18. [PMID: 10338380 DOI: 10.1097/00054725-199905000-00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- N J Boerth
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
120
|
Law CL, Ewings MK, Chaudhary PM, Solow SA, Yun TJ, Marshall AJ, Hood L, Clark EA. GrpL, a Grb2-related adaptor protein, interacts with SLP-76 to regulate nuclear factor of activated T cell activation. J Exp Med 1999; 189:1243-53. [PMID: 10209041 PMCID: PMC2193019 DOI: 10.1084/jem.189.8.1243] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Propagation of signals from the T cell antigen receptor (TCR) involves a number of adaptor molecules. SH2 domain-containing protein 76 (SLP-76) interacts with the guanine nucleotide exchange factor Vav to activate the nuclear factor of activated cells (NF-AT), and its expression is required for normal T cell development. We report the cloning and characterization of a novel Grb2-like adaptor molecule designated as Grb2-related protein of the lymphoid system (GrpL). Expression of GrpL is restricted to hematopoietic tissues, and it is distinguished from Grb2 by having a proline-rich region. GrpL can be coimmunoprecipitated with SLP-76 but not with Sos1 or Sos2 from Jurkat cell lysates. In contrast, Grb2 can be coimmunoprecipitated with Sos1 and Sos2 but not with SLP-76. Moreover, tyrosine-phosphorylated LAT/pp36/38 in detergent lysates prepared from anti-CD3 stimulated T cells associated with Grb2 but not GrpL. These data reveal the presence of distinct complexes involving GrpL and Grb2 in T cells. A functional role of the GrpL-SLP-76 complex is suggested by the ability of GrpL to act alone or in concert with SLP-76 to augment NF-AT activation in Jurkat T cells.
Collapse
Affiliation(s)
- C L Law
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
The Nck adaptor protein links tyrosine kinases or their substrates to proteins containing proline-rich motifs. Here we show that in activated T cells two tyrosine phosphoproteins of 75 and 120 kDa are co-immunoprecipitated with polyclonal antibodies against Nck. Analysis of Nck immunoprecipitates with various candidate antibodies revealed that the 75-kDa tyrosine phosphoprotein is the SH2 domain-containing leukocyte protein referred to as SLP-76. In vitro experiments show that the interaction between Nck and SLP-76 is mediated via the Nck SH2 domain. Using specific phosphopeptides corresponding to the major tyrosine phosphorylation sites of SLP-76, it was found that Y113 and Y128 phosphopeptides could compete binding of SLP-76 to the SH2 domain of Nck. In addition, the 120-kDa tyrosine phosphoprotein was recognized by an antibody raised against Cbl, a proto-oncogene product that has been previously found to be associated with Nck. These results suggest that the Nck adaptor protein interacts with key signaling molecules and may play an important role in activation of T lymphocytes.
Collapse
Affiliation(s)
- L Wunderlich
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | |
Collapse
|
122
|
Gross BS, Lee JR, Clements JL, Turner M, Tybulewicz VL, Findell PR, Koretzky GA, Watson SP. Tyrosine phosphorylation of SLP-76 is downstream of Syk following stimulation of the collagen receptor in platelets. J Biol Chem 1999; 274:5963-71. [PMID: 10026222 DOI: 10.1074/jbc.274.9.5963] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen-related peptide (CRP), a collagen homologue, induces platelet activation through a tyrosine kinase-dependent pathway, leading to sequential tyrosine phosphorylation of Fc receptor (FcR) gamma-chain, Syk, and phospholipase C-gamma2. Here we report that CRP and the platelet low affinity immune receptor FcgammaRIIA stimulate tyrosine phosphorylation of the T cell adapter SLP-76, whereas the G protein-coupled receptor agonist thrombin induces only minor tyrosine phosphorylation. This suggests that SLP-76 has a specific role downstream of receptors that signal via an immunoreceptor tyrosine-based activation motif. Immunoprecipitation studies demonstrate association of SLP-76 with SLAP-130, Vav, Fyn, Lyn, and the FcR gamma-chain in CRP-stimulated platelets. Several of these proteins, including SLP-76, undergo tyrosine phosphorylation in in vitro kinase assays performed on SLP-76 immunoprecipitates. Tyrosine phosphorylation of all of these proteins in the in vitro kinase assay was abrogated by the Src family kinase inhibitor PP1, suggesting that it is mediated by either Fyn or Lyn. The physiological significance of this is uncertain, however, since tyrosine phosphorylation of SLP-76 in vivo is not altered in either Fyn- or Lyn-deficient platelets. CRP stimulation of Syk-deficient platelets demonstrated that in vivo tyrosine phosphorylation of SLP-76 is downstream of Syk. The absence of Syk in the SLP-76 immunoprecipitates raises the possibility that another protein is responsible for bringing SLP-76 to Syk. Candidates for this include those proteins that co-immunoprecipitate with SLP-76, including the FcR gamma-chain. Tyrosine phosphorylation of PLC-gamma2 and Ca2+ mobilization is markedly attenuated in SLP-76-deficient platelets following CRP stimulation, suggesting that the adapter plays a critical role in the regulation of the phospholipase. The increase in tyrosine phosphorylation of SLAP-130 in response to CRP is also inhibited in SLP-76-deficient platelets, placing it downstream of SLP-76. This work identifies SLP-76 as an important adapter molecule that is regulated by Syk and lies upstream of SLAP-130 and PLC-gamma2 in CRP-stimulated platelets.
Collapse
Affiliation(s)
- B S Gross
- Department of Pharmacology, Mansfield Road, Oxford University, Oxford OX1 3QT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Liu SK, Fang N, Koretzky GA, McGlade CJ. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Curr Biol 1999; 9:67-75. [PMID: 10021361 DOI: 10.1016/s0960-9822(99)80017-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The adaptor protein Gads is a Grb2-related protein originally identified on the basis of its interaction with the tyrosine-phosphorylated form of the docking protein Shc. Gads protein expression is restricted to hematopoietic tissues and cell lines. Gads contains a Src homology 2 (SH2) domain, which has previously been shown to have a similar binding specificity to that of Grb2. Gads also possesses two SH3 domains, but these have a distinct binding specificity to those of Grb2, as Gads does not bind to known Grb2 SH3 domain targets. Here, we investigated whether Gads is involved in T-cell signaling. RESULTS We found that Gads is highly expressed in T cells and that the SLP-76 adaptor protein is a major Gads-associated protein in vivo. The constitutive interaction between Gads and SLP-76 was mediated by the carboxy-terminal SH3 domain of Gads and a 20 amino-acid proline-rich region in SLP-76. Gads also coimmunoprecipitated the tyrosine-phosphorylated form of the linker for activated T cells (LAT) adaptor protein following cross-linking of the T-cell receptor; this interaction was mediated by the Gads SH2 domain. Overexpression of Gads and SLP-76 resulted in a synergistic augmentation of T-cell signaling, as measured by activation of nuclear factor of activated T cells (NFAT), and this cooperation required a functional Gads SH2 domain. CONCLUSIONS These results demonstrate that Gads plays an important role in T-cell signaling via its association with SLP-76 and LAT. Gads may promote cross-talk between the LAT and SLP-76 signaling complexes, thereby coupling membrane-proximal events to downstream signaling pathways.
Collapse
Affiliation(s)
- S K Liu
- Department of Medical Biophysics, University of Toronto, The Arthur and Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
124
|
Clements JL, Lee JR, Gross B, Yang B, Olson JD, Sandra A, Watson SP, Lentz SR, Koretzky GA. Fetal hemorrhage and platelet dysfunction in SLP-76-deficient mice. J Clin Invest 1999; 103:19-25. [PMID: 9884330 PMCID: PMC407870 DOI: 10.1172/jci5317] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/1998] [Accepted: 11/19/1998] [Indexed: 11/17/2022] Open
Abstract
The adapter protein SLP-76 is expressed in T lymphocytes and hematopoietic cells of the myeloid lineage, and is known to be a substrate of the protein tyrosine kinases that are activated after ligation of the T-cell antigen receptor. Transient overexpression of SLP-76 in a T-cell line potentiates transcriptional activation after T-cell receptor ligation, while loss of SLP-76 expression abrogates several T-cell receptor-dependent signaling pathways. Mutant mice that lack SLP-76 manifest a severe block at an early stage of thymocyte development, implicating SLP-76 in signaling events that promote thymocyte maturation. While it is clear that SLP-76 plays a key role in development and activation of T lymphocytes, relatively little is understood regarding its role in transducing signals initiated after receptor ligation in other hematopoietic cell types. In this report, we describe fetal hemorrhage and perinatal mortality in SLP-76-deficient mice. Although megakaryocyte and platelet development proceeds normally in the absence of SLP-76, collagen-induced platelet aggregation and granule release is markedly impaired. Furthermore, treatment of SLP-76-deficient platelets with collagen fails to elicit tyrosine phosphorylation of phospholipase C-gamma2 (PLC-gamma2), suggesting that SLP-76 functions upstream of PLC-gamma2 activation. These data provide one potential mechanism for the fetal hemorrhage observed in SLP-76-deficient mice and reveal that SLP-76 expression is required for optimal receptor-mediated signal transduction in platelets as well as T lymphocytes.
Collapse
Affiliation(s)
- J L Clements
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Peacock JW, Jirik FR. TCR Activation Inhibits Chemotaxis Toward Stromal Cell-Derived Factor-1: Evidence for Reciprocal Regulation Between CXCR4 and the TCR. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Stromal cell-derived factor-1 (SDF-1), a C-X-C family chemokine, is a potent T lymphocyte chemoattractant. We investigated the effects of T cell activation on the chemotactic response to SDF-1. Anti-CD3 Ab stimulation of either Jurkat T cells or murine peripheral CD4+ T lymphocytes produced a dramatic inhibition of SDF-1-induced chemotaxis. In contrast, the SDF-1 responses of Jurkat clones with deficiencies in key TCR signaling components (Lck, CD45, and TCR-β), were only marginally reduced by anti-CD3 stimulation. Similar to PMA treatment, which abolished both CXCR4 receptor expression and the chemotactic response of Jurkat cells to SDF-1, anti-CD3 Ab treatment reduced cell surface expression of CXCR4 to 65% of the control value, an effect that was blocked by protein kinase C inhibitors. Our data suggest that initial T cell activation events inhibit the response of Jurkat T cells to CXCR4 stimulation. In contrast, SDF-1 treatment resulted in a reduction of tyrosine phosphorylation of the TCR downstream effectors, ZAP-70, SLP-76, and LAT (linker for activation of T cells), suggesting that this chemokine potentially regulates the threshold for T cell activation.
Collapse
Affiliation(s)
| | - Frank R. Jirik
- *Center for Molecular Medicine and Therapeutics and
- †Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
126
|
Zhang Y, Wienands J, Zürn C, Reth M. Induction of the antigen receptor expression on B lymphocytes results in rapid competence for signaling of SLP-65 and Syk. EMBO J 1998; 17:7304-10. [PMID: 9857187 PMCID: PMC1171076 DOI: 10.1093/emboj/17.24.7304] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The binding of antigen to the B cell antigen receptor (BCR) results in the activation of protein tyrosine kinases (PTKs) such as Lyn and Syk, and the phosphorylation of several substrate proteins including HS1 and SLP-65. How these signaling elements are connected to the BCR is not well understood. Using an expression vector for a tamoxifen-regulated Cre recombinase, we have developed a method that allows the inducible expression of the BCR. Disruption of the VH leader reading frame of the immunoglobulin heavy chain by two loxP sites is overcome by Cre-mediated DNA recombination and results in the cell surface expression of the BCR starting 4 h after exposure of transfected B cells to tamoxifen. This method can, in principle, be employed for the inducible expression of any secreted or type I transmembrane protein. By monitoring the activation of signaling elements in pervanadate-stimulated B cells expressing different levels of the BCR, we show here that phosphorylation of SLP-65 and Syk, but not of Lyn, is strictly dependent on the expression of the BCR on the cell surface. These data suggest that the BCR reorganizes its signaling molecules as soon as it appears on the cell surface.
Collapse
Affiliation(s)
- Y Zhang
- Department of Molecular Immunobiology, Biology III, University Freiburg and Max-Planck-Institute for Immunobiology, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | |
Collapse
|
127
|
Goitsuka R, Fujimura YI, Mamada H, Umeda A, Morimura T, Uetsuka K, Doi K, Tsuji S, Kitamura D. Cutting Edge: BASH, A Novel Signaling Molecule Preferentially Expressed in B Cells of the Bursa of Fabricius. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.11.5804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The bursa of Fabricius is a gut-associated lymphoid organ that is essential for the generation of a diversified B cell repertoire in the chicken. We describe here a novel gene preferentially expressed in bursal B cells. The gene encodes an 85-kDa protein, designated BASH (B cell adaptor containing SH2 domain), that contains N-terminal acidic domains with SH2 domain-binding phosphotyrosine-based motifs, a proline-rich domain, and a C-terminal SH2 domain. BASH shows a substantial sequence similarity to SLP-76, an adaptor protein functioning in TCR-signal transduction. BASH becomes tyrosine-phosphorylated with the B cell Ag receptor (BCR) cross-link or by coexpression with Syk and Lyn and associates with signaling molecules including Syk and a putative chicken Shc homologue. Overexpression of BASH results in suppression of the NF-AT activation induced by BCR-cross-linking. These findings suggest that BASH is involved in BCR-mediated signal transduction and could play a critical role in B cell development in the bursa.
Collapse
Affiliation(s)
- Ryo Goitsuka
- *Inheritance and Variation Group, PREST, JST, Kyoto, Japan
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| | - Yu-ichi Fujimura
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| | - Hiroshi Mamada
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| | - Akiko Umeda
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| | - Toshifumi Morimura
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| | - Koji Uetsuka
- ‡Department of Veterinary Pathology, University of Tokyo, Tokyo, Japan
| | - Kunio Doi
- ‡Department of Veterinary Pathology, University of Tokyo, Tokyo, Japan
| | - Sachiyo Tsuji
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| | - Daisuke Kitamura
- †Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba, Japan; and
| |
Collapse
|
128
|
Bubeck Wardenburg J, Pappu R, Bu JY, Mayer B, Chernoff J, Straus D, Chan AC. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 1998; 9:607-16. [PMID: 9846482 DOI: 10.1016/s1074-7613(00)80658-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine phosphorylation of linker proteins enables the T cell antigen receptor (TCR)-associated protein tyrosine kinases to phosphorylate and regulate effector molecules that generate second messengers. We demonstrate here that the SLP-76 linker protein interacts with both nck, an adaptor protein, and Vav, a guanine nucleotide exchange factor for Rho-family GTPases. The assembly of this tri-molecular complex permits the activated Rho-family GTPases to regulate target effectors that interact through nck. In turn, assembly of this complex mediates the enzymatic activation of the p21-activated protein kinase 1 and facilitates actin polymerization. Hence, phosphorylation of linker proteins not only bridges the TCR-associated PTK, ZAP-70, with downstream effector proteins, but also provides a scaffold to integrate distinct signaling complexes to regulate T cell function.
Collapse
Affiliation(s)
- J Bubeck Wardenburg
- Center for Immunology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A. LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 1998; 9:617-26. [PMID: 9846483 DOI: 10.1016/s1074-7613(00)80659-7] [Citation(s) in RCA: 426] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we present the further characterization of a mutant Jurkat T cell line, J.CaM2, that is defective in TCR-mediated signal transduction. Although initial TCR-mediated signaling events such as the inducible tyrosine phosphorylation of the TCR-zeta chain and ZAP-70 are intact in J.CaM2, subsequent events, including increases in intracellular calcium, Ras activation, and IL-2 gene expression are defective. Subsequent analysis of J.CaM2 demonstrated a severe deficiency in pp36/LAT expression, a recently cloned adaptor protein implicated in TCR signaling. Importantly, reexpression of LAT in J.CaM2 restored all aspects of TCR signaling. These results demonstrate a necessary and exclusive role for LAT in T cell activation.
Collapse
Affiliation(s)
- T S Finco
- Department of Medicine, The Howard Hughes Medical Institute, University of California at San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
130
|
Binstadt BA, Billadeau DD, Jevremović D, Williams BL, Fang N, Yi T, Koretzky GA, Abraham RT, Leibson PJ. SLP-76 is a direct substrate of SHP-1 recruited to killer cell inhibitory receptors. J Biol Chem 1998; 273:27518-23. [PMID: 9765283 DOI: 10.1074/jbc.273.42.27518] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of immune system cells via antigen-, Fc-, or natural killer cell-triggering-receptor stimulation is aborted by co-engagement of inhibitory receptors. Negative signaling by killer cell inhibitory receptors and related receptors depends on the Src homology 2 (SH2)-containing protein tyrosine phosphatase SHP-1. Using a combination of direct binding and functional assays, we demonstrated that the SH2 domain-containing leukocyte protein 76 (SLP-76) is a specific target for dephosphorylation by SHP-1 in T cells and natural killer cells. Furthermore, we showed that tyrosine-phosphorylated SLP-76 is required for optimal activation of cytotoxic lymphocytes, suggesting that the targeted dephosphorylation of SLP-76 by SHP-1 is an important mechanism for the negative regulation of immune cell activation by inhibitory receptors.
Collapse
Affiliation(s)
- B A Binstadt
- Department of Immunology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Clements JL, Ross-Barta SE, Tygrett LT, Waldschmidt TJ, Koretzky GA. SLP-76 Expression Is Restricted to Hemopoietic Cells of Monocyte, Granulocyte, and T Lymphocyte Lineage and Is Regulated During T Cell Maturation and Activation. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.8.3880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The leukocyte-specific adapter protein SLP-76 is known to augment the transcriptional activity of nuclear factor of activated T cells and AP-1 following TCR ligation. A role for SLP-76 in additional receptor-mediated signaling events is less clear. To define the pattern of SLP-76 expression during murine hemopoiesis, we stained cells isolated from various tissues with a combination of surface markers followed by intracellular staining with a fluorochrome-labeled SLP-76-specific Ab. In the bone marrow, SLP-76 expression is largely restricted to cells of granulocyte and monocyte lineage. Heterogeneous SLP-76 expression is first detected in the CD44+CD25− subset within the CD3−CD4−CD8− thymocyte population. Interestingly, SLP-76 expression increases as thymocyte maturation progresses within the CD4−CD8− compartment but decreases as cells mature to a CD4+CD8+ phenotype. SLP-76 expression is then up-regulated following selection and concomitant with maturation to a CD4+ or CD8+ phenotype. In the periphery, SLP-76 is expressed in T lymphocytes with no detectable expression in the B cell compartment. Exposure to the superantigen staphylococcal enterotoxin B augments SLP-76 expression in the reactive T cell subset. Furthermore, in vitro stimulation with TCR-specific Abs augments the existing levels of SLP-76. These data reveal that SLP-76 expression is coordinately regulated with surface expression of a pre-TCR or mature TCR complex during thymocyte development and that TCR ligation elicits signals that result in increased expression of SLP-76.
Collapse
Affiliation(s)
| | | | | | | | - Gary A. Koretzky
- *Internal Medicine,
- ‡Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA 52242
| |
Collapse
|
132
|
Marie-Cardine A, Hendricks-Taylor LR, Boerth NJ, Zhao H, Schraven B, Koretzky GA. Molecular interaction between the Fyn-associated protein SKAP55 and the SLP-76-associated phosphoprotein SLAP-130. J Biol Chem 1998; 273:25789-95. [PMID: 9748251 DOI: 10.1074/jbc.273.40.25789] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been reported that in resting T-lymphocytes the protein tyrosine kinase p59 constitutively co-precipitates with four phosphoproteins of 43, 55, 85, and 120 kDa, respectively. We have recently cloned the 55-kDa protein that was termed Src kinase-associated phosphoprotein of 55 kDa (SKAP55). Here we demonstrate that the recently characterized SH2-domain-containing leukocyte protein 76-associated phosphoprotein of 130 kDa (SLAP-130) is one of the components of the Fyn complex and that it also co-precipitates with SKAP55 in human T-cells. We establish that SKAP55 and SLAP-130 associate with each other when both molecules are co-expressed in COS cells. By co-transfection of truncated mutants of SKAP55 and SLAP-130 as well as by using the two-hybrid selection system, we further demonstrate that the association between SLAP-130 and SKAP55 is direct and involves the Src homology 3 domain of SKAP55 and the proline-rich sequence of SLAP-130.
Collapse
Affiliation(s)
- A Marie-Cardine
- Ruprecht-Karls University of Heidelberg, Institute for Immunology, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
133
|
Sugawara T, Moriguchi T, Nishida E, Takahama Y. Differential roles of ERK and p38 MAP kinase pathways in positive and negative selection of T lymphocytes. Immunity 1998; 9:565-74. [PMID: 9806642 DOI: 10.1016/s1074-7613(00)80639-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clonal selection of T lymphocytes is essential for establishing self/non-self discrimination of immune recognition. It is known that cell surface signals such as avidity and valency of TCR-ligand interactions influence the fate of individual thymocytes, founding a primary repertoire of T cells. However, intracellular signals that govern positive and negative selection in the thymus have been unclear. The present study using the retroviral gene transfer technique shows that MKK1 activation in developing T cells is sufficient for providing positive selection signals. We also show that the MKK6-p38 signaling pathway is critically involved in inducing negative selection of thymocytes. These results suggest that intracellular signals through different MAP kinase cascades selectively guide positive and negative selection of T lymphocytes.
Collapse
Affiliation(s)
- T Sugawara
- Department of Immunology, Institute of Basic Medical Sciences, University of Tsukuba, Japan
| | | | | | | |
Collapse
|
134
|
Abstract
AbstractSLP-76 and Cbl are complex adapter proteins that have the capacity to bind to smaller adapter proteins, such as Grb2, which subsequently binds the nucleotide exchange protein Sos in the transmission of intracellular signals. SLP-76, Cbl, Shc, and Grb2 have been implicated in immunoreceptor tyrosine-based activation motif (ITAM) signaling, leading to activation of Ras. However, their mechanism of action has not been determined. To date, there have been no reports of SLP-76 involvement in FcγRI-receptor signaling and no data exist for an interaction between Cbl, Shc, and SLP-76 in vivo. We provide evidence that SLP-76, Cbl, and Shc are tyrosine phosphorylated on FcγRI-receptor stimulation and are associated with the adapter protein Grb2 in γ-interferon–differentiated U937 cells (U937IF). The interactions between SLP-76 and Cbl and SLP-76 and Grb2 are present in resting U937IF cells. However, the interaction between SLP-76 and Grb2 becomes augmented twofold on FcγRI-receptor aggregation. Our results provide the first evidence for a phosphorylation-dependent interaction between SLP-76 and Shc, induced at least 10-fold on FcγRI receptor stimulation. Our data indicate that a significant portion of a multimolecular complex containing Cbl, SLP-76, Shc, and Grb2 is distinct from a trimolecular complex containing the Ras guanine nucleotide exchanger Sos, Shc, and Grb2. FcγRI-induced tyrosine phosphorylation of SLP-76, Cbl, Shc, and the highly induced SLP-76-Shc interaction provide the first evidence that SLP-76 and Cbl are involved in FcγRI signaling and suggest a functional significance for these interactions in FcγRI signal relay in the control of Ras in myeloid cells.© 1998 by The American Society of Hematology.
Collapse
|
135
|
Abstract
SLP-76 and Cbl are complex adapter proteins that have the capacity to bind to smaller adapter proteins, such as Grb2, which subsequently binds the nucleotide exchange protein Sos in the transmission of intracellular signals. SLP-76, Cbl, Shc, and Grb2 have been implicated in immunoreceptor tyrosine-based activation motif (ITAM) signaling, leading to activation of Ras. However, their mechanism of action has not been determined. To date, there have been no reports of SLP-76 involvement in FcγRI-receptor signaling and no data exist for an interaction between Cbl, Shc, and SLP-76 in vivo. We provide evidence that SLP-76, Cbl, and Shc are tyrosine phosphorylated on FcγRI-receptor stimulation and are associated with the adapter protein Grb2 in γ-interferon–differentiated U937 cells (U937IF). The interactions between SLP-76 and Cbl and SLP-76 and Grb2 are present in resting U937IF cells. However, the interaction between SLP-76 and Grb2 becomes augmented twofold on FcγRI-receptor aggregation. Our results provide the first evidence for a phosphorylation-dependent interaction between SLP-76 and Shc, induced at least 10-fold on FcγRI receptor stimulation. Our data indicate that a significant portion of a multimolecular complex containing Cbl, SLP-76, Shc, and Grb2 is distinct from a trimolecular complex containing the Ras guanine nucleotide exchanger Sos, Shc, and Grb2. FcγRI-induced tyrosine phosphorylation of SLP-76, Cbl, Shc, and the highly induced SLP-76-Shc interaction provide the first evidence that SLP-76 and Cbl are involved in FcγRI signaling and suggest a functional significance for these interactions in FcγRI signal relay in the control of Ras in myeloid cells.© 1998 by The American Society of Hematology.
Collapse
|
136
|
Wienands J, Schweikert J, Wollscheid B, Jumaa H, Nielsen PJ, Reth M. SLP-65: a new signaling component in B lymphocytes which requires expression of the antigen receptor for phosphorylation. J Exp Med 1998; 188:791-5. [PMID: 9705962 PMCID: PMC2213353 DOI: 10.1084/jem.188.4.791] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (Ig) molecule as antigen-binding subunit and the Ig-alpha/Ig-beta heterodimer as signaling subunit. BCR signal transduction involves activation of protein tyrosine kinases (PTKs) and phosphorylation of several proteins, only some of which have been identified. The phosphorylation of these proteins can be induced by exposure of B cells either to antigen or to the tyrosine phosphatase inhibitor pervanadate/H2O2. One of the earliest substrates in B cells is a 65-kD protein, which we identify here as a B cell adaptor protein. This protein, named SLP-65, is part of a signaling complex involving Grb-2 and Vav and shows homology to SLP-76, a signaling element of the T cell receptor. In pervanadate/H2O2-stimulated cells, SLP-65 becomes phosphorylated only upon expression of the BCR. These data suggest that SLP-65 is part of a BCR transducer complex.
Collapse
Affiliation(s)
- J Wienands
- Department for Molecular Immunology, Biology III, University of Freiburg, 79104 Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
137
|
Nebl G, Meuer SC, Samstag Y. Cyclosporin A-Resistant Transactivation of the IL-2 Promoter Requires Activity of Okadaic Acid-Sensitive Serine/Threonine Phosphatases. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Expression of the IL-2 gene requires activation of T cells through stimulation of the TCR and costimulation through accessory receptors. We have found recently that okadaic acid-sensitive Ser/Thr phosphatases are involved in a cyclosporin A-insensitive pathway that selectively transmits costimulatory signals. In this study, we analyzed whether activities of these phosphatases are necessary for the expression of the IL-2 gene. In both activated peripheral blood T lymphocytes and activated tumorigenic T cell lines, IL-2 gene expression was blocked at the transcriptional level by okadaic acid. The transcription factors active at the IL-2 promoter were differentially influenced: upon down-modulation of okadaic acid-sensitive phosphatases, transactivation by octamer, NF-κB, and NF of activated T cells proteins was abrogated, while transactivation by AP-1 proteins was even enhanced.
Collapse
Affiliation(s)
- Gabriele Nebl
- Institute for Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Stefan C. Meuer
- Institute for Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Yvonne Samstag
- Institute for Immunology, Ruprecht-Karls-University, Heidelberg, Germany
| |
Collapse
|
138
|
Pivniouk V, Tsitsikov E, Swinton P, Rathbun G, Alt FW, Geha RS. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 1998; 94:229-38. [PMID: 9695951 DOI: 10.1016/s0092-8674(00)81422-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adaptor protein SLP-76 is expressed in T lymphocytes and myeloid cells and is a substrate for ZAP-70 and Syk. We generated a SLP-76 null mutation in mice by homologous recombination in embryonic stem cells to evaluate the role of SLP-76 in T cell development and activation. SLP-76-deficient mice exhibited subcutaneous and intraperitoneal hemorrhaging and impaired viability. Analysis of lymphoid cells revealed a profound block in thymic development with absence of double-positive CD4+8+ thymocytes and of peripheral T cells. This block could not be overcome by in vivo treatment with anti-CD3. V-D-J rearrangement of the TCRbeta locus was not obviously affected. B cell development was normal. These results indicate that SLP-76 collects all pre-TCR signals that drive the development and expansion of double-positive thymocytes.
Collapse
Affiliation(s)
- V Pivniouk
- Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
139
|
Liu J, Kang H, Raab M, da Silva AJ, Kraeft SK, Rudd CE. FYB (FYN binding protein) serves as a binding partner for lymphoid protein and FYN kinase substrate SKAP55 and a SKAP55-related protein in T cells. Proc Natl Acad Sci U S A 1998; 95:8779-84. [PMID: 9671755 PMCID: PMC21153 DOI: 10.1073/pnas.95.15.8779] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/1998] [Accepted: 05/19/1998] [Indexed: 02/08/2023] Open
Abstract
TcRzeta/CD3 ligation initiates a signaling cascade involving CD4/CD8-p56(lck), p59(fyn), and ZAP-70, as well as lymphoid downstream proteins VAV, SLP-76, and FYB/SLAP. A current question concerns the nature of the downstream binding partner(s) of FYB in T cells. In this study, using a two-hybrid screen with FYB as bait, we have identified eight clones, four of which correspond to the recently published lymphoid protein SKAP55, and two which correspond to a related protein with some 44% homology to SKAP55 (termed SKAP55-related protein, SKAP55R). The SKAP55 clones showed only minor differences (two substitutions and one residue deletion) from SKAP55. SKAP55R has the same overall structure as SKAP55 except for the presence of a unique N terminus with a well-defined coiled-coil domain. Both SKAP55 and SKAP55R were found to bind FYB through their SH3 domains and to act as substrates for the FYN kinase in T cells. Furthermore, immunofluorescence confocal microscopy showed that FYB and SKAP55 colocalize in the perinuclear region of cells. SKAP55 also colocalizes with another FYB binding protein, SLP-76. Taken together, these observations demonstrate that FYB is part of an interactive matrix with SKAP55 and a SKAP55-related protein.
Collapse
Affiliation(s)
- J Liu
- Division of Tumor Immunology, Dana Farber Cancer Institute, Harvard Medical School, Boston MA 2115, USA
| | | | | | | | | | | |
Collapse
|
140
|
Yablonski D, Kuhne MR, Kadlecek T, Weiss A. Uncoupling of nonreceptor tyrosine kinases from PLC-gamma1 in an SLP-76-deficient T cell. Science 1998; 281:413-6. [PMID: 9665884 DOI: 10.1126/science.281.5375.413] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Activation of nonreceptor protein tyrosine kinases (PTKs) is essential for T cell receptor (TCR) responsiveness; however, the function of individual PTK substrates is often uncertain. A mutant T cell line was isolated that lacked expression of SLP-76 (SH2 domain-containing leukocyte protein of 76 kilodaltons), a hematopoietically expressed adaptor protein and PTK substrate. SLP-76 was not required for TCR-induced tyrosine phosphorylation of most proteins, but was required for optimal tyrosine phosphorylation and activation of phospholipase C-gamma1 (PLC-gamma1), as well as Ras pathway activation. TCR-inducible gene expression was dependent on SLP-76. Thus, coupling of TCR-regulated PTKs to downstream signaling pathways requires SLP-76.
Collapse
Affiliation(s)
- D Yablonski
- Department of Medicine, Howard Hughes Medical Institute, Box 0795, University of California, San Francisco, San Francisco, CA 94143-0795, USA
| | | | | | | |
Collapse
|
141
|
Clements JL, Yang B, Ross-Barta SE, Eliason SL, Hrstka RF, Williamson RA, Koretzky GA. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 1998; 281:416-9. [PMID: 9665885 DOI: 10.1126/science.281.5375.416] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The leukocyte-specific adapter molecule SLP-76 (Src homology 2 domain-containing leukocyte protein of 76 kilodaltons) is rapidly phosphorylated on tyrosine residues after receptor ligation in several hematopoietically derived cell types. Mice made deficient for SLP-76 expression contained no peripheral T cells as a result of an early block in thymopoiesis. Macrophage and natural killer cell compartments were intact in SLP-76-deficient mice, despite SLP-76 expression in these lineages in wild-type mice. Thus, the SLP-76 adapter protein is required for normal thymocyte development and plays a crucial role in translating signals mediated by pre-T cell receptors into distal biochemical events.
Collapse
Affiliation(s)
- J L Clements
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
142
|
Bunnell SC, Berg LJ. The signal transduction of motion and antigen recognition: factors affecting T cell function and differentiation. GENETIC ENGINEERING 1998; 20:63-110. [PMID: 9666556 DOI: 10.1007/978-1-4899-1739-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- S C Bunnell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
143
|
Smyth LA, Williams O, Huby RD, Norton T, Acuto O, Ley SC, Kioussis D. Altered peptide ligands induce quantitatively but not qualitatively different intracellular signals in primary thymocytes. Proc Natl Acad Sci U S A 1998; 95:8193-8. [PMID: 9653163 PMCID: PMC20952 DOI: 10.1073/pnas.95.14.8193] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interaction of the T cell receptor (TCR) with peptide/major histocompatibility complexes (MHC) in the thymus is of critical importance for developing thymocytes. In a previous study, we described an antagonist peptide that inhibited negative selection of transgenic thymocytes induced by an agonist peptide. In this study we show that this antagonist peptide can induce positive selection of CD8(+) thymocytes more efficiently than the agonist or the weak agonist peptides, whereas the opposite is true for their ability to cause negative selection. The intracellular signals induced in thymocytes by such peptides after TCR ligation was examined in CD4(+)8(+) double-positive thymocytes from F5/beta2mo/Rag-1(o) transgenic mice. TCR ligation with either the agonist, weak agonist, or antagonist peptide variants resulted in hyperphosphorylation of CD3zeta, CD3epsilon, ZAP-70, Syk, Vav, SLP-76, and pp36-38. The extent of phosphorylation of these intracellular proteins correlated with the efficiency with which the peptide analogs induced apoptosis of immature thymocytes. Unexpectedly, there was no correlation between the upstream TCR signaling pathways analyzed and the capacity of the different peptides to induce positive selection.
Collapse
Affiliation(s)
- L A Smyth
- Division of Molecular Immunology, The National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
144
|
Peterson EJ, Clements JL, Fang N, Koretzky GA. Adaptor proteins in lymphocyte antigen-receptor signaling. Curr Opin Immunol 1998; 10:337-44. [PMID: 9638371 DOI: 10.1016/s0952-7915(98)80173-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adaptor molecules, proteins that possess no intrinsic enzymatic function, but which mediate protein-protein interactions, have a critical role in integrating signal transduction pathways following engagement of cell-surface receptors. Several newly described adaptor molecules have been shown to serve important functions in the regulation of signaling events initiated by lymphocyte antigen receptors. Understanding how these adaptor proteins function to modulate signaling cascades will provide important insights into the complex biology of lymphocyte activation.
Collapse
Affiliation(s)
- E J Peterson
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA.
| | | | | | | |
Collapse
|
145
|
Abstract
Antigen receptors initiate T-cell activation and determine the specificity of the immune response by activating membrane-localized protein tyrosine kinases. Signalling pathways initiated by these kinases control expression of the genes that mediate T-cell effector function. A major challenge in immunology is to work out the route taken by membrane-generated signals as they transit to the nucleus. Substrates for the ZAP70/Syk tyrosine kinases are important, but 'missing', links in this process. There has finally been some progress in characterizing one of these important linkers: LAT, an integral membrane protein that acts as an adaptor to couple antigen receptors to intracellular signalling cascades.
Collapse
|
146
|
Griffith CE, Zhang W, Wange RL. ZAP-70-dependent and -independent activation of Erk in Jurkat T cells. Differences in signaling induced by H2o2 and Cd3 cross-linking. J Biol Chem 1998; 273:10771-6. [PMID: 9553143 DOI: 10.1074/jbc.273.17.10771] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress in T cells induces signaling events similar to those initiated by T cell antigen receptor engagement, including tyrosine phosphorylation and activation of the critical protein-tyrosine kinase ZAP-70. Distal signaling events such as the activation of mitogen-activated protein kinases and downstream transcription factors are also initiated by oxidative stimuli. In this study P116, a ZAP-70-negative Jurkat T cell line, was used to investigate the role of ZAP-70 in mediating activation of Erk in response to H2O2. Consistent with the hypothesis that ZAP-70 is required for activation of Erk in response to an oxidative stimulus, Erk1 and Erk2 could be rapidly activated in Jurkat cells but not in P116 cells upon addition of H2O2. P116 cells became competent for H2O2-induced Erk activation upon stable transfection with wild-type ZAP-70. An in vivo ZAP-70 substrate, SLP-76, implicated in Erk activation, also became rapidly tyrosine-phosphorylated in Jurkat cells, but not in P116 cells, upon treatment with H2O2. Surprisingly, although ZAP-70 was required for H2O2-mediated Erk activation, Erk activation in response to T cell antigen receptor engagement did not require ZAP-70. In addition to demonstrating a requirement for ZAP-70 in H2O2-stimulated Erk activation, these results provide the first evidence for the existence of a ZAP-70-independent pathway for Erk activation in T cells.
Collapse
Affiliation(s)
- C E Griffith
- Laboratory of Biological Chemistry, Gerontology Research Center, NIA, National Institutes of Health, Baltimore, Maryland, 21224, USA
| | | | | |
Collapse
|
147
|
Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92:83-92. [PMID: 9489702 DOI: 10.1016/s0092-8674(00)80901-0] [Citation(s) in RCA: 1027] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite extensive study, several of the major components involved in T cell receptor-mediated signaling remain unidentified. Here we report the cloning of the cDNA for a highly tyrosine-phosphorylated 36-38 kDa protein, previously characterized by its association with Grb2, phospholipase C-gamma1, and the p85 subunit of phosphoinositide 3-kinase. Deduced amino acid sequence identifies a novel integral membrane protein containing multiple potential tyrosine phosphorylation sites. We show that this protein is phosphorylated by ZAP-70/Syk protein tyrosine kinases leading to recruitment of multiple signaling molecules. Its function is demonstrated by inhibition of T cell activation following overexpression of a mutant form lacking critical tyrosine residues. Therefore, we propose to name the molecule LAT-linker for activation of T cells.
Collapse
Affiliation(s)
- W Zhang
- Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | |
Collapse
|
148
|
Fu C, Chan AC. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cgamma, Grb2, and Vav after B cell antigen receptor activation. J Biol Chem 1997; 272:27362-8. [PMID: 9341187 DOI: 10.1074/jbc.272.43.27362] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tyrosine phosphorylation of cellular proteins mediates the assembly and localization of effector proteins through interactions facilitated by modular Src homology 2 (SH2) and phosphotyrosine binding domains. We describe here two tyrosine-phosphorylated proteins with Mr values of 70,000 and 68,000 that interact with Grb2, phospholipase C (PLCgamma1 and PLCgamma2), and Vav after B cell receptor cross-linking. The interaction of pp70 and pp68 with PLC and Vav is mediated by the carboxyl-terminal SH2 domain of PLC and the SH2 domain of Vav. In contrast, the interaction of pp70 and pp68 with Grb2 requires cooperative binding of the SH2 and SH3 domains of Grb2. Western blot analysis demonstrated that neither pp70 nor pp68 represented the recently described linker protein SLP-76, which binds Grb2, PLC, and Vav in T cells after T cell receptor activation. Moreover, SLP-76 protein was not detected in a number of B cell lines or in normal mouse B cells. Hence, we propose that pp70 and pp68 likely represent B cell homologs of SLP-76 which facilitate and coordinate B cell activation.
Collapse
Affiliation(s)
- C Fu
- Program in Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
149
|
Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 1997; 278:124-8. [PMID: 9311917 DOI: 10.1126/science.278.5335.124] [Citation(s) in RCA: 363] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the absence of costimulation, T cells activated through their antigen receptor become unresponsive (anergic) and do not transcribe the gene encoding interleukin-2 (IL-2) when restimulated with antigen. Anergic alloantigen-specific human T cells contained phosphorylated Cbl that coimmunoprecipitated with Fyn. The adapter protein CrkL was associated with both phosphorylated Cbl and the guanidine nucleotide-releasing factor C3G, which catalyzes guanosine triphosphate (GTP) exchange on Rap1. Active Rap1 (GTP-bound form) was present in anergic cells. Forced expression of low amounts of Rap1-GTP in Jurkat T cells recapitulated the anergic defect and blocked T cell antigen receptor (TCR)- and CD28-mediated IL-2 gene transcription. Therefore, Rap1 functions as a negative regulator of TCR-mediated IL-2 gene transcription and may be responsible for the specific defect in IL-2 production in T cell anergy.
Collapse
Affiliation(s)
- V A Boussiotis
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
150
|
Abstract
Much has been learned over the past few years about how protein tyrosine kinases mediate pre-TCR and mature alphabetaTCR function. The highlights include understanding the roles and the distinct effects of the Src and Syk families of protein tyrosine kinases in thymocyte development and function.
Collapse
Affiliation(s)
- A M Cheng
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | |
Collapse
|