101
|
Unger RE, Halstenberg S, Sartoris A, Kirkpatrick CJ. Human endothelial and osteoblast co-cultures on 3D biomaterials. Methods Mol Biol 2011; 695:229-241. [PMID: 21042976 DOI: 10.1007/978-1-60761-984-0_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Increasingly, in vitro experiments are being used to evaluate the cell compatibility of novel biomaterials. Single cell cultures have been used to determine how well cells attach, grow, and exhibit characteristic functions on these materials and the outcome of such tests is generally accepted as an indicator of biocompatibility. However, organs and tissues are not made up of one cell type and the interaction of cells is known to be an essential factor for physiological cell function. To more accurately examine biomaterials for bone regeneration, we have developed methods to coculture osteoblasts, which are the primary cell type making up bone, and endothelial cells, which form the vasculature supplying cells in the bone with oxygen and nutrients to survive on 2- and 3-D biomaterials.
Collapse
Affiliation(s)
- Ronald E Unger
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
102
|
Ghanaati S, Fuchs S, Webber MJ, Orth C, Barbeck M, Gomes ME, Reis RL, Kirkpatrick CJ. Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth endothelial cells in co-culture with primary osteoblasts. J Tissue Eng Regen Med 2010; 5:e136-43. [PMID: 21604380 DOI: 10.1002/term.373] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 09/02/2010] [Indexed: 11/08/2022]
Abstract
The successful integration of in vitro-generated tissues is dependent on adequate vascularization in vivo. Human outgrowth endothelial cells (OECs) isolated from the mononuclear cell fraction of peripheral blood represent a potent population of circulating endothelial progenitors that could provide a cell source for rapid anastomosis and scaffold vascularization. Our previous work with these cells in co-culture with primary human osteoblasts has demonstrated their potential to form perfused vascular structures within a starch-poly(caprolactone) biomaterial in vivo. In the present study, we demonstrate the ability of OECs to form perfused vascular structures as early as 48 h following subcutaneous implantation of the biomaterial in vivo. The number of OEC-derived vessels increased throughout the study, an effect that was independent of the OEC donor. This finding of rapid and thorough OEC-mediated scaffold vascularization demonstrates the great potential for OEC-based strategies to promote vascularization in tissue engineering. OECs have the potential to contribute to host-derived scaffold vascularization, and formed vascular structures at a similar density as those arising from the host. Additionally, immunohistochemical evidence demonstrated the close interaction between OECs and the co-cultured osteoblasts. In addition to the known paracrine activity osteoblasts have in modulating angiogenesis of co-cultured OECs, we demonstrate the potential of osteoblasts to provide additional structural support for OEC-derived vessels, perhaps acting in a pericyte-like role.
Collapse
Affiliation(s)
- Shahram Ghanaati
- REPAIR-lab, Institute of Pathology, University Medical Center of the Johannes Gutenberg University, & European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Langenbeckstrasse 1, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Ma J, van den Beucken JJJP, Yang F, Both SK, Cui FZ, Pan J, Jansen JA. Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio. Tissue Eng Part C Methods 2010; 17:349-57. [PMID: 20932081 DOI: 10.1089/ten.tec.2010.0215] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vascularization strategies in cell-based bone tissue engineering depend on optimal culture conditions. The present study aimed to determine optimal cell culture medium and cell ratio for cocultures of human marrow stromal cells (HMSCs) and human umbilical vein endothelial cells (HUVECs) in view of both osteogenic and angiogenic outcome parameters upon two-dimensional and three-dimensional culture conditions. Cultures were performed in four different media: osteoblastic cell proliferation medium, osteogenic medium (OM), endothelial medium, and a 1:1 mixture of the latter two media. Mineralization within the cocultures was observed only in OM. Subsequent experiments in OM showed that alkaline phosphatase activity, mineralization, and CD31(+) staining were highest for cocultures at a 50:50 HMSC/HUVEC ratio. Therefore, the results from the present study show that a HMSC/HUVEC coculture ratio of 50:50 in OM is the best combination to obtain both osteogenic and angiogenic differentiation.
Collapse
Affiliation(s)
- Jinling Ma
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
104
|
Aguirre A, Planell JA, Engel E. Dynamics of bone marrow-derived endothelial progenitor cell/mesenchymal stem cell interaction in co-culture and its implications in angiogenesis. Biochem Biophys Res Commun 2010; 400:284-91. [PMID: 20732306 DOI: 10.1016/j.bbrc.2010.08.073] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 08/17/2010] [Indexed: 01/07/2023]
Abstract
Tissue engineering aims to regenerate tissues and organs by using cell and biomaterial-based approaches. One of the current challenges in the field is to promote proper vascularization in the implant to prevent cell death and promote host integration. Bone marrow endothelial progenitor cells (BM-EPCs) and mesenchymal stem cells (MSCs) are bone marrow resident stem cells widely employed for proangiogenic applications. In vivo, they are likely to interact frequently both in the bone marrow and at sites of injury. In this study, the physical and biochemical interactions between BM-EPCs and MSCs in an in vitro co-culture system were investigated to further clarify their roles in vascularization. BM-EPC/MSC co-cultures established close cell-cell contacts soon after seeding and self-assembled to form elongated structures at 3days. Besides direct contact, cells also exhibited vesicle transport phenomena. When co-cultured in Matrigel, tube formation was greatly enhanced even in serum-starved, growth factor free medium. Both MSCs and BM-EPCs contributed to these tubes. However, cell proliferation was greatly reduced in co-culture and morphological differences were observed. Gene expression and cluster analysis for wide panel of angiogenesis-related transcripts demonstrated up-regulation of angiogenic markers but down-regulation of many other cytokines. These data suggest that cross-talk occurs in between BM-EPCs and MSCs through paracrine and direct cell contact mechanisms leading to modulation of the angiogenic response.
Collapse
Affiliation(s)
- A Aguirre
- Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | | | | |
Collapse
|
105
|
Fuchs S, Jiang X, Gotman I, Makarov C, Schmidt H, Gutmanas EY, Kirkpatrick CJ. Influence of polymer content in Ca-deficient hydroxyapatite-polycaprolactone nanocomposites on the formation of microvessel-like structures. Acta Biomater 2010; 6:3169-77. [PMID: 20144913 DOI: 10.1016/j.actbio.2010.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/11/2010] [Accepted: 02/02/2010] [Indexed: 01/03/2023]
Abstract
Calcium phosphate (CaP) ceramics are widely used in bone tissue engineering due to their good osteoconductivity. The mechanical properties of CaP can be modified by the addition of small volume fractions of biodegradable polymers such as polycaprolactone (PCL). Nevertheless, it is also important to evaluate how the polymer content influences cell-material or cell-cell interactions because of potential consequences for bone regeneration and vascularization. In this study we assessed the general biocompatibilty of Ca-deficient hydroxyapatite (CDHA)-PCL disks containing nominally 11 and 24% polycaprolactone using human umbilical vein endothelial cells and human primary osteoblasts. Confocal microscopy showed that both CDHA-PCL variants supported the growth of both cell types. In terms of the endothelial cells grown on CDHA-PCL nanocomposites with 24% PCL, an increased expression of the endothelial marker vWF compared to CDHA-PCL with 11% PCL was observed in real-time polymerase chain reaction analysis. In addition to monocultures, co-cultures of outgrowth endothelial cells, derived from peripheral blood, and primary osteoblasts were assessed as an example of a more complex test system for bone regeneration and vascularization. Constructs based on CDHA with different PCL contents were investigated with regard to the formation of microvessel-like structures induced by the co-culture process using confocal microscopy and quantitative image analysis. Furthermore, the osteogenic differentiation of the co-culture was assessed. As a result, more pre-vascular structures were observed after 1 week on the CDHA-PCL disks with 24% PCL, whereas after 4 weeks of culture the extent of microvessel-like structure formation was slightly higher on the CDHA with 11% PCL. In contrast to this, variation of PCL content had no effect on the osteogenic differentiation in the co-culture.
Collapse
Affiliation(s)
- S Fuchs
- Institute of Pathology, Langenbeckstrasse 1, Universitätsmedizin der Johannes Gutenberg-Universität, Mainz, Germany.
| | | | | | | | | | | | | |
Collapse
|
106
|
Dohle E, Fuchs S, Kolbe M, Hofmann A, Schmidt H, Kirkpatrick CJ. Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A 2010; 16:1235-7. [PMID: 19886747 DOI: 10.1089/ten.tea.2009.0493] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A number of previous studies documented the angiogenic potential of outgrowth endothelial cells in vitro and in vivo and provided evidence that therapeutic success could depend on coculture or coimplantation strategies. Thus, deeper insight into the molecular mechanisms underlying this pro-angiogenic effect of cocultures might provide new translational options for tissue engineering and regenerative medicine. One promising signaling pathway in bone repair involved in neoangiogenesis and bone formation is the sonic hedgehog (Shh) pathway. In this article, we focus on the effect of Shh on the formation of microvessel-like structures and osteoblastic differentiation in cocultures of primary osteoblasts and outgrowth endothelial cells. Already after 24 h of treatment, Shh leads to a massive increase in microvessel-like structures compared with untreated cocultures. Increased formation of angiogenic structures seems to correlate with the upregulation of vascular endothelial growth factor or angiopoietins (Ang-1 and Ang-2) studied at both the mRNA and protein levels. In addition, treatment with cyclopamine, an inhibitor of hedgehog signaling, blocked the formation of microvessel-like structures in the cocultures. However, exogenous Shh also resulted in the upregulation of several osteogenic differentiation markers in real-time polymerase chain reaction, as well as in an increased mineralization and alkaline phosphatase activity. The present data highlight the central role of the Shh pathway in bone regeneration and vascularization. Further, Shh might have the potential to improve both angiogenesis and osteogenesis in clinical applications in the future.
Collapse
Affiliation(s)
- Eva Dohle
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
107
|
Fedorovich NE, Haverslag RT, Dhert WJ, Alblas J. The Role of Endothelial Progenitor Cells in Prevascularized Bone Tissue Engineering: Development of Heterogeneous Constructs. Tissue Eng Part A 2010; 16:2355-67. [DOI: 10.1089/ten.tea.2009.0603] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Natalja E. Fedorovich
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - René T. Haverslag
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wouter J.A. Dhert
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
- Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
| | - Jacqueline Alblas
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
108
|
The rapid anastomosis between prevascularized networks on silk fibroin scaffolds generated in vitro with cocultures of human microvascular endothelial and osteoblast cells and the host vasculature. Biomaterials 2010; 31:6959-67. [PMID: 20619788 DOI: 10.1016/j.biomaterials.2010.05.057] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/23/2010] [Indexed: 11/24/2022]
Abstract
The survival and functioning of a bone biomaterial upon implantation requires a rapidly forming and stably functioning vascularization that connects the implant to the recipient. We have previously shown that human microcapillary endothelial cells (HDMEC) and primary human osteoblast cells (HOS) in coculture on various 3-D bone biomaterial scaffolds rapidly distribute and self-assemble into a morphological structure resembling bone tissue. Endothelial cells form microcapillary-like structures containing a lumen and these were intertwined between the osteoblast cells and the biomaterial. This tissue-like self-assembly occurred in the absence of exogenously added angiogenic stimuli or artificial matrices. The purpose of this study was to determine whether this in vitro pre-formed microvasculature persists and functions in vivo and to determine how the host responds to the cell-containing scaffolds. The scaffolds with cocultures were implanted into immune-deficient mice and compared to scaffolds without cells or with HDMEC alone. Histological evaluation and immunohistochemical staining with human-specific antibodies of materials removed 14 days after implantation demonstrated that the in vitro pre-formed microcapillary structures were present on the silk fibroin scaffolds and showed a perfused lumen that contained red blood cells. This proved anastomosis with the host vasculature. Chimeric vessels in which HDMEC were integrated with the host's ingrowing (murine) capillaries were also observed. No HDMEC-derived microvessel structures or chimeric vessels were observed on implanted silk fibroin when precultured with HDMEC alone. In addition, there was migration of the host (murine) vasculature into the silk fibroin scaffolds implanted with cocultures, whereas silk fibroin alone or silk fibroin precultured only with HDMEC were nearly devoid of ingrowing host microcapillaries. Therefore, not only do the in vitro pre-formed microcapillaries in a coculture survive and anastomose with the host vasculature to become functioning microcapillaries after implantation, the coculture also stimulates the host capillaries to rapidly grow into the scaffold to vascularize the implanted material. Thus, this coculture-based pre-vascularization of a biomaterial implant may have great potential in the clinical setting to treat large bone defects.
Collapse
|
109
|
Degistirici Ö, Grabellus F, Irsen S, Schmid KW, Thie M. Using human neural crest-derived progenitor cells to investigate osteogenesis: An in vitro study. Matrix Biol 2010; 29:219-27. [DOI: 10.1016/j.matbio.2009.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/26/2022]
|
110
|
Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 2010; 10:12-27. [PMID: 19688722 DOI: 10.1002/mabi.200900107] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lack of a functional vascular supply has, to a large extent, hampered the whole range of clinical applications of 'successful' laboratory-based bone tissue engineering strategies. To the present, grafts have been dependent on post-implant vascularization, which jeopardizes graft integration and often leads to its failure. For this reason, the development of strategies that could effectively induce the establishment of a microcirculation in the engineered constructs has become a major goal for the tissue engineering research community. This review addresses the role and importance of the development of a vascular network in bone tissue engineering and provides an overview of the most up to date research efforts to develop such a network.
Collapse
Affiliation(s)
- Marina I Santos
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | |
Collapse
|
111
|
Hager S, Lampert FM, Orimo H, Stark GB, Finkenzeller G. Up-regulation of alkaline phosphatase expression in human primary osteoblasts by cocultivation with primary endothelial cells is mediated by p38 mitogen-activated protein kinase-dependent mRNA stabilization. Tissue Eng Part A 2010; 15:3437-47. [PMID: 19409035 DOI: 10.1089/ten.tea.2009.0133] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For the regeneration of bone in tissue engineering applications, it is essential to provide cues that support neovascularization. This can be achieved by cell-based therapies using mature endothelial cells (ECs) or endothelial progenitor cells. In this context, ECs were used in various in vivo studies in combination with primary osteoblasts to enhance neovascularization of bone grafts. In a previous study, we have shown that cocultivation of human primary ECs and human primary osteoblasts (hOBs) leads to a cell contact-dependent up-regulation of alkaline phosphatase (ALP) expression in osteoblasts, indicating that cocultivated ECs may support osteogenic differentiation and osteoblastic cell functions. In the present study, we investigated this effect in more detail, revealing a time and cell number dependency of EC-mediated up-regulation of the early osteoblastic marker ALP, whereas osteocalcin, a late marker of osteogenesis, was down-regulated. The effect on ALP expression was bidirectional specific for both cell types. Functional inhibition of gap junctional communication between ECs and hOBs by 18alpha-glycyrrhetinic acid had only a weak suppressive effect on EC-mediated ALP up-regulation. In contrast, inhibition of p38 mitogen-activated protein kinase nearly completely prevented the EC-mediated stimulation of osteoblastic ALP expression. To investigate the molecular mechanism underlying the ALP up-regulation, we examined the effect of EC cocultivation on osteoblastic ALP promoter activity as well as mRNA stability. Cocultivation of ECs with hOBs significantly elevated the half-life of osteoblastic ALP mRNA without affecting its promoter activity. In summary, our data show that EC-mediated up-regulation of osteoblastic ALP expression is cell-type specific and is posttranscriptionally regulated via p38 mitogen-activated protein kinase-dependent mRNA turn-over.
Collapse
Affiliation(s)
- Sven Hager
- Department of Plastic and Hand Surgery, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | |
Collapse
|
112
|
Fuchs S, Dohle E, Kolbe M, Kirkpatrick CJ. Outgrowth endothelial cells: sources, characteristics and potential applications in tissue engineering and regenerative medicine. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 123:201-17. [PMID: 20182927 DOI: 10.1007/10_2009_65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells from peripheral blood or cord blood are attracting increasing interest as a potential cell source for cellular therapies aiming to enhance the neovascularization of tissue engineered constructs or ischemic tissues. The present review focus on a specific population contained in endothelial progenitor cell cultures designated as outgrowth endothelial cells (OEC) or endothelial colony forming cells from peripheral blood or cord blood. Special attention will be paid to what is currently known in terms of the origin and the cell biological or functional characteristics of OEC. Furthermore, we will discuss current concepts, how OEC might be integrated in complex tissue engineered constructs based on biomaterial or co-cultures, with special emphasis on their potential application in bone tissue engineering and related vascularization strategies.
Collapse
Affiliation(s)
- Sabine Fuchs
- Institute of Pathology, Universitätsmedizin der Johannes Gutenberg-Universität, Langenbeckstrasse 1, Mainz, Germany,
| | | | | | | |
Collapse
|
113
|
Pirraco RP, Marques AP, Reis RL. Cell interactions in bone tissue engineering. J Cell Mol Med 2010; 14:93-102. [PMID: 20050963 PMCID: PMC3837601 DOI: 10.1111/j.1582-4934.2009.01005.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 12/14/2009] [Indexed: 12/19/2022] Open
Abstract
Bone fractures, where the innate regenerative bone response is compromised, represent between 4 and 8 hundred thousands of the total fracture cases, just in the United States. Bone tissue engineering (TE) brought the notion that, in cases such as those, it was preferable to boost the healing process of bone tissue instead of just adding artificial parts that could never properly replace the native tissue. However, despite the hype, bone TE so far could not live up to its promises and new bottom-up approaches are needed. The study of the cellular interactions between the cells relevant for bone biology can be of essential importance to that. In living bone, cells are in a context where communication with adjacent cells is almost permanent. Many fundamental works have been addressing these communications nonetheless, in a bone TE approach, the 3D perspective, being part of the microenvironment of a bone cell, is as crucial. Works combining the study of cell-to-cell interactions in a 3D environment are not as many as expected. Therefore, the bone TE field should not only gain knowledge from the field of fundamental Biology but also contribute for further understanding the biology of bone. In this review, a summary of the main works in the field of bone TE, aiming at studying cellular interactions in a 3D environment, and how they contributed towards the development of a functional engineered bone tissue, is presented.
Collapse
Affiliation(s)
- R P Pirraco
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Deptartment of Polymer Engineering, University of MinhoGuimarães, Portugal
- IBB – Institute for Biotechnology and Bioengineering, PT Government Associated LaboratoryBraga, Portugal
| | - A P Marques
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Deptartment of Polymer Engineering, University of MinhoGuimarães, Portugal
- IBB – Institute for Biotechnology and Bioengineering, PT Government Associated LaboratoryBraga, Portugal
| | - R L Reis
- 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, Deptartment of Polymer Engineering, University of MinhoGuimarães, Portugal
- IBB – Institute for Biotechnology and Bioengineering, PT Government Associated LaboratoryBraga, Portugal
| |
Collapse
|
114
|
Grellier M, Bordenave L, Amédée J. Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol 2009; 27:562-71. [PMID: 19683818 DOI: 10.1016/j.tibtech.2009.07.001] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/22/2009] [Accepted: 07/02/2009] [Indexed: 12/28/2022]
Abstract
There have been extensive research efforts to develop new strategies for bone tissue engineering. These have mainly focused on vascularization during the development and repair of bone. It has been hypothesized that pre-seeding a scaffold with endothelial cells could improve angiogenesis and bone regeneration through a complex dialogue between endothelial cells and bone-forming cells. Here, we focus on the paracrine signals secreted by both cell types and the effects they elicit. We discuss the other modes of cell-to-cell communication that could explain their cell coupling and reciprocal interactions. Endothelial cell-derived tube formation in a scaffold and the dialogue between endothelial cells and mesenchymal stem cells provide promising means of generating vascular bone tissue-engineered constructs.
Collapse
Affiliation(s)
- M Grellier
- Inserm, U577, Bordeaux and Université Victor Segalen Bordeaux 2, UMR-S577, Bordeaux, F-33076, France
| | | | | |
Collapse
|
115
|
The Use of Endothelial Progenitor Cells for Prevascularized Bone Tissue Engineering. Tissue Eng Part A 2009; 15:2015-27. [DOI: 10.1089/ten.tea.2008.0318] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
116
|
Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 2009; 30:4407-15. [PMID: 19487022 DOI: 10.1016/j.biomaterials.2009.05.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 05/05/2009] [Indexed: 11/23/2022]
Abstract
The reconstruction of bone defects based on cell-seeded constructs requires a functional microvasculature that meets the metabolic demands of the engineered tissue. Therefore, strategies that augment neovascularization need to be identified. We propose an in vitro strategy consisting of the simultaneous culture of osteoblasts and endothelial cells on a starch-based scaffold for the formation of pre-vascular structures, with the final aim of accelerating the establishment of a vascular bed in the implanted construct. Human dermal microvascular endothelial cells (HDMECs) were co-cultured with human osteoblasts (hOBs) on a 3D starch-based scaffold and after 21 days of culture HDMEC aligned and organized into microcapillary-like structures. These vascular-like structures evolved from a cord-like configuration to a more complex branched morphology, had a lumen and stained in the perivascular region for type IV collagen. Genetic profiling of 84 osteogenesis-related genes was performed on co-culture vs. monoculture. Osteoblasts in co-culture showed a significant up-regulation of type I collagen and immunohistochemistry revealed that the scaffold was filled with a dense matrix stained for type I collagen. In direct contact with HDMEC hOBs secreted higher amounts of VEGF in relation to monoculture and the highest peak in the release profile correlated with the formation of microcapillary-like structures. The heterotypic communication between the two cell types was also assured by direct cell-cell contact as shown by the expression of the gap junction connexin 43. In summary, by making use of heterotypic cellular crosstalk this co-culture system is a strategy to form vascular-like structures in vitro on a 3D scaffold.
Collapse
|
117
|
Silva Marques JM, Gomes PS, Silva MA, Silvério Cabrita AM, Santos JD, Fernandes MH. Growth and phenotypic expression of human endothelial cells cultured on a glass-reinforced hydroxyapatite. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:725-731. [PMID: 18987948 DOI: 10.1007/s10856-008-3628-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 10/16/2008] [Indexed: 05/27/2023]
Abstract
Glass-reinforced hydroxyapatite composites (GR-HA) are bone regenerative materials that are characterized by their increased mechanical properties, when compared to synthetic hydroxyapatite. Bonelike is a GR-HA that is a result of the addition of a CaO-P(2)O(5) based glass to a HA matrix. This biomaterial has been successfully applied in clinical bone regenerative applications. This work aims to evaluate the ability of Bonelike to support the adhesion, proliferation and phenotypic expression of human endothelial cells, aiming to establish new bone tissue engineering pre-endothelialization strategies. Bonelike discs, regardless of being submitted to a pre-immersion treatment with culture medium, were seeded with first passage human umbilical vein endothelial cells, and characterized regarding proliferation and differentiation events. Pre-immersed Bonelike allowed the adhesion, proliferation and phenotype expression of endothelial cells. Seeded materials presented positive immunofluorescent staining for PECAM-1 and a tendency for the formation of cord-like arrangements under angiogenesis-stimulating conditions, although, compared to standard culture plates, a slight decreased cell growth was observed. In this way, Bonelike may be a suitable candidate for pre-endothelialization approaches in bone tissue engineering applications.
Collapse
Affiliation(s)
- J M Silva Marques
- Cooperativa de Ensino Superior Egas Moniz, Monte de Caparica, Portugal
| | | | | | | | | | | |
Collapse
|
118
|
Fuchs S, Ghanaati S, Orth C, Barbeck M, Kolbe M, Hofmann A, Eblenkamp M, Gomes M, Reis RL, Kirkpatrick CJ. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 2009; 30:526-34. [DOI: 10.1016/j.biomaterials.2008.09.058] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 09/23/2008] [Indexed: 11/30/2022]
|
119
|
Fuchs S, Jiang X, Schmidt H, Dohle E, Ghanaati S, Orth C, Hofmann A, Motta A, Migliaresi C, Kirkpatrick CJ. Dynamic processes involved in the pre-vascularization of silk fibroin constructs for bone regeneration using outgrowth endothelial cells. Biomaterials 2008; 30:1329-38. [PMID: 19091396 DOI: 10.1016/j.biomaterials.2008.11.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/27/2008] [Indexed: 01/04/2023]
Abstract
For successful bone regeneration tissue engineered bone constructs combining both aspects, namely a high osteogenic potential and a rapid connection to the vascular network are needed. In this study we assessed the formation of pre-vascular structures by human outgrowth endothelial cells (OEC) from progenitors in the peripheral blood and the osteogenic differentiation of primary human osteoblasts (pOB) on micrometric silk fibroin scaffolds. The rational was to gain more insight into the dynamic processes involved in the differentiation and functionality of both cell types depending on culture time in vitro. Vascular tube formation by OEC was assessed quantitatively at one and 4 weeks of culture. In parallel, we assessed the temporal changes in cell ratios by flow cytometry and in the marker profiles of endothelial and osteogenic markers by quantitative real-time PCR. In terms of OEC, we observed an increase in tube length, tube area, number of nodes and number of vascular meshes within a culture period of 4 weeks, but a decrease in endothelial markers in real-time PCR. At the same time early osteogenic markers were downregulated, while marker expression associated with progressing mineralized matrix was upregulated in later stages of the culture. In addition, deposition of matrix components, such as collagen type I, known as a pro-angiogenic substrate for endothelial cells, appeared to increase with time indicated by immunohistochemistry. In summary, the study suggests a progressing maturation of the tissue construct with culture time which seems to be not effected by culture conditions mainly designed for outgrowth endothelial cells.
Collapse
Affiliation(s)
- Sabine Fuchs
- Institute of Pathology, Langenbeckstr. 1, Johannes Gutenberg University, 55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Hofmann A, Ritz U, Verrier S, Eglin D, Alini M, Fuchs S, Kirkpatrick CJ, Rommens PM. The effect of human osteoblasts on proliferation and neo-vessel formation of human umbilical vein endothelial cells in a long-term 3D co-culture on polyurethane scaffolds. Biomaterials 2008; 29:4217-26. [PMID: 18692894 DOI: 10.1016/j.biomaterials.2008.07.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
Abstract
Angiogenesis is a key element in early wound healing and is considered important for tissue regeneration and for directing inflammatory cells to the wound site. The improvement of vascularization by implementation of endothelial cells or angiogenic growth factors may represent a key solution for engineering bone constructs of large size. In this study, we describe a long-term culture environment that supports the survival, proliferation, and in vitro vasculogenesis of human umbilical vein endothelial cells (HUVEC). This condition can be achieved in a co-culture model of HUVEC and primary human osteoblasts (hOB) employing polyurethane scaffolds and platelet-rich plasma in a static microenvironment. We clearly show that hOB support cell proliferation and spontaneous formation of multiple tube-like structures by HUVEC that were positive for the endothelial cell markers CD31 and vWF. In contrast, in a monoculture, most HUVEC neither proliferated nor formed any apparent vessel-like structures. Immunohistochemistry and quantitative PCR analyses of gene expression revealed that cell differentiation of hOB and HUVEC was stable in long-term co-culture. The three-dimensional, FCS-free co-culture system could provide a new basis for the development of complex tissue engineered constructs with a high regeneration and vascularization capacity.
Collapse
Affiliation(s)
- Alexander Hofmann
- Department of Trauma Surgery, Johannes Gutenberg University School of Medicine, Langenbeckstrasse 1, D-55101 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Rouwkema J, Rivron NC, van Blitterswijk CA. Vascularization in tissue engineering. Trends Biotechnol 2008; 26:434-41. [PMID: 18585808 DOI: 10.1016/j.tibtech.2008.04.009] [Citation(s) in RCA: 787] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/14/2008] [Accepted: 04/22/2008] [Indexed: 12/18/2022]
Abstract
Tissue engineering has been an active field of research for several decades now. However, the amount of clinical applications in the field of tissue engineering is still limited. One of the current limitations of tissue engineering is its inability to provide sufficient blood supply in the initial phase after implantation. Insufficient vascularization can lead to improper cell integration or cell death in tissue-engineered constructs. This review will discuss the advantages and limitations of recent strategies aimed at enhancing the vascularization of tissue-engineered constructs. We will illustrate that combining the efforts of different research lines might be necessary to obtain optimal results in the field.
Collapse
Affiliation(s)
- Jeroen Rouwkema
- Department of Tissue Regeneration, University of Twente, Drienerlolaan 5, 7522NB Enschede, The Netherlands.
| | | | | |
Collapse
|
122
|
Hofmann A, Ritz U, Hessmann MH, Schmid C, Tresch A, Rompe JD, Meurer A, Rommens PM. Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions. Bone 2008; 42:894-906. [PMID: 18314404 DOI: 10.1016/j.bone.2008.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 01/17/2008] [Accepted: 01/22/2008] [Indexed: 12/15/2022]
Abstract
Recent studies have provided evidence that the number and proliferation capacity of bone marrow-derived mesenchymal stem cells, as well as the number of osteoprogenitor cells are reduced in patients with fracture non-unions. For fracture non-unions that do not heal after appropriate surgical intervention, the question arises as to what extent systemic cellular dysfunctions should be considered as being pathogenetic factors. For this purpose, we have examined the hypothesis that the cell function of osteoblasts isolated from patients with fracture non-unions may differ from those of normal control individuals in an identical and controlled in vitro situation. We analyzed the osteoblast cell viability, formation of alkaline phosphatase-positive (CFU-ALP) and mineralization-positive (CFU-M) colony forming units, as well as global differences of gene expression in osteoblasts from patients with fracture non-unions and from control individuals. We found that cell viability and CFU-M-formation were significantly reduced in non-union osteoblasts. This was accompanied by significant differences in osteoblast gene expression as revealed by Affymetrix-microarray analysis and RT-PCR. We identified a set of significantly down-regulated factors in non-union osteoblasts that are involved in regulation of osteoblast proliferation and differentiation processes (canonical Wnt-, IGF-, TGF-beta-, and FGF-signaling pathways). The results of the present study strongly support the hypothesis that cell viability, differentiation, and gene expression of osteoblasts may be altered in patients who develop recurrent and recalcitrant fracture non-unions. Proteins involved in Wnt-, IGF, TGF-beta-, and FGF-signaling pathways may be of particular interest and may unveil new potential therapies.
Collapse
Affiliation(s)
- A Hofmann
- Department of Trauma Surgery, Johannes Gutenberg University School of Medicine, Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Bone loss due to congenital defects, trauma, improper fracture fixation, metabolic disturbances, infections, or after tumor resection represents a major clinical problem in head and neck surgery. To address these issues, different types of scaffolds, growth factors and cell sources -- alone or in various combinations -- have been applied for development of bioartificial bone tissues. Although these applications have received increasing interest, use of autologous bone grafts is still considered as the gold standard for tissue repair. Despite progress in some areas of tissue regeneration, significant translation into clinical practice has not been achieved. Reasons for this impass include rejection of engineered tissue implants by the immune system, limited blood supply, or morbidity of the donor site. During the process of bone regeneration, approximately 50-70% of osteoblasts undergo apoptosis. Apoptosis is a naturally occurring cell death pathway induced in a variety of cell types and is associated with caspase activation or caspase mediation. It is recognized as an important component of embryogenesis and tissue morphogenesis and, in adult skeletons, it contributes substantially to physiological bone turnover, repair, and regeneration. Intracellular mechanisms are orchestrated by a variety of proteins, the interplay of which seems to vary, depending on the differentiation state of the cell or the current status of the tissue. Closing gaps in current knowledge of the apoptosis of bone and understanding the mechanisms of cell death in tissue engineered bone will improve results in the translation from bench to bedsite. This review aims to provide a broad overview of the current general concepts in apoptosis with a special focus on its regulation in osteoblasts and its significance for bone tissue engineering.
Collapse
|