101
|
Gong T, Xu J, Heng B, Qiu S, Yi B, Han Y, Lo ECM, Zhang C. EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells. J Dent Res 2019; 98:803-812. [PMID: 31017515 DOI: 10.1177/0022034519843886] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are capable of facilitating angiogenesis resembling pericytes when located adjacent to endothelial cells (ECs). Nevertheless, the precise mechanisms orchestrating their proangiogenic functions remain unclear. Using a 3-dimensional (3-D) fibrin gel model, we aimed to investigate whether EphrinB2/EphB4 signaling in DPSCs plays a role in supporting vascular morphogenesis mediated by ECs, together with the underlying mechanism involved. The EphrinB2/EphB4 signaling was inhibited either by a pharmacological inhibitor of EphB4 receptor or by knocking down the expressions of EphrinB2 and EphB4 using lentiviral small hairpin RNA (shRNA). DPSCs were either encapsulated in fibrin gel together with human umbilical vein endothelial cells (HUVECs) or cultured as a monolayer on top of HUVECs to investigate both paracrine and juxtacrine interactions simultaneously. Following 10 d of direct coculture, we found that pharmacological inhibition of EphrinB2/EphB4 signaling severely impaired vessel formation and laminin deposition. When directly cocultured with HUVECs, knockdown of EphrinB2 or EphB4 in DPSCs significantly inhibited endothelial sprouting, resulting in less capillary sprouts with reduced vessel length (P < 0.05). By contrast, when DPSCs were not in direct contact with HUVECs, attenuation of EphrinB2 or EphB4 expression levels in DPSCs did not exert any significant effects on capillary morphogenesis. Noticeably, exogenous stimulation with soluble EphrinB2-Fc or EphB4-Fc (1 µg/mL) enhanced vascular endothelial growth factor (VEGF) secretion from DPSCs, thereby moderately promoting angiogenic cascades in the fibrin matrix. This study, for the first time, reveals a crucial role of EphrinB2/EphB4 signaling in regulating the capacity of DPSCs to induce sprouting angiogenesis. These findings advance our understanding of postnatal angiogenesis and may have future regenerative medicine applications.
Collapse
Affiliation(s)
- T Gong
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - J Xu
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - B Heng
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Qiu
- 2 Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - B Yi
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Y Han
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - E C M Lo
- 3 Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Zhang
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
102
|
Liang K, Bae KH, Kurisawa M. Recent advances in the design of injectable hydrogels for stem cell-based therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00485h] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The recent advances in the design of injectable hydrogels for stem cell delivery, especially for in vivo applications, are overviewed in this review.
Collapse
Affiliation(s)
- Kun Liang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| |
Collapse
|
103
|
Hilkens P, Lambrichts I, Bronckaers A. Current and Future Views on Pulpal Angiogenesis. CLINICAL APPROACHES IN ENDODONTIC REGENERATION 2019:37-53. [DOI: 10.1007/978-3-319-96848-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
104
|
Fukushima KA, Marques MM, Tedesco TK, Carvalho GL, Gonçalves F, Caballero-Flores H, Morimoto S, Moreira MS. Screening of hydrogel-based scaffolds for dental pulp regeneration-A systematic review. Arch Oral Biol 2018; 98:182-194. [PMID: 30500668 DOI: 10.1016/j.archoralbio.2018.11.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of this systematic review was to evaluate the most appropriate hydrogel scaffold type (natural, synthetic or hybrid) to be applied with stem cells for dental pulp regeneration. The findings should help clinicians make an informed choice about the appropriate scaffold to be applied for this approach. DESIGN Three electronic databases were searched (Medline, Web of Science and Scopus). The review was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA). RESULTS From 4990 potentially relevant studies initially identified, 18 papers fulfilled the eligibility criteria and were considered for this review. Natural scaffolds were applied in most studies. Collagen was the most studied scaffold. In 5 of 10 studies, only growth factors were added to the constructs. Even without growth factors, these scaffolds containing stem cells were able to support the formation of dentin. The synthetic scaffolds were the least studied. Only 4 studies were selected, and in 3 of them, the same scaffold (Puramatrix) was evaluated. Puramatrix by itself was unable to form dental pulp when dental pulp stem cells were not present. Synthetic and hybrid hydrogels were unable to attract stem cells from the host. The presence of growth factors in these constructs seems to be of relevance since dental pulp tissue formation was achieved only when the hybrid scaffold was applied with growth factors. CONCLUSION All types of hydrogel-based scaffolds, when containing mesenchymal stem cells, are able to form connective tissue with different degrees of similarity to dental pulp. However, current data is too heterogeneous to compare and identify the advantages of any specific scaffold.
Collapse
Affiliation(s)
- K A Fukushima
- Post Graduation Program, School of Dentistry, Ibirapuera University, Brazil
| | - M M Marques
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, Brazil
| | - T K Tedesco
- Post Graduation Program, School of Dentistry, Ibirapuera University, Brazil
| | - G L Carvalho
- Post Graduation Program, School of Dentistry, Ibirapuera University, Brazil; Department of Restorative Dentistry, School of Dentistry, University of São Paulo, Brazil
| | - F Gonçalves
- Post Graduation Program, School of Dentistry, Ibirapuera University, Brazil
| | - H Caballero-Flores
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, Brazil
| | - S Morimoto
- Post Graduation Program, School of Dentistry, Ibirapuera University, Brazil
| | - M S Moreira
- Post Graduation Program, School of Dentistry, Ibirapuera University, Brazil.
| |
Collapse
|
105
|
Güney A, Gardiner C, McCormack A, Malda J, Grijpma DW. Thermoplastic PCL- b-PEG- b-PCL and HDI Polyurethanes for Extrusion-Based 3D-Printing of Tough Hydrogels. Bioengineering (Basel) 2018; 5:E99. [PMID: 30441879 PMCID: PMC6316089 DOI: 10.3390/bioengineering5040099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/26/2018] [Accepted: 11/03/2018] [Indexed: 12/30/2022] Open
Abstract
Novel tough hydrogel materials are required for 3D-printing applications. Here, a series of thermoplastic polyurethanes (TPUs) based on poly(ɛ-caprolactone)-b-poly(ethylene glycol)-b-poly(ɛ-caprolactone) (PCL-b-PEG-b-PCL) triblock copolymers and hexamethylene diisocyanate (HDI) were developed with PEG contents varying between 30 and 70 mol%. These showed excellent mechanical properties not only when dry, but also when hydrated: TPUs prepared from PCL-b-PEG-b-PCL with PEG of Mn 6 kg/mol (PCL₇-PEG₆-PCL₇) took up 122 wt.% upon hydration and had an E-modulus of 52 ± 10 MPa, a tensile strength of 17 ± 2 MPa, and a strain at break of 1553 ± 155% in the hydrated state. They had a fracture energy of 17976 ± 3011 N/mm² and a high tearing energy of 72 kJ/m². TPUs prepared using PEG with Mn of 10 kg/mol (PCL₅-PEG10-PCL₅) took up 534% water and were more flexible. When wet, they had an E-modulus of 7 ± 2 MPa, a tensile strength of 4 ± 1 MPa, and a strain at break of 147 ± 41%. These hydrogels had a fracture energy of 513 ± 267 N/mm² and a tearing energy of 16 kJ/m². The latter TPU was first extruded into filaments and then processed into designed porous hydrogel structures by 3D-printing. These hydrogels can be used in 3D printing of tissue engineering scaffolds with high fracture toughness.
Collapse
Affiliation(s)
- Aysun Güney
- Department of Biomaterials Science and Technology, Science and Technology Faculty, Technical Medical Centre, University of Twente, 7500AE Enschede, The Netherlands.
| | - Christina Gardiner
- Department of Biomaterials Science and Technology, Science and Technology Faculty, Technical Medical Centre, University of Twente, 7500AE Enschede, The Netherlands.
| | - Andrew McCormack
- Department of Biomaterials Science and Technology, Science and Technology Faculty, Technical Medical Centre, University of Twente, 7500AE Enschede, The Netherlands.
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands.
- Regenerative Medicine Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands.
- Faculty of Veterinary Sciences, Utrecht University, 3584 CL Utrecht, The Netherlands.
| | - Dirk W Grijpma
- Department of Biomaterials Science and Technology, Science and Technology Faculty, Technical Medical Centre, University of Twente, 7500AE Enschede, The Netherlands.
| |
Collapse
|
106
|
Zhu L, Dissanayaka WL, Zhang C. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration. Clin Oral Investig 2018; 23:2497-2509. [PMID: 30315421 DOI: 10.1007/s00784-018-2699-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The current study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) overexpressing dental pulp stem cells (DPSCs) in vascularized dental pulp regeneration in vivo. MATERIALS AND METHODS Human DPSCs were transfected with VEGF or SDF-1α using premade lentiviral particles. Overexpression was verified by quantitative polymerase chain reaction (q-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot analysis. Effects of SDF-1α and VEGF overexpressing DPSCs on their proliferation (CCK-8 and MTT assays) and endothelial vascular-tube formation (Matrigel assay) were investigated in vitro. Human tooth roots sectioned into 6-mm segments were injected with gene-modified DPSCs encapsulated in PuraMatrix hydrogel and implanted in the dorsum of severe-combined-immunodeficient (SCID) mice. Implants were retrieved after 4 weeks and examined for regenerated pulp-like tissue and vascularization using histology and immunohistochemistry. p < 0.05 was considered statistically significant. RESULTS Gene-modified DPSCs expressed significantly high levels (p < 0.05) of SDF-1α and VEGF mRNA and proteins, respectively. Transfected DPSCs showed a significantly higher cell proliferation compared to that of wild-type DPSCs. Furthermore, they enhanced endothelial cell migration and vascular-tube formation on Matrigel in vitro. When injected into tooth root canals and implanted in vivo, DPSCs/SDF-1α + DPSCs/VEGF-mixed group resulted in significantly increased length of regenerated pulp-like tissue within the root canals compared to that of wild-type DPSCs/VEGF and DPSCs/SDF-1α groups. Vessel area density was significantly higher in DPSCs/SDF-1α and mixed DPSCs/SDF-1α + DPSCs/VEGF groups than in DPSCs-VEGF alone or wild-type DPSCs groups. CONCLUSION A combination of VEGF-overexpressing and SDF-1α-overexpressing DPSCs could enhance the area of vascularized dental pulp regeneration in vivo. CLINICAL RELEVANCE Enhancing vascularization in pulp regeneration is crucial to overcome the clinical limitation of the limited blood supply to the root canals via a small apical foramen enclosed by hard dentin.
Collapse
Affiliation(s)
- Lifang Zhu
- Endodontology, Faculty of Dentistry, The University of Hong Kong, 3A15, Prince Philip Dental Hospital, 34, Hospital Road, Hong Kong, SAR, China
| | | | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, 3A15, Prince Philip Dental Hospital, 34, Hospital Road, Hong Kong, SAR, China.
| |
Collapse
|
107
|
The role of stem cell therapy in regeneration of dentine-pulp complex: a systematic review. Prog Biomater 2018; 7:249-268. [PMID: 30267369 PMCID: PMC6304177 DOI: 10.1007/s40204-018-0100-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Infection of the dental pulp will result in inflammation and eventually tissue necrosis which is treated conventionally by pulpectomy and root canal treatment. Advances in regenerative medicine and tissue engineering along with the introduction of new sources of stem cells have led to the possibility of pulp tissue regeneration. This systematic review analyzes animal studies published since 2010 to determine the ability of stem cell therapy to regenerate the dentine-pulp complex (DPC) and the success of clinical protocols. In vitro and human clinical studies are excluded and only the experimental studies on animal models were included. Dental pulp stem cells constitute the most commonly used cell type. The majority of stem cells are incorporated into various types of scaffold and implanted into root canals. Some of the studies combine growth factors with stem cells in an attempt to improve the outcome. Studies of ectopic transplantation using small animal models are simple and non-systematic evaluation techniques. Stem cell concentrations have not been so far reported; therefore, the translational value of such animal studies remains questionable. Though all types of stem cells appear capable of regenerating a dentine-pulp complex, still several factors have been considered in selecting the cell type. Co-administrative factors are essential for inducing the systemic migration of stem cells, and their vascularization and differentiation into odontoblast-like cells. Scaffolds provide a biodegradable structure able to control the release of growth factors. To identify problems and reduce costs, novel strategies should be initially tested in subcutaneous or renal capsule implantation followed by root canal models to confirm results.
Collapse
|
108
|
Silva CR, Babo PS, Gulino M, Costa L, Oliveira JM, Silva-Correia J, Domingues RM, Reis RL, Gomes ME. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration. Acta Biomater 2018; 77:155-171. [PMID: 30031163 DOI: 10.1016/j.actbio.2018.07.035] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
Bioengineered soft tissues on any meaningful scale or complexity must incorporate aspects of the functional tissue, namely a vasculature, providing cells oxygen and nutrients critical for their survival. However, the ability of tissue engineering strategies to promote a fast revascularization is critically limited. Particularly in endodontic regenerative therapies, the complicated anatomy of the root canal system, and the narrow apical access limit the supply of new blood vessels and pulp tissue ingrowth. Here we characterize the viscoelastic and microstructural properties of a class of injectable hyaluronic acid (HA) hydrogels formed in situ, reinforced with cellulose nanocrystals (CNCs) and enriched with platelet lysate (PL), and test its ability to promote cells recruitment and proangiogenic activity in vitro. The incorporation of CNCs enhanced the stability of the materials against hydrolytic and enzymatic degradation. Moreover, the release of the chemotactic and pro-angiogenic growth factors (GFs) (PDGF and VEGF) from the PL-laden hydrogels showed an improved sustained profile proportional to the amount of incorporated CNCs. The PL-laden hydrogels exhibited preferential supportive properties of encapsulated human dental pulp cells (hDPCs) in in vitro culture conditions. Finally, PL-laden hydrogels stimulated chemotactic and pro-angiogenic activity by promoting hDPCs recruitment and cell sprouting in hDPCs/human umbilical vein endothelial cell co-cultures in vitro, and in an ex vivo model. These results support the use of the combined system as a scaffold for GFs delivery and cells recruitment, thereby exhibiting great clinical potential in treating injuries in vascularized tissues. STATEMENT OF SIGNIFICANCE Innovative strategies for improved chemotactic and pro-angiogenic features of TE constructs are needed. In this study, we developed an injectable HA/CNC/PL hydrogel with improved structural and biologic properties, that not only provide a sustained release of chemotactic and proangiogenic GFs from PL but also enhance the cells' viability and angiogenic activity. As a result of their unique traits, the developed hydrogels are ideally suited to simultaneously act as a GFs controlled delivery system and as a supportive matrix for cell culture, recruitment, and revascularization induction, holding great potential for the regeneration of vascularized soft tissues, such as the dentin-pulp complex.
Collapse
|
109
|
Abstract
Creating an optimal microenvironment that supports angiogenesis, cell-cell cross talk, cell migration, and differentiation is crucial for pulp/dentin regeneration. It was shown that dental stem cells being seeded onto a scaffold and transplanted in vivo could give rise to a new tissue similar to that of the native pulp. However, the unique structure of the tooth with a pulp space encased within hard dentin allows only a single blood supply from a small apical opening located at the apex of the root canals. Therefore, a further strategy that can address this limitation such as the incorporation of endothelial/endothelial progenitor cells or cells with high angiogenic potential into the transplant is required so that the added cells can contribute to the vascularization within the implant. However, the placement of 2 or more different cell types inside 3-dimensional porous scaffolds is technologically challenging. In contrast to the conventional scaffolding approach, self-assembly of monodispersed cells into 3-dimensional tissue mimics permits true physiological interactions between and among different types of cells without any influence from a secondary material. In this review, we discuss potential strategies that can be used in vasculature engineering in dental pulp regeneration with a specific emphasis on combining prevascularization and scaffold-based or scaffold-free approaches.
Collapse
Affiliation(s)
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
110
|
Cao XF, Jin SZ, Sun L, Zhan YB, Lin F, Li Y, Zhou YL, Wang XM, Gao L, Zhang B. Therapeutic effects of hepatocyte growth factor-overexpressing dental pulp stem cells on liver cirrhosis in a rat model. Sci Rep 2017; 7:15812. [PMID: 29150644 PMCID: PMC5693919 DOI: 10.1038/s41598-017-14995-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis is the terminal stage of hepatic diseases and is prone to develop into hepatocyte carcinoma. Increasing evidence suggests that the transplantation of dental pulp stem cells (DPSCs) may promote recovery from cirrhosis, but the key regulatory mechanisms involved remain to be determined. In this study, we overexpressed human hepatocyte growth factor (hHGF) in primary rat DPSCs and evaluated the effects of HGF overexpression on the biological behaviors and therapeutic efficacy of grafted DPSCs in cirrhosis. Liver cirrhosis was induced via the intraperitoneal injection of CCl4 twice weekly for 12 weeks and was verified through histopathological and serological assays. HGF was overexpressed in DPSCs via transduction with a hHGF-lentiviral vector and confirmed based on the elevated expression and secretion of HGF. The HGF-overexpressing DPSCs were transplanted into rats intravenously. The HGF-overexpressing DPSCs showed increased survival and hepatogenic differentiation in host liver tissue at 6 weeks after grafting. They also exhibited a significantly greater repair potential in relation to cirrhosis pathology and impaired liver function than did DPSCs expressing HGF at physiological levels. Our study may provide an experimental basis for the development of novel methods for the treatment of liver cirrhosis in clinical practice.
Collapse
Affiliation(s)
- Xiao-Fang Cao
- Department of Dentistry, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Shi-Zhu Jin
- Department of Gastrointestinal and Hepatology, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Liang Sun
- Department of Human Anatomy, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Yuan-Bo Zhan
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Feng Lin
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Ying-Lian Zhou
- Department of neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Xiu-Mei Wang
- Department of Dentistry, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Li Gao
- Department of Dentistry, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Bin Zhang
- Institute of Hard Tissue Development and Regeneration, Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
111
|
Aksel H, Öztürk Ş, Serper A, Ulubayram K. VEGF/BMP-2 loaded three-dimensional model for enhanced angiogenic and odontogenic potential of dental pulp stem cells. Int Endod J 2017; 51:420-430. [PMID: 29080346 DOI: 10.1111/iej.12869] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/24/2017] [Indexed: 02/04/2023]
Abstract
AIM To investigate the proliferation and differentiation potential of human dental pulp stem cells (DPSCs) in a three-dimensional culture model (TDM) by incorporation of VEGF and BMP-2. METHODOLOGY TDM was established using fibrin gel (fg) as a soft tissue matrix and demineralized dentine disc (dd) as a hard tissue matrix. DPSCs and vascular endothelial growth factor (VEGF) were encapsulated in fibrin gel (fg-VEGF) and then inserted into bone morphogenetic protein (BMP-2)-coated demineralized dentine discs (dd-BMP-2). DPSCs were incubated for 28 days in various fg/dd combinations in the absence or presence of VEGF and BMP-2. Proliferation and morphology of DPSCs in fibrin gel were analysed using MTT and Live&Dead assays. Release profiles of VEGF and BMP-2 from fibrin gel and dentine discs were quantified using ELISA, and the expressions of angiogenic and odontogenic differentiation markers were determined with RT-qPCR analysis. Data were analysed statistically using Wilcoxon signed rank tests, Kruskal-Wallis tests with Mann-Whitney U tests and Bonferroni adjustment. The level of significance was set at P < 0.05. RESULTS DPSCs were able to proliferate and showed interconnected cellular elongations in fibrin gel depending on fibrinogen concentration whilst monolayer control group showed typical fibroblast-like cell morphology. Encapsulating of VEGF in fibrin gel and BMP-2 in gelatin that was used to coat dentine discs allowed the controlled releases of growth factors, which induced angiogenic and odontogenic gene expressions by DPSCs. Higher expressions of PECAM as an angiogenic factor, and BSP, DMP-1, OCN and CBFA as odontogenic factors, were observed in TDM as compared to the other fg/dd combinations and the monolayer control group (P < 0.05). CONCLUSIONS TDM consisting of fibrin gel and dentine matrix allowed cell-cell interactions. TDM was highly effective in delivering both VEGF and BMP-2 that enhanced the angiogenic and odontogenic potential of DPSCs.
Collapse
Affiliation(s)
- H Aksel
- Department of Endodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Ş Öztürk
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey
| | - A Serper
- Department of Endodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - K Ulubayram
- Bioengineering Division, Institute for Graduate Studies in Science and Engineering, Hacettepe University, Ankara, Turkey.,Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
112
|
The Angiogenic Potential of DPSCs and SCAPs in an In Vivo Model of Dental Pulp Regeneration. Stem Cells Int 2017; 2017:2582080. [PMID: 29018483 PMCID: PMC5605798 DOI: 10.1155/2017/2582080] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 12/22/2022] Open
Abstract
Adequate vascularization, a restricting factor for the survival of engineered tissues, is often promoted by the addition of stem cells or the appropriate angiogenic growth factors. In this study, human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAPs) were applied in an in vivo model of dental pulp regeneration in order to compare their regenerative potential and confirm their previously demonstrated paracrine angiogenic properties. 3D-printed hydroxyapatite scaffolds containing DPSCs and/or SCAPs were subcutaneously transplanted into immunocompromised mice. After twelve weeks, histological and ultrastructural analysis demonstrated the regeneration of vascularized pulp-like tissue as well as mineralized tissue formation in all stem cell constructs. Despite the secretion of vascular endothelial growth factor in vitro, the stem cell constructs did not display a higher vascularization rate in comparison to control conditions. Similar results were found after eight weeks, which suggests both osteogenic/odontogenic differentiation of the transplanted stem cells and the promotion of angiogenesis in this particular setting. In conclusion, this is the first study to demonstrate the successful formation of vascularized pulp-like tissue in 3D-printed scaffolds containing dental stem cells, emphasizing the promising role of this approach in dental tissue engineering.
Collapse
|
113
|
Galler KM, Widbiller M. Perspectives for Cell-homing Approaches to Engineer Dental Pulp. J Endod 2017; 43:S40-S45. [DOI: 10.1016/j.joen.2017.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
114
|
Mangione F, EzEldeen M, Bardet C, Lesieur J, Bonneau M, Decup F, Salmon B, Jacobs R, Chaussain C, Opsahl-Vital S. Implanted Dental Pulp Cells Fail to Induce Regeneration in Partial Pulpotomies. J Dent Res 2017; 96:1406-1413. [PMID: 28796952 DOI: 10.1177/0022034517725523] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cell-based partial pulp regeneration is one of the promising approaches to obtain newly formed functional dentin-pulp complex. It relies on the preservation of the healthy tissue while regenerating the damaged pulp. The aim of this study was to investigate whether this regenerative process could be achieved by implanting porcine dental pulp cells (pDPCs) in pulp defects in the minipig. By split-mouth model, self-assembling injectable nanopeptide hydrogel, with and without pDPCs, was implanted after cameral pulpotomy in premolars and molars. At day 21 after surgery, 3-dimensional morphometric characterization, Masson's trichrome staining, and immunolabeling for DSP and BSP (dentin sialoprotein and bone sialoprotein) were performed on treated teeth. This study demonstrated no pulp regeneration but systematic reparative dentinogenesis. In fact, regardless of the presence of pDPCs in the scaffold, an osteodentin bridge-the microarchitecture of which significantly differed from the native dentin-was systematically obtained. Furthermore, the presence of pDPCs significantly affected the microstructure of the dentin bridges. In the radicular area of each treated tooth, hyperemia in the remaining pulp and external root resorptions were observed. Under the conditions tested in this work, pulp regeneration was not achieved, which highlights the need of further investigations to develop favorable regenerative microenvironment.
Collapse
Affiliation(s)
- F Mangione
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Albert Chenevier, Louis Mourier and Bretonneau "National Rare Diseases Center Metabolism Phosphorus and Calcium" and Charles Foix, Paris, France
| | - M EzEldeen
- 3 OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium
| | - C Bardet
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - J Lesieur
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France
| | - M Bonneau
- 4 XP-MED, Saint-Germain-en-Laye, France
| | - F Decup
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Albert Chenevier, Louis Mourier and Bretonneau "National Rare Diseases Center Metabolism Phosphorus and Calcium" and Charles Foix, Paris, France
| | - B Salmon
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Albert Chenevier, Louis Mourier and Bretonneau "National Rare Diseases Center Metabolism Phosphorus and Calcium" and Charles Foix, Paris, France.,5 AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, Paris, France
| | - R Jacobs
- 3 OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven and Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium
| | - C Chaussain
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Albert Chenevier, Louis Mourier and Bretonneau "National Rare Diseases Center Metabolism Phosphorus and Calcium" and Charles Foix, Paris, France.,5 AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, Paris, France
| | - S Opsahl-Vital
- 1 EA 2496 Laboratory Orofacial Pathologies, Imagery and Biotherapies, Dental School and Life imaging Platform (PIV), University Paris Descartes Sorbonne Paris Cité, Montrouge, France.,2 AP-HP, Departments of Odontology, University Hospitals Albert Chenevier, Louis Mourier and Bretonneau "National Rare Diseases Center Metabolism Phosphorus and Calcium" and Charles Foix, Paris, France.,5 AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, Paris, France
| |
Collapse
|
115
|
Lambrichts I, Driesen RB, Dillen Y, Gervois P, Ratajczak J, Vangansewinkel T, Wolfs E, Bronckaers A, Hilkens P. Dental Pulp Stem Cells: Their Potential in Reinnervation and Angiogenesis by Using Scaffolds. J Endod 2017; 43:S12-S16. [PMID: 28781091 DOI: 10.1016/j.joen.2017.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dental pulp is a highly vascularized and innervated tissue containing a heterogeneous stem cell population with multilineage differentiation potential. Current endodontic treatments focus on the preservation of the pulp tissue and the regeneration of dental pulp after pathological insults. Human dental pulp stem cells (hDPSCs) are currently investigated as stem cell-based therapy for pulp regeneration and for peripheral nerve injury in which neurons and Schwann cells display limited regenerative capacity. We have developed a neuronal differentiation protocol for hDPSCs that requires neurosphere formation before neuronal maturation. Moreover, Schwann cell differentiation of hDPSCs in our group revealed that differentiated hDPSCs have acquired the ability to myelinate and guide neurites from dorsal root ganglia. Besides their dynamic differentiation capacity, hDPSCs were shown to exert a paracrine effect on neural and endothelial cells. Analysis of hDPSC conditioned medium revealed the secretion of a broad spectrum of growth factors including brain-derived neurotrophic factor, nerve growth factor, vascular endothelial growth factor, and glial-derived neurotrophic factor. Application of the conditioned medium to endothelial cells promoted cell migration and tubulogenesis, indicating a paracrine proangiogenic effect. This hypothesis was enforced by the enhanced formation of blood vessels in the chorioallantoic membrane assay in the presence of hDPSCs. In addition, transplantation of 3-dimensional-printed hydroxyapatite scaffolds containing peptide hydrogels and hDPSCs into immunocompromised mice revealed blood vessel ingrowth, pulplike tissue formation, and osteodentin deposition suggesting osteogenic/odontogenic differentiation of hDPSCs. Future studies in our research group will focus on the pulp regeneration capacity of hDPSCs and the role of fibroblasts within the pulp extracellular matrix.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| | - Ronald B Driesen
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Yörg Dillen
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Pascal Gervois
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Jessica Ratajczak
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Esther Wolfs
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Petra Hilkens
- Laboratory of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
116
|
A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs. Sci Rep 2017; 7:3323. [PMID: 28607361 PMCID: PMC5468292 DOI: 10.1038/s41598-017-02532-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/12/2017] [Indexed: 01/10/2023] Open
Abstract
The requirement for immediate vascularization of engineered dental pulp poses a major hurdle towards successful implementation of pulp regeneration as an effective therapeutic strategy for root canal therapy, especially in adult teeth. Here, we demonstrate a novel strategy to engineer pre-vascularized, cell-laden hydrogel pulp-like tissue constructs in full-length root canals for dental pulp regeneration. We utilized gelatin methacryloyl (GelMA) hydrogels with tunable physical and mechanical properties to determine the microenvironmental conditions (microstructure, degradation, swelling and elastic modulus) that enhanced viability, spreading and proliferation of encapsulated odontoblast-like cells (OD21), and the formation of endothelial monolayers by endothelial colony forming cells (ECFCs). GelMA hydrogels with higher polymer concentration (15% w/v) and stiffness enhanced OD21 cell viability, spreading and proliferation, as well as endothelial cell spreading and monolayer formation. We then fabricated pre-vascularized, full-length, dental pulp-like tissue constructs by dispensing OD21 cell-laden GelMA hydrogel prepolymer in root canals of extracted teeth and fabricating 500 µm channels throughout the root canals. ECFCs seeded into the microchannels successfully formed monolayers and underwent angiogenic sprouting within 7 days in culture. In summary, the proposed approach is a simple and effective strategy for engineering of pre-vascularized dental pulp constructs offering potentially beneficial translational outcomes.
Collapse
|
117
|
Li G, Zhou T, Lin S, Shi S, Lin Y. Nanomaterials for Craniofacial and Dental Tissue Engineering. J Dent Res 2017; 96:725-732. [PMID: 28463533 DOI: 10.1177/0022034517706678] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- G. Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - T. Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - S. Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - S. Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Y. Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
118
|
Nakayama H, Iohara K, Hayashi Y, Okuwa Y, Kurita K, Nakashima M. Enhanced regeneration potential of mobilized dental pulp stem cells from immature teeth. Oral Dis 2017; 23:620-628. [PMID: 27973697 DOI: 10.1111/odi.12619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We have previously demonstrated that dental pulp stem cells (DPSCs) isolated from mature teeth by granulocyte colony-stimulating factor (G-CSF)-induced mobilization method can enhance angiogenesis/vasculogenesis and improve pulp regeneration when compared with colony-derived DPSCs. However, the efficacy of this method in immature teeth with root-formative stage has never been investigated. Therefore, the aim of this study was to examine the stemness, biological characteristics, and regeneration potential in mobilized DPSCs compared with colony-derived DPSCs from immature teeth. MATERIALS AND METHODS Mobilized DPSCs isolated from immature teeth were compared to colony-derived DPSCs using methods including flow cytometry, migration assays, mRNA expression of angiogenic/neurotrophic factor, and induced differentiation assays. They were also compared in trophic effects of the secretome. Regeneration potential was further compared in an ectopic tooth transplantation model. RESULTS Mobilized DPSCs had higher migration ability and expressed more angiogenic/neurotrophic factors than DPSCs. The mobilized DPSC secretome produced a higher stimulatory effect on migration, immunomodulation, anti-apoptosis, endothelial differentiation, and neurite extension. In addition, vascularization and pulp regeneration potential were higher in mobilized DPSCs than in DPSCs. CONCLUSIONS G-CSF-induced mobilization method enhances regeneration potential of colony-derived DPSCs from immature teeth.
Collapse
Affiliation(s)
- H Nakayama
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan.,Department of Oral Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - K Iohara
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan
| | - Y Hayashi
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan.,Department of Pediatric Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - Y Okuwa
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan.,Department of Oral Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - K Kurita
- Department of Oral Maxillofacial Surgery, School of Dentistry, Aichi Gakuin University, Nagoya, Japan
| | - M Nakashima
- Department of Stem Cell Biology and Regenerative Medicine, National Center for Geriatrics and Gerontology, Research Institute, Obu, Japan
| |
Collapse
|
119
|
Piva E, Tarlé SA, Nör JE, Zou D, Hatfield E, Guinn T, Eubanks EJ, Kaigler D. Dental Pulp Tissue Regeneration Using Dental Pulp Stem Cells Isolated and Expanded in Human Serum. J Endod 2017; 43:568-574. [PMID: 28216268 PMCID: PMC5797986 DOI: 10.1016/j.joen.2016.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/14/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Dental pulp-derived stem cells (DPSCs) have the potential to regenerate dentin and dental pulp tissue because of their differentiation capacity and angiogenic properties. However, for regenerative approaches to gain regulatory and clinical acceptance, protocols are needed to determine more feasible ways to cultivate DPSCs, namely, without the use of xenogeneic-derived components (animal sera) and exogenous growth factors. METHODS In this study, human DPSCs were isolated from third molars and expanded in standard culture conditions containing fetal bovine serum (DPSCs-FBS) or conditions containing human serum (DPSCs-HS). After cell characterization and evaluation of their angiogenic secretome, DPSCs were seeded in tooth slice/scaffolds and implanted subcutaneously into immunodeficient mice. After 30 days, tooth slices were retrieved and evaluated for dental pulp tissue regeneration. Immunohistochemistry and confocal microscopy were used to quantify blood vessel formation and evaluate predentin and dentin formation. RESULTS After culture, DPSCs-HS produced concentrations of angiogenic growth factors equivalent to DPSCs-FBS. Additionally, in DPSCs-HS, several angiogenic factors were produced in at least 1-fold higher concentrations than in DPSCs-FBS. In vivo, it was determined that DPSCs-HS produced a robust angiogenic response and regeneration of dentin equivalent to DPSCs-FBS. CONCLUSIONS These findings show that DPSCs can be isolated and expanded to clinical scale numbers in media devoid of animal serum or exogenous growth factors and still maintain their pulp regenerative properties. The implications of these findings are significant for further development of clinical protocols using DPSCs in cell therapies.
Collapse
Affiliation(s)
- Evandro Piva
- Department of Cariology and Restorative Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Susan A Tarlé
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Jacques E Nör
- Department of Cariology and Restorative Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan
| | - Duohong Zou
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Elizabeth Hatfield
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Tyler Guinn
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Emily J Eubanks
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
120
|
Aksel H, Huang GTJ. Human and Swine Dental Pulp Stem Cells Form a Vascularlike Network after Angiogenic Differentiation in Comparison with Endothelial Cells: A Quantitative Analysis. J Endod 2017; 43:588-595. [PMID: 28258811 DOI: 10.1016/j.joen.2016.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The aim of this study was to quantify vascular network formation capacity after angiogenic induction of human and swine dental pulp stem cells (DPSCs) in comparison with endothelial cells. METHODS Primary human DPSCs or swine DPSCs were induced in endothelial growth medium for 7 days. The expression of the endothelial marker von Willebrand factor was determined by immunostaining. Induced DPSCs (iDPSCs) and noninduced DPSCs (niDPSCs) were seeded at different cell numbers onto Matrigel (BD Biosciences, San Jose, CA) for vascular network formation assays and analyzed after 4, 8, 12, and 18 hours in comparison with human microvascular endothelial cells (hMECs). Quantitative analysis of vascular tubule formation was performed using ImageJ software (National Institutes of Health, Bethesda, MD). The vascular network formation was also conducted by coculturing of niDPSCs and iDPSCs. RESULTS Von Willebrand factor was detected by immunofluorescence in both niDPSCs and iDPSCs (human and swine). Time-lapse microscopic observation showed that the vascular network was formed by iDPSCs but not niDPSCs. After 4 hours, iDPSCs showed vascular network formation, whereas niDPSCs started to aggregate and formed clusters. Human iDPSCs displayed a similar capacity to form vascular networks in Matrigel compared with hMECs based on quantitative analysis. Swine iDPSCs had a higher capacity compared with human iDPSCs or hMECs (P < .05) in forming the network structures including segments, nodes, and mesh. A coculture experiment showed that human niDPSCs colocalized on the angiogenic tubules and vascular networks that were formed by human iDPSCs. CONCLUSIONS Our findings indicate that iDPSCs in combination with their noninduced counterparts may be used as a future clinical strategy for enhancing angiogenesis during the process of pulp-dentin regeneration.
Collapse
Affiliation(s)
- Hacer Aksel
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee
| | - George T-J Huang
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, Tennessee.
| |
Collapse
|
121
|
Chang B, Ahuja N, Ma C, Liu X. Injectable scaffolds: Preparation and application in dental and craniofacial regeneration. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2017; 111:1-26. [PMID: 28649171 PMCID: PMC5478172 DOI: 10.1016/j.mser.2016.11.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Injectable scaffolds are appealing for tissue regeneration because they offer many advantages over pre-formed scaffolds. This article provides a comprehensive review of the injectable scaffolds currently being investigated for dental and craniofacial tissue regeneration. First, we provide an overview of injectable scaffolding materials, including natural, synthetic, and composite biomaterials. Next, we discuss a variety of characteristic parameters and gelation mechanisms of the injectable scaffolds. The advanced injectable scaffolding systems developed in recent years are then illustrated. Furthermore, we summarize the applications of the injectable scaffolds for the regeneration of dental and craniofacial tissues that include pulp, dentin, periodontal ligament, temporomandibular joint, and alveolar bone. Finally, our perspectives on the injectable scaffolds for dental and craniofacial tissue regeneration are offered as signposts for the future advancement of this field.
Collapse
Affiliation(s)
- Bei Chang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Neelam Ahuja
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Chi Ma
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
122
|
Komath M, Varma HK, John A, Krishnan V, Simon D, Ramanathan M, Bhuvaneshwar GS. Designing Bioactive Scaffolds for Dental Tissue Engineering. REGENERATIVE MEDICINE: LABORATORY TO CLINIC 2017:423-447. [DOI: 10.1007/978-981-10-3701-6_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
123
|
MSCs and Innovative Injectable Biomaterials in Dentistry. STEM CELL BIOLOGY AND REGENERATIVE MEDICINE 2017. [DOI: 10.1007/978-3-319-55645-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
124
|
Regenerative Endodontic Procedures: A Perspective from Stem Cell Niche Biology. J Endod 2017; 43:52-62. [DOI: 10.1016/j.joen.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/19/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
|
125
|
Khayat A, Monteiro N, Smith EE, Pagni S, Zhang W, Khademhosseini A, Yelick PC. GelMA-Encapsulated hDPSCs and HUVECs for Dental Pulp Regeneration. J Dent Res 2016; 96:192-199. [PMID: 28106508 DOI: 10.1177/0022034516682005] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pulpal revascularization is commonly used in the dental clinic to obtain apical closure of immature permanent teeth with thin dentinal walls. Although sometimes successful, stimulating bleeding from the periapical area of the tooth can be challenging and in turn may deleteriously affect tooth root maturation. Our objective here was to define reliable methods to regenerate pulp-like tissues in tooth root segments (RSs). G1 RSs were injected with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) encapsulated in 5% gelatin methacrylate (GelMA) hydrogel. G2 RSs injected with acellular GelMA alone, and G3 empty RSs were used as controls. White mineral trioxide aggregate was used to seal one end of the tooth root segment, while the other was left open. Samples were cultured in vitro in osteogenic media (OM) for 13 d and then implanted subcutaneously in nude rats for 4 and 8 wk. At least 5 sample replicates were used for each experimental group. Analyses of harvested samples found that robust pulp-like tissues formed in G1, GelMA encapsulated hDPSC/HUVEC-filled RSs, and less cellularized host cell-derived pulp-like tissue was observed in the G2 acellular GelMA and G3 empty RS groups. Of importance, only the G1, hDPSC/HUVEC-encapsulated GelMA constructs formed pulp cells that attached to the inner dentin surface of the RS and infiltrated into the dentin tubules. Immunofluorescent (IF) histochemical analysis showed that GelMA supported hDPSC/HUVEC cell attachment and proliferation and also provided attachment for infiltrating host cells. Human cell-seeded GelMA hydrogels promoted the establishment of well-organized neovasculature formation. In contrast, acellular GelMA and empty RS constructs supported the formation of less organized host-derived vasculature formation. Together, these results identify GelMA hydrogel combined with hDPSC/HUVECs as a promising new clinically relevant pulpal revascularization treatment to regenerate human dental pulp tissues.
Collapse
Affiliation(s)
- A Khayat
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | - N Monteiro
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | - E E Smith
- 1 Tufts University School of Dental Medicine, Boston, MA, USA.,2 Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - S Pagni
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | - W Zhang
- 1 Tufts University School of Dental Medicine, Boston, MA, USA
| | | | - P C Yelick
- 1 Tufts University School of Dental Medicine, Boston, MA, USA.,2 Department of Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
126
|
Comparison of Endothelial Differentiation Capacities of Human and Rat Adipose-Derived Stem Cells. Plast Reconstr Surg 2016; 138:1231-1241. [DOI: 10.1097/prs.0000000000002791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
127
|
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int 2016; 2016:4209891. [PMID: 27818690 PMCID: PMC5081960 DOI: 10.1155/2016/4209891] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 12/17/2022] Open
Abstract
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.”
Collapse
|
128
|
The Neurovascular Properties of Dental Stem Cells and Their Importance in Dental Tissue Engineering. Stem Cells Int 2016; 2016:9762871. [PMID: 27688777 PMCID: PMC5027319 DOI: 10.1155/2016/9762871] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Within the field of tissue engineering, natural tissues are reconstructed by combining growth factors, stem cells, and different biomaterials to serve as a scaffold for novel tissue growth. As adequate vascularization and innervation are essential components for the viability of regenerated tissues, there is a high need for easily accessible stem cells that are capable of supporting these functions. Within the human tooth and its surrounding tissues, different stem cell populations can be distinguished, such as dental pulp stem cells, stem cells from human deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and periodontal ligament stem cells. Given their straightforward and relatively easy isolation from extracted third molars, dental stem cells (DSCs) have become an attractive source of mesenchymal-like stem cells. Over the past decade, there have been numerous studies supporting the angiogenic, neuroprotective, and neurotrophic effects of the DSC secretome. Together with their ability to differentiate into endothelial cells and neural cell types, this makes DSCs suitable candidates for dental tissue engineering and nerve injury repair.
Collapse
|
129
|
Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry. Stem Cells Int 2016; 2016:7231038. [PMID: 27648076 PMCID: PMC5018320 DOI: 10.1155/2016/7231038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/15/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.
Collapse
|
130
|
Chieruzzi M, Pagano S, Moretti S, Pinna R, Milia E, Torre L, Eramo S. Nanomaterials for Tissue Engineering In Dentistry. NANOMATERIALS 2016; 6:nano6070134. [PMID: 28335262 PMCID: PMC5224610 DOI: 10.3390/nano6070134] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 02/08/2023]
Abstract
The tissue engineering (TE) of dental oral tissue is facing significant changes in clinical treatments in dentistry. TE is based on a stem cell, signaling molecule, and scaffold triad that must be known and calibrated with attention to specific sectors in dentistry. This review article shows a summary of micro- and nanomorphological characteristics of dental tissues, of stem cells available in the oral region, of signaling molecules usable in TE, and of scaffolds available to guide partial or total reconstruction of hard, soft, periodontal, and bone tissues. Some scaffoldless techniques used in TE are also presented. Then actual and future roles of nanotechnologies about TE in dentistry are presented.
Collapse
Affiliation(s)
- Manila Chieruzzi
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Pagano
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| | - Silvia Moretti
- Department of Experimental Medicine-University of Perugia Polo Unico Sant'Andrea delle Fratte, 06132 Perugia, Italy.
| | - Roberto Pinna
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Egle Milia
- Department of Biomedical Science-University of Sassari viale San Pietro 43/C -07100 Sassari, Italy.
| | - Luigi Torre
- Department of Civil and Environmental Engineering-UdR INSTM-University of Perugia, Strada di Pentima, 4-05100 Terni, Italy.
| | - Stefano Eramo
- Department of Surgical and Biomedical Sciences-University of Perugia, S. Andrea delle Fratte, 06156 Perugia, Italy.
| |
Collapse
|
131
|
Sholehvar F, Mehrabani D, Yaghmaei P, Vahdati A. The effect ofAloe veragel on viability of dental pulp stem cells. Dent Traumatol 2016; 32:390-6. [DOI: 10.1111/edt.12272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Fatemeh Sholehvar
- Department of Biology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Davood Mehrabani
- Stem Cell and Transgenic Technology Research Center; Shiraz University of Medical Science; Shiraz Iran
- Department of Regenerative Medicine; University of Manitoba; Winnipeg MB Canada
| | - Parichehr Yaghmaei
- Department of Biology, Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Akbar Vahdati
- Department of Biology, Science and Research Branch; Islamic Azad University; Fars Iran
| |
Collapse
|
132
|
Pulp regeneration in a full-length human tooth root using a hierarchical nanofibrous microsphere system. Acta Biomater 2016; 35:57-67. [PMID: 26931056 DOI: 10.1016/j.actbio.2016.02.040] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 12/29/2022]
Abstract
While pulp regeneration using tissue engineering strategy has been explored for over a decade, successful regeneration of pulp tissues in a full-length human root with a one-end seal that truly simulates clinical endodontic treatment has not been achieved. To address this challenge, we designed and synthesized a unique hierarchical growth factor-loaded nanofibrous microsphere scaffolding system. In this system, vascular endothelial growth factor (VEGF) binds with heparin and is encapsulated in heparin-conjugated gelatin nanospheres, which are further immobilized in the nanofibers of an injectable poly(l-lactic acid) (PLLA) microsphere. This hierarchical microsphere system not only protects the VEGF from denaturation and degradation, but also provides excellent control of its sustained release. In addition, the nanofibrous PLLA microsphere integrates the extracellular matrix-mimicking architecture with a highly porous injectable form, efficiently accommodating dental pulp stem cells (DPSCs) and supporting their proliferation and pulp tissue formation. Our in vivo study showed the successful regeneration of pulp-like tissues that fulfilled the entire apical and middle thirds and reached the coronal third of the full-length root canal. In addition, a large number of blood vessels were regenerated throughout the canal. For the first time, our work demonstrates the success of pulp tissue regeneration in a full-length root canal, making it a significant step toward regenerative endodontics. STATEMENT OF SIGNIFICANCE The regeneration of pulp tissues in a full-length tooth root canal has been one of the greatest challenges in the field of regenerative endodontics, and one of the biggest barriers for its clinical application. In this study, we developed a unique approach to tackle this challenge, and for the first time, we successfully regenerated living pulp tissues in a full-length root canal, making it a significant step toward regenerative endodontics. This study will make positive scientific impact and interest the broad and multidisciplinary readership in the dental biomaterials and craniofacial tissue engineering community.
Collapse
|
133
|
Jang JY, Park SH, Park JH, Lee BK, Yun JH, Lee B, Kim JH, Min BH, Kim MS. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel. Macromol Biosci 2016; 16:1158-69. [DOI: 10.1002/mabi.201600001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/10/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Ja Yong Jang
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Ji Hoon Park
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Bo Keun Lee
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Jeong-Ho Yun
- Department of Periodontology; School of Dentistry and Institute of Oral Bioscience; Chonbuk National University; Jeonju 561-712 Korea
| | - Bong Lee
- Department of Polymer Engineering; Pukyong National University; Busan 608-739 Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology; Ajou University; Suwon 443-759 Korea
| |
Collapse
|
134
|
Heng BC, Ye X, Liu Y, Dissanayaka WL, Cheung GSP, Zhang C. Effects of Recombinant Overexpression of Bcl2 on the Proliferation, Apoptosis, and Osteogenic/Odontogenic Differentiation Potential of Dental Pulp Stem Cells. J Endod 2016; 42:575-83. [DOI: 10.1016/j.joen.2016.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/06/2016] [Accepted: 01/15/2016] [Indexed: 01/10/2023]
|
135
|
Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells Int 2016; 2016:9204574. [PMID: 27069484 PMCID: PMC4812497 DOI: 10.1155/2016/9204574] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration.
Collapse
|
136
|
|
137
|
Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: Progress, design guidelines, and applications. J Biomed Mater Res A 2016; 104:1002-16. [DOI: 10.1002/jbm.a.35638] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/30/2015] [Accepted: 12/22/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Sotirios Koutsopoulos
- Center for Biomedical Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| |
Collapse
|
138
|
AbdulQader ST, Rahman IA, Thirumulu KP, Ismail H, Mahmood Z. Effect of biphasic calcium phosphate scaffold porosities on odontogenic differentiation of human dental pulp cells. J Biomater Appl 2016; 30:1300-11. [PMID: 26740503 DOI: 10.1177/0885328215625759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaP) of different porosities have been widely and successfully used as scaffolds with osteoblast cells for bone tissue regeneration. However, the effects of scaffold porosities on cell viability and differentiation of human dental pulp cells for dentin tissue regeneration are not well known. In this study, biphasic calcium phosphate (BCP) scaffolds of 20/80 hydroxyapatite to beta tricalcium phosphate ratio with a mean pore size of 300 μm were prepared into BCP1, BCP2, BCP3, and BCP4 of 25%, 50%, 65%, and 75% of total porosities, respectively. The extracts of these scaffolds were assessed with regard to cell viability, proliferation, and differentiation of human dental pulp cells. The high alkalinity, and more calcium and phosphate ions release that were exhibited by BCP3 and BCP4 decreased the viability and proliferation of human dental pulp cells as compared to BCP1 and BCP2. BCP2 significantly increased both cell viability and cell proliferation. However, the cells cultured with BCP3 extract revealed high alkaline phosphatase (ALP) activity and high expression of odontoblast related genes, collagen type I alpha 1, dentin matrix protein-1, and dentin sialophosphoprotein as compared to that cultured with BCP1, BCP2, and BCP4 extracts. The results highlight the effect of different scaffold porosities on the cell microenvironment and demonstrate that BCP3 scaffold of 65% porosity can support human dental pulp cells differentiation for dentin tissue regeneration.
Collapse
Affiliation(s)
- Sarah T AbdulQader
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Department of Pedodontic and Preventive Dentistry, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Ismail A Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Kannan P Thirumulu
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Hanafi Ismail
- School of Materials and Minerals Resource Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Zuliani Mahmood
- School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
139
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
140
|
Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, Luzuriaga J, Uribe-Etxebarria V, Unda F, Ibarretxe G. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol 2015; 6:289. [PMID: 26528190 PMCID: PMC4607862 DOI: 10.3389/fphys.2015.00289] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023] Open
Abstract
Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Patricia Garcia-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Jon Luzuriaga
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Verónica Uribe-Etxebarria
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country Leioa, Spain
| |
Collapse
|
141
|
Conde MCM, Chisini LA, Demarco FF, Nör JE, Casagrande L, Tarquinio SBC. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. Int Endod J 2015; 49:543-50. [PMID: 26101143 DOI: 10.1111/iej.12489] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/17/2015] [Indexed: 01/02/2023]
Abstract
Stem cell-based therapy (SC-BT) is emerging as an alternative for endodontic therapies. The interaction between stem cells and scaffolds plays a crucial role in the generation of a 'friendly cell' microenvironment. The aim of this systematic review was to explore techniques applied to regenerate the pulp-dentine complex tissue using SC-BT. An electronic search into the SciVerse Scopus (SS), ISI Web Science (IWS) and Entrez PubMed (EP) using specific keywords was performed. Specific inclusion and exclusion criteria were predetermined. The search yielded papers, out of which full-text papers were included in the final analyses. Data extraction pooled the results in four main topics: (a) influence of the chemical properties of the scaffolds over cell behaviour; (b) influence of the physical characteristics of scaffolds over cell behaviour; (c) strategies applied to improve the stem cell/scaffold interface; and (d) influence of cue microenvironment on stem cell differentiation towards odontoblast-like cells and pulp-like tissue formation. The relationship between the scaffolds, the environment and the growth factors released from dentine are critical for de novo pulp tissue regeneration. The preconditioning of dentine walls with ethylenediaminetetraacetic acid (EDTA) was imperative for successful pulp-dentine complex regeneration. An analyses of the grouped results revealed that pulp regeneration was an attainable goal.
Collapse
Affiliation(s)
- M C M Conde
- Post Graduation Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - L A Chisini
- Post Graduation Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil
| | - F F Demarco
- Post Graduation Program in Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, Brazil.,Post graduation program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| | - J E Nör
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - L Casagrande
- Department of Oral Surgery and Orthopedics, Pediatric Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - S B C Tarquinio
- Department of Semiology and Clinics, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|