101
|
Wang SJ, Qin JZ, Zhang TE, Xia C. Intra-articular Injection of Kartogenin-Incorporated Thermogel Enhancing Osteoarthritis Treatment. Front Chem 2019; 7:677. [PMID: 31681730 PMCID: PMC6813204 DOI: 10.3389/fchem.2019.00677] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
To provide a vehicle for sustained release of cartilage-protective agent for the potential application of osteoarthritis (OA) treatment, we developed a kartogenin (KGN)-incorporated thermogel for intra-articular injection. We fabricated a poly(lactide-co-glycolide)-block-poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PLGA–PEG–PLGA) thermogel as a KGN carrier for IA injection. OA chondrocytes were cultured in thermogel with or with no KGN to investigate the effect of KGN thermogel on cartilage matrix. The in vivo effect of KGN thermogel on OA was examined in a rabbit OA model. The KGN thermogel showed a sustained in vitro release of KGN for 3 weeks. OA chondrocytes proliferated well both in thermogel and KGN thermogel. In addition, OA chondrocytes produced higher amount of [type 2 collagen (COL-2) and glycosaminoglycan (GAG)], as well as lower level of matrix metalloproteinase 13 (MMP-13) in KGN thermogel that those in thermogel with no addition of KGN. The gene analysis supported that KGN thermogel enhanced expression of hyaline-cartilage specific genes Col 2 and AGC, and inhibited the expression of MMP-13. Compared with intra-articular injection of saline or thermogel containing no KGN, KGN thermogel can enhance cartilage regeneration and inhibit joint inflammation of arthritic knees in a rabbit ACLT-induced OA model at 3 weeks after the injection. Therefore, the KGN-incorporated PLGA–PEG–PLGA thermogel may provide a novel treatment modality for OA treatment with IA injection.
Collapse
Affiliation(s)
- Shao-Jie Wang
- Department of Joint Surgery and Sports Medicine, Xiamen University Zhongshan Hospital, Xiamen, China
| | - Ji-Zheng Qin
- Department of Joint Surgery and Sports Medicine, Xiamen University Zhongshan Hospital, Xiamen, China
| | | | - Chun Xia
- Department of Joint Surgery and Sports Medicine, Xiamen University Zhongshan Hospital, Xiamen, China
| |
Collapse
|
102
|
Žigon-Branc S, Markovic M, Van Hoorick J, Van Vlierberghe S, Dubruel P, Zerobin E, Baudis S, Ovsianikov A. Impact of Hydrogel Stiffness on Differentiation of Human Adipose-Derived Stem Cell Microspheroids. Tissue Eng Part A 2019; 25:1369-1380. [PMID: 30632465 PMCID: PMC6784494 DOI: 10.1089/ten.tea.2018.0237] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022] Open
Abstract
Hydrogels represent an attractive material platform for realization of three-dimensional (3D) tissue-engineered constructs, as they have tunable mechanical properties, are compatible with different types of cells, and resemble elements found in natural extracellular matrices. So far, numerous hydrogel-cartilage/bone tissue engineering (TE)-related studies were performed by utilizing a single cell encapsulation approach. Although multicellular spheroid cultures exhibit advantageous properties for cartilage or bone TE, the chondrogenic or osteogenic differentiation potential of stem cell microspheroids within hydrogels has not been investigated much. This study explores, for the first time, how stiffness of gelatin-based hydrogels (having a storage modulus of 538, 3584, or 7263 Pa) affects proliferation and differentiation of microspheroids formed from telomerase-immortalized human adipose-derived stem cells (hASC/hTERT). Confocal microscopy indicates that all tested hydrogels supported cell viability during their 3- to 5-week culture period in the control, chondrogenic, or osteogenic medium. Although in the softer hydrogels cells from neighboring microspheroids started outgrowing and interconnecting within a few days, their protrusion was slower or limited in stiffer hydrogels or those cultured in chondrogenic medium, respectively. High expressions of chondrogenic markers (SOX9, ACAN, COL2A1), detected in all tested hydrogels, proved that the chondrogenic differentiation of hASC/hTERT microspheroids was very successful, especially in the two softer hydrogels, where superior cartilage-specific properties were confirmed by Alcian blue staining. These chondrogenically induced samples also expressed COL10A1, a marker of chondrocyte hypertrophy. Interestingly, the hydrogel itself (with no differentiation medium) showed a slight chondrogenic induction. Regardless of the hydrogel stiffness, in the samples stimulated with osteogenic medium, the expression of selected markers RUNX2, BGLAP, ALPL, and COL1A1 was not conclusive. Nevertheless, the von Kossa staining confirmed the presence of calcium deposits in osteogenically stimulated samples in the two softer hydrogels, suggesting that these also favor osteogenesis. This observation was also confirmed by Alizarin red quantification assay, with which higher amounts of calcium were detected in the osteogenically induced hydrogels than in their controls. The presented data indicate that the encapsulation of adipose-derived stem cell microspheroids in gelatin-based hydrogels show promising potential for future applications in cartilage or bone TE. Impact Statement Osteochondral defects represent one of the leading causes of disability in the world. Although numerous tissue engineering (TE) approaches have shown success in cartilage and bone tissue regeneration, achieving native-like characteristics of these tissues remains challenging. This study demonstrates that in the presence of a corresponding differentiation medium, gelatin-based hydrogels support moderate osteogenic and excellent chondrogenic differentiation of photo-encapsulated human adipose-derived stem cell microspheroids, the extent of which depends on hydrogel stiffness. Because photosensitive hydrogels are a convenient material platform for creating stiffness gradients in three dimensions, the presented microspheroid-hydrogel encapsulation strategy holds promise for future strategies of cartilage or bone TE.
Collapse
Affiliation(s)
- Sara Žigon-Branc
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Marica Markovic
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| | - Jasper Van Hoorick
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
- Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel and Flanders Make, Elsene, Belgium
| | - Peter Dubruel
- Department of Organic and Macromolecular Chemistry, Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Elise Zerobin
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue Regeneration, Austria
- Division of Macromolecular Chemistry, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Vienna, Austria
| | - Aleksandr Ovsianikov
- Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
103
|
Dolan EB, Hofmann B, de Vaal MH, Bellavia G, Straino S, Kovarova L, Pravda M, Velebny V, Daro D, Braun N, Monahan DS, Levey RE, O'Neill H, Hinderer S, Greensmith R, Monaghan MG, Schenke-Layland K, Dockery P, Murphy BP, Kelly HM, Wildhirt S, Duffy GP. A bioresorbable biomaterial carrier and passive stabilization device to improve heart function post-myocardial infarction. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109751. [DOI: 10.1016/j.msec.2019.109751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/20/2022]
|
104
|
Liu Y, Xiong D. Self‐healable polyacrylic acid‐polyacrylamide‐ferric ion dual‐crosslinked hydrogel with good biotribological performance as a load‐bearing surface. J Appl Polym Sci 2019. [DOI: 10.1002/app.48499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuntong Liu
- School of Materials Science and EngineeringNanjing University of Science and Technology 210094 Nanjing China
| | - Dangsheng Xiong
- School of Materials Science and EngineeringNanjing University of Science and Technology 210094 Nanjing China
| |
Collapse
|
105
|
Zhang P, Zhao C, Zhao T, Liu M, Jiang L. Recent Advances in Bioinspired Gel Surfaces with Superwettability and Special Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900996. [PMID: 31572647 PMCID: PMC6760469 DOI: 10.1002/advs.201900996] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/09/2019] [Indexed: 05/18/2023]
Abstract
Engineering surface wettability is of great importance in academic research and practical applications. The exploration of hydrogel-based natural surfaces with superior properties has revealed new design principles of surface superwettability. Gels are composed of a cross-linked polymer network that traps numerous solvents through weak interactions. The natural fluidity of the trapped solvents confers the liquid-like property to gel surfaces, making them significantly different from solid surfaces. Bioinspired gel surfaces have shown promising applications in diverse fields. This work aims to summarize the fundamental understanding and emerging applications of bioinspired gel surfaces with superwettability and special adhesion. First, several typical hydrogel-based natural surfaces with superwettability and special adhesion are briefly introduced, followed by highlighting the unique properties and design principles of gel-based surfaces. Then, the superwettability and emerging applications of bioinspired gel surfaces, including liquid/liquid separation, antiadhesion of organisms and solids, and fabrication of thin polymer films, are presented in detail. Finally, an outlook on the future development of these novel gel surfaces is also provided.
Collapse
Affiliation(s)
- Pengchao Zhang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Chuangqi Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Tianyi Zhao
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| | - Mingjie Liu
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
- International Research Institute for Multidisciplinary Science and Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijing100191P. R. China
| | - Lei Jiang
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang UniversityBeijing100191P. R. China
| |
Collapse
|
106
|
Graphene oxide: A growth factor delivery carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels. Acta Biomater 2019; 96:271-280. [PMID: 31325577 DOI: 10.1016/j.actbio.2019.07.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/21/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
Cartilage engineering with stem cells in 3D scaffolds is a promising future therapy to treat cartilage defects. One challenge in the field is to design carriers to efficaciously deliver biological factors in 3D scaffolds containing stem cells to appropriately guide differentiation of these cells in same scaffolds and promote specific tissue synthesis. Graphene-based 2D nanomaterials have recently attracted extensive interest for their biomedical applications as they can adsorb a plethora of biological molecules, thus offering high potential as delivery carriers. This study utilized graphene oxide (GO) flakes to adsorb transforming growth factor β3 (TGF-β3), which were then incorporated into a collagen hydrogel. Human mesenchymal stem cells (hMSCs) were encapsulated in the same gel and chondrogenic differentiation assessed. The study showed GO flakes adsorbed > 99% TGF-β3 with <1.7% release. Adsorbed TGF-β3 retained a similar conformation to its dissolved counterpart (free protein) but importantly demonstrated greater conformational stability. Smad2 phosphorylation was promoted, and higher chondrogenic gene expression and cartilage-specific extracellular matrix deposition were achieved compared to exogenously delivering TGF-β3 in culture media. Effects were sustained in long-term 28-day culture. The results demonstrate GO flakes as highly-efficient for delivering GFs in 3D to guide cells in the same scaffold and induce tissue formation. The ability of GO flakes to provide sustained local delivery makes this material attractive for tissue engineering strategies, in particular for regionally-specific MSC differentiation (e.g. osteochondral tissue engineering). STATEMENT OF SIGNIFICANCE: Cartilage engineering involving stem cells in 3D scaffolds is a promising future therapy to treat cartilage defects which can lead to debilitating conditions such as osteoarthritis. However, this field faces the challenge to design delivery carriers to efficaciously deliver biological factors inside these 3D cell-containing scaffolds for appropriately-guided cell differentiation. Graphene-based 2D nanomaterials offer high potential as delivery carriers, but to date studies using them to deliver biological factors have been restricted to 2D substrates, non-scaffold cell masses, or acellular 3D scaffolds. Our study for the first time demonstrated simultaneously incorporating both human mesenchymal stem cells (hMSCs) and GO (graphene oxide)-adsorbed growth factor TGFβ3 into a 3D scaffold, where GO-adsorbed TGFβ3 enhanced chondrogenic differentiation of hMSCs and cartilage-tissue synthesis throughout the scaffold without needing to repeatedly supply TGFβ3 exogenously.
Collapse
|
107
|
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Numerical Simulation of Electroactive Hydrogels for Cartilage-Tissue Engineering. MATERIALS 2019; 12:ma12182913. [PMID: 31505797 PMCID: PMC6774344 DOI: 10.3390/ma12182913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/20/2022]
Abstract
The intrinsic regeneration potential of hyaline cartilage is highly limited due to the absence of blood vessels, lymphatics, and nerves, as well as a low cell turnover within the tissue. Despite various advancements in the field of regenerative medicine, it remains a challenge to remedy articular cartilage defects resulting from trauma, aging, or osteoarthritis. Among various approaches, tissue engineering using tailored electroactive scaffolds has evolved as a promising strategy to repair damaged cartilage tissue. In this approach, hydrogel scaffolds are used as artificial extracellular matrices, and electric stimulation is applied to facilitate proliferation, differentiation, and cell growth at the defect site. In this regard, we present a simulation model of electroactive hydrogels to be used for cartilage–tissue engineering employing open-source finite-element software FEniCS together with a Python interface. The proposed mathematical formulation was first validated with an example from the literature. Then, we computed the effect of electric stimulation on a circular hydrogel sample that served as a model for a cartilage-repair implant.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
- Department of Electronics Engineering, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
| | - Rainer Bader
- Department of Orthopaedics, University Medical Center Rostock, 18057 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, 18051 Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.
| |
Collapse
|
108
|
Zheng L, Li D, Wang W, Zhang Q, Zhou X, Liu D, Zhang J, You Z, Zhang J, He C. Bilayered Scaffold Prepared from a Kartogenin-Loaded Hydrogel and BMP-2-Derived Peptide-Loaded Porous Nanofibrous Scaffold for Osteochondral Defect Repair. ACS Biomater Sci Eng 2019; 5:4564-4573. [PMID: 33448830 DOI: 10.1021/acsbiomaterials.9b00513] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a bilayered scaffold with an anisotropic structure mimicking a native osteochondral tissue shows considerable potential for treating osteochondral defects. Herein, a bilayered scaffold consisting of biomimetic cartilage and a subchondral bone architecture was constructed for repairing osteochondral defect. A hydrogel prepared by the Schiff base reaction of gelatin, silk fibroin, and oxidized dextran was designed as the cartilage layer, while a nanofibrous scaffold with a macroporous structure prepared from the polymer blend of poly(l-lactic acid)/poly(lactic-co-glycolic acid)/poly(ε-caprolactone) using the dual phase separation technique served as a subchondral layer. The subchondral layer was then treated with polydopamine coating for osteogenic factor immobilization. To facilitate the chondrogenic and osteogenic differentiation of bone marrow mesenchymal stem cells on the bilayered scaffold, the cartilage-inducing drug kartogenin (KGN) and osteogenic-inducing factor bone morphogenetic protein 2-derived peptides (P24 peptides) were, respectively, loaded on the subchondral layer. Next, the in vitro release of KGN and P24 peptide from the corresponding layer was monitored, respectively, and the results showed that both the release time of KGN and P24 peptides would last for more than 28 days. The in vitro results indicated that the KGN-loaded cartilage layer and P24 peptides-loaded subchondral layer were capable of supporting cell proliferation, and induced the chondrogenic and osteogenic differentiation, respectively. Furthermore, the in vivo experiments suggested that the bilayered scaffold significantly accelerated the regeneration of the osteochondral tissue in the rabbit knee joint model. Consequently, this bilayered scaffold loaded with KGN and P24 peptides would be a promising candidate for repairing osteochondral defect.
Collapse
Affiliation(s)
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, China
| | | | | | | | | | | | | | - Jundong Zhang
- Tenth People's Hospital Affiliated to Tongji University, Shanghai 200072, China
| | | |
Collapse
|
109
|
Lin H, Beck AM, Shimomura K, Sohn J, Fritch MR, Deng Y, Kilroy EJ, Tang Y, Alexander PG, Tuan RS. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect. J Tissue Eng Regen Med 2019; 13:1418-1429. [PMID: 31066519 PMCID: PMC6739828 DOI: 10.1002/term.2883] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 01/07/2023]
Abstract
There is no therapy currently available for fully repairing articular cartilage lesions. Our laboratory has recently developed a visible light-activatable methacrylated gelatin (mGL) hydrogel, with the potential for cartilage regeneration. In this study, we further optimized mGL scaffolds by supplementing methacrylated hyaluronic acid (mHA), which has been shown to stimulate chondrogenesis via activation of critical cellular signalling pathways. We hypothesized that the introduction of an optimal ratio of mHA would enhance the biological properties of mGL scaffolds and augment chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBMSCs). To test this hypothesis, hybrid scaffolds consisting of mGL and mHA at different weight ratios were fabricated with hBMSCs encapsulated at 20 × 106 cells/ml and maintained in a chondrogenesis-promoting medium. The chondrogenenic differentiation of hBMSCs, within different scaffolds, was estimated after 8 weeks of culture. Our results showed that mGL/mHA at a 9:1 (%, w/v) ratio resulted in the lowest hBMSC hypertrophy and highest glycosaminoglycan production, with a slightly increased volume of the entire construct. The applicability of this optimally designed mGL/mHA hybrid scaffold for cartilage repair was then examined in vivo. A full-thickness cylindrical osteochondral defect was surgically created in the rabbit femoral condyle, and a three-dimensional cell-biomaterial construct was fabricated by in situ photocrosslinking to fully fill the lesion site. The results showed that implantation of the mGL/mHA (9:1) construct resulted in both cartilage and subchondral bone regeneration after 12 weeks, supporting its use as a promising scaffold for repair and resurfacing of articular cartilage defects, in the clinical setting.
Collapse
Affiliation(s)
- Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pennsylvania
| | - Angela M. Beck
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kazunori Shimomura
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Madalyn R. Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuhao Deng
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Evan J. Kilroy
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ying Tang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
110
|
Dijkstra K, Huitsing RP, Custers RJ, Kouwenhoven JWM, Bleys RL, Vonk LA, Saris DB. Preclinical Feasibility of the Bio-Airbrush for Arthroscopic Cell-Based Cartilage Repair. Tissue Eng Part C Methods 2019; 25:379-388. [DOI: 10.1089/ten.tec.2019.0050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Koen Dijkstra
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roeland P.J. Huitsing
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel J.H. Custers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ronald L.A.W. Bleys
- Department of Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lucienne A. Vonk
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniël B.F. Saris
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
- MIRA Institute for Biotechnology and Technical Medicine, University of Twente, Enschede, The Netherlands
- Department of Orthopedics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
111
|
Conrad B, Han LH, Yang F. Gelatin-Based Microribbon Hydrogels Accelerate Cartilage Formation by Mesenchymal Stem Cells in Three Dimensions. Tissue Eng Part A 2019; 24:1631-1640. [PMID: 29926770 DOI: 10.1089/ten.tea.2018.0011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrogels (HGs) are attractive matrices for cell-based cartilage tissue regeneration given their injectability and ability to fill defects with irregular shapes. However, most HGs developed to date often lack cell scale macroporosity, which restrains the encapsulated cells, leading to delayed new extracellular matrix deposition restricted to pericellular regions. Furthermore, tissue-engineered cartilage using conventional HGs generally suffers from poor mechanical property and fails to restore the load-bearing property of articular cartilage. The goal of this study was to evaluate the potential of macroporous gelatin-based microribbon (μRB) HGs as novel 3D matrices for accelerating chondrogenesis and new cartilage formation by human mesenchymal stem cells (MSCs) in 3D with improved mechanical properties. Unlike conventional HGs, these μRB HGs are inherently macroporous and exhibit cartilage-mimicking shock-absorbing mechanical property. After 21 days of culture, MSC-seeded μRB scaffolds exhibit a 20-fold increase in compressive modulus to 225 kPa, a range that is approaching the level of native cartilage. In contrast, HGs only resulted in a modest increase in compressive modulus of 65 kPa. Compared with conventional HGs, macroporous μRB scaffolds significantly increased the total amount of neocartilage produced by MSCs in 3D, with improved interconnectivity and mechanical strength. Altogether, these results validate gelatin-based μRBs as promising scaffolds for enhancing and accelerating MSC-based cartilage regeneration and may be used to enhance cartilage regeneration using other cell types as well.
Collapse
Affiliation(s)
- Bogdan Conrad
- 1 Program of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Li-Hsin Han
- 2 Department of Orthopedic Surgery, Stanford University School of Medicine , Stanford, California
| | - Fan Yang
- 3 Department of Orthopedic Surgery and Bioengineering, Stanford University , Stanford, California
| |
Collapse
|
112
|
Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D, Gu Z. Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 2019; 6:129-140. [PMID: 31198581 PMCID: PMC6547311 DOI: 10.1093/rb/rbz022] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Articular cartilage is an important load-bearing tissue distributed on the surface of diarthrodial joints. Due to its avascular, aneural and non-lymphatic features, cartilage has limited self-regenerative properties. To date, the utilization of biomaterials to aid in cartilage regeneration, especially through the use of injectable scaffolds, has attracted considerable attention. Various materials, therapeutics and fabrication approaches have emerged with a focus on manipulating the cartilage microenvironment to induce the formation of cartilaginous structures that have similar properties to the native tissues. In particular, the design and fabrication of injectable hydrogel-based scaffolds have advanced in recent years with the aim of enhancing its therapeutic efficacy and improving its ease of administration. This review summarizes recent progress in these efforts, including the structural improvement of scaffolds, network cross-linking techniques and strategies for controlled release, which present new opportunities for the development of injectable scaffolds for cartilage regeneration.
Collapse
Affiliation(s)
- Jiawei Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Xingquan Xu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Peter Abdou
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Dongquan Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, 321 Zhongshan Road, Nanjing, Jiangsu, P.R. China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 8-684 Factor Building, Los Angeles, CA, USA
- Center for Minimally Invasive Therapeutics, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA, USA
| |
Collapse
|
113
|
Yang J, Li Y, Liu Y, Li D, Zhang L, Wang Q, Xiao Y, Zhang X. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo. Acta Biomater 2019; 91:159-172. [PMID: 31055122 DOI: 10.1016/j.actbio.2019.04.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/21/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Hydrogels, which provide three-dimensional (3D) niches for encapsulating bone marrow mesenchymal stem cells (BMSCs), are becoming a promising tissue engineering solution for chondrogenic differentiation of BMSCs. However, it remains a challenge to design a hydrogel material for effective chondrogenesis of BMSCs because of the complexity of cartilage ECM and cell-matrix interactions. Thus far, various studies have shown the physical-chemical cues of hydrogel materials to impact BMSCs chondrogenesis, but the design of the 3D network microstructure of the hydrogel to induce BMSCs chondrogenesis is still far from optimized. In this study, we successfully prepared two types of collagen hydrogels, namely, the fibrous network and porous network, with the same chemical composition and similar mechanical strength but with two distinct network microstructures. The two different network microstructures significantly influenced mass transfer, protein adsorption, degradability, and contraction of the collagen hydrogels. Moreover, the cells presented distinct proliferation and morphology in the two hydrogels, which consequently modulated chondrogenic differentiation of BMSCs derived from rat. Collagen hydrogels with a fibrous network promoted more chondrogenic differentiation of BMSCs without additional growth factors in vitro and subcutaneous implantation in vivo than those with a porous network. Moreover, fibrous network resulted in less ECM calcification than porous network. However, the fibrous network could not prevent hypertrophy of the chondrogenic cells induced by BMSCs. Overall, these results revealed that the 3D network microstructure of a hydrogel was a key design parameter for the chondrogenic differentiation of BMSCs. STATEMENT OF SIGNIFICANCE: Hydrogels had been used to induce the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in cartilage tissue engineering, but the key design parameters remain unoptimized. This was mainly due to the different material properties including composition, strength, and microstructure, which would interplay with each other and result in difficulties to investigate the effects for one factor. In this study, we fabricated two collagen hydrogels with the same chemical composition and mechanical strength, but two distinct network microstructures. The effects of the two network microstructures on the chondrogenic differentiation of BMSCs were investigated by in vitro and in vivo assays. The results highlight the effects of network microstructures and provide important information about optimizing the design of future hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Yuanqi Li
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanbo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu 61004, Sichuan, China
| | - Lei Zhang
- Sichuan Academy of Chinese Medicine Science, Chengdu 61004, Sichuan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| |
Collapse
|
114
|
Gu L, Zhang J, Li L, Du Z, Cai Q, Yang X. Hydroxyapatite nanowire composited gelatin cryogel with improved mechanical properties and cell migration for bone regeneration. ACTA ACUST UNITED AC 2019; 14:045001. [PMID: 30939454 DOI: 10.1088/1748-605x/ab1583] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are normally not robust enough to meet the repairing requirements of bone defects, therefore, cryogels of higher mechanical properties are developed as the more proper candidates for the purpose. In view of the organic-inorganic composition of natural bone tissues, hydroxyapatite (HA) is envisioned as a good additive for protein cryogels to achieve biomimetic compositions, additionally, as an excellent reinforcement to increase the mechanical properties of cryogels. In this study, methacrylated gelatin (GelMA) was synthesized and corresponding 3D-structured cryogel was fabricated, followed by the incorporation of HA nanowires (HANWs) at different amounts as reinforcements. The results showed that the GelMA/HANW composite cryogels possessed highly porous structure with HANWs being homogeneously distributed. The compressive strengths and mechanical stability of the composite cryogels were improved alongside the increasing contents of HANWs. These composite cryogels were proven non-cytotoxic, able to support cell proliferation and promote osteogenic differentiation of bone mesenchymal stromal cells. More importantly, their porous structure allowed cell migration within the matrix, which was normally hard to be achieved in GelMA hydrogel. With improved performance, GelMA/HANW composite cryogels were thus possibly serving as a new type of bone repair materials.
Collapse
Affiliation(s)
- Lihua Gu
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | |
Collapse
|
115
|
Haltmayer E, Ribitsch I, Gabner S, Rosser J, Gueltekin S, Peham J, Giese U, Dolezal M, Egerbacher M, Jenner F. Co-culture of osteochondral explants and synovial membrane as in vitro model for osteoarthritis. PLoS One 2019; 14:e0214709. [PMID: 30939166 PMCID: PMC6445514 DOI: 10.1371/journal.pone.0214709] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/16/2019] [Indexed: 01/15/2023] Open
Abstract
The purpose of the current study was to establish an in vitro model for osteoarthritis (OA) by co-culture of osteochondral and synovial membrane explants. Osteochondral explants were cultured alone (control-1) or in co-culture with synovial membrane explants (control-2) in standard culture medium or with interleukin-1β (IL1β) and tumor necrosis factor (TNFα) added to the culture medium (OA-model-1 = osteochondral explant; OA-model-2 = osteochondroal-synovial explant). In addition, in OA-model groups a 2-mm partial-thickness defect was created in the centre of the cartilage explant. Changes in the expression of extracellular matrix (ECM) genes (collagen type-1 (Col1), Col2, Col10 and aggrecan) as well as presence and quantity of inflammatory marker genes (IL6, matrix metalloproteinase-1 (MMP1), MMP3, MMP13, a disintegrin and metalloproteinase with-thrombospondin-motif-5 (ADAMTS5) were analysed by immunohistochemistry, qPCR and ELISA. To monitor the activity of classically-activated pro-inflammatory (M1) versus alternatively-activated anti-inflammatory/repair (M2) synovial macrophages, the nitric oxide/urea ratio in the supernatant of osteochondral-synovial explant co-cultures was determined. In both OA-model groups immunohistochemistry and qPCR showed a significantly increased expression of MMPs and IL6 compared to their respective control group. ELISA results confirmed a statistically significant increase in MMP1and MMP3 production over the culturing period. In the osteochondral-synovial explant co-culture OA-model the nitric oxide/urea ratio was increased compared to the control group, indicating a shift toward M1 synovial macrophages. In summary, chemical damage (TNFα, IL1β) in combination with a partial-thickness cartilage defect elicits an inflammatory response similar to naturally occurring OA in osteochondral explants with and without osteochondral-synovial explant co-cultures and OA-model-2 showing a closer approximation of OA due to the additional shift of synovial macrophages toward the pro-inflammatory M1 phenotype.
Collapse
Affiliation(s)
- Eva Haltmayer
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
- * E-mail:
| | - Iris Ribitsch
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| | - Simone Gabner
- Department of Pathobiology, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - Julie Rosser
- Institute of Applied Synthetic Chemistry, Technical University, Vienna, Austria
| | - Sinan Gueltekin
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| | - Johannes Peham
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Ulrich Giese
- Molecular Diagnostics, Center for Health and Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Marlies Dolezal
- Department of Biomedical Sciences, Bioinformatics and Biostatistics Platform, University of Veterinary Medicine, Vienna, Austria
| | - Monika Egerbacher
- Department of Pathobiology, Histology and Embryology, University of Veterinary Medicine, Vienna, Austria
| | - Florien Jenner
- Department for Companion Animals and Horses, University Equine Hospital, Equine Surgery, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
116
|
Yodmuang S, Guo H, Brial C, Warren RF, Torzilli PA, Chen T, Maher SA. Effect of interface mechanical discontinuities on scaffold-cartilage integration. J Orthop Res 2019; 37:845-854. [PMID: 30690798 PMCID: PMC6957060 DOI: 10.1002/jor.24238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/21/2019] [Indexed: 02/04/2023]
Abstract
A consistent lack of lateral integration between scaffolds and adjacent articular cartilage has been exhibited in vitro and in vivo. Given the mismatch in mechanical properties between scaffolds and articular cartilage, the mechanical discontinuity that occurs at the interface has been implicated as a key factor, but remains inadequately studied. Our objective was to investigate how the mechanical environment within a mechanically loaded scaffold-cartilage construct might affect integration. We hypothesized that the magnitude of the mechanical discontinuity at the scaffold-cartilage interface would be related to decreased integration. To test this hypothesis, chondrocyte seeded scaffolds were embedded into cartilage explants, pre-cultured for 14 days, and then mechanically loaded for 28 days at either 1N or 6N of applied load. Constructs were kept either peripherally confined or unconfined throughout the duration of the experiment. Stress, strain, fluid flow, and relative displacements at the cartilage-scaffold interface and within the scaffold were quantified using biphasic, inhomogeneous finite element models (bFEMs). The bFEMs indicated compressive and shear stress discontinuities occurred at the scaffold-cartilage interface for the confined and unconfined groups. The mechanical strength of the scaffold-cartilage interface and scaffold GAG content were higher in the radially confined 1N loaded groups. Multivariate regression analyses identified the strength of the interface prior to the commencement of loading and fluid flow within the scaffold as the main factors associated with scaffold-cartilage integration. Our study suggests a minimum level of scaffold-cartilage integration is needed prior to the commencement of loading, although the exact threshold has yet to be identified. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
Collapse
Affiliation(s)
- Supansa Yodmuang
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Hongqiang Guo
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Caroline Brial
- Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York 10021 New York
| | - Russell F. Warren
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, New York
| | - Peter A. Torzilli
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Tony Chen
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York
| | - Suzanne A. Maher
- Orthopedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York,,Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York 10021 New York
| |
Collapse
|
117
|
Ansari S, Khorshidi S, Karkhaneh A. Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater 2019; 87:41-54. [PMID: 30721785 DOI: 10.1016/j.actbio.2019.01.071] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The osteochondral tissue is an interface between two distinct tissues: articular cartilage and bone. These two tissues are significantly diverse with regard to their chemical compositions, mechanical properties, structure, electrical properties, and the amount of nutrient and oxygen consumption. Thus, transition from the surface of the articular cartilage to the subchondral bone needs to face several smooth gradients. These gradients are imperative to study to generate a scaffold suitable for the reconstruction of the cartilaginous and osseous layers of a defected osteochondral tissue, simultaneously. The aim of this review is to peruse the alternation of biochemical, biomechanical, structural, electrical, and metabolic properties of the osteochondral tissue moving from the surface of the articular cartilage to the subchondral bone. Moreover, this review also discusses currently developed approaches and ideal techniques with a focus on gradients present in the interface of the cartilage and bone. STATEMENT OF SIGNIFICANCE: The submitted review paper entitled as "Engineering of the gradient osteochondral tissue: from nature to lab" is a complete review with regard to the osteochondral tissue and transition of different properties between the cartilage and bone tissues. Moreover, previous studies on the osteochondral tissue engineering have been reviewed in this paper. This complete information can be a valuable and useful source for current and future researchers and scientists. Considering the scope of the submitted paper, Acta Biomaterialia would be a suitable journal for publishing this article.
Collapse
|
118
|
Fu R, Han F, Liu L, Yu F, Gui Z, Wang X, Li B, Fang B, Xia L. The Effects of Leptin on the Proliferation and Differentiation of Primary Chondrocytes in Vitro and Cartilage Regeneration in Vivo. ACS Biomater Sci Eng 2019; 5:1907-1919. [PMID: 33405564 DOI: 10.1021/acsbiomaterials.8b01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Runqing Fu
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fengxuan Han
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lu Liu
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Yu
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhipeng Gui
- Department of Oral Surgery, Shanghai Ninth People’s Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoting Wang
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Li
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bing Fang
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lunguo Xia
- Department of Orthodontics, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
119
|
Kaviani A, Zebarjad SM, Javadpour S, Ayatollahi M, Bazargan-Lari R. Fabrication and characterization of low-cost freeze-gelated chitosan/collagen/hydroxyapatite hydrogel nanocomposite scaffold. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2018.1562477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alireza Kaviani
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Seyed Mojtaba Zebarjad
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Sirus Javadpour
- Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran
| | - Maryam Ayatollahi
- Bone and Joint Disease Research Center, Shiraz University Of Medical Science, Shiraz, Iran
| | - Reza Bazargan-Lari
- Department of Materials Science and Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| |
Collapse
|
120
|
Fluid load support does not explain tribological performance of PVA hydrogels. J Mech Behav Biomed Mater 2019; 90:284-294. [DOI: 10.1016/j.jmbbm.2018.09.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/22/2018] [Accepted: 09/30/2018] [Indexed: 11/29/2022]
|
121
|
Deng Y, Sun AX, Overholt KJ, Yu GZ, Fritch MR, Alexander PG, Shen H, Tuan RS, Lin H. Enhancing chondrogenesis and mechanical strength retention in physiologically relevant hydrogels with incorporation of hyaluronic acid and direct loading of TGF-β. Acta Biomater 2019; 83:167-176. [PMID: 30458242 PMCID: PMC6733255 DOI: 10.1016/j.actbio.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
Cell-loaded hydrogels are frequently applied in cartilage tissue engineering for their biocompatibility, ease of application, and ability to conform to various defect sites. As a bioactive adjunct to the biomaterial, transforming growth factor beta (TGF-β) has been shown to be essential for cell differentiation into a chondrocyte phenotype and maintenance thereof, but the low amounts of endogenous TGF-β in the in vivo joint microenvironment necessitate a mechanism for controlled delivery and release of this growth factor. In this study, TGF-β3 was directly loaded with human bone marrow-derived mesenchymal stem cells (MSCs) into poly-d,l-lactic acid/polyethylene glycol/poly-d,l-lactic acid (PDLLA-PEG) hydrogel, or PDLLA-PEG with the addition of hyaluronic acid (PDLLA/HA), and cultured in vitro. We hypothesize that the inclusion of HA within PDLLA-PEG would result in a controlled release of the loaded TGF-β3 and lead to a robust cartilage formation without the use of TGF-β3 in the culture medium. ELISA analysis showed that TGF-β3 release was effectively slowed by HA incorporation, and retention of TGF-β3 in the PDLLA/HA scaffold was detected by immunohistochemistry for up to 3 weeks. By means of both in vitro culture and in vivo implantation, we found that sulfated glycosaminoglycan production was higher in PDLLA/HA groups with homogenous distribution throughout the scaffold than PDLLA groups. Finally, with an optimal loading of TGF-β3 at 10 μg/mL, as determined by RT-PCR and glycosaminoglycan production, an almost twofold increase in Young's modulus of the construct was seen over a 4-week period compared to TGF-β3 delivery in the culture medium. Taken together, our results indicate that the direct loading of TGF-β3 and stem cells in PDLLA/HA has the potential to be a one-step point-of-care treatment for cartilage injury. STATEMENT OF SIGNIFICANCE: Stem cell-seeded hydrogels are commonly used in cell-based cartilage tissue engineering, but they generally fail to possess physiologically relevant mechanical properties suitable for loading. Moreover, degradation of the hydrogel in vivo with time further decreases mechanical suitability of the hydrogel due in part to the lack of TGF-β3 signaling. In this study, we demonstrated that incorporation of hyaluronic acid (HA) into a physiologically stiff PDLLA-PEG hydrogel allowed for slow release of one-time preloaded TGF-β3, and when loaded with adult mesenchymal stem cells and cultured in vitro, it resulted in higher chondrogenic gene expression and constructs of significantly higher mechanical strength than constructs cultured in conventional TGF-β3-supplemented medium. Similar effects were also observed in constructs implanted in vivo. Our results indicate that direct loading of TGF-β3 combined with HA in the physiologically stiff PDLLA-PEG hydrogel has the potential to be used for one-step point-of-care treatment of cartilage injury.
Collapse
Affiliation(s)
- Yuhao Deng
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya Third Hospital, Central South University, Changsha, Hunan, China
| | - Aaron X Sun
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Kalon J Overholt
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Gary Z Yu
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Medical Scientist Training Program, University of Pittsburgh School of Medicine, USA
| | - Madalyn R Fritch
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, China
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA; Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, USA; The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, USA.
| |
Collapse
|
122
|
Richardson BM, Wilcox DG, Randolph MA, Anseth KS. Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering. Acta Biomater 2019; 83:71-82. [PMID: 30419278 PMCID: PMC6291351 DOI: 10.1016/j.actbio.2018.11.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/15/2018] [Accepted: 11/08/2018] [Indexed: 01/18/2023]
Abstract
Cartilage tissue engineering strategies often rely on hydrogels with fixed covalent crosslinks for chondrocyte encapsulation, yet the resulting material properties are largely elastic and can impede matrix deposition. To address this limitation, hydrazone crosslinked poly(ethylene glycol) hydrogels were formulated to achieve tunable viscoelastic properties and to study how chondrocyte proliferation and matrix deposition vary with the time-dependent material properties of covalent adaptable networks. Hydrazone equilibrium differences were leveraged to produce average stress relaxation times from hours (4.01 × 103 s) to months (2.78 × 106 s) by varying the percentage of alkyl-hydrazone (aHz) and benzyl-hydrazone (bHz) crosslinks. Swelling behavior and degradation associated with adaptability were characterized to quantify temporal network changes that can influence the behavior of encapsulated chondrocytes. After four weeks, mass swelling ratios varied from 36 ± 3 to 17 ± 0.4 and polymer retention ranged from 46 ± 4% to 92 ± 5%, with higher aHz content leading to loss of network connectivity with time. Hydrogels were formulated near the Flory-Stockmayer bHz percolation threshold (17% bHz) to investigate chondrocyte response to distinct levels of covalent architecture adaptability. Four weeks post-encapsulation, formulations with average relaxation times of 3 days (2.6 × 105s) revealed increased cellularity and an interconnected articular cartilage-specific matrix. Chondrocytes embedded in this adaptable formulation (22% bHz) deposited 190 ± 30% more collagen and 140 ± 20% more sulfated glycosaminoglycans compared to the 100% bHz control, which constrained matrix deposition to pericellular space. Collectively, these findings indicate that incorporating highly adaptable aHz crosslinks enhanced regenerative outcomes. However, connected networks containing more stable bHz bonds were required to achieve the highest quality neocartilaginous tissue. STATEMENT OF SIGNIFICANCE: Covalently crosslinked hydrogels provide robust mechanical support for cartilage tissue engineering applications in articulating joints. However, these materials traditionally demonstrate purely elastic responses to deformation despite the dynamic viscoelastic properties of native cartilage tissue. Here, we present hydrazone poly(ethylene glycol) hydrogels with tunable viscoelastic properties and study covalent adaptable networks for cartilage tissue engineering. Using hydrazone equilibrium and Flory-Stockmayer theory we identified average relaxation times leading to enhanced regenerative outcomes and showed that extracellular matrix deposition was biphasic as a function of the hydrazone covalent adaptability. We also showed that the incorporation of highly adaptable covalent crosslinks could improve cellularity of neotissue, but that a percolating network of more stable bonds was required to maintain scaffold integrity and form the highest quality neocartilaginous tissue.
Collapse
Affiliation(s)
- Benjamin M Richardson
- Dept. Chemical and Biological Engineering, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO 80303, USA.
| | - Daniel G Wilcox
- Dept. Chemical and Biological Engineering, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO 80303, USA.
| | - Mark A Randolph
- Dept. Orthopedic Surgery, Musculoskeletal Tissue Engineering Labs, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, WAC 435, Boston, MA 02114, USA; Div. Plastic Surgery, Plastic Surgery Research Laboratory, Massachusetts General Hospital, Harvard Medical School, 15 Parkman St, WACC 453, Boston, MA 02114, USA.
| | - Kristi S Anseth
- Dept. Chemical and Biological Engineering, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO 80303, USA; The BioFrontiers Institute, University of Colorado Boulder, Jennie Smoly Caruthers Biotechnology Building, 3415 Colorado Ave, Boulder, CO 80303, USA.
| |
Collapse
|
123
|
Jacek P, Szustak M, Kubiak K, Gendaszewska-Darmach E, Ludwicka K, Bielecki S. Scaffolds for Chondrogenic Cells Cultivation Prepared from Bacterial Cellulose with Relaxed Fibers Structure Induced Genetically. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1066. [PMID: 30563030 PMCID: PMC6315621 DOI: 10.3390/nano8121066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/06/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
Abstract
Development of three-dimensional scaffolds mimicking in vivo cells' environment is an ongoing challenge for tissue engineering. Bacterial nano-cellulose (BNC) is a well-known biocompatible material with enormous water-holding capacity. However, a tight spatial organization of cellulose fibers limits cell ingrowth and restricts practical use of BNC-based scaffolds. The aim of this study was to address this issue avoiding any chemical treatment of natural nanomaterial. Genetic modifications of Komagataeibacter hansenii ATCC 23769 strain along with structural and mechanical properties characterization of obtained BNC membranes were conducted. Furthermore, the membranes were evaluated as scaffolds in in vitro assays to verify cells viability and glycosaminoglycan synthesis by chondrogenic ATDC5 cells line as well as RBL-2H3 mast cells degranulation. K. hansenii mutants with increased cell lengths and motility were shown to produce BNC membranes with increased pore sizes. Novel, BNC membranes with relaxed fiber structure revealed superior properties as scaffolds when compared to membranes produced by a wild-type strain. Obtained results confirm that a genetic modification of productive bacterial strain is a plausible way of adjustment of bacterial cellulose properties for tissue engineering applications without the employment of any chemical modifications.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Marcin Szustak
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Katarzyna Kubiak
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Karolina Ludwicka
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, 4/10 Stefanowskiego Str., 90-924 Łódź, Poland.
| |
Collapse
|
124
|
Sun M, Sun X, Wang Z, Guo S, Yu G, Yang H. Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue. Polymers (Basel) 2018; 10:E1290. [PMID: 30961215 PMCID: PMC6401825 DOI: 10.3390/polym10111290] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Photocrosslinked gelatin methacryloyl (GelMA) hydrogels have attracted great concern in the biomedical field because of their good biocompatibility and tunable physicochemical properties. Herein, different approaches to synthesize GelMA were introduced, especially, the typical method using UV light to crosslink the gelatin-methacrylic anhydride (MA) precursor was introduced in detail. In addition, the traditional and cutting-edge technologies to characterize the properties of GelMA hydrogels and GelMA prepolymer were also overviewed and compared. Furthermore, the applications of GelMA hydrogels in cell culture and tissue engineering especially in the load-bearing tissue (bone and cartilage) were summarized, followed by concluding remarks.
Collapse
Affiliation(s)
- Mingyue Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Xiaoting Sun
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| | - Ziyuan Wang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Shuyu Guo
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Guangjiao Yu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang 110122, China.
| | - Huazhe Yang
- School of Fundamental Sciences, China Medical University, Shenyang 110122, China.
| |
Collapse
|
125
|
Faivre J, Montembault A, Sudre G, Shrestha BR, Xie G, Matyjaszewski K, Benayoun S, Banquy X, Delair T, David L. Lubrication and Wear Protection of Micro-Structured Hydrogels Using Bioinspired Fluids. Biomacromolecules 2018; 20:326-335. [DOI: 10.1021/acs.biomac.8b01311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jimmy Faivre
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Qc H3T 1J4, Canada
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Buddha Ratna Shrestha
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Qc H3T 1J4, Canada
| | - Guojun Xie
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Stéphane Benayoun
- Laboratoire de Tribologie et Dynamique des Systèmes, CNRS UMR 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, 69134 Ecully Cedex, France
| | - Xavier Banquy
- Canadian Research Chair in Bioinspired Materials, Faculty of Pharmacy, Université de Montréal, Montréal, Qc H3T 1J4, Canada
| | - Thierry Delair
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| | - Laurent David
- Ingénierie des Matériaux Polymères, IMP- CNRS UMR 5223, Université de Lyon, Université Claude Bernard Lyon 1, 15 Boulevard Latarjet, 69622 Villeurbanne Cedex, France
| |
Collapse
|
126
|
Mousaei Ghasroldasht M, Matin MM, Kazemi Mehrjerdi H, Naderi-Meshkin H, Moradi A, Rajabioun M, Alipour F, Ghasemi S, Zare M, Mirahmadi M, Bidkhori HR, Bahrami AR. Application of mesenchymal stem cells to enhance non-union bone fracture healing. J Biomed Mater Res A 2018; 107:301-311. [PMID: 29673055 DOI: 10.1002/jbm.a.36441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/27/2018] [Accepted: 04/12/2018] [Indexed: 01/07/2023]
Abstract
ECM components include a number of osteoinductive and osteoconductive factors, which are involved in bone fracture healing. In this study, a combination of adipose derived mesenchymal stem cells (Ad-MSCs), cancellous bone graft (CBG), and chitosan hydrogel (CHI) was applied to the non-union bone fracture and healing effects were evaluated for the first time. After creation of animal models with non-union fracture in rats, they were randomly classified into seven groups. Radiography at 0, 2, 4, and 8 weeks after surgery, indicated the positive effects of Ad-MSCs + CBG + CHI and Ad-MSCs + CBG in treatment of bone fractures as early as 2 weeks after the surgery. These data were confirmed with both biomechanical and histological studies. Gene expression analyses of Vegf and Bmp2 showed a positive effect of Ad-MSCs on vascularization and osteogenic differentiation in all groups receiving Ad-MSCs, as shown by real-time PCR. Immunofluorescence analysis and RT-PCR results indicated existence of human Ad-MSCs in the fractured region 8 weeks post-surgery. In conclusion, we suggest that application of Ad-MSCs, CBG, and CHI, could be a suitable combination for osteoinduction and osteoconduction to improve non-union bone fracture healing. Further investigations are required to determine the exact mechanisms involved in this process before moving to clinical studies. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 301-311, 2019.
Collapse
Affiliation(s)
- Mohammad Mousaei Ghasroldasht
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Kazemi Mehrjerdi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ali Moradi
- Department of Orthopedic Surgery, Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Rajabioun
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Faeze Alipour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Samaneh Ghasemi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Zare
- Clinical Pathology, Social Security Organization, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Reza Bidkhori
- Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
127
|
Hyaluronan microenvironment enhances cartilage regeneration of human adipose-derived stem cells in a chondral defect model. Int J Biol Macromol 2018; 119:726-740. [DOI: 10.1016/j.ijbiomac.2018.07.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 12/22/2022]
|
128
|
Zhou D, Dong Q, Liang K, Xu W, Zhou Y, Xiao P. Photocrosslinked methacrylated poly(vinyl alcohol)/hydroxyapatite nanocomposite hydrogels with enhanced mechanical strength and cell adhesion. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ding Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Qi Dong
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Kaili Liang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
- College of Materials Science and Engineering Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
129
|
An H, Lee JW, Lee HJ, Seo Y, Park H, Lee KY. Hyaluronate-alginate hybrid hydrogels modified with biomimetic peptides for controlling the chondrocyte phenotype. Carbohydr Polym 2018; 197:422-430. [DOI: 10.1016/j.carbpol.2018.06.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
|
130
|
Moffat KL, Goon K, Moutos FT, Estes BT, Oswald SJ, Zhao X, Guilak F. Composite Cellularized Structures Created from an Interpenetrating Polymer Network Hydrogel Reinforced by a 3D Woven Scaffold. Macromol Biosci 2018; 18:e1800140. [PMID: 30040175 PMCID: PMC6687075 DOI: 10.1002/mabi.201800140] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/21/2018] [Indexed: 11/10/2022]
Abstract
Biomaterial scaffolds play multiple roles in cartilage tissue engineering, including controlling architecture of newly formed tissue while facilitating growth of embedded cells and simultaneously providing functional properties to withstand the mechanical environment within the native joint. In particular, hydrogels-with high water content and desirable transport properties-while highly conducive to chondrogenesis, often lack functional mechanical properties. In this regard, interpenetrating polymer network (IPN) hydrogels can provide mechanical toughness greatly exceeding that of individual components; however, many IPN materials are not biocompatible for cell encapsulation. In this study, an agarose and poly(ethylene) glycol IPN hydrogel is seeded with human mesenchymal stem cells (MSCs). Results show high viability of MSCs within the IPN hydrogel, with improved mechanical properties compared to constructs comprised of individual components. These properties are further strengthened by integrating the hydrogel with a 3D woven structure. The resulting fiber-reinforced hydrogels display functional macroscopic mechanical properties mimicking those of native articular cartilage, while providing a local microenvironment that supports cellular viability and function. These findings suggest that a fiber-reinforced IPN hydrogel can support stem cell chondrogenesis while allowing for significantly enhanced, complex mechanical properties at multiple scales as compared to individual hydrogel or fiber components.
Collapse
Affiliation(s)
- Kristen L Moffat
- Center of Regenerative Medicine, Washington University, Campus Box 8233, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, 63110, USA
| | - Kelsey Goon
- Center of Regenerative Medicine, Washington University, Campus Box 8233, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, 63110, USA
| | | | | | - Sara J Oswald
- Center of Regenerative Medicine, Washington University, Campus Box 8233, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, 63110, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Farshid Guilak
- Center of Regenerative Medicine, Washington University, Campus Box 8233, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, 63110, USA
- Cytex Therapeutics, Inc., Durham, NC, 27704, USA
| |
Collapse
|
131
|
de Queiroz AAB, Debieux P, Amaro J, Ferretti M, Cohen M. Hydrogel implant is as effective as osteochondral autologous transplantation for treating focal cartilage knee injury in 24 months. Knee Surg Sports Traumatol Arthrosc 2018; 26:2934-2941. [PMID: 29335748 DOI: 10.1007/s00167-018-4834-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE The treatment approach for a patient with knee joint focal cartilage lesion is a difficult decision. To date, there has been no randomized clinical trial involving Hydrogel (Cartiva™). This study evaluated and compared the results of a hydrogel implant (Cartiva™) with autologous osteochondral transplantation (AOT) for treating knee joint focal cartilage lesions. METHODS Thirty-eight symptomatic patients, with a focal cartilage lesion of Outerbridge grades III or IV, were randomized into one of two groups according to the inclusion and exclusion criteria. Group I underwent AOT, and Group II was treated with a Hydrogel implant. Patients were evaluated preoperatively and again postoperatively at 6, 12, and 24 months using the subjective International Knee Documentation Committee (IKDC) scores, Visual Analog Scale for Pain (VAS Pain), Activities of Daily Living Scale (ADLS) and Lysholm score. RESULTS Both groups showed significant improvements from baseline (pre-surgery) to post-surgery (6, 12, and 24 months; p < 0.05), but there was no difference between the groups. Regarding complications, prolonged pain was observed in four patients (10.5%), two from each group, with a regression of symptoms within 1 year. CONCLUSION The Hydrogel implant showed similar efficiency as the autologous osteochondral graft for treating knee joint focal cartilage lesions. Both techniques showed satisfactory results compared to preoperative status. The Hydrogel implant was safe and effective, and it provided good stability and joint function at 2-year follow-up. LEVEL OF EVIDENCE I.
Collapse
Affiliation(s)
- Antonio Altenor Bessa de Queiroz
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Rua Borges Lagoa, 783 5° Andar, São Paulo, SP, CEP 04038-031, Brazil
| | - Pedro Debieux
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Rua Borges Lagoa, 783 5° Andar, São Paulo, SP, CEP 04038-031, Brazil.
| | - Joicemar Amaro
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Rua Borges Lagoa, 783 5° Andar, São Paulo, SP, CEP 04038-031, Brazil
| | - Mario Ferretti
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Rua Borges Lagoa, 783 5° Andar, São Paulo, SP, CEP 04038-031, Brazil
| | - Moises Cohen
- Departamento de Ortopedia e Traumatologia, Escola Paulista de Medicina, Rua Borges Lagoa, 783 5° Andar, São Paulo, SP, CEP 04038-031, Brazil
| |
Collapse
|
132
|
Nugroho RWN, Harjumäki R, Zhang X, Lou YR, Yliperttula M, Valle-Delgado JJ, Österberg M. Quantifying the interactions between biomimetic biomaterials - collagen I, collagen IV, laminin 521 and cellulose nanofibrils - by colloidal probe microscopy. Colloids Surf B Biointerfaces 2018; 173:571-580. [PMID: 30347384 DOI: 10.1016/j.colsurfb.2018.09.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/12/2018] [Accepted: 09/28/2018] [Indexed: 12/16/2022]
Abstract
Biomaterials of different nature have been and are widely studied for various biomedical applications. In many cases, biomaterial assemblies are designed to mimic biological systems. Although biomaterials have been thoroughly characterized in many aspects, not much quantitative information on the molecular level interactions between different biomaterials is available. That information is very important, on the one hand, to understand the properties of biological systems and, on the other hand, to develop new composite biomaterials for special applications. This work presents a systematic, quantitative analysis of self- and cross-interactions between films of collagen I (Col I), collagen IV (Col IV), laminin (LN-521), and cellulose nanofibrils (CNF), that is, biomaterials of different nature and structure that either exist in biological systems (e.g., extracellular matrices) or have shown potential for 3D cell culture and tissue engineering. Direct surface forces and adhesion between biomaterials-coated spherical microparticles and flat substrates were measured in phosphate-buffered saline using an atomic force microscope and the colloidal probe technique. Different methods (Langmuir-Schaefer deposition, spin-coating, or adsorption) were applied to completely coat the flat substrates and the spherical microparticles with homogeneous biomaterial films. The adhesion between biomaterials films increased with the time that the films were kept in contact. The strongest adhesion was observed between Col IV films, and between Col IV and LN-521 films after 30 s contact time. In contrast, low adhesion was measured between CNF films, as well as between CNF and LN-521 films. Nevertheless, a good adhesion between CNF and collagen films (especially Col I) was observed. These results increase our understanding of the structure of biological systems and can support the design of new matrices or scaffolds where different biomaterials are combined for diverse biological or medical applications.
Collapse
Affiliation(s)
- Robertus Wahyu N Nugroho
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Riina Harjumäki
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131 Padova, Italy
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
133
|
Xu B, Liu Y, Wang L, Ge X, Fu M, Wang P, Wang Q. High-Strength Nanocomposite Hydrogels with Swelling-Resistant and Anti-Dehydration Properties. Polymers (Basel) 2018; 10:E1025. [PMID: 30960950 PMCID: PMC6404080 DOI: 10.3390/polym10091025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Hydrogels with excellent mechanical properties have potential for use in various fields. However, the swelling of hydrogels under water and the dehydration of hydrogels in air severely limits the practical applications of high-strength hydrogels due to the influence of air and water on the mechanical performance of hydrogels. In this study, we report on a kind of tough and strong nanocomposite hydrogels (NC-G gels) with both swelling-resistant and anti-dehydration properties via in situ free radical copolymerization of acrylic acid (AA) and N-vinyl-2-pyrrolidone (VP) in the water-glycerol bi-solvent solutions containing small amounts of alumina nanoparticles (Al₂O₃ NPs) as the inorganic cross-linking agents. The topotactic chelation reactions between Al₂O₃ NPs and polymer matrix are thought to contribute to the cross-linking structure, outstanding mechanical performance, and swelling-resistant property of NC-G gels, whereas the strong hydrogen bonds between water and glycerol endow them with anti-dehydration capacity. As a result, the NC-G gels could maintain mechanical properties comparable to other as-prepared high-strength hydrogels when utilized both under water and in air environments. Thus, this novel type of hydrogel would considerably enlarge the application range of hydrogel materials.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Yuwei Liu
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Lanlan Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Xiaodong Ge
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Min Fu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Ping Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| | - Qiang Wang
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
134
|
Jeznach O, Kołbuk D, Sajkiewicz P. Injectable hydrogels and nanocomposite hydrogels for cartilage regeneration. J Biomed Mater Res A 2018; 106:2762-2776. [DOI: 10.1002/jbm.a.36449] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Oliwia Jeznach
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| | - Pawe Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences; Pawinskiego 5BWarsaw, 02‐106 Poland
| |
Collapse
|
135
|
Bonifacio MA, Cometa S, Cochis A, Gentile P, Ferreira AM, Azzimonti B, Procino G, Ceci E, Rimondini L, De Giglio E. Data on Manuka Honey/Gellan Gum composite hydrogels for cartilage repair. Data Brief 2018; 20:831-839. [PMID: 30211283 PMCID: PMC6134162 DOI: 10.1016/j.dib.2018.08.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/24/2018] [Indexed: 11/23/2022] Open
Abstract
This work contains original data supporting our research paper “Antibacterial effectiveness meets improved mechanical properties: Manuka Honey/Gellan Gum composite hydrogels for cartilage repair”, Bonifacio et al., in press [1], in which innovative composite hydrogels, based on Gellan Gum/Manuka honey/Halloysite nanotubes were described as biomaterials for cartilage regeneration. Here the composites were further examined by means of Fourier Transform Infrared Spectroscopy, in Attenuated Total Reflectance mode (FT-IR/ATR). Materials devoted to cartilage replacement must possess adequate fluid permeability and lubricating capability, therefore, a deeper investigation on water uptake kinetics of freeze-dried specimens up to 21 days in PBS was carried out. Moreover, since the degradation rate of a biomaterial plays a pivotal role in tissue engineering, weight loss measurements of the prepared hydrogels were performed in simulated synovial fluid, in phosphate buffer solution (PBS) and in lysozyme. Scanning Electron Microscopy images provide insight into the morphology of the freeze-dried samples. Finally, additional information on Staphylococcus aureus and Staphylococcus epidermidis ability to adhere onto the prepared hydrogel composites in short times were obtained, as well as the chondrogenic potential of the composites assessed by SDS-PAGE followed by Coomassie blue gel staining.
Collapse
Affiliation(s)
- Maria A. Bonifacio
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona 4, 70126 Bari, Italy
| | | | - Andrea Cochis
- Department of Health Sciences, University of Piemonte Orientale “UPO”, via Solaroli 17, 28100 Novara, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Ana M. Ferreira
- School of Engineering, Newcastle University, NE1 7RU Newcastle upon Tyne, UK
| | - Barbara Azzimonti
- Department of Health Sciences, University of Piemonte Orientale “UPO”, via Solaroli 17, 28100 Novara, Italy
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, via Orabona 4, 70126 Bari, Italy
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari “Aldo Moro”, Str. Prov. Casamassima Km 3, 70010 Valenzano, Italy
| | - Lia Rimondini
- Department of Health Sciences, University of Piemonte Orientale “UPO”, via Solaroli 17, 28100 Novara, Italy
- INSTM, Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari “Aldo Moro”, via Orabona 4, 70126 Bari, Italy
- Corresponding author.
| |
Collapse
|
136
|
Singh YP, Moses JC, Bhardwaj N, Mandal BB. Injectable hydrogels: a new paradigm for osteochondral tissue engineering. J Mater Chem B 2018; 6:5499-5529. [PMID: 32254962 DOI: 10.1039/c8tb01430b] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteochondral tissue engineering has become a promising strategy for repairing focal chondral lesions and early osteoarthritis (OA), which account for progressive joint pain and disability in millions of people worldwide. Towards improving osteochondral tissue repair, injectable hydrogels have emerged as promising matrices due to their wider range of properties such as their high water content and porous framework, similarity to the natural extracellular matrix (ECM), ability to encapsulate cells within the matrix and ability to provide biological cues for cellular differentiation. Further, their properties such as those that facilitate minimally invasive deployment or delivery, and their ability to repair geometrically complex irregular defects have been critical for their success. In this review, we provide an overview of innovative approaches to engineer injectable hydrogels towards improved osteochondral tissue repair. Herein, we focus on understanding the biology of osteochondral tissue and osteoarthritis along with the need for injectable hydrogels in osteochondral tissue engineering. Furthermore, we discuss in detail different biomaterials (natural and synthetic) and various advanced fabrication methods being employed for the development of injectable hydrogels in osteochondral repair. In addition, in vitro and in vivo applications of developed injectable hydrogels for osteochondral tissue engineering are also reviewed. Finally, conclusions and future perspectives of using injectable hydrogels in osteochondral tissue engineering are provided.
Collapse
Affiliation(s)
- Yogendra Pratap Singh
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | | | | | | |
Collapse
|
137
|
Yang YJ, Choi YS, Cha HJ. Bioinspired Load-Bearing Hydrogel Based on Engineered Sea Anemone Skin-Derived Collagen-Like Protein. Biotechnol J 2018; 13:e1800086. [PMID: 30102020 DOI: 10.1002/biot.201800086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/02/2018] [Indexed: 11/12/2022]
Abstract
With the help of recombinant DNA technology, many protein candidates have been investigated and engineered for biomaterial applications. Particularly, several repeat sequences with unique secondary structures have been selected as minimal building blocks for biosynthesis to improve the mechanical properties of biomaterials. However, most of these structural proteins have been limited to silk, elastin, collagen, and resilin for decades. In the present work, new repeat sequence found in sea anemone are characterized and biosynthesized into a recombinant protein (named anegen) for potential use as a load-bearing biomaterial. Because its repeat sequence unit has a unique polyproline II structure, which is prevalently found in the triple-helix of collagen, it is assumed to be a promising structural protein candidate that can provide conformational flexibility and elasticity. Because anegen has ≈10% tyrosine residues, inspiration is taken from di-tyrosine crosslinking in the hinge structures of insects, which can be initiated by light activation. It is found that the anegen hydrogel shows higher mechanical properties than a gelatin hydrogel and endures a compression series without deformation. Moreover, the mechanical properties of the anegen hydrogel are controllable through different crosslinking conditions in a wide range of material applications. Importantly, the anegen hydrogel exhibited suitable cell retainability and cell morphology as an implantable biomaterial. Thus, based on its mechanical properties and biocompatibility, the anegen hydrogel can be used as a potential load-bearing and cell-loading scaffolding biomaterial in the tissue and biomedical engineering fields.
Collapse
Affiliation(s)
- Yun Jung Yang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Yoo Seong Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejon 34134, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
138
|
Mihajlovic M, Mihajlovic M, Dankers PYW, Masereeuw R, Sijbesma RP. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Macromol Biosci 2018; 19:e1800173. [PMID: 30085403 DOI: 10.1002/mabi.201800173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/09/2018] [Indexed: 01/08/2023]
Abstract
Nanocomposite hydrogels based on carbon nanotubes (CNTs) are known to possess remarkable stiffness, electrical, and thermal conductivity. However, they often make use of CNTs as fillers in covalently cross-linked hydrogel networks or involve direct cross-linking between CNTs and polymer chains, limiting processability properties. Herein, nanocomposite hydrogels are developed, in which CNTs are fillers in a physically cross-linked hydrogel. Supramolecular nanocomposites are prepared at various CNT concentrations, ranging from 0.5 to 6 wt%. Incorporation of 3 wt% of CNTs leads to an increase of the material's toughness by over 80%, and it enhances electrical conductivity by 358%, compared to CNT-free hydrogel. Meanwhile, the nanocomposite hydrogels maintain thixotropy and processability, typical of the parent hydrogel. The study also demonstrates that these materials display remarkable cytocompatibility and support cell growth and proliferation, while preserving their functional activities. These supramolecular nanocomposite hydrogels are therefore promising candidates for biomedical applications, in which both toughness and electrical conductivity are important parameters.
Collapse
Affiliation(s)
- Marko Mihajlovic
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands
| | - Milos Mihajlovic
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands.,Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584, CG, Utrecht, The Netherlands
| | - Rint P Sijbesma
- Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513,, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|
139
|
Xu C, Chen J, Li L, Pu X, Chu X, Wang X, Li M, Lu Y, Zheng X. Promotion of chondrogenic differentiation of mesenchymal stem cells by copper: Implications for new cartilage repair biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:106-114. [PMID: 30274037 DOI: 10.1016/j.msec.2018.07.074] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 07/14/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
Copper (Cu) has drawn considerable attention in the design of biomaterials due to its multifunction, such as antibacterial property, osteogenic and angiogenic ability. However, the effect of Cu on chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential for cartilage repair biomaterials has been rarely studied. Here, we report that Cu can significantly enhance chondrogensis of MSCs. Specifically, in vitro studies showed that Cu could promote MSCs cytoskeleton change, extracellular glycosaminoglycan (GAG) deposition and the chrodrogenic genes (Sox9, Aggrecan, and Col-2) up-regulation. Furthermore, we prepared a Cu-containing alginate (Alg) porous scaffold to assess the chondroinductivity of Cu in vivo. In eight weeks, we found that Alg/Cu scaffolds could induce better formation of new cartilage tissue compared to the pure Alg scaffolds fabricated by the same procedure but without adding Cu. These encouraging results indicate that Cu can bring considerable benefits to the development and application of cartilage repair biomaterials.
Collapse
Affiliation(s)
- Changkui Xu
- Department of Orthopaedic, Guangzhou Overseas Chinese Hospital, No. 613, West Whampoa Road, Tianhe District, Guangzhou 510630, Guangdong, China; Department of Orthopaedic, Foshan Sanshui District People's Hospital, No. 16, West Guanghai Road, Sanshui District, Foshan 528100, Guangdong, China; Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Jiarong Chen
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Lihua Li
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Xiaobing Pu
- Department of Orthopaedic, No.4 West China Teaching Hospital of Sichuan University, No. 18, South Renmin Road, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiao Chu
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Xiaolan Wang
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Mei Li
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China
| | - Yao Lu
- Guangdong Key Lab of Orthopaedic Technology and Implant Materials, Key Laboratory of Trauma & Tissue Repair of Tropical Area of PLA, Department of Orthopaedic, General Hospital of Guangzhou Military Command of PLA, No. 111, Liuhua Road, Yuexiu District, Guangzhou 510010, Guangdong, China; Department of Orthopaedic, Zhujiang Hospital, Southern Medical University, No. 253, Gongye Road, Haizhu District, Guangzhou 510282, Guangdong, China.
| | - Xiaofei Zheng
- Department of Orthopaedic, Guangzhou Overseas Chinese Hospital, No. 613, West Whampoa Road, Tianhe District, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
140
|
Bas O, Catelas I, De-Juan-Pardo EM, Hutmacher DW. The quest for mechanically and biologically functional soft biomaterials via soft network composites. Adv Drug Deliv Rev 2018; 132:214-234. [PMID: 30048654 DOI: 10.1016/j.addr.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Developing multifunctional soft biomaterials capable of addressing all the requirements of the complex tissue regeneration process is a multifaceted problem. In order to tackle the current challenges, recent research efforts are increasingly being directed towards biomimetic design concepts that can be translated into soft biomaterials via advanced manufacturing technologies. Among those, soft network composites consisting of a continuous hydrogel matrix and a reinforcing fibrous network closely resemble native soft biological materials in terms of design and composition as well as physicochemical properties. This article reviews soft network composite systems with a particular emphasis on the design, biomaterial and fabrication aspects within the context of soft tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Onur Bas
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Isabelle Catelas
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia; Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Elena M De-Juan-Pardo
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Dietmar W Hutmacher
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia; Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
141
|
Yang J, Liu Y, He L, Wang Q, Wang L, Yuan T, Xiao Y, Fan Y, Zhang X. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration. Acta Biomater 2018; 74:156-167. [PMID: 29734010 DOI: 10.1016/j.actbio.2018.05.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 02/04/2023]
Abstract
Over the past decades, numerous tissue-engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate the functionalized calcified layer. In this study, the potential of icariin (Ica) conjugated hyaluronic acid/collagen (Ica-HA/Col) hydrogel to promote the osteochondral interface restoration was investigated. Compared with HA/Col hydrogel, Ica-HA/Col hydrogel simultaneously facilitated chondrogenesis and osteogenesis in vitro. The cells encapsulated in Ica-HA/Col hydrogel tended to aggregate into bigger clusters. The chondrogenic genes' expression level was remarkably up-regulated, and the matrix synthesis of sGAG and type II collagen was significantly enhanced. Similarly, the osteogenic genes, including RUNX2, ALP, and OCN were also up-regulated at early stage. Consequently, more calcium deposition was observed in the Ica-HA/Col hydrogel construct. Moreover, the gene expression and matrix synthesis of type X collagen, an important marker for the formation of calcified layer; were significantly higher in the Ica-HA/Col hydrogel. Furthermore, the in vivo study showed that Ica-HA/Col constructs facilitated the reconstruction of osteochondral interface in rabbit subchondral defects. In the Ica-HA/Col group, the neo-cartilage layer contained more type II collagen and the newly formed subchondral bone deposited more abundant type I collagen. Overall, the results indicated that Ica-HA/Col hydrogel might be a promising scaffold to reconstruct an osteochondral interface, therefore promoting restoring of osteochondral defect. STATEMENT OF SIGNIFICANCE The osteochondral defect restoration not only involves the repair of damaged cartilage and the subchondral bone, but also the reconstruction of osteochondral interface (the functional calcified layer). The calcified layer regeneration is essential for integrative and functional osteochondral repair. Over the past decade, numerous tissue engineered constructs have been investigated for the osteochondral repair. However, it still remains a challenge to regenerate a functionalized calcified layer. The present study demonstrates that Ica-HA/Col hydrogel facilitates deposition of matrix related to calcified layer in mixed chondrogenic/osteogenic inductive media and restoration of osteochondral defect in vivo. Since, Ica-HA/Col hydrogel as is cheaper, easier and more efficient, it might be a desired scaffold for the osteochondral defects restoration.
Collapse
|
142
|
Horeman T, Buiter EC, Pouran B, Stijntjes M, Dankelman J, Tuijthof GJM. In-Vitro Detection of Small Isolated Cartilage Defects: Intravascular Ultrasound Vs. Optical Coherence Tomography. Ann Biomed Eng 2018; 46:1745-1755. [PMID: 29946970 PMCID: PMC6208880 DOI: 10.1007/s10439-018-2073-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022]
Abstract
This experimental work focused on the sensor selection for the development of a needle-like instrument to treat small isolated cartilage defects with hydrogels. The aim was to identify the most accurate and sensitive imaging method to determine the location and size of defects compared to a gold standard (µCT). Only intravascular ultrasound imaging (IVUS) vs. optical coherent tomography (OCT) were looked at, as they fulfilled the criteria for integration in the needle design. An in-vitro study was conducted on six human cadaveric tali that were dissected and submerged in saline. To simulate the natural appearance of cartilage defects, three types of defects were created via a standardised protocol: osteochondral defects (OCD), chondral defects (CD) and cartilage surface fibrillation (CSF), all sized between 0.1 and 3 mm in diameter. The detection rate by two observers for all diameters of OCD were 80, 92 and 100% with IVUS, OCT and µCT, for CD these were 60, 83 and 97%, and for CSF 0, 29 and 24%. Both IVUS and OCT can detect the presence of OCD and CD accurately if they are larger than 2 mm in diameter, and OCT can detect fibrillated cartilage defects larger than 3 mm in diameter. A significant difference between OCT–µCT and IVUS–µCT was found for the diameter error (p = 0.004) and insertion depth error (p = 0.002), indicating that OCT gives values closer to reference µCT. The OCT imaging technique is more sensitive to various types and sizes of defects and has a smaller diameter, and is therefore preferred for the intended application.
Collapse
Affiliation(s)
- T Horeman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands. .,Department of Orthopedic Surgery, Academic Centre for Evidence-based Sports Medicine (ACES), Academic Medical Centre, Amsterdam, The Netherlands.
| | - E C Buiter
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - B Pouran
- Department of Orthopaedics, UMC Utrecht Regenerative Medicine Centre, Utrecht, The Netherlands
| | - M Stijntjes
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - J Dankelman
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - G J M Tuijthof
- Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Orthopedic Surgery, Academic Centre for Evidence-based Sports Medicine (ACES), Academic Medical Centre, Amsterdam, The Netherlands.,Research Centre Smart Devices, Zuyd University of Applied Sciences, Heerlen, The Netherlands
| |
Collapse
|
143
|
Qin X, Qiao W, Wang Y, Li T, Li X, Gong T, Zhang ZR, Fu Y. An Extracellular Matrix-Mimicking Hydrogel for Full Thickness Wound Healing in Diabetic Mice. Macromol Biosci 2018; 18:e1800047. [PMID: 29737012 DOI: 10.1002/mabi.201800047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Xianyan Qin
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Weizhen Qiao
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Yuejing Wang
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Tingyu Li
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Xiang Li
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| | - Yao Fu
- Key Laboratory of Drug Targeting and Delivery; West China School of Pharmacy; Sichuan University; No. 17, Section 3, Southern Renmin Rd Chengdu 610041 China
| |
Collapse
|
144
|
Puertas-Bartolomé M, Benito-Garzón L, Olmeda-Lozano M. In Situ Cross-Linkable Polymer Systems and Composites for Osteochondral Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:327-355. [PMID: 29691829 DOI: 10.1007/978-3-319-76711-6_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
145
|
Marrella A, Lagazzo A, Dellacasa E, Pasquini C, Finocchio E, Barberis F, Pastorino L, Giannoni P, Scaglione S. 3D Porous Gelatin/PVA Hydrogel as Meniscus Substitute Using Alginate Micro-Particles as Porogens. Polymers (Basel) 2018; 10:E380. [PMID: 30966415 PMCID: PMC6415243 DOI: 10.3390/polym10040380] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
One of the current major challenges in orthopedic surgery is the treatment of meniscal lesions. Some of the main issues include mechanical consistency of meniscal implants, besides their fixation methods and integration with the host tissues. To tackle these aspects we realized a micro-porous, gelatin/polyvinyl alcohol (PVA)-based hydrogel to approach the high percentage of water present in the native meniscal tissue, recapitulating its biomechanical features, and, at the same time, realizing a porous implant, permissive to cell infiltration and tissue integration. In particular, we adopted aerodynamically-assisted jetting technology to realize sodium alginate micro-particles with controlled dimensions to be used as porogens. The porous hydrogels were realized through freezing-thawing cycles, followed by alginate particles leaching. Composite hydrogels showed a high porosity (74%) and an open porous structure, while preserving the elasticity behavior (E = 0.25 MPa) and high water content, typical of PVA-based hydrogels. The ex vivo animal model validation proved that the addition of gelatin, combined with the micro-porosity of the hydrogel, enhanced implant integration with the host tissue, allowing penetration of host cells within the construct boundaries. Altogether, these results show that the combined use of a water-insoluble micro-porogen and gelatin, as a bioactive agent, allowed the realization of a porous composite PVA-based hydrogel to be envisaged as a potential meniscal substitute.
Collapse
Affiliation(s)
- Alessandra Marrella
- CNR-National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy.
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy.
| | - Alberto Lagazzo
- Department of Civil, Chemical and Environmental Engineering, University of Genova, via all'Opera Pia 15, 16145 Genoa, Italy.
| | - Elena Dellacasa
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, Via all' Opera Pia 13, 16145 Genova, Italy.
| | - Camilla Pasquini
- CNR-National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy.
| | - Elisabetta Finocchio
- Department of Civil, Chemical and Environmental Engineering, University of Genova, via all'Opera Pia 15, 16145 Genoa, Italy.
| | - Fabrizio Barberis
- Department of Civil, Chemical and Environmental Engineering, University of Genova, via all'Opera Pia 15, 16145 Genoa, Italy.
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, Via all' Opera Pia 13, 16145 Genova, Italy.
| | - Paolo Giannoni
- Department of Experimental Medicine, University of Genoa, Largo L.B. Alberti 2, 16132 Genoa, Italy.
| | - Silvia Scaglione
- CNR-National Research Council of Italy, IEIIT Institute, Via De Marini 6, 16149 Genoa, Italy.
| |
Collapse
|
146
|
Mohammadi F, Mohammadi Samani S, Tanideh N, Ahmadi F. Hybrid Scaffolds of Hyaluronic Acid and Collagen Loaded with Prednisolone: an Interesting System for Osteoarthritis. Adv Pharm Bull 2018; 8:11-19. [PMID: 29670834 PMCID: PMC5896385 DOI: 10.15171/apb.2018.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose: Cartilage regeneration by using polymeric scaffolds is a new option for treatment of osteoarthritis. A good scaffold for tissue engineering should copy the characteristics of natural extracellular matrix. The purpose of this study was to make a dosage form with proper reliability and stability for cartilage repair. Methods: Hybrid scaffolds containing different ratios of hyaluronic acid (HA) and collagen were prepared and loaded with prednisolone as anti-inflammatory agent. Two different dosage forms (lyophilized implantable disk and thermo-sensitive gels) were examined. A scaffold of cross-linked HA was used as control. Different characterization tests were considered including differential scanning calorimetry (DSC), scanning electron microscopy, mechanical evaluations, and drug release. Results: The physical and chemical performance of hybrid-scaffolds was better than HA scaffold. Increasing the concentration of HA and collagen improved the physical and chemical characteristics. Regarding the mechanical properties of the hybrid scaffold, the pore size was 20-200µm, compressive modulus was 54.77±0.31 kPa, more than 1200% water uptake was observed after 4 days, gelation temperature was 32±0.16°C, gelation time was 2.4±0.1 min, and drug release was controlled for 5 days by Higuchi release kinetic model. Conclusion: It seems that this porous hybrid scaffold could be a suitable choice in cartilage regeneration as well as a controlled-release system for delivery of prednisolone in osteoarthritis.
Collapse
Affiliation(s)
- Farhad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Department of Pharmacology, Stem Cell and Transgenic Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Research Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
147
|
Abstract
3D printing is an evolving technology that enables the creation of unique organic and inorganic structures with high precision. In urology, the technology has demonstrated potential uses in both patient and clinician education as well as in clinical practice. The four major techniques used for 3D printing are inkjet printing, extrusion printing, laser sintering, and stereolithography. Each of these techniques can be applied to the production of models for education and surgical planning, prosthetic construction, and tissue bioengineering. Bioengineering is potentially the most important application of 3D printing, as the ability to produce functional organic constructs might, in the future, enable urologists to replicate and replace abnormal tissues with neo-organs, improving patient survival and quality of life.
Collapse
|
148
|
Liu C, Liu D, Wang Y, Li Y, Li T, Zhou Z, Yang Z, Wang J, Zhang Q. Glycol chitosan/oxidized hyaluronic acid hydrogels functionalized with cartilage extracellular matrix particles and incorporating BMSCs for cartilage repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:721-732. [DOI: 10.1080/21691401.2018.1434662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chun Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Deshuai Liu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Yingying Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Yun Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Tao Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Zhiyou Zhou
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Zhijian Yang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Jianhua Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou, PR China
| |
Collapse
|
149
|
Jang J, Park JY, Gao G, Cho DW. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 2018; 156:88-106. [DOI: 10.1016/j.biomaterials.2017.11.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
|
150
|
Gadjanski I. Mimetic Hierarchical Approaches for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:143-170. [PMID: 29691821 DOI: 10.1007/978-3-319-76711-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
UNLABELLED In order to engineer biomimetic osteochondral (OC) construct, it is necessary to address both the cartilage and bone phase of the construct, as well as the interface between them, in effect mimicking the developmental processes when generating hierarchical scaffolds that show gradual changes of physical and mechanical properties, ideally complemented with the biochemical gradients. There are several components whose characteristics need to be taken into account in such biomimetic approach, including cells, scaffolds, bioreactors as well as various developmental processes such as mesenchymal condensation and vascularization, that need to be stimulated through the use of growth factors, mechanical stimulation, purinergic signaling, low oxygen conditioning, and immunomodulation. This chapter gives overview of these biomimetic OC system components, including the OC interface, as well as various methods of fabrication utilized in OC biomimetic tissue engineering (TE) of gradient scaffolds. Special attention is given to addressing the issue of achieving clinical size, anatomically shaped constructs. Besides such neotissue engineering for potential clinical use, other applications of biomimetic OC TE including formation of the OC tissues to be used as high-fidelity disease/healing models and as in vitro models for drug toxicity/efficacy evaluation are covered. HIGHLIGHTS Biomimetic OC TE uses "smart" scaffolds able to locally regulate cell phenotypes and dual-flow bioreactors for two sets of conditions for cartilage/bone Protocols for hierarchical OC grafts engineering should entail mesenchymal condensation for cartilage and vascular component for bone Immunomodulation, low oxygen tension, purinergic signaling, time dependence of stimuli application are important aspects to consider in biomimetic OC TE.
Collapse
Affiliation(s)
- Ivana Gadjanski
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica, Novi Sad, Serbia. .,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, Serbia.
| |
Collapse
|