101
|
Abstract
Although approximately 1 in 10,000 animal species is capable of parthenogenetic reproduction, the evolutionary causes and consequences of such transitions remain uncertain. The microcrustacean Daphnia pulex provides a potentially powerful tool for investigating these issues because lineages that are obligately asexual in terms of female function can nevertheless transmit meiosis-suppressing genes to sexual populations via haploid sperm produced by environmentally induced males. The application of association mapping to a wide geographic collection of D. pulex clones suggests that sex-limited meiosis suppression in D. pulex has spread westward from a northeastern glacial refugium, conveyed by a dominant epistatic interaction among the products of at least four unlinked loci, with one entire chromosome being inherited through males in a nearly nonrecombining fashion. With the enormous set of genomic tools now available for D. pulex, these results set the stage for the determination of the functional underpinnings of the conversion of meiosis to a mitotic-like mode of inheritance.
Collapse
|
102
|
Seeburg DP, Feliu-Mojer M, Gaiottino J, Pak DT, Sheng M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 2008; 58:571-83. [PMID: 18498738 PMCID: PMC2488274 DOI: 10.1016/j.neuron.2008.03.021] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 02/07/2008] [Accepted: 03/18/2008] [Indexed: 01/13/2023]
Abstract
Homeostatic plasticity keeps neuronal spiking output within an optimal range in the face of chronically altered levels of network activity. Little is known about the underlying molecular mechanisms, particularly in response to elevated activity. We report that, in hippocampal neurons experiencing heightened activity, the activity-inducible protein kinase Polo-like kinase 2 (Plk2, also known as SNK) was required for synaptic scaling-a principal mechanism underlying homeostatic plasticity. Synaptic scaling also required CDK5, which acted as a "priming" kinase for the phospho-dependent binding of Plk2 to its substrate SPAR, a postsynaptic RapGAP and scaffolding molecule that is degraded following phosphorylation by Plk2. RNAi knockdown of SPAR weakened synapses, and overexpression of a SPAR mutant resistant to Plk2-dependent degradation prevented synaptic scaling. Thus, priming phosphorylation of the Plk2 binding site in SPAR by CDK5, followed by Plk2 recruitment and SPAR phosphorylation-degradation, constitutes a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity.
Collapse
Affiliation(s)
- Daniel P. Seeburg
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Monica Feliu-Mojer
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Johanna Gaiottino
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 02139
| | - Daniel T.S. Pak
- Department of Pharmacology, Med-Dent C405, Georgetown University, 3900 Reservoir Rd NW, Washington, DC 20057
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge MA 02139
| |
Collapse
|
103
|
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. New techniques, including the application of small-molecule inhibitors, have greatly expanded our knowledge of the functions, targets, and regulation of this key mitotic enzyme. In this review, we focus on how Plk1 is recruited to centrosomes, kinetochores, and the spindle midzone and what the specific tasks of Plk1 at these distinct subcellular structures might be. In particular, we highlight new work on the role of Plk1 in cytokinesis in human cells. Finally, we describe how better understanding of Plk1 functions allows critical evaluation of Plk1 as a potential drug target for cancer therapy.
Collapse
Affiliation(s)
- Mark Petronczki
- Cell Division and Aneuploidy Laboratory, Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, United Kingdom.
| | | | | |
Collapse
|
104
|
Abstract
The spindle checkpoint blocks cell-cycle progression until chromosomes are properly attached to the mitotic spindle. Popular models propose that checkpoint proteins associate with kinetochores to produce a "wait anaphase" signal that inhibits anaphase. Recent data suggest that a two-state switch results from using the same kinetochore proteins to bind microtubules and checkpoint proteins. At least eight protein kinases are implicated in spindle checkpoint signaling, arguing that a traditional signal transduction cascade is integral to spindle checkpoint signaling.
Collapse
Affiliation(s)
- Daniel J Burke
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical Center, 1300 Jefferson Park Avenue, Box 800733, Charlottesville, VA 22908-0733, USA
| | | |
Collapse
|
105
|
Nishi Y, Rogers E, Robertson SM, Lin R. Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 2008; 135:687-97. [PMID: 18199581 DOI: 10.1242/dev.013425] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Polo kinases are known key regulators of cell divisions. Here we report a novel, non-cell division function for polo kinases in embryonic polarity of newly fertilized Caenorhabditis elegans embryos. We show that polo kinases, via their polo box domains, bind to and regulate the activity of two key polarity proteins, MEX-5 and MEX-6. These polo kinases are asymmetrically localized along the anteroposterior axis of newly fertilized C. elegans embryos in a pattern identical to that of MEX-5 and MEX-6. This asymmetric localization of polo kinases depends on MEX-5 and MEX-6, as well as genes regulating MEX-5 and MEX-6 asymmetry. We identify an amino acid of MEX-5, T(186), essential for polo binding and show that T(186) is important for MEX-5 function in vivo. We also show that MBK-2, a developmentally regulated DYRK2 kinase activated at meiosis II, primes T(186) for subsequent polo kinase-dependent phosphorylation. Prior phosphorylation of MEX-5 at T(186) greatly enhances phosphorylation of MEX-5 by polo kinases in vitro. Our results provide a mechanism by which MEX-5 and MEX-6 function is temporally regulated during the crucial oocyte-to-embryo transition.
Collapse
Affiliation(s)
- Yuichi Nishi
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
106
|
Lee KS, Oh DY, Kang YH, Park JE. Self-regulated mechanism of Plk1 localization to kinetochores: lessons from the Plk1-PBIP1 interaction. Cell Div 2008; 3:4. [PMID: 18215321 PMCID: PMC2263035 DOI: 10.1186/1747-1028-3-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 01/23/2008] [Indexed: 11/10/2022] Open
Abstract
Mammalian polo-like kinase 1 (Plk1) has been studied extensively as a critical element in regulating various mitotic events during M-phase progression. Plk1 function is spatially regulated through the targeting activity of the conserved polo-box domain (PBD) present in the C-terminal non-catalytic region. Recent progress in our understanding of Plk1 localization to the centromeres shows that Plk1 self-regulates its initial recruitment by phosphorylating a centromeric component PBIP1 and generating its own PBD-binding site. Paradoxically, Plk1 also induces PBIP1 delocalization and degradation from the mitotic kinetochores late in the cell cycle, consequently permitting itself to bind to other kinetochore components. Thus, PBIP1-dependent self-recruitment of Plk1 to the interphase centromeres serves as a prelude to the efficient delivery of Plk1 itself to other kinetochore components whose interactions with Plk1 are vital for proper mitotic progression.
Collapse
Affiliation(s)
- Kyung S Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
107
|
Cyclin B1 is localized to unattached kinetochores and contributes to efficient microtubule attachment and proper chromosome alignment during mitosis. Cell Res 2008; 18:268-80. [DOI: 10.1038/cr.2008.11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
108
|
Santamaria A, Neef R, Eberspächer U, Eis K, Husemann M, Mumberg D, Prechtl S, Schulze V, Siemeister G, Wortmann L, Barr FA, Nigg EA. Use of the novel Plk1 inhibitor ZK-thiazolidinone to elucidate functions of Plk1 in early and late stages of mitosis. Mol Biol Cell 2007; 18:4024-36. [PMID: 17671160 PMCID: PMC1995727 DOI: 10.1091/mbc.e07-05-0517] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/20/2007] [Accepted: 07/25/2007] [Indexed: 02/05/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.
Collapse
Affiliation(s)
| | - Rüdiger Neef
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | - Uwe Eberspächer
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Knut Eis
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Manfred Husemann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Dominik Mumberg
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Stefan Prechtl
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Volker Schulze
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | | | - Lars Wortmann
- Bayer Schering Pharma AG, Global Drug Discovery, Berlin, 13342 Germany
| | - Francis A. Barr
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck Institute of Biochemistry, Martinsried, 82152 Germany; and
| | | |
Collapse
|
109
|
Bentley AM, Normand G, Hoyt J, King RW. Distinct sequence elements of cyclin B1 promote localization to chromatin, centrosomes, and kinetochores during mitosis. Mol Biol Cell 2007; 18:4847-58. [PMID: 17881737 PMCID: PMC2096604 DOI: 10.1091/mbc.e06-06-0539] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mitotic cyclins promote cell division by binding and activating cyclin-dependent kinases (CDKs). Each cyclin has a unique pattern of subcellular localization that plays a vital role in regulating cell division. During mitosis, cyclin B1 is known to localize to centrosomes, microtubules, and chromatin. To determine the mechanisms of cyclin B1 localization in M phase, we imaged full-length and mutant versions of human cyclin B1-enhanced green fluorescent protein in live cells by using spinning disk confocal microscopy. In addition to centrosome, microtubule, and chromatin localization, we found that cyclin B1 also localizes to unattached kinetochores after nuclear envelope breakdown. Kinetochore recruitment of cyclin B1 required the kinetochore proteins Hec1 and Mad2, and it was stimulated by microtubule destabilization. Mutagenesis studies revealed that cyclin B1 is recruited to kinetochores through both CDK1-dependent and -independent mechanisms. In contrast, localization of cyclin B1 to chromatin and centrosomes is independent of CDK1 binding. The N-terminal domain of cyclin B1 is necessary and sufficient for chromatin association, whereas centrosome recruitment relies on sequences within the cyclin box. Our data support a role for cyclin B1 function at unattached kinetochores, and they demonstrate that separable and distinct sequence elements target cyclin B1 to kinetochores, chromatin, and centrosomes during mitosis.
Collapse
Affiliation(s)
- Anna M. Bentley
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Guillaume Normand
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Jonathan Hoyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Randall W. King
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
110
|
Elowe S, Hümmer S, Uldschmid A, Li X, Nigg EA. Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 2007; 21:2205-19. [PMID: 17785528 PMCID: PMC1950859 DOI: 10.1101/gad.436007] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/19/2007] [Indexed: 11/25/2022]
Abstract
Mitotic phosphorylation of the spindle checkpoint component BubR1 is highly conserved throughout evolution. Here, we demonstrate that BubR1 is phosphorylated on the Cdk1 site T620, which triggers the recruitment of Plk1 and phosphorylation of BubR1 by Plk1 both in vitro and in vivo. Phosphorylation does not appear to be required for spindle checkpoint function but instead is important for the stability of kinetochore-microtubule (KT-MT) interactions, timely mitotic progression, and chromosome alignment onto the metaphase plate. By quantitative mass spectrometry, we identify S676 as a Plk1-specific phosphorylation site on BubR1. Furthermore, using a phospho-specific antibody, we show that this site is phosphorylated during prometaphase, but dephosphorylated at metaphase upon establishment of tension between sister chromatids. These findings describe the first in vivo verified phosphorylation site for human BubR1, identify Plk1 as the kinase responsible for causing the characteristic mitotic BubR1 upshift, and attribute a KT-specific function to the hyperphosphorylated form of BubR1 in the stabilization of KT-MT interactions.
Collapse
Affiliation(s)
- Sabine Elowe
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Stefan Hümmer
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Andreas Uldschmid
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Xiuling Li
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Erich A. Nigg
- Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
111
|
Abstract
Cdc20 is an essential cell-cycle regulator required for the completion of mitosis in organisms from yeast to man and contains at its C terminus a WD40 repeat domain that mediates protein-protein interactions. In mitosis, Cdc20 binds to and activates the ubiquitin ligase activity of a large molecular machine called the anaphase-promoting complex/cyclosome (APC/C) and enables the ubiquitination and degradation of securin and cyclin B, thus promoting the onset of anaphase and mitotic exit. APC/C(Cdc20) is temporally and spatially regulated during the somatic and embryonic cell cycle by numerous mechanisms, including the spindle checkpoint and the cytostatic factor (CSF). Therefore, Cdc20 serves as an integrator of multiple intracellular signaling cascades that regulate progression through mitosis. This review summarizes recent progress toward the understanding of the functions of Cdc20, the mechanisms by which it activates APC/C, and its regulation by phosphorylation and by association with its binding proteins.
Collapse
Affiliation(s)
- Hongtao Yu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
112
|
Matsumura S, Toyoshima F, Nishida E. Polo-like kinase 1 facilitates chromosome alignment during prometaphase through BubR1. J Biol Chem 2007; 282:15217-27. [PMID: 17376779 DOI: 10.1074/jbc.m611053200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plk1, an evolutionarily conserved M phase kinase, associates with not only spindle poles but also kinetochores during prometaphase. However, the role of Plk1 at kinetochores has been poorly understood. Here we show that BubR1 mediates the action of Plk1 at kinetochores for proper chromosome alignment. Our results show that BubR1 colocalizes with Plk1 at kinetochores of unaligned chromosomes and physically interacts with Plk1 in prometaphase cells. Down-regulation of Plk1 by small interfering RNA abolished the mobility-shifted, hyperphosphorylated form of BubR1 in the prometaphase-arrested cells. In addition, BubR1 was phosphorylated by Plk1 in vitro at two Plk1 consensus sites in the kinase domain of BubR1. The add-back of either wild-type BubR1 or BubR1 2E, in which the two Plk1 phosphorylation sites were replaced by glutamic acids, but not that of BubR1 2A, an unphosphorylatable mutant, rescued the chromosome alignment defects in BubR1-deficient cells. Moreover, when both Plk1 and BubR1 were down-regulated, the add-back of BubR1 2E, but not that of wild-type BubR1, rescued the chromosome alignment defects. These results taken together suggest that Plk1 facilitates chromosome alignment during prometaphase through BubR1.
Collapse
Affiliation(s)
- Shigeru Matsumura
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
113
|
Lénárt P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M, Rettig WJ, Kraut N, Peters JM. The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 2007; 17:304-15. [PMID: 17291761 DOI: 10.1016/j.cub.2006.12.046] [Citation(s) in RCA: 551] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 12/20/2006] [Accepted: 12/26/2006] [Indexed: 01/18/2023]
Abstract
BACKGROUND The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.
Collapse
Affiliation(s)
- Péter Lénárt
- Research Institute of Molecular Pathology, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Qi W, Yu H. KEN-Box-dependent Degradation of the Bub1 Spindle Checkpoint Kinase by the Anaphase-promoting Complex/Cyclosome. J Biol Chem 2007; 282:3672-9. [PMID: 17158872 DOI: 10.1074/jbc.m609376200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The spindle checkpoint is a cell cycle surveillance mechanism that ensures the fidelity of chromosome segregation during mitosis and meiosis. Bub1 is a protein serine-threonine kinase that plays multiple roles in chromosome segregation and the spindle checkpoint. In response to misaligned chromosomes, Bub1 directly inhibits the ubiquitin ligase activity of the anaphase-promoting complex or cyclosome (APC/C) by phosphorylating its activator Cdc20. The protein level and the kinase activity of Bub1 are regulated during the cell cycle; they peak in mitosis and are low in G1/S phase. Here we show that Bub1 is degraded during mitotic exit and that degradation of Bub1 is mediated by APC/C in complex with its activator Cdh1 (APC/C(Cdh1)). Overexpression of Cdh1 reduces the protein levels of ectopically expressed Bub1, whereas depletion of Cdh1 by RNA interference increases the level of the endogenous Bub1 protein. Bub1 is ubiquitinated by immunopurified APC/C(Cdh1) in vitro. We further identify two KEN-box motifs on Bub1 that are required for its degradation in vivo and ubiquitination in vitro. A Bub1 mutant protein with both KEN-boxes mutated is stable in cells but fails to elicit a cell cycle phenotype, indicating that degradation of Bub1 by APC/C(Cdh1) is not required for mitotic exit. Nevertheless, our study clearly demonstrates that Bub1, an APC/C inhibitor, is also an APC/C substrate. The antagonistic relationship between Bub1 and APC/C may help to prevent the premature accumulation of Bub1 during G1.
Collapse
Affiliation(s)
- Wei Qi
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
115
|
Kang YH, Park JE, Yu LR, Soung NK, Yun SM, Bang JK, Seong YS, Yu H, Garfield S, Veenstra TD, Lee KS. Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol Cell 2006; 24:409-22. [PMID: 17081991 DOI: 10.1016/j.molcel.2006.10.016] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 09/06/2006] [Accepted: 10/12/2006] [Indexed: 11/28/2022]
Abstract
The polo-box domain (PBD) of mammalian polo-like kinase 1 (Plk1) is essential in targeting its catalytic activity to specific subcellular structures critical for mitosis. The mechanism underlying Plk1 recruitment to the kinetochores and the role of Plk1 at this site remain elusive. Here, we demonstrate that a PBD-binding protein, PBIP1, is crucial for recruiting Plk1 to the interphase and mitotic kinetochores. Unprecedentedly, Plk1 phosphorylated PBIP1 at T78, creating a self-tethering site that specifically interacted with the PBD of Plk1, but not Plk2 or Plk3. Later in mitosis, Plk1 also induced PBIP1 degradation in a T78-dependent manner, thereby enabling itself to interact with other components critical for proper kinetochore functions. Absence of the p-T78-dependent Plk1 localization induced a chromosome congression defect and compromised the spindle checkpoint, ultimately leading to aneuploidy. Thus, Plk1 self-regulates the Plk1-PBIP1 interaction to timely localize to the kinetochores and promote proper chromosome segregation.
Collapse
Affiliation(s)
- Young H Kang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|