101
|
Xu RJ, Zhu YA, Liu NG, Boonmee S, Zhou DQ, Zhao Q. Taxonomy and Phylogeny of Hyphomycetous Muriform Conidial Taxa from the Tibetan Plateau, China. J Fungi (Basel) 2023; 9:jof9050560. [PMID: 37233273 DOI: 10.3390/jof9050560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
During the investigation of lignicolous freshwater fungi in the Tibetan Plateau habitat, fifteen collections were isolated from submerged decaying wood. Fungal characteristics are commonly found as punctiform or powdery colonies with dark pigmented and muriform conidia. Multigene phylogenetic analyses of combined ITS, LSU, SSU and TEF DNA sequences showed that they belong to three families in Pleosporales. Among them, Paramonodictys dispersa, Pleopunctum megalosporum, Pl. multicellularum and Pl. rotundatum are established as new species. Paradictyoarthrinium hydei, Pleopunctum ellipsoideum and Pl. pseudoellipsoideum are reported as new records on the freshwater habitats in Tibetan Plateau, China. The morphological descriptions and illustrations of the new collections are provided.
Collapse
Affiliation(s)
- Rong-Ju Xu
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying-An Zhu
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Ning-Guo Liu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Saranyaphat Boonmee
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - De-Qun Zhou
- Academy of Fanjing Mountain National Park, Tongren University, Tongren 554300, China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
102
|
Mantelatto FL, Paixão JM, Robles R, Teles JN, Balbino FC. Evidence using morphology, molecules, and biogeography clarifies the taxonomic status of mole crabs of the genus Emerita Scopoli, 1777 (Anomura, Hippidae) and reveals a new species from the western Atlantic. Zookeys 2023; 1161:169-202. [PMID: 37234742 PMCID: PMC10206660 DOI: 10.3897/zookeys.1161.99432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Uncertainties regarding the taxonomic status and biogeographical distribution of some species of the genus Emerita from the western Atlantic led to thorough examination of the subtle morphological differences between two coexistent species (E.brasiliensis Schmitt, 1935 and E.portoricensis Schmitt, 1935) along the Brazilian coast and compare them using two genetic markers. The molecular phylogenetic analysis based on sequences of the 16S rRNA and COI genes showed that individuals identified as E.portoricensis were clustered into two clades: one containing representatives from the Brazilian coast and another containing specimens distributed in Central America. Our molecular-based phylogeny, combined with a detailed morphological analysis, revealed the Brazilian population as a new species, which is described here as Emeritaalmeidai Mantelatto & Balbino, sp. nov. The number of species in the genus Emerita is now raised to 12, with five of them occurring in the western Atlantic, five in the Indo-Pacific, and two in the eastern Pacific.
Collapse
Affiliation(s)
- Fernando L. Mantelatto
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| | - Juliana M. Paixão
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| | - Rafael Robles
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Campeche, Campus V. Predio s/n – Avenida Ing. Humberto Lanz Cárdenas y Fracc. Ecológico Ambiental Siglo XXIII, Colonia Ex Hacienda Kalá, San Francisco de Campeche, Camp., 24085, MexicoUniversidad Autónoma de CampecheCampecheMexico
| | - Jeniffer N. Teles
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| | - Felipe C. Balbino
- Laboratory of Bioecology and Crustacean Systematics (LBSC), Faculty of Philosophy, Sciences and Letters at Ribeirão Preto (FFCLRP), University of São Paulo (USP), Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, BrazilUniversity of São PauloRibeirão PretoBrazil
| |
Collapse
|
103
|
Lencina MM, Truyen U, de Oliveira Santana W, Kipper D, Delamare APL, Paesi S, Lunge VR, Streck AF. Canine parvovirus type 2 vaccines in Brazil: Viral load in commercial vaccine vials and phylogenetic analysis of the vaccine viruses. Biologicals 2023; 82:101676. [PMID: 37028214 DOI: 10.1016/j.biologicals.2023.101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 12/17/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Canine parvovirus type 2 (CPV-2) is the etiological agent of a highly contagious and frequently fatal disease in dogs. Live attenuated vaccines (LAV) are recommended to prevent and control this disease. Commercial vaccines are typically produced with CPV-2 strains adapted to cell culture and usually non-pathogenic. The present study aimed to determine the viral load of CPV-2 vaccines commercially available in Brazil and to characterize the vaccine virus by DNA analysis of its capsid gene. The results demonstrated that all vaccine strains presented high homology of the VP2 gene and they were all closely related to the original CPV-2 strains. However, vaccine strains presented several differences in comparison with field strains currently circulating in Brazil. Seventy-one vials contained viral loads ranging from 7.4E3 to 4.9E10 DNA copies/ml. Nine vials did not contain any detectable CPV-2 DNA. In conclusion, there are genetic and antigenic differences among CPV-2 vaccines and field strains. Additionally, some vaccines have been commercialized with low titers of CPV-2. It is important to improve the quality of the vaccines to prevent or reduce the spread of CPV-2 in Brazil.
Collapse
|
104
|
Lemire BD, Uppuluri P. Coding Sequence Insertions in Fungal Genomes are Intrinsically Disordered and can Impart Functionally-Important Properties on the Host Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535715. [PMID: 37066283 PMCID: PMC10104129 DOI: 10.1101/2023.04.06.535715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Insertion and deletion mutations (indels) are important mechanisms of generating protein diversity. Indels in coding sequences are under considerable selective pressure to maintain reading frames and to preserve protein function, but once generated, indels provide raw material for the acquisition of new protein properties and functions. We reported recently that coding sequence insertions in the Candida albicans NDU1 protein, a mitochondrial protein involved in the assembly of the NADH:ubiquinone oxidoreductase are imperative for respiration, biofilm formation and pathogenesis. NDU1 inserts are specific to CTG-clade fungi, absent in human ortholog and successfully harnessed as drug targets. Here, we present the first comprehensive report investigating indels and clade-defining insertions (CDIs) in fungal proteomes. We investigated 80 ascomycete proteomes encompassing CTG clade species, the Saccharomycetaceae family, the Aspergillaceae family and the Herpotrichiellaceae (black yeasts) family. We identified over 30,000 insertions, 4,000 CDIs and 2,500 clade-defining deletions (CDDs). Insert sizes range from 1 to over 1,000 residues in length, while maximum deletion length is 19 residues. Inserts are strikingly over-represented in protein kinases, and excluded from structural domains and transmembrane segments. Inserts are predicted to be highly disordered. The amino acid compositions of the inserts are highly depleted in hydrophobic residues and enriched in polar residues. An indel in the Saccharomyces cerevisiae Sth1 protein, the catalytic subunit of the RSC (Remodel the Structure of Chromatin) complex is predicted to be disordered until it forms a ß-strand upon interaction. This interaction performs a vital role in RSC-mediated transcriptional regulation, thereby expanding protein function.
Collapse
Affiliation(s)
- Bernard D. Lemire
- Department of Biochemistry, University of Alberta, Edmonton, Canada (retired)
| | - Priya Uppuluri
- Institute for Infection and Immunity, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
105
|
Booher DB, Gotelli NJ, Nelsen MP, Ohyama L, Deyrup M, Moreau CS, Suarez AV. Six decades of museum collections reveal disruption of native ant assemblages by introduced species. Curr Biol 2023; 33:2088-2094.e6. [PMID: 37030293 DOI: 10.1016/j.cub.2023.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
There is a looming environmental crisis characterized by widespread declines in global biodiversity,1,2,3,4,5,6 coupled with the establishment of introduced species at accelerated rates.7,8,9,10,11,12,13,14 We quantified how multi-species invasions affect litter ant communities in natural ecosystems by leveraging museum records and contemporary collections to assemble a large (18,990 occurrences, 6,483 sampled local communities, and 177 species) 54-year (1965-2019) dataset for the entire state of Florida, USA. Nine of ten species that decreased most strongly in relative abundance ("losers") were native, while nine of the top ten "winners" were introduced species. These changes led to shifts in the composition of rare and common species: in 1965, only two of the ten most common ants were introduced, whereas by 2019, six of ten were introduced species. Native losers included seed dispersers and specialist predators, suggesting a potential loss of ecosystem function through time, despite no obvious loss of phylogenetic diversity. We also examined the role of species-level traits as predictors of invasion success. Introduced species were more likely to be polygynous than native species. The tendency to form supercolonies, where workers from separate nests integrate, also differed between native and introduced species and was correlated with the degree to which species increased in their rank abundances over 50 years. In Florida, introduced ants now account for 30% of occurrence records, and up to 70% in southern Florida. If current trends continue, introduced species will account for over half of occurrence records in all Florida's litter ant communities within the next 50 years.
Collapse
Affiliation(s)
- Douglas B Booher
- USDA Forest Service Southern Research Station, 320 East Green Street, Athens, GA 30602, USA; Department of Entomology and Department of Evolution, Ecology and Behavior, University of Illinois, 320 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA; Department of Entomology and Department of Ecology & Evolutionary Biology, Cornell University, 129 Garden Avenue, Ithaca, NY 14850, USA.
| | | | - Matthew P Nelsen
- The Field Museum, Negaunee Integrative Research Center, 1400 South DuSable Lake Shore Drive, Chicago, IL 60605, USA
| | - Leo Ohyama
- University of Florida Biodiversity Institute, 432 Newell Drive, Gainesville, FL 32603, USA
| | - Mark Deyrup
- Archbold Biological Station, Venus, FL 33960, USA
| | - Corrie S Moreau
- Department of Entomology and Department of Ecology & Evolutionary Biology, Cornell University, 129 Garden Avenue, Ithaca, NY 14850, USA
| | - Andrew V Suarez
- Department of Entomology and Department of Evolution, Ecology and Behavior, University of Illinois, 320 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
106
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
107
|
Wang B, Qin B, Sun K, Huang X, Bai S, Zhou X. The complete chloroplast genome sequence of Bambusa tuldoides f. swolleninternode (Poaceae: Bambuseae). Mitochondrial DNA B Resour 2023; 8:324-328. [PMID: 36860478 PMCID: PMC9970254 DOI: 10.1080/23802359.2023.2181648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Bambusa tuldoides f. swolleninternode is an attractive ornamental bamboo species of southern China, with highly shortened and swollen at the base of internodes. In this study, the complete chloroplast genome of B. tuldoides was sequenced and reported for the first time. The complete genome size is 139,460 base pairs (bp), including a large single-copy (LSC) region of 82,996 bp, a small single-copy (SSC) region of 12,876 bp and a pair of invert repeats (IR) regions of 21,794 bp. The plastid genome contained 132 genes, including 86 protein-coding genes, 38 tRNA genes and 8 rRNA genes. The overall GC content of the genome is 39%. The phylogenetic analysis revealed that B. tuldoides is closely related to B. dolichoclada, B. pachinensis var. hirsutissima, and B. utilis, three species in Bambusa based on 16 chloroplast genomes.
Collapse
Affiliation(s)
- Ben Wang
- College of Urban and Rural Construction, Shanxi Agricultural University, Jinzhong, China
| | - Bo Qin
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China
| | - Kaidao Sun
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China
| | - Xin Huang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China,CONTACT Xin Huang Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China
| | - Shangbin Bai
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | - Xiumei Zhou
- Jiyang College, Zhejiang A&F University, Zhuji, China,Xiumei Zhou Jiyang College, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
108
|
Zhang C, Fang YX, Yin X, Lai H, Kuang Z, Zhang T, Xu XP, Wegener G, Wang JH, Dong X. The majority of microorganisms in gas hydrate-bearing subseafloor sediments ferment macromolecules. MICROBIOME 2023; 11:37. [PMID: 36864529 PMCID: PMC9979476 DOI: 10.1186/s40168-023-01482-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Gas hydrate-bearing subseafloor sediments harbor a large number of microorganisms. Within these sediments, organic matter and upward-migrating methane are important carbon and energy sources fueling a light-independent biosphere. However, the type of metabolism that dominates the deep subseafloor of the gas hydrate zone is poorly constrained. Here we studied the microbial communities in gas hydrate-rich sediments up to 49 m below the seafloor recovered by drilling in the South China Sea. We focused on distinct geochemical conditions and performed metagenomic and metatranscriptomic analyses to characterize microbial communities and their role in carbon mineralization. RESULTS Comparative microbial community analysis revealed that samples above and in sulfate-methane interface (SMI) zones were clearly distinguished from those below the SMI. Chloroflexota were most abundant above the SMI, whereas Caldatribacteriota dominated below the SMI. Verrucomicrobiota, Bathyarchaeia, and Hadarchaeota were similarly present in both types of sediment. The genomic inventory and transcriptional activity suggest an important role in the fermentation of macromolecules. In contrast, sulfate reducers and methanogens that catalyze the consumption or production of commonly observed chemical compounds in sediments are rare. Methanotrophs and alkanotrophs that anaerobically grow on alkanes were also identified to be at low abundances. The ANME-1 group actively thrived in or slightly below the current SMI. Members from Heimdallarchaeia were found to encode the potential for anaerobic oxidation of short-chain hydrocarbons. CONCLUSIONS These findings indicate that the fermentation of macromolecules is the predominant energy source for microorganisms in deep subseafloor sediments that are experiencing upward methane fluxes. Video Abstract.
Collapse
Affiliation(s)
- Chuwen Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yun-Xin Fang
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Xiuran Yin
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hongfei Lai
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Zenggui Kuang
- Guangzhou Marine Geological Survey, China Geological Survey, Ministry of Natural Resources, Guangzhou, China
| | - Tianxueyu Zhang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Xiang-Po Xu
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Gunter Wegener
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Jiang-Hai Wang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
109
|
Dudka D, Akins RB, Lampson MA. FREEDA: an automated computational pipeline guides experimental testing of protein innovation by detecting positive selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530329. [PMID: 36909479 PMCID: PMC10002610 DOI: 10.1101/2023.02.27.530329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Cell biologists typically focus on conserved regions of a protein, overlooking innovations that can shape its function over evolutionary time. Computational analyses can reveal potential innovations by detecting statistical signatures of positive selection that leads to rapid accumulation of beneficial mutations. However, these approaches are not easily accessible to non-specialists, limiting their use in cell biology. Here, we present an automated computational pipeline FREEDA (Finder of Rapidly Evolving Exons in De novo Assemblies) that provides a simple graphical user interface requiring only a gene name, integrates widely used molecular evolution tools to detect positive selection, and maps results onto protein structures predicted by AlphaFold. Applying FREEDA to >100 mouse centromere proteins, we find evidence of positive selection in intrinsically disordered regions of ancient domains, suggesting innovation of essential functions. As a proof-of-principle experiment, we show innovation in centromere binding of CENP-O. Overall, we provide an accessible computational tool to guide cell biology research and apply it to experimentally demonstrate functional innovation.
Collapse
|
110
|
Mao J, Liang Y, Wang X, Zhang D. Comparison of plastid genomes and ITS of two sister species in Gentiana and a discussion on potential threats for the endangered species from hybridization. BMC PLANT BIOLOGY 2023; 23:101. [PMID: 36800941 PMCID: PMC9940437 DOI: 10.1186/s12870-023-04088-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Gentiana rigescens Franchet is an endangered medicinal herb from the family Gentianaceae with medicinal values. Gentiana cephalantha Franchet is a sister species to G. rigescens possessing similar morphology and wider distribution. To explore the phylogeny of the two species and reveal potential hybridization, we adopted next-generation sequencing technology to acquire their complete chloroplast genomes from sympatric and allopatric distributions, as along with Sanger sequencing to produce the nrDNA ITS sequences. RESULTS The plastid genomes were highly similar between G. rigescens and G. cephalantha. The lengths of the genomes ranged from 146,795 to 147,001 bp in G. rigescens and from 146,856 to 147,016 bp in G. cephalantha. All genomes consisted of 116 genes, including 78 protein-coding genes, 30 tRNA genes, four rRNA genes and four pseudogenes. The total length of the ITS sequence was 626 bp, including six informative sites. Heterozygotes occurred intensively in individuals from sympatric distribution. Phylogenetic analysis was performed based on chloroplast genomes, coding sequences (CDS), hypervariable sequences (HVR), and nrDNA ITS. Analysis based on all the datasets showed that G. rigescens and G. cephalantha formed a monophyly. The two species were well separated in phylogenetic trees using ITS, except for potential hybrids, but were mixed based on plastid genomes. This study supports that G. rigescens and G. cephalantha are closely related, but independent species. However, hybridization was confirmed to occur frequently between G. rigescens and G. cephalantha in sympatric distribution owing to the lack of stable reproductive barriers. Asymmetric introgression, along with hybridization and backcrossing, may probably lead to genetic swamping and even extinction of G. rigescens. CONCLUSION G. rigescens and G. cephalantha are recently diverged species which might not have undergone stable post-zygotic isolation. Though plastid genome shows obvious advantage in exploring phylogenetic relationships of some complicated genera, the intrinsic phylogeny was not revealed because of matrilineal inheritance here; nuclear genomes or regions are hence crucial for uncovering the truth. As an endangered species, G. rigescens faces serious threats from both natural hybridization and human activities; therefore, a balance between conservation and utilization of the species is extremely critical in formulating conservation strategies.
Collapse
Affiliation(s)
- Jiuyang Mao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Yuze Liang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Xue Wang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China
| | - Dequan Zhang
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, China.
- Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan (Cultivation), Dali, 671000, Yunnan, China.
| |
Collapse
|
111
|
Li GJ, Liu TZ, Li SM, Zhao SY, Niu CY, Liu ZZ, Xie XJ, Zhang X, Shi LY, Guo YB, Wang K, Cao B, Zhao RL, Li M, Deng CY, Wei TZ. Four New Species of Russula Subsection Sardoninae from China. J Fungi (Basel) 2023; 9:jof9020199. [PMID: 36836313 PMCID: PMC9963349 DOI: 10.3390/jof9020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Four new species of Russula subsection Sardoninae from northern and southwestern China under coniferous and deciduous trees are proposed as R. begonia, R. photinia, R. rhodochroa, and R. rufa. Illustrations and descriptions of R. gracillima, R. leucomarginata, R. roseola, and the above four new species are provided based on evidence of morphological characters and phylogenetic analyses of the internal transcribed spacer (ITS), as well as the multi-locus of mtSSU, nLSU, rpb1, rpb2 and tef1-α. The relationships between these new species and allied taxa are discussed.
Collapse
Affiliation(s)
- Guo-Jie Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Tie-Zhi Liu
- College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
| | - Shou-Mian Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Shi-Yi Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Cai-Yun Niu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Zhen-Zhen Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Xue-Jiao Xie
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Xu Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Lu-Yao Shi
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Yao-Bin Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ming Li
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable, College of Horticulture, Hebei Agricultural University, Baoding 071001, China
| | - Chun-Ying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China
- Correspondence: (C.-Y.D.); (T.-Z.W.)
| | - Tie-Zheng Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (C.-Y.D.); (T.-Z.W.)
| |
Collapse
|
112
|
Huang H, Hua X, Pang X, Zhang Z, Ren J, Cheng J, Fu Y, Xiao X, Lin Y, Chen T, Li B, Liu H, Jiang D, Xie J. Discovery and Characterization of Putative Glycoprotein-Encoding Mycoviruses in the Bunyavirales. J Virol 2023; 97:e0138122. [PMID: 36625579 PMCID: PMC9888262 DOI: 10.1128/jvi.01381-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/16/2022] [Indexed: 01/11/2023] Open
Abstract
Although segmented negative-sense RNA viruses (SNSRVs) have been frequently discovered in various fungi, most SNSRVs reported only the large segments. In this study, we investigated the diversity of the mycoviruses in the phytopathogenic fungus Fusarium asiaticum using the metatranscriptomic technique. We identified 17 fungal single-stranded RNA (ssRNA) viruses including nine viruses within Mitoviridae, one each in Narnaviridae, Botourmiaviridae, Hypoviridae, Fusariviridae, and Narliviridae, two in Mymonaviridae, and one trisegmented virus temporarily named Fusarium asiaticum mycobunyavirus 1 (FaMBV1). The FaMBV1 genome comprises three RNA segments, large (L), medium (M), and small (S) with 6,468, 2,639, and 1,420 nucleotides, respectively. These L, M, and S segments putatively encode the L protein, glycoprotein, and nucleocapsid, respectively. Phylogenetic analysis based on the L protein showed that FaMBV1 is phylogenetically clustered with Alternaria tenuissima negative-stranded RNA virus 2 (AtNSRV2) and Sclerotinia sclerotiorum negative-stranded RNA virus 5 (SsNSRV5) but distantly related to the members of the family Phenuiviridae. FaMBV1 could be vertically transmitted by asexual spores with lower efficiency (16.7%, 2/42). Comparison between FaMBV1-free and -infected fungal strains revealed that FaMBV1 has little effect on hyphal growth, pathogenicity, and conidium production, and its M segment is dispensable for viral replication and lost during subculture and asexual conidiation. The M and S segments of AtNSRV2 and SsNSRV5 were found using bioinformatics methods, indicating that the two fungal NSRVs harbor trisegmented genomes. Our results provide a new example of the existence and evolution of the segmented negative-sense RNA viruses in fungi. IMPORTANCE Fungal segmented negative-sense RNA viruses (SNSRVs) have been frequently found. Only the large segment encoding RNA-dependent RNA polymerase (RdRp) has been reported in most fungal SNSRVs, except for a few fungal SNSRVs reported to encode nucleocapsids, nonstructural proteins, or movement proteins. Virome analysis of the Fusarium spp. that cause Fusarium head blight discovered a novel virus, Fusarium asiaticum mycobunyavirus 1 (FaMBV1), representing a novel lineage of the family Phenuiviridae. FaMBV1 harbors a trisegmented genome that putatively encodes RdRp, glycoproteins, and nucleocapsids. The putative glycoprotein was first described in fungal SNSRVs and shared homology with glycoprotein of animal phenuivirus but was dispensable for its replication in F. asiaticum. Two other trisegmented fungal SNSRVs that also encode glycoproteins were discovered, implying that three-segment bunyavirus infections may be common in fungi. These findings provide new insights into the ecology and evolution of SNSRVs, particularly those infecting fungi.
Collapse
Affiliation(s)
- Huang Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xiangmin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Xidan Pang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Zhongmei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingyi Ren
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Xianyang, Shaanxi, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
113
|
Singh P, Sharma K, Shaw D, Bhargava A, Negi SS. Mutational characterization of Omicron SARS-CoV-2 lineages circulating in Chhattisgarh, a central state of India. Front Med (Lausanne) 2023; 9:1082846. [PMID: 36755883 PMCID: PMC9899822 DOI: 10.3389/fmed.2022.1082846] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction The emergence of the Omicron SARS-CoV-2 variant from various states of India in early 2022 has caused fear of its rapid spread. The lack of such reports from Chhattisgarh (CG), a central state in India, has prompted us to identify the Omicron circulating lineages and their mutational dynamics. Materials and methods Whole-genome sequencing (WGS) of SARS-CoV-2 was performed in 108 SARS-CoV-2 positive combined samples of nasopharyngeal and oropharyngeal swabs obtained from an equal number of patients. Results All 108 SARS-CoV-2 sequences belonged to Omicron of clade 21L (84%), 22B (11%), and 22D (5%). BA.2 and its sub-lineages were predominantly found in 93.5% of patients, BA.5.2 and its sub-lineage BA.5.2.1 in 4.6% of patients, and B.1.1.529 in 2% of patients. Various BA.2 sub-lineages identified were BA.2 (38%), BA.2.38 (32%), BA.2.75 (9.25%), BA.2.56, BA.2.76, and BA.5.2.1 (5% each), BA.2.74 (4.6%), BA.5.2.1 (3.7%), BA.2.43 and B.1.1.529 (1.8% each), and BA.5.2 (0.9%). Maximum mutations were noticed in the spike (46), followed by the nucleocapsid (5), membrane (3), and envelope (2) genes. Mutations detected in the spike gene of different Omicron variants were BA.1.1.529 (32), BA.2 (44), BA.2.38 (37), BA.2.43 (38), BA.2.56 (30), BA.2.74 (31), BA.2.75 (37), BA.2.76 (32), BA.5.2, and BA.5.2.1 (38 similar mutations). The spike gene showed the signature mutations of T19I and V213G in the N-terminal domain (NTD), S373P, S375F, T376A, and D405N in receptor-binding domain (RBD), D614G, H655Y, N679K, and P681H at the furin cleavage site, N764K and D796K in fusion peptide, and Q954H and N969K in heptapeptide repeat sequence (HR)1. Notably, BA.2.43 exhibited a novel mutation of E1202Q in the C terminal. Other sites included ORF1a harboring 13 mutations followed by ORF1b (6), ORF3a (2), and ORF6 and ORF8 (1 mutation each). Conclusion BA.2 followed by BA.2.38 was the predominant Omicron lineage circulating in Chhattisgarh. BA.2.75 could supersede other Omicron due to its mutational consortium advantage. The periodical genomic monitoring of Omicron variants is thus required for real-time assessment of circulating strains and their mutational-induced severity.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Singh Negi
- Department of Microbiology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| |
Collapse
|
114
|
Coates BS, Walden KKO, Lata D, Vellichirammal NN, Mitchell RF, Andersson MN, McKay R, Lorenzen MD, Grubbs N, Wang YH, Han J, Xuan JL, Willadsen P, Wang H, French BW, Bansal R, Sedky S, Souza D, Bunn D, Meinke LJ, Miller NJ, Siegfried BD, Sappington TW, Robertson HM. A draft Diabrotica virgifera virgifera genome: insights into control and host plant adaption by a major maize pest insect. BMC Genomics 2023; 24:19. [PMID: 36639634 PMCID: PMC9840275 DOI: 10.1186/s12864-022-08990-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Adaptations by arthropod pests to host plant defenses of crops determine their impacts on agricultural production. The larval host range of western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae), is restricted to maize and a few grasses. Resistance of D. v. virgifera to crop rotation practices and multiple insecticides contributes to its status as the most damaging pest of cultivated maize in North America and Europe. The extent to which adaptations by this pest contributes to host plant specialization remains unknown. RESULTS A 2.42 Gb draft D. v. virgifera genome, Dvir_v2.0, was assembled from short shotgun reads and scaffolded using long-insert mate-pair, transcriptome and linked read data. K-mer analysis predicted a repeat content of ≥ 61.5%. Ortholog assignments for Dvir_2.0 RefSeq models predict a greater number of species-specific gene duplications, including expansions in ATP binding cassette transporter and chemosensory gene families, than in other Coleoptera. A majority of annotated D. v. virgifera cytochrome P450s belong to CYP4, 6, and 9 clades. A total of 5,404 transcripts were differentially-expressed between D. v. virgifera larvae fed maize roots compared to alternative host (Miscanthus), a marginal host (Panicum virgatum), a poor host (Sorghum bicolor) and starvation treatments; Among differentially-expressed transcripts, 1,908 were shared across treatments and the least number were between Miscanthus compared to maize. Differentially-expressed transcripts were enriched for putative spliceosome, proteosome, and intracellular transport functions. General stress pathway functions were unique and enriched among up-regulated transcripts in marginal host, poor host, and starvation responses compared to responses on primary (maize) and alternate hosts. CONCLUSIONS Manual annotation of D. v. virgifera Dvir_2.0 RefSeq models predicted expansion of paralogs with gene families putatively involved in insecticide resistance and chemosensory perception. Our study also suggests that adaptations of D. v. virgifera larvae to feeding on an alternate host plant invoke fewer transcriptional changes compared to marginal or poor hosts. The shared up-regulation of stress response pathways between marginal host and poor host, and starvation treatments may reflect nutrient deprivation. This study provides insight into transcriptomic responses of larval feeding on different host plants and resources for genomic research on this economically significant pest of maize.
Collapse
Affiliation(s)
- Brad S. Coates
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Kimberly K. O. Walden
- grid.35403.310000 0004 1936 9991Roy J. Carver Biotechnology Center, University of Illinois at Champaign-Urbana, Urbana, IL USA
| | - Dimpal Lata
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | | | - Robert F. Mitchell
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Martin N. Andersson
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Lund, Sweden
| | - Rachel McKay
- grid.267474.40000 0001 0674 4543University of Wisconsin Oshkosh, Oshkosh, WI USA
| | - Marcé D. Lorenzen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Nathaniel Grubbs
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Yu-Hui Wang
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jinlong Han
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Jing Li Xuan
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Peter Willadsen
- grid.40803.3f0000 0001 2173 6074Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Huichun Wang
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - B. Wade French
- grid.508981.dIntegrated Crop Systems Research Unit, USDA-ARS, Brookings, SD USA
| | - Raman Bansal
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Sammy Sedky
- grid.512850.bUSDA-ARS, San Joaquin Valley Agricultural Sciences Center, Parlier, CA USA
| | - Dariane Souza
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Dakota Bunn
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Lance J. Meinke
- grid.24434.350000 0004 1937 0060Department of Entomology, University of Nebraska, Lincoln, NE USA
| | - Nicholas J. Miller
- grid.62813.3e0000 0004 1936 7806Department of Biology, Illinois Institute of Technology, Chicago, IL USA
| | - Blair D. Siegfried
- grid.15276.370000 0004 1936 8091Department of Entomology, University of Florida, Gainesville, FL USA
| | - Thomas W. Sappington
- grid.508983.fCorn Insects & Crop Genetics Research Unit, USDA-ARS, 2310 Pammel Dr, 532 Science II, Iowa State University, Ames, IA 50011 USA
| | - Hugh M. Robertson
- grid.35403.310000 0004 1936 9991Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL USA
| |
Collapse
|
115
|
Yang F, Feng C, Long L. The complete chloroplast genome of the marine microalga Nitzschia dubiiformis. Mitochondrial DNA B Resour 2023; 8:91-94. [PMID: 36643815 PMCID: PMC9833402 DOI: 10.1080/23802359.2022.2160672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Nitzschia dubiiformis Hust 1939 is a globally distributed species belonging to the family Bacillariaceae. This study reported the complete chloroplast genome sequences of N. dubiiformis. The genome of N. dubiiformis was 179,935 bp in length, consisting of 48,722 bp of large single copy, 103,427 bp of small single copy, and 13,893 bp of a pair of inverted repeat regions. It encoded 188 genes, including 151 protein-coding genes, 6 rRNA and 31 tRNA genes. The GC content of complete chloroplast genome was 30.4%. The phylogenomic analysis suggests that there is a close relationship between N. dubiiformis and N. traheaformis.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China,CONTACT Fangfang Yang
| | - Cheng Feng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China,University of Chinese Academy of Sciences, Beijing, PR China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China,Lijuan Long Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301China
| |
Collapse
|
116
|
Wang T, Li Y, Ma Q, Liu Y, Xiao Y, Wu P, Lin L, Li C. The complete mitochondrial genome of Cheilinus trilobatus (Perciformes: Labridae). Mitochondrial DNA B Resour 2023; 8:73-75. [PMID: 36620319 PMCID: PMC9815225 DOI: 10.1080/23802359.2022.2161835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cheilinus trilobatus Lacépède, 1801 is a species of genus Cheilinus. In this study, we sequenced the complete mitochondrion genome of C. trilobatus. The mitochondrial genome was 17,292 bp, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one non-coding control region (D-loop). The nucleotide composition was 27.31% A, 25.1% T, 17.23% G, and 30.36% C. Phylogenetic analysis suggested that C. trilobatus was closely related to Cheilinus oxycephalus. The complete mitogenome of C. trilobatus provided basic data for the genetic diversity conservation of this species.
Collapse
Affiliation(s)
- Teng Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou, China
| | - Yupei Li
- Sansha Marine Protected Area Administration, Sansha, China
| | - Qin Ma
- College of Life Science, Nanchang Normal University, Nanchang, China
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou, China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China,Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou, China
| | - Peng Wu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China,Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou, China
| | - Lin Lin
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China,Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou, China
| | - Chunhou Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China,Observation and Research Station of Pearl River Estuary Ecosystem, Guangzhou, China,CONTACT Chunhou Li South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou510300, China
| |
Collapse
|
117
|
Yang F, Huang Y, Long L. Characterization of the chloroplast genome of Symbiochlorum hainanensis (Ulvophyceae, Chlorophyta) and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:422-425. [PMID: 36998784 PMCID: PMC10044315 DOI: 10.1080/23802359.2023.2183722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Symbiochlorum hainandiae S.Q. Gong & Z.Y. Li, 2018 is a unicellular green alga belonging to Ulvophyceae, Chlorophyta, and plays important roles in coral reef ecosystem. In this study, high-throughput sequencing technology is used to sequence and assemble the chloroplast genome of S. hainandiae. The complete chloroplast genome of S. hainandiae was 158, 96 bp with the GC content of 32.86%. A total of 126 genes were identified, including 98 protein-coding genes, 26 tRNA, and 2 rRNA genes. The inverted repeat region was lost in the complete chloroplast genome of S. hainandiae. The phylogenetic analysis supports that S. hainandiae is a new sister lineage to the genus Ignatius within the class Ulvophyceae.
Collapse
Affiliation(s)
- Fangfang Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Fangfang Yang Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- CONTACT Lijuan Long
| |
Collapse
|
118
|
O'Grady HM, Harrison R, Snedeker K, Trufen L, Yue P, Ward L, Fifen A, Jamieson P, Weiss A, Coulthard J, Lynch T, Croxen MA, Li V, Pabbaraju K, Wong A, Zhou HY, Dingle TC, Hellmer K, Berenger BM, Fonseca K, Lin YC, Evans D, Conly JM. A two-ward acute care hospital outbreak of SARS-CoV-2 delta variant including a point-source outbreak associated with the use of a mobile vital signs cart and sub-optimal doffing of personal protective equipment. J Hosp Infect 2023; 131:1-11. [PMID: 36195200 PMCID: PMC9527227 DOI: 10.1016/j.jhin.2022.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The arrival of the Delta variant of SARS-CoV-2 was associated with increased transmissibility and illness of greater severity. Reports of nosocomial outbreaks of Delta variant COVID-19 in acute care hospitals have been described but control measures varied widely. AIM Epidemiological investigation of a linked two-ward COVID-19 Delta variant outbreak was conducted to elucidate its source, risk factors, and control measures. METHODS Investigations included epidemiologic analysis, detailed case review serial SARS-CoV-2 reverse transcriptase-polymerase chain reaction (RT-PCR) testing of patients and healthcare workers (HCWs), viral culture, environmental swabbing, HCW-unaware personal protective equipment (PPE) audits, ventilation assessments, and the use of whole genome sequencing (WGS). FINDINGS This linked two-ward outbreak resulted in 17 patient and 12 HCW cases, despite an 83% vaccination rate. In this setting, suboptimal adherence and compliance to PPE protocols, suboptimal hand hygiene, multi-bedded rooms, and a contaminated vital signs cart with potential fomite or spread via the hands of HCWs were identified as significant risk factors for nosocomial COVID-19 infection. Sudden onset of symptoms, within 72 h, was observed in 79% of all Ward 2 patients, and 93% of all cases (patients and HCWs) on Ward 2 occurred within one incubation period, consistent with a point-source outbreak. RT-PCR assays showed low cycle threshold (CT) values, indicating high viral load from environmental swabs including the vital signs cart. WGS results with ≤3 SNP differences between specimens were observed. CONCLUSION Outbreaks on both wards settled rapidly, within 3 weeks, using a `back-to-basics' approach without extraordinary measures or changes to standard PPE requirements. Strict adherence to recommended PPE, hand hygiene, education, co-operation from HCWs, including testing and interviews, and additional measures such as limiting movement of patients and staff temporarily were all deemed to have contributed to prompt resolution of the outbreak.
Collapse
Affiliation(s)
- H M O'Grady
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - R Harrison
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Workplace Health and Safety, Alberta Health Services, Edmonton, Alberta, Canada
| | - K Snedeker
- Provincial Population and Public Health, Alberta Health Services, Calgary, Alberta, Canada
| | - L Trufen
- Workplace Health and Safety, Alberta Health Services, Edmonton, Alberta, Canada
| | - P Yue
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - L Ward
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - A Fifen
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada
| | - P Jamieson
- Department of Family Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - A Weiss
- Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - J Coulthard
- Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - T Lynch
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Genomics and Bioinformatics, Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - M A Croxen
- Alberta Public Heath Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada; Department of Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - V Li
- Alberta Public Heath Laboratory, Alberta Precision Laboratories, Edmonton, Alberta, Canada
| | - K Pabbaraju
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - A Wong
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - H Y Zhou
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - T C Dingle
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - K Hellmer
- Site Administration, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada
| | - B M Berenger
- Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - K Fonseca
- Alberta Public Health Laboratory, Alberta Precision Laboratories, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Y-C Lin
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D Evans
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada; Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - J M Conly
- Infection Prevention and Control, Alberta Health Services, Calgary, Alberta, Canada; Department of Pathology & Laboratory Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada; W21C Research and Innovation Centre, O'Brien Institute for Public Health, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, University of Calgary and Alberta Health Services, Calgary, Alberta, Canada.
| |
Collapse
|
119
|
Townley IK, Babin CH, Murphy TE, Summa CM, Rees BB. Genomic analysis of hypoxia inducible factor alpha in ray-finned fishes reveals missing Ohnologs and evidence of widespread positive selection. Sci Rep 2022; 12:22312. [PMID: 36566251 PMCID: PMC9789988 DOI: 10.1038/s41598-022-26876-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
As aquatic hypoxia worsens on a global scale, fishes will become increasingly challenged by low oxygen, and understanding the molecular basis of their response to hypoxia may help to better define the capacity of fishes to cope with this challenge. The hypoxia inducible factor (HIF) plays a critical role in the molecular response to hypoxia by activating the transcription of genes that serve to improve oxygen delivery to the tissues or enhance the capacity of tissues to function at low oxygen. The current study examines the molecular evolution of genes encoding the oxygen-dependent HIFα subunit (HIFA) in the ray-finned fishes (Actinopterygii). Genomic analyses demonstrate that several lineages retain four paralogs of HIFA predicted from two rounds of genome duplication at the base of vertebrate evolution, broaden the known distribution of teleost-specific HIFA paralogs, and provide evidence for salmonid-specific HIFA duplicates. Evolution of the HIFA gene family is characterized by widespread episodic positive selection at amino acid sites that potentially mediate protein stability, protein-protein interactions, and transcriptional regulation. HIFA transcript abundance depends upon paralog, tissue, and fish lineage. A phylogenetically-informed gene nomenclature is proposed along with avenues for future research on this critical family of transcription factors.
Collapse
Affiliation(s)
- Ian K. Townley
- Science Department, Saint George’s School, Spokane, WA 99208 USA
| | - Courtney H. Babin
- grid.266835.c0000 0001 2179 5031Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Taylor E. Murphy
- grid.266835.c0000 0001 2179 5031Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Christopher M. Summa
- grid.266835.c0000 0001 2179 5031Department of Computer Sciences, University of New Orleans, New Orleans, LA 70148 USA
| | - Bernard B. Rees
- grid.266835.c0000 0001 2179 5031Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148 USA
| |
Collapse
|
120
|
Taxonomy and Multigene Phylogeny of Diaporthales in Guizhou Province, China. J Fungi (Basel) 2022; 8:jof8121301. [PMID: 36547633 PMCID: PMC9785342 DOI: 10.3390/jof8121301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In a study of fungi isolated from plant material in Guizhou Province, China, we identified 23 strains of Diaporthales belonging to nine species. These are identified from multigene phylogenetic analyses of ITS, LSU, rpb2, tef1, and tub2 gene sequence data coupled with morphological studies. The fungi include a new genus (Pseudomastigosporella) in Foliocryphiaceae isolated from Acer palmatum and Hypericum patulum, a new species of Chrysofolia isolated from Coriaria nepalensis, and five new species of Diaporthe isolated from Juglans regia, Eucommia ulmoides, and Hypericum patulum. Gnomoniopsis rosae and Coniella quercicola are newly recorded species for China.
Collapse
|
121
|
Rizzo D, Bracalini M, Campigli S, Nencioni A, Porcelli F, Marchi G, Da Lio D, Bartolini L, Rossi E, Sacchetti P, Panzavolta T. Quantitative Real-Time PCR Based on SYBR Green Technology for the Identification of Philaenus italosignus Drosopoulos & Remane (Hemiptera Aphrophoridae). PLANTS (BASEL, SWITZERLAND) 2022; 11:3314. [PMID: 36501353 PMCID: PMC9741283 DOI: 10.3390/plants11233314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The use of molecular tools to identify insect pests is a critical issue, especially when rapid and reliable tests are required. We proposed a protocol based on qPCR with SYBR Green technology to identify Philaenus italosignus (Hemiptera, Aphrophoridae). The species is one of the three spittlebugs able to transmit Xylella fastidiosa subsp. pauca ST53 in Italy, together with Philaenus spumarius and Neophilaenus campestris. Although less common than the other two species, its identification is key to verifying which role it can play when locally abundant. The proposed assay shows analytical specificity being inclusive with different populations of the target species and exclusive with non-target taxa, either taxonomically related or not. Moreover, it shows analytical sensibility, repeatability, and reproducibility, resulting in an excellent candidate for an official diagnostic method. The molecular test can discriminate P. italosignus from all non-target species, including the congeneric P. spumarius.
Collapse
Affiliation(s)
- Domenico Rizzo
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Tuscany Regional Plant Health Service, Via Ciliegiole 99, 51100 Pistoia, Italy
| | - Matteo Bracalini
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Sara Campigli
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Anita Nencioni
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Francesco Porcelli
- Department of Soil Sciences, of Plants and Food (Di.S.S.P.A), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Guido Marchi
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Daniele Da Lio
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Linda Bartolini
- Laboratory of Phytopathological Diagnostics and Molecular Biology, Tuscany Regional Plant Health Service, Via Ciliegiole 99, 51100 Pistoia, Italy
| | - Elisabetta Rossi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Patrizia Sacchetti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Tiziana Panzavolta
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy
| |
Collapse
|
122
|
Sun JE, Zhang Q, Luo WM, Yang YQ, An HM, Wang Y. Four new Phragmidium (Phragmidiaceae, Pucciniomycetes) species from Rosaceae plants in Guizhou Province of China. MycoKeys 2022; 93:193-213. [PMID: 36761909 PMCID: PMC9836481 DOI: 10.3897/mycokeys.93.90861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
In this study, four new species of Phragmidium were proposed based on morphological and molecular characters. In morphology, Phragmidiumrosae-roxburghii sp. nov. was distinguished to related taxa by its unique square to diamond-shaped urediniospores; Ph.rubi-coreani sp. nov. differed from Ph.barclayi and Ph.cibanum because of teliospores with fewer cells and shorter pedicels; urediniospores of Ph.potentillae-freynianae sp. nov. were bigger than Ph.duchesneae-indicae; and Ph.rosae-laevigatae sp. nov. produced bigger urediniospores than Ph.jiangxiense. The phylogenetic analyses based on the combination of two loci (ITS and LSU) also supported our morphological conclusion. In the meantime, three previously known species were also described herein.
Collapse
Affiliation(s)
- Jing-E Sun
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, China
| | - Qian Zhang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, China
| | - Wen-Mei Luo
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, China
| | - Yuan-Qiao Yang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, China
| | - Hua-Ming An
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, China,Agricultural College, Guizhou University, Guiyang, 550025, China
| | - Yong Wang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
123
|
Neobacillus rhizosphaerae sp. nov., isolated from the rhizosphere, and reclassification of Bacillus dielmonensis as Neobacillus dielmonensis comb. nov. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
A Gram-stain-positive, facultative anaerobic endospore-forming bacterium, which originated from roots/rhizosphere of maize (Zea mays), was investigated for its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain JJ-3T was grouped together with
Neobacillus
species showing the highest similarities to
Neobacillus bataviensis
(98.8 %) and the three species Neobacillus dendrensis,
Neobacillus soli
and
Neobacillus cucumis
(all 98.6 %). The 16S rRNA gene sequence similarities to the sequences of the type strains of other
Neobacillus
species were lower than 98.5 %. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the JJ-3T genome assembly and those of the other
Neobacillus
type strains were <83, <85 and <27 %, respectively. Chemotaxonomic features supported the grouping of the strain to the genus Neobacillus, e.g. the major fatty acids were C15 : 0 anteiso and C15 : 0 iso, the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, and the major quinone was menaquinone MK-7. Physiological and biochemical test results were slightly different from those of the most closely related species. For this reason, JJ-3T represents a novel species of the genus
Neobacillus
, for which we propose the name Neobacillus rhizosphaerae sp. nov., with JJ-3T (= CIP 111895T=LMG 32087T=DSM 111784T=CCM 9084T) as the type strain. We also propose to reclassify
Bacillus dielmonensis
as Neobacillus dielmonensis comb. nov. based mainly on the results of phylogenomic and conserved signature indel analyses.
Collapse
|
124
|
Fu YT, Suleman, Yao C, Wang HM, Wang W, Liu GH. A Novel Mitochondrial Genome Fragmentation Pattern in the Buffalo Louse Haematopinus tuberculatus (Psocodea: Haematopinidae). Int J Mol Sci 2022; 23:13092. [PMID: 36361879 PMCID: PMC9658350 DOI: 10.3390/ijms232113092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Sucking lice are obligate ectoparasites of mammalian hosts, causing serious public health problems and economic losses worldwide. It is well known that sucking lice have fragmented mitochondrial (mt) genomes, but many remain undetermined. To better understand patterns of mt genome fragmentation in the sucking lice, we sequenced the mt genome of the buffalo louse Haematopinus tuberculatus using next-generation sequencing (NGS). The mt genome of H. tuberculatus has ten circular minichromosomes containing a total of 37 genes. Each minichromosome is 2.9-5.0 kb long and carries one to eight genes plus one large non-coding region. The number of mt minichromosomes of H. tuberculatus (ten) is different from those of congeneric species (horse louse H. asini, domestic pig louse H. suis and wild pig louse H. apri) and other sucking lice. Two events (gene translocation and merger of mt minichromosome) are observed in Haematopinus. Compared to other studies, our phylogeny generated from mt genome datasets showed a different topology, suggesting that inclusion of data other than mt genomes would be required to resolve phylogeny of sucking lice. To our knowledge, this is the first report of a ten mt minichromosomes genome in sucking lice, which opens a new outlook into unexplored mt genome fragmentation patterns in sucking lice.
Collapse
Affiliation(s)
- Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Suleman
- Department of Zoology, University of Swabi, Swabi 23561, Pakistan
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| | - Hui-Mei Wang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Wei Wang
- The Centre for Bioinnovation, School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
125
|
Genomes from Uncultivated Pelagiphages Reveal Multiple Phylogenetic Clades Exhibiting Extensive Auxiliary Metabolic Genes and Cross-Family Multigene Transfers. mSystems 2022; 7:e0152221. [PMID: 35972150 PMCID: PMC9599517 DOI: 10.1128/msystems.01522-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter, they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter. Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality.
Collapse
|
126
|
Chen JH, Hu DM, Song HY, Zhai ZJ, Lai L, Lin KH. Menisporopsisaquatica sp. nov. (Sordariomycetes, Chaetosphaeriales, Chaetosphaeriaceae), from freshwater habitat in China. Biodivers Data J 2022; 10:e91008. [PMID: 36761619 PMCID: PMC9836606 DOI: 10.3897/bdj.10.e91008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/02/2022] [Indexed: 11/12/2022] Open
Abstract
Background Freshwater fungi are an integral part of freshwater ecosystems. They promote the carbon cycle of the ecosystem by decomposing wood substrates. Menisporopsis is a fungal genus of Chaetosphaeriales in Sordariomycetes, which has been commonly collected from aquatic and marine environments. Most species of this genus are saprophytes. New information Here, a new freshwater hyphomycetous fungus, Menisporopsisaquatica, reported from submerged rotten wood samples collected in a stream in Zhejiang Province, south-eastern China. The new species is characterised by hyaline conidia appendiculate with 1-2 setulae at each end and synnematous conidiophores growing closely around a black central seta. Molecular phylogeny of Menisporopsis was studied using a combined two-loci dataset, including the internal transcribed spacer sequences (ITS) and the nuclear ribosomal large subunit gene sequences (nrLSU). The new species is illustrated and a synopsis of the Menisporopsis species is presented in this paper.
Collapse
Affiliation(s)
- Jia-Hao Chen
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, ChinaBioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural UniversityNanchangChina,Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, ChinaJiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural UniversityNanchangChina,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, ChinaCollege of Bioscience and Bioengineering, Jiangxi Agricultural UniversityNanchangChina
| | - Dian-Ming Hu
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, ChinaBioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural UniversityNanchangChina,Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, ChinaJiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural UniversityNanchangChina,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, ChinaCollege of Bioscience and Bioengineering, Jiangxi Agricultural UniversityNanchangChina,Jiangxi Forest Fungi Resources Comprehensive Development Engineering Research Center, Jiangxi Environmental Engineering Vocational College, Ganzhou, ChinaJiangxi Forest Fungi Resources Comprehensive Development Engineering Research Center, Jiangxi Environmental Engineering Vocational CollegeGanzhouChina
| | - Hai-Yan Song
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, ChinaKey Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. ChinaNanchangChina
| | - Zhi-Jun Zhai
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, ChinaBioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural UniversityNanchangChina,Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, ChinaJiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural UniversityNanchangChina,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, ChinaCollege of Bioscience and Bioengineering, Jiangxi Agricultural UniversityNanchangChina
| | - Lin Lai
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, ChinaBioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural UniversityNanchangChina,Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, ChinaJiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural UniversityNanchangChina,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, ChinaCollege of Bioscience and Bioengineering, Jiangxi Agricultural UniversityNanchangChina
| | - Kang-Hui Lin
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, ChinaBioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural UniversityNanchangChina,Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, ChinaJiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural UniversityNanchangChina,College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, ChinaCollege of Bioscience and Bioengineering, Jiangxi Agricultural UniversityNanchangChina
| |
Collapse
|
127
|
Alam MM, Mavian C, Okech BA, White SK, Stephenson CJ, Elbadry MA, Blohm GM, Loeb JC, Louis R, Saleem C, Madsen Beau de Rochars VE, Salemi M, Lednicky JA, Morris JG. Analysis of Zika Virus Sequence Data Associated with a School Cohort in Haiti. Am J Trop Med Hyg 2022; 107:873-880. [PMID: 36096408 PMCID: PMC9651511 DOI: 10.4269/ajtmh.22-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/11/2022] [Indexed: 11/07/2022] Open
Abstract
Zika virus (ZIKV) infections occurred in epidemic form in the Americas in 2014-2016, with some of the earliest isolates in the region coming from Haiti. We isolated ZIKV from 20 children with acute undifferentiated febrile illness who were part of a cohort of children seen at a school clinic in the Gressier region of Haiti. The virus was also isolated from three pools of Aedes aegypti mosquitoes collected at the same location. On phylogenetic analysis, three distinct ZIKV clades were identified. Strains from all three clades were present in Haiti in 2014, making them among the earliest isolates identified in the Western Hemisphere. Strains from all three clades were also isolated in 2016, indicative of their persistence across the time period of the epidemic. Mosquito isolates were collected in 2016 and included representatives from two of the three clades; in one instance, ZIKV was isolated from a pool of male mosquitoes, suggestive of vertical transmission of the virus. The identification of multiple ZIKV clades in Haiti at the beginning of the epidemic suggests that Haiti served as a nidus for transmission within the Caribbean.
Collapse
Affiliation(s)
- Md. Mahbubul Alam
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Bernard A. Okech
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Sarah K. White
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Maha A. Elbadry
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Gabriela M. Blohm
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Julia C. Loeb
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Rigan Louis
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- State University of Haiti Faculty of Medicine and Pharmacy, Port-au-Prince, Haiti
| | - Cyrus Saleem
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Valery E. Madsen Beau de Rochars
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Health Services Research, Management and Policy, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida
| | - J. Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
128
|
Kämpfer P, Glaeser SP, Lipski A, McInroy JA, Clermont D, Criscuolo A. Sutcliffiella rhizosphaerae sp. nov. isolated from roots. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An aerobic, Gram-staining-positive, endospore-forming bacterium, isolated from the rhizosphere of roots of maize (Zea mays), was taxonomically studied. On the basis of 16S rRNA gene sequence similarity comparisons, strain JJ-125T clustered together with species of the genus
Sutcliffiella
and showed the highest similarities with
Sutcliffiella zhanjiangensis
(98.7 %). The 16S rRNA gene sequence similarities to the sequences of the type strains of other species of the genus
Sutcliffiella
were <98.4 %. The genome sequence of JJ-125T was 4 516 360 bp long and had a DNA G+C content of 37.3 %. A DNA–DNA hybridization with the type strain of
S. zhanjiangensis
DSM 23010T resulted in values of 42.3 and 43.9 % (reciprocal). The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the JJ-125T genome assembly and those of the other type strains of species of the genus
Sutcliffiella
were <75%, <80 % and <21 %, respectively. Chemotaxonomic features supported the grouping of the strain with the genus Sutcliffiella, e.g. the major fatty acids included iso-C15 : 0, iso-C17 : 1 ω10c and iso-C17 : 0, the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine, the only quinone was menaquinone MK-7 and the characteristic diamino acid was meso-diaminopimelic acid. Physiological and biochemical test results were also different from those of the most closely related species. As a consequence, JJ-125T represents a novel species of the genus
Sutcliffiella
, for which we propose the name Sutcliffiella rhizosphaerae sp. nov., with JJ-125T (= CIP 111883T = LMG 32156T = CCM 9046T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Ludwigstraße, 35390 Gießen, Germany
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Ludwigstraße, 35390 Gießen, Germany
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und –hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, 36849, USA
| | - Dominique Clermont
- Institut Pasteur, Université de Paris, CIP - Collection of Institut Pasteur, F-75015 Paris, France
| | - Alexis Criscuolo
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université de Paris, F-75015 Paris, France
| |
Collapse
|
129
|
Xing ZP, Liang X, Wang X, Hu HY, Huang YX. Novel gene rearrangement pattern in mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994: new gene order in Encyrtidae (Hymenoptera, Chalcidoidea). Zookeys 2022; 1124:1-21. [PMID: 36762364 PMCID: PMC9836654 DOI: 10.3897/zookeys.1124.83811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/12/2022] Open
Abstract
Studies of mitochondrial genomes have a wide range of applications in phylogeny, population genetics, and evolutionary biology. In this study, we sequenced and analyzed the mitochondrial genome of Ooencyrtusplautus Huang & Noyes, 1994 (Hymenoptera, Encyrtidae). The nearly complete mitogenome of O.plautus was 15,730 bp in size, including 13 PCGs (protein-coding genes), 22 tRNAs, 2 rRNAs, and a nearly complete control region. The nucleotide composition was significantly biased toward adenine and thymine, with an A + T content of 84.6%. We used the reference sequence of Chouioiacunea and calculated the Ka/Ks ratio for each set of PCGs. The highest value of the Ka/Ks ratio within 13 PCGs was found in nad2 with 1.1, suggesting that they were subjected to positive selection. This phenomenon was first discovered in Encyrtidae. Compared with other encyrtid mitogenomes, a translocation of trnW was found in O.plautus, which was the first of its kind to be reported in Encyrtidae. Comparing with ancestral arrangement pattern, wasps reflect extensive gene rearrangements. Although these insects have a high frequency of gene rearrangement, species from the same family and genus tend to have similar gene sequences. As the number of sequenced mitochondrial genomes in Chalcidoidea increases, we summarize some of the rules of gene rearrangement in Chalcidoidea, that is four gene clusters with frequent gene rearrangements. Ten mitogenomes were included to reconstruct the phylogenetic trees of Encyrtidae based on both 13 PCGs (nucleotides of protein coding genes) and AA matrix (amino acids of protein coding genes) using the maximum likelihood and Bayesian inference methods. The phylogenetic tree reconstructed by Bayesian inference based on AA data set showed that Aenasiusarizonensis and Metaphycuseriococci formed a clade representing Tetracneminae. The remaining six species formed a monophyletic clade representing Encyrtinae. In Encyrtinae, Encyrtus forms a monophyletic clade as a sister group to the clade formed by O.plautus and Diaphorencyrtusaligarhensis. Encyrtussasakii and Encyrtusrhodooccisiae were most closely related species in this monophyletic clade. In addition, gene rearrangements can provide a valuable information for molecular phylogenetic reconstruction. These results enhance our understanding of phylogenetic relationships among Encyrtidae.
Collapse
Affiliation(s)
- Zhi-Ping Xing
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xin Liang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xu Wang
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Hao-Yuan Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yi-Xin Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu, Anhui 241000, China,School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241000, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
130
|
Biesiada M, Hu MY, Williams LD, Purzycka KJ, Petrov AS. rRNA expansion segment 7 in eukaryotes: from Signature Fold to tentacles. Nucleic Acids Res 2022; 50:10717-10732. [PMID: 36200812 PMCID: PMC9561286 DOI: 10.1093/nar/gkac844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
The ribosomal core is universally conserved across the tree of life. However, eukaryotic ribosomes contain diverse rRNA expansion segments (ESs) on their surfaces. Sites of ES insertions are predicted from sites of insertion of micro-ESs in archaea. Expansion segment 7 (ES7) is one of the most diverse regions of the ribosome, emanating from a short stem loop and ranging to over 750 nucleotides in mammals. We present secondary and full-atom 3D structures of ES7 from species spanning eukaryotic diversity. Our results are based on experimental 3D structures, the accretion model of ribosomal evolution, phylogenetic relationships, multiple sequence alignments, RNA folding algorithms and 3D modeling by RNAComposer. ES7 contains a distinct motif, the 'ES7 Signature Fold', which is generally invariant in 2D topology and 3D structure in all eukaryotic ribosomes. We establish a model in which ES7 developed over evolution through a series of elementary and recursive growth events. The data are sufficient to support an atomic-level accretion path for rRNA growth. The non-monophyletic distribution of some ES7 features across the phylogeny suggests acquisition via convergent processes. And finally, illustrating the power of our approach, we constructed the 2D and 3D structure of the entire LSU rRNA of Mus musculus.
Collapse
Affiliation(s)
- Marcin Biesiada
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Michael Y Hu
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Loren Dean Williams
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Katarzyna J Purzycka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland
| | - Anton S Petrov
- Center for the Origins of Life, Georgia Institute of Technology, Atlanta, GA 30332, USA.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
131
|
Huang YX, Xing ZP, Zhang H, Xu ZB, Tao LL, Hu HY, Kitching IJ, Wang X. Characterization of the Complete Mitochondrial Genome of Eight Diurnal Hawkmoths (Lepidoptera: Sphingidae): New Insights into the Origin and Evolution of Diurnalism in Sphingids. INSECTS 2022; 13:887. [PMID: 36292835 PMCID: PMC9604448 DOI: 10.3390/insects13100887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
In this study, the mitochondrial genomes of 22 species from three subfamilies in the Sphingidae were sequenced, assembled, and annotated. Eight diurnal hawkmoths were included, of which six were newly sequenced (Hemaris radians, Macroglossum bombylans, M. fritzei, M. pyrrhosticta, Neogurelca himachala, and Sataspes xylocoparis) and two were previously published (Cephonodes hylas and Macroglossum stellatarum). The mitochondrial genomes of these eight diurnal hawkmoths were comparatively analyzed in terms of sequence length, nucleotide composition, relative synonymous codon usage, non-synonymous/synonymous substitution ratio, gene spacing, and repeat sequences. The mitogenomes of the eight species, ranging in length from 15,201 to 15,461 bp, encode the complete set of 37 genes usually found in animal mitogenomes. The base composition of the mitochondrial genomes showed A+T bias. The most commonly used codons were UUA (Leu), AUU (Ile), UUU (Phe), AUA (Met), and AAU (Asn), whereas GCG (Ala) and CCG (Pro) were rarely used. A phylogenetic tree of Sphingidae was constructed based on both maximum likelihood and Bayesian methods. We verified the monophyly of the four current subfamilies of Sphingidae, all of which had high support. In addition, we performed divergence time estimation and ancestral character reconstruction analyses. Diurnal behavior in hawkmoths originated 29.19 million years ago (Mya). It may have been influenced by the combination of herbaceous flourishing, which occurred 26-28 Mya, the uplift of the Tibetan Plateau, and the large-scale evolution of bats in the Oligocene to Pre-Miocene. Moreover, diurnalism in hawkmoths had multiple independent origins in Sphingidae.
Collapse
Affiliation(s)
- Yi-Xin Huang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Zhi-Ping Xing
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | - Hao Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Zhen-Bang Xu
- Institute of Resource Plants, Yunnan University, Kunming 650500, China
| | - Li-Long Tao
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hao-Yuan Hu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241000, China
| | | | - Xu Wang
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
132
|
He YK, Yang Q, Sun YR, Zeng XY, Jayawardena RS, Hyde KD, Wang Y. Additions to Neopestalotiopsis (Amphisphaeriales, Sporocadaceae) fungi: two new species and one new host record from China. Biodivers Data J 2022; 10:e90709. [PMID: 36761578 PMCID: PMC9848506 DOI: 10.3897/bdj.10.e90709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/19/2022] [Indexed: 11/12/2022] Open
Abstract
Background In this study, three Neopestalotiopsis taxa were identified, associated with leaves of Zingiberofficinale, Elaeagnuspungens and Salaccazalacca. New information Based on morphology and multi-gene analyses of the internal transcribed spacer (ITS), beta-tubulin (TUB2) and translation elongation factor 1-alpha (TEF1), the five strains of Neopestalotiopsis represent two novel and one known species. They are introduced with descriptions, illustrations and notes herein.
Collapse
Affiliation(s)
- Yu-Ke He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand,Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China,School of Science, Mae Fah Luang University, Chiang Rai 57100, ThailandSchool of Science, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Qi Yang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Xiang-Yu Zeng
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandCenter of Excellence in Fungal Research, Mae Fah Luang UniversityChiang Rai 57100Thailand
| | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang, 550025, ChinaDepartment of Plant Pathology, Agriculture College, Guizhou UniversityGuiyang, 550025China
| |
Collapse
|
133
|
Zhao Y, Qu D, Ma Y. Characterization of the Chloroplast Genome of Argyranthemum frutescens and a Comparison with Other Species in Anthemideae. Genes (Basel) 2022; 13:genes13101720. [PMID: 36292605 PMCID: PMC9602088 DOI: 10.3390/genes13101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Argyranthemum frutescens, which belongs to the Anthemideae (Asteraceae), is widely cultivated as an ornamental plant. In this study, the complete chloroplast genome of A. frutescens was obtained based on the sequences generated by Illumina HiSeq. The chloroplast genome of A. frutescens was 149,626 base pairs (bp) in length, containing a pair of inverted repeats (IR, 24,510 bp) regions separated by a small single-copy (SSC, 18,352 bp) sequence and a large single-copy (LSC, 82,254 bp) sequence. The genome contained 132 genes, consisting of 85 coding DNA sequences, 37 tRNA genes, and 8 rRNA genes, with nineteen genes duplicated in the IR region. A comparison chloroplast genome analysis among ten species from the tribe of Anthemideae revealed that the chloroplast genome size varied, but the genome structure, gene content, and oligonucleotide repeats were highly conserved. Highly divergent regions, e.g., ycf1, trnK-psbK, petN-psbM intronic, were detected. Phylogenetic analysis supported Argyranthemum as a separate genus. The findings of this study will be helpful in the exploration of the phylogenetic relationships of the tribe of Anthemideae and contribute to the breeding improvement of A. frutescens.
Collapse
|
134
|
Genome Sequence of Genotype 1A Hepatovirus A Isolated from Plasma from a Haitian Child. Microbiol Resour Announc 2022; 11:e0044922. [PMID: 35950865 PMCID: PMC9476952 DOI: 10.1128/mra.00449-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genotype 1A hepatovirus A was identified by quantitative reverse transcription-PCR and isolated from plasma from a Haitian child with acute undifferentiated febrile illness and malaise. The strain was most closely related to Brazilian strains, consistent with recognized patterns of virus movement in the Caribbean region.
Collapse
|
135
|
He H, Crabbe MJC, Ren Z. Detoxification Gene Families at the Genome-Wide Level of Rhus Gall Aphid Schlechtendalia chinensis. Genes (Basel) 2022; 13:1627. [PMID: 36140795 PMCID: PMC9498883 DOI: 10.3390/genes13091627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
The Rhus gall aphid Schlechtendalia chinensis uses the species Rhus chinensis as its primary host plant, on which galls are produced. The galls have medicinal properties and can be used in various situations due to their high tannin content. Detoxification enzymes play significant roles in the insect lifecycle. In this study, we focused on five detoxification gene families, i.e., glutathione-S-transferase (GST), ABC transporter (ABC), Carboxylesterase (CCE), cyto-chrome P450 (CYP), and UDP-glycosyltransferase (UDP), and manually annotated 144 detoxification genes of S. chinensis using genome-wide techniques. The detoxification genes appeared mostly on chromosome 1, where a total of two pair genes were identified to show tandem duplications. There were 38 gene pairs between genomes of S. chinensis and Acyrthosiphon pisum in the detoxification gene families by collinear comparison. Ka/Ks ratios showed that detoxification genes of S. chinensis were mainly affected by purification selection during evolution. The gene expression numbers of P450s and ABCs by transcriptome sequencing data were greater, while gene expression of CCEs was the highest, suggesting they might be important in the detoxification process. Our study has firstly identified the genes of the different detoxification gene families in the S. chinensis genome, and then analyzed their general features and expression, demonstrating the importance of the detoxification genes in the aphid and providing new information for further research.
Collapse
Affiliation(s)
- Hongli He
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - M. James C. Crabbe
- School of Life Science, Shanxi University, Taiyuan 030006, China
- Wolfson College, Oxford University, Oxford OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
| | - Zhumei Ren
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
136
|
Hendricks CM, Cash MN, Tagliamonte MS, Riva A, Brander C, Llano A, Salemi M, Stevenson M, Mavian C. Discordance between HIV-1 Population in Plasma at Rebound after Structured Treatment Interruption and Archived Provirus Population in Peripheral Blood Mononuclear Cells. Microbiol Spectr 2022; 10:e0135322. [PMID: 35699458 PMCID: PMC9431602 DOI: 10.1128/spectrum.01353-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022] Open
Abstract
Antiretroviral therapy (ART) can sustain the suppression of plasma viremia to below detection levels. Infected individuals undergoing a treatment interruption exhibit rapid viral rebound in plasma viremia which is fueled by cellular reservoirs such as CD4+ T cells, myeloid cells, and potentially uncharacterized cellular sources. Interrogating the populations of viruses found during analytical treatment interruption (ATI) can give insights into the biologically competent reservoirs that persist under effective ART as well as the nature of the cellular reservoirs that enable viral persistence under ART. We interrogated plasma viremia from four rare cases of individuals undergoing sequential ATIs. We performed next-generation sequencing (NGS) on cell-associated viral DNA and cell-free virus to understand the interrelationship between sequential ATIs as well as the relationship between viral genomes in circulating peripheral blood mononuclear cells (PBMCs) and RNA from rebound plasma. We observed population differences between viral populations recrudescing at sequential ATIs as well as divergence between viral sequences in plasma and those in PBMCs. This indicated that viruses in PBMCs were not a major source of post-ATI viremia and highlights the role of anatomic reservoirs in post-ATI viremia and viral persistence. IMPORTANCE Even with effective ART, HIV-1 persists at undetectable levels and rebounds in individuals who stop treatment. Cellular and anatomical reservoirs ignite viral rebound upon treatment interruption, remaining one of the key obstacles for HIV-1 cure. To further examine HIV-1 persistence, a better understanding of the distinct populations that fuel viral rebound is necessary to identify and target reservoirs and the eradication of HIV-1. This study investigates the populations of viruses found from proviral genomes from PBMCs and plasma at rebound from a unique cohort of individuals who underwent multiple rounds of treatment interruption. Using NGS, we characterized the subtypes of viral sequences and found divergence in viral populations between plasma and PBMCs at each rebound, suggesting that distinct viral populations appear at each treatment interruption.
Collapse
Affiliation(s)
- Chynna M. Hendricks
- Department of Microbiology and Immunology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Melanie N. Cash
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Massimiliano S. Tagliamonte
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | | | - Anuska Llano
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Mario Stevenson
- Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Division of Infectious Diseases, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
137
|
Dong X, Zhang C, Peng Y, Zhang HX, Shi LD, Wei G, Hubert CRJ, Wang Y, Greening C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments. Nat Commun 2022; 13:4885. [PMID: 35985998 PMCID: PMC9391474 DOI: 10.1038/s41467-022-32503-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Microbially mediated nitrogen cycling in carbon-dominated cold seep environments remains poorly understood. So far anaerobic methanotrophic archaea (ANME-2) and their sulfate-reducing bacterial partners (SEEP-SRB1 clade) have been identified as diazotrophs in deep sea cold seep sediments. However, it is unclear whether other microbial groups can perform nitrogen fixation in such ecosystems. To fill this gap, we analyzed 61 metagenomes, 1428 metagenome-assembled genomes, and six metatranscriptomes derived from 11 globally distributed cold seeps. These sediments contain phylogenetically diverse nitrogenase genes corresponding to an expanded diversity of diazotrophic lineages. Diverse catabolic pathways were predicted to provide ATP for nitrogen fixation, suggesting diazotrophy in cold seeps is not necessarily associated with sulfate-dependent anaerobic oxidation of methane. Nitrogen fixation genes among various diazotrophic groups in cold seeps were inferred to be genetically mobile and subject to purifying selection. Our findings extend the capacity for diazotrophy to five candidate phyla (Altarchaeia, Omnitrophota, FCPU426, Caldatribacteriota and UBA6262), and suggest that cold seep diazotrophs might contribute substantially to the global nitrogen balance.
Collapse
Affiliation(s)
- Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Yongyi Peng
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Hong-Xi Zhang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Yong Wang
- Institute for Marine Engineering, Shenzhen International Graduate School, Tsinghua University, University Town, Shenzhen, China.
- Department of Life Science, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
138
|
A novel fungal negative-stranded RNA virus related to mymonaviruses in Auricularia heimuer. Arch Virol 2022; 167:2223-2227. [PMID: 35962823 DOI: 10.1007/s00705-022-05540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Here, we report the characterization of a novel (-)ssRNA mycovirus isolated from Auricularia heimuer CCMJ1222, using a combination of RNA-seq, reverse transcription polymerase chain reaction, 5' and 3' rapid amplification of cDNA ends, and Sanger sequencing. Based on database searches, sequence alignment, and phylogenetic analysis, we designated the virus as "Auricularia heimuer negative-stranded RNA virus 1" (AhNsRV1). This virus has a monopartite RNA genome related to mymonaviruses (order Mononegavirales). The AhNsRV1 genome consists of 11,441 nucleotides and contains six open reading frames (ORFs). The largest ORF encodes a putative RNA-dependent RNA polymerase; the other ORFs encode hypothetical proteins with no conserved domains or known function. AhNsRV1 is the first (-)ssRNA virus and the third virus known to infect A. heimuer.
Collapse
|
139
|
Moreno-Villena JJ, Zhou H, Gilman IS, Tausta SL, Cheung CYM, Edwards EJ. Spatial resolution of an integrated C 4+CAM photosynthetic metabolism. SCIENCE ADVANCES 2022; 8:eabn2349. [PMID: 35930634 PMCID: PMC9355352 DOI: 10.1126/sciadv.abn2349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
C4 and CAM photosynthesis have repeatedly evolved in plants over the past 30 million years. Because both repurpose the same set of enzymes but differ in their spatial and temporal deployment, they have long been considered as distinct and incompatible adaptations. Portulaca contains multiple C4 species that perform CAM when droughted. Spatially explicit analyses of gene expression reveal that C4 and CAM systems are completely integrated in Portulaca oleracea, with CAM and C4 carbon fixation occurring in the same cells and CAM-generated metabolites likely incorporated directly into the C4 cycle. Flux balance analysis corroborates the gene expression findings and predicts an integrated C4+CAM system under drought. This first spatially explicit description of a C4+CAM photosynthetic metabolism presents a potential new blueprint for crop improvement.
Collapse
Affiliation(s)
- Jose J. Moreno-Villena
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - Haoran Zhou
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
- School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ian S. Gilman
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| | - S. Lori Tausta
- Department of Molecular Biophysics and Biochemistry, Yale University, 600 West Campus, West Haven, CT 06516, USA
| | | | - Erika J. Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT 06520, USA
| |
Collapse
|
140
|
Liao HZ, Sun MM, Zhou H, Liu X. Characterization of the complete chloroplast genome of Handroanthus chrysanthus (Bignoniaceae). Mitochondrial DNA B Resour 2022; 7:1479-1480. [PMID: 35989880 PMCID: PMC9387335 DOI: 10.1080/23802359.2022.2102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Handroanthus chrysanthus is a deciduous broadleaved species with ecological and medicinal value. Here, the complete chloroplast genome of H. chrysanthus is characterized to investigate its phylogenetic position in Bignoniaceae. The chloroplast genome is 159,437 bp in size with GC content of 38.1%, including a large single copy region of 85,659 bp, a small single copy region of 12,824 bp and a pair of inverted repeats of 30,477 bp. It encodes 132 genes, including 87 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Based on current available chloroplast genome sequences, the phylogenetic analysis indicated that H. chrysanthus is closely related to Tabebuia nodosa.
Collapse
Affiliation(s)
- Hong-Ze Liao
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi Minzu University, Nanning, China
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, China
| | - Man-Man Sun
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi Minzu University, Nanning, China
| | - Hao Zhou
- Key Laboratory of Protection and Utilization of Marine Resources, Guangxi Minzu University, Nanning, China
| | - Xiu Liu
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization, Guangxi Forestry Research Institute, Nanning, China
| |
Collapse
|
141
|
T T Tsang C, Schubart CD, Hou Chu K, K L Ng P, Ming Tsang L. Molecular phylogeny of Thoracotremata crabs (Decapoda, Brachyura): toward adopting monophyletic superfamilies, invasion history into terrestrial habitats and multiple origins of symbiosis. Mol Phylogenet Evol 2022; 177:107596. [PMID: 35914646 DOI: 10.1016/j.ympev.2022.107596] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
The Thoracotremata is a large and successful group of "true" crabs (Decapoda, Brachyura, Eubrachyura) with a great diversity of lifestyles and well-known intertidal representatives. The group represents the largest brachyuran radiation into terrestrial and semi-terrestrial environments and comprises multiple lineages of obligate symbiotic species. In consequence, they exhibit very diverse physiological and morphological adaptations. Our understanding of their evolution is, however, largely obscured by their confused classification. Here, we resolve interfamilial relationships of Thoracotremata, using 10 molecular markers and exemplars from all nominal families in order to reconstruct the pathways of lifestyle transition and to propose a new taxonomy corresponding to phylogenetic relationships. The results confirm the polyphyly of three superfamilies as currently defined (Grapsoidea, Ocypodoidea and Pinnotheroidea). At the family level, Dotillidae, Macrophthalmidae, and Varunidae are not monophyletic. Ancestral state reconstruction analyses and divergent time estimations indicate that the common ancestor of thoracotremes already thrived in intertidal environments in the Late Cretaceous and terrestrialization became a major driver of thoracotreme diversification. Multiple semi-terrestrial and terrestrial lineages originated and radiated in the Early Eocene, coinciding with the global warming event at the Paleocene-Eocene Thermal Maximum (PETM). Secondary invasions into subtidal regions and colonizations of freshwater habitats occurred independently through multiple semi-terrestrial and terrestrial lineages. Obligate symbiosis between thoracotremes and other marine macro-invertebrates evolved at least twice. On the basis of the current molecular phylogenetic hypothesis, it will be necessary in the future to revise and recognize seven monophyletic superfamilies and revisit the morphological character states which define them.
Collapse
Affiliation(s)
- Chandler T T Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Christoph D Schubart
- Zoology & Evolutionary Biology, University of Regensburg, 93040 Regensburg, Germany
| | - Ka Hou Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Singapore
| | - Ling Ming Tsang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
142
|
Wang SY, Wang Y, Li Y. Cladosporium spp. (Cladosporiaceae) isolated from Eucommiaulmoides in China. MycoKeys 2022; 91:151-168. [PMID: 36760889 PMCID: PMC9849062 DOI: 10.3897/mycokeys.91.87841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Eucommiaulmoides is a rare tree species in China with high medicinal and gum value. Nine strains of hyphomycetous fungi were isolated from the leaf litter of E.ulmoides in Guizhou Province. Preliminary identifications based on ITS indicated that they belong to the genus Cladosporium. Morphology and phylogenetic analyses based on the internal transcribed spacer regions (ITS) of the nrDNA, the partial translation elongation factor 1-α (tef1) gene and partial of actin (act) gene confirmed that the strains represent four species, including two novel taxa, viz., Cladosporiumeucommiae and C.guizhouense and two new substrate records for known species.
Collapse
Affiliation(s)
- Si-Yao Wang
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang 550025, Guizhou Province, China,College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yong Wang
- College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Yan Li
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang 550025, Guizhou Province, China,College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
143
|
Kämpfer P, Lipski A, McInroy JA, Clermont D, Criscuolo A, Glaeser SP. Bacillus rhizoplanae sp. nov. from maize roots. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic and endospore-forming bacterial strain, isolated from the root surface of maize (Zea mays) was taxonomically studied. It could be clearly shown that, based on 16S rRNA gene sequence similarity comparisons, strain JJ-63T is a member of the genus
Bacillus
, most closely related to the type strain of
Bacillus pseudomycoides
(98.61%), followed by
Bacillus cereus
(98.47 %). Detailed phylogenetic analysis based on the 16S rRNA gene and the 87 proteins conserved within the phylum
Firmicutes
placed the strain into the Cereus clade. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values against the type strain of
B. pseudomycoides
were 80.97, 81.45 and 26.30 %, respectively. The quinone system of strain JJ-63T consisted exclusively of menaquinone MK-7. The polar lipid profile consisted of the major components diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and an unidentified glycolipid. Major fatty acids were iso- and anteiso-branched with the major compounds iso-C15 : 0 and iso-C17 : 0. Also, the characteristic compounds C13 : 0 iso and C16 : 1
cis10 were found. Physiological and biochemical characteristics allowed a further phenotypic differentiation of strain JJ-63T from the most closely related species. For this reason, JJ-63T represents a novel species of the genus
Bacillus
, for which the name Bacillus rhizoplanae sp. nov. is proposed, with JJ-63T (=LMG 32091T=CCM 9090T=DSM 111827T= CIP 111899T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - André Lipski
- Institut für Ernährungs- und Lebensmittelwissenschaften, Lebensmittelmikrobiologie und -hygiene, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, USA
| | - Dominique Clermont
- Institut Pasteur, Université Paris Cité, CIP – Collection of Institut Pasteur, Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| |
Collapse
|
144
|
Chan-Martin ADJ, Castellanos-Martínez S, Aguirre-Macedo ML, Martínez-Aquino A. Immature trematodes of Lecithochirium sp. (Digenea: Hemiuridae) in the California two-spot octopus (Octopus bimaculatus) from Mexico. Parasitol Res 2022; 121:2651-2660. [PMID: 35809128 DOI: 10.1007/s00436-022-07590-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Immature trematodes of Lecithochirium sp. are recorded for the first time as parasites of the California two-spot octopus Octopus bimaculatus from Bahía de los Ángeles, Baja California, Mexico. Thirty-nine O. bimaculatus were examined for trematodes and a total of 100 immature specimens of Lecithochirium sp. were recorded from the crop of seven infected octopuses. Based on these records, O. bimaculatus may act as a second intermediate or paratenic host for these parasites. Partial sequences of the 28S (region D1-D3) ribosomal gene corroborate the identifications based on morphological characters. DNA sequences of the 28S gene from GenBank were analyzed to include the immature samples of Lecithochirium sp. within a hemiurid phylogenetic framework. All immature specimens of Lecithochirium sp. were recovered as monophyletic and Pulmovermis cyanovitellosus was identified as the sister species of Lecithochirium sp. However, due to the lack of molecular data for species of the genus Lecithochirium, these phylogenetic inferences must be taken with caution. Therefore, the morphological and molecular data obtained here provide a foundation for future work to develop a systematic comparison among- and within-species of the genus Lecithochirium. Additionally, the present records of Lecithochirium in O. bimaculus add to the knowledge of the parasite fauna of cephalopods.
Collapse
Affiliation(s)
- Alberto de J Chan-Martin
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México
| | - Sheila Castellanos-Martínez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular, 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México
| | - Ma Leopoldina Aguirre-Macedo
- Laboratorio de Patología Acuática, Departamento de Recursos del Mar, Centro de Investigación Y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Cordemex, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán, 97310, México
| | - Andrés Martínez-Aquino
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular 3917, Fraccionamiento Playitas, Ensenada, Baja California, 22860, México.
| |
Collapse
|
145
|
Méheust R, Castelle CJ, Jaffe AL, Banfield JF. Conserved and lineage-specific hypothetical proteins may have played a central role in the rise and diversification of major archaeal groups. BMC Biol 2022; 20:154. [PMID: 35790962 PMCID: PMC9258230 DOI: 10.1186/s12915-022-01348-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Archaea play fundamental roles in the environment, for example by methane production and consumption, ammonia oxidation, protein degradation, carbon compound turnover, and sulfur compound transformations. Recent genomic analyses have profoundly reshaped our understanding of the distribution and functionalities of Archaea and their roles in eukaryotic evolution. RESULTS Here, 1179 representative genomes were selected from 3197 archaeal genomes. The representative genomes clustered based on the content of 10,866 newly defined archaeal protein families (that will serve as a community resource) recapitulates archaeal phylogeny. We identified the co-occurring proteins that distinguish the major lineages. Those with metabolic roles were consistent with experimental data. However, two families specific to Asgard were determined to be new eukaryotic signature proteins. Overall, the blocks of lineage-specific families are dominated by proteins that lack functional predictions. CONCLUSIONS Given that these hypothetical proteins are near ubiquitous within major archaeal groups, we propose that they were important in the origin of most of the major archaeal lineages. Interestingly, although there were clearly phylum-specific co-occurring proteins, no such blocks of protein families were shared across superphyla, suggesting a burst-like origin of new lineages early in archaeal evolution.
Collapse
Affiliation(s)
- Raphaël Méheust
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, Evry, France.
| | - Cindy J Castelle
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Alexander L Jaffe
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. .,Innovative Genomics Institute, University of California, Berkeley, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA. .,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.
| |
Collapse
|
146
|
Qin B, Sun K, Huang X. The complete chloroplast genome of Lagerstroemia loudonii Teijsm. & Binn. (Lythraceae), an ornamental tree with medicinal value. Mitochondrial DNA B Resour 2022; 7:1240-1242. [PMID: 35814173 PMCID: PMC9262357 DOI: 10.1080/23802359.2022.2093671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lagerstroemia loudonii is an ornamental tree with medicinal value. Here, we announce the first complete chloroplast genome sequence of L. loudonii. The L. loudonii chloroplast genome harbors a typical quadripartite structure with a total length of 152,372 bp, including a large single-copy (LSC) region of 84,086 bp, a small single-copy (SSC) region of 16,798 bp, and two separated inverted repeat (IR) regions of 25,744 bp each. The chloroplast genome encodes 130 genes, including 85 protein-coding genes, 37 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. The GC content of the whole chloroplast genome is 37.6%. Phylogenetic analysis based on complete chloroplast genomes of L. loudonii and 17 other plant species revealed that Lagerstroemia is a separate genus, and L. loudonii is closely related to L. calyculata.
Collapse
Affiliation(s)
- Bo Qin
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China
| | - Kaidao Sun
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China
| | - Xin Huang
- Guangxi Key Laboratory of Special Non-wood Forest Cultivation & Utilization, Guangxi Forestry Research Institute, Nanning, China
| |
Collapse
|
147
|
Volland JM, Gonzalez-Rizzo S, Gros O, Tyml T, Ivanova N, Schulz F, Goudeau D, Elisabeth NH, Nath N, Udwary D, Malmstrom RR, Guidi-Rontani C, Bolte-Kluge S, Davies KM, Jean MR, Mansot JL, Mouncey NJ, Angert ER, Woyke T, Date SV. A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science 2022; 376:1453-1458. [PMID: 35737788 DOI: 10.1126/science.abb3634] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells.
Collapse
Affiliation(s)
- Jean-Marie Volland
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Silvina Gonzalez-Rizzo
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France
| | - Olivier Gros
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France.,Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane, Université des Antilles, UFR des Sciences Exactes et Naturelles, Pointe-à-Pitre, Guadeloupe, France
| | - Tomáš Tyml
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA
| | - Natalia Ivanova
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Frederik Schulz
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danielle Goudeau
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nathalie H Elisabeth
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nandita Nath
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Daniel Udwary
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rex R Malmstrom
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chantal Guidi-Rontani
- Institut de Systématique, Evolution, Biodiversité CNRS UMR 7205, Museum National d'Histoire Naturelle, Paris, France
| | - Susanne Bolte-Kluge
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS FRE3631, Institut de Biologie Paris Seine, Paris, France
| | - Karen M Davies
- Department of Energy Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - Maïtena R Jean
- Institut de Systématique, Evolution, Biodiversité, Université des Antilles, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Campus de Fouillole, Pointe-à-Pitre, France
| | - Jean-Louis Mansot
- Centre Commun de Caractérisation des Matériaux des Antilles et de la Guyane, Université des Antilles, UFR des Sciences Exactes et Naturelles, Pointe-à-Pitre, Guadeloupe, France
| | - Nigel J Mouncey
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Esther R Angert
- Cornell University, College of Agriculture and Life Sciences, Department of Microbiology, Ithaca, NY, USA
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Laboratory for Research in Complex Systems, Menlo Park, CA, USA.,University of California Merced, School of Natural Sciences, Merced, CA, USA
| | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, CA, USA.,University of California San Francisco, San Francisco, CA, USA.,San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
148
|
Sequence analyses of mitochondrial gene may support the existence of cryptic species within Ascaridia galli. J Helminthol 2022; 96:e39. [PMID: 35641879 DOI: 10.1017/s0022149x2200030x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ascaridia galli (Nematoda: Ascaridiidae) is the most common intestinal roundworm of chickens and other birds with a worldwide distribution. Although A. galli has been extensively studied, knowledge of the genetic variation of this parasite in detail is still insufficient. The present study examined genetic variation in the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene among A. galli isolates (n = 26) from domestic chickens in Hunan Province, China. A portion of the cox1 (pcox1) gene was amplified by polymerase chain reaction separately from adult A. galli individuals and the amplicons were subjected to sequencing from both directions. The length of the sequences of pcox1 is 441 bp. Although the intra-specific sequence variation within A. galli is 0-7.7%, the inter-specific sequence differences among other members of the infraorder Ascaridomorpha were 11.4-18.9%. Phylogenetic analyses based on the maximum likelihood method using the sequences of pcox1 confirmed that all of the Ascaridia isolates were A. galli, and also resolved three distinct clades. Taken together, the findings suggest that A. galli may represent a complex of cryptic species. Our results provide an additional genetic marker for the management of A. galli in chickens and other birds.
Collapse
|
149
|
Genes and evolutionary fates of the amanitin biosynthesis pathway in poisonous mushrooms. Proc Natl Acad Sci U S A 2022; 119:e2201113119. [PMID: 35533275 PMCID: PMC9171917 DOI: 10.1073/pnas.2201113119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Why do unrelated poisonous mushrooms (Amanita, Galerina, and Lepiota) make the same deadly toxin, α-amanitin? One of the most effective and fast strategies for organisms to acquire new abilities is through horizontal gene transfer (HGT). With the help of genome sequencing and the finding of two genes for the amanitin biosynthetic pathway, we demonstrate that the pathway distribution resulted from HGT probably through an unknown ancestral fungal donor. In Amanita mushrooms, the pathway evolved, through a series of gene manipulations, to produce very high levels of toxins, generating “the deadliest mushroom known to mankind.” The deadly toxin α-amanitin is a bicyclic octapeptide biosynthesized on ribosomes. A phylogenetically disjunct group of mushrooms in Agaricales (Amanita, Lepiota, and Galerina) synthesizes α-amanitin. This distribution of the toxin biosynthetic pathway is possibly related to the horizontal transfer of metabolic gene clusters among taxonomically unrelated mushrooms with overlapping habitats. Here, our work confirms that two biosynthetic genes, P450-29 and FMO1, are oxygenases important for amanitin biosynthesis. Phylogenetic and genetic analyses of these genes strongly support their origin through horizontal transfer, as is the case for the previously characterized biosynthetic genes MSDIN and POPB. Our analysis of multiple genomes showed that the evolution of the α-amanitin biosynthetic pathways in the poisonous agarics in the Amanita, Lepiota, and Galerina clades entailed distinct evolutionary pathways including gene family expansion, biosynthetic genes, and genomic rearrangements. Unrelated poisonous fungi produce the same deadly amanitin toxins using variations of the same pathway. Furthermore, the evolution of the amanitin biosynthetic pathway(s) in Amanita species generates a much wider range of toxic cyclic peptides. The results reported here expand our understanding of the genetics, diversity, and evolution of the toxin biosynthetic pathway in fungi.
Collapse
|
150
|
Kämpfer P, Glaeser SP, Busse HJ, McInroy JA, Clermont D, Criscuolo A. Pseudoneobacillus rhizosphaerae gen. nov., sp. nov., isolated from maize root rhizosphere. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005367] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultative anaerobic, Gram-stain-positive, endospore-forming bacterium, isolated from the rhizosphere of maize roots (Zea mays), was taxonomically studied. Based on 16S rRNA gene sequence similarity comparisons, strain JJ-79T clustered only loosely with
Neobacillus
species and showed the highest similarity to
Neobacillus soli
(97.9%). The 16S rRNA gene sequence similarities to the sequences of the type strains of other
Neobacillus
species were 97.5 % and below. Chemotaxonomic features supported the grouping of the strain to the
Neobacillus
group, e.g. the major fatty acids were C15 : 0 anteiso, C15 : 0 iso and C16 : 0, the polar lipid profile contained the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified glycolipid, the major quinone was menaquinone MK-7, and major compound in the polyamine pattern was spermidine. However, the JJ-79T genome assembly did not share most of the 11 conserved signature indels that are indicative of the genus
Neobacillus
. The average nucleotide identity, average amino acid identity and digital DNA–DNA hybridization values between the JJ-79T genome assembly and those of the closest relative
Bacillaceae
type strains were <71, <71 and <25 %, respectively. Physiological and biochemical test results were also different from those of the most closely related
Bacillaceae
species. As a consequence, JJ-79T represents a novel genus for which we propose the name Pseudoneobacillus rhizosphaerae gen. nov., sp. nov., with JJ-79T (=CIP 111885T=CCM 9045T) as the type strain.
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - John A. McInroy
- Department of Entomology and Plant Pathology, Auburn University, Alabama, 36849, USA
| | - Dominique Clermont
- Institut Pasteur, Université de Paris, CIP–Collection de l´Institut Pasteur, F-75015 Paris, France
| | - Alexis Criscuolo
- Institut Pasteur, Université de Paris, Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, F-75015 Paris, France
| |
Collapse
|