101
|
Hu RS, Wu J, Zhang L, Zhou X, Zhang Y. CD8TCEI-EukPath: A Novel Predictor to Rapidly Identify CD8+ T-Cell Epitopes of Eukaryotic Pathogens Using a Hybrid Feature Selection Approach. Front Genet 2022; 13:935989. [PMID: 35937988 PMCID: PMC9354802 DOI: 10.3389/fgene.2022.935989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
Computational prediction to screen potential vaccine candidates has been proven to be a reliable way to provide guarantees for vaccine discovery in infectious diseases. As an important class of organisms causing infectious diseases, pathogenic eukaryotes (such as parasitic protozoans) have evolved the ability to colonize a wide range of hosts, including humans and animals; meanwhile, protective vaccines are urgently needed. Inspired by the immunological idea that pathogen-derived epitopes are able to mediate the CD8+ T-cell-related host adaptive immune response and with the available positive and negative CD8+ T-cell epitopes (TCEs), we proposed a novel predictor called CD8TCEI-EukPath to detect CD8+ TCEs of eukaryotic pathogens. Our method integrated multiple amino acid sequence-based hybrid features, employed a well-established feature selection technique, and eventually built an efficient machine learning classifier to differentiate CD8+ TCEs from non-CD8+ TCEs. Based on the feature selection results, 520 optimal hybrid features were used for modeling by utilizing the LightGBM algorithm. CD8TCEI-EukPath achieved impressive performance, with an accuracy of 79.255% in ten-fold cross-validation and an accuracy of 78.169% in the independent test. Collectively, CD8TCEI-EukPath will contribute to rapidly screening epitope-based vaccine candidates, particularly from large peptide-coding datasets. To conduct the prediction of CD8+ TCEs conveniently, an online web server is freely accessible (http://lab.malab.cn/∼hrs/CD8TCEI-EukPath/).
Collapse
Affiliation(s)
- Rui-Si Hu
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, China
| | - Jin Wu
- School of Management, Shenzhen Polytechnic, Shenzhen, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, China
- *Correspondence: Xun Zhou, ; Ying Zhang,
| | - Ying Zhang
- Department of Anesthesiology, Hospital (T.C.M) Affiliated of Southwest Medical University, Luzhou, China
- *Correspondence: Xun Zhou, ; Ying Zhang,
| |
Collapse
|
102
|
Otović E, Njirjak M, Kalafatovic D, Mauša G. Sequential Properties Representation Scheme for Recurrent Neural Network-Based Prediction of Therapeutic Peptides. J Chem Inf Model 2022; 62:2961-2972. [PMID: 35704881 DOI: 10.1021/acs.jcim.2c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery of therapeutic peptides is often accelerated by means of virtual screening supported by machine learning-based predictive models. The predictive performance of such models is sensitive to the choice of data and its representation scheme. While the peptide physicochemical and compositional representations fail to distinguish sequence permutations, the amino acid arrangement within the sequence lacks the important information contained in physicochemical, conformational, topological, and geometrical properties. In this paper, we propose a solution to the identified information gap by implementing a hybrid scheme that complements the best traits from both approaches with the aim of predicting antimicrobial and antiviral activities based on experimental data from DRAMP 2.0, AVPdb, and Uniprot data repositories. Using the Friedman test of statistical significance, we compared our hybrid, sequential properties approach to peptide properties, one-hot vector encoding, and word embedding schemes in the 10-fold cross-validation setting, with respect to the F1 score, Matthews correlation coefficient, geometric mean, recall, and precision evaluation metrics. Moreover, the sequence modeling neural network was employed to gain insight into the synergic effect of both properties- and amino acid order-based predictions. The results suggest that sequential properties significantly (P < 0.01) surpasses the aforementioned state-of-the-art representation schemes. This makes it a strong candidate for increasing the predictive power of screening methods based on machine learning, applicable to any category of peptides.
Collapse
Affiliation(s)
- Erik Otović
- University of Rijeka, Faculty of Engineering, 51000 Rijeka, Croatia
| | - Marko Njirjak
- University of Rijeka, Faculty of Engineering, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- University of Rijeka, Department of Biotechnology, 51000 Rijeka, Croatia.,University of Rijeka, Center for Artificial Intelligence and Cybersecurity, 51000 Rijeka, Croatia
| | - Goran Mauša
- University of Rijeka, Faculty of Engineering, 51000 Rijeka, Croatia.,University of Rijeka, Center for Artificial Intelligence and Cybersecurity, 51000 Rijeka, Croatia
| |
Collapse
|
103
|
Li Y, Li X, Liu Y, Yao Y, Huang G. MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides. Pharmaceuticals (Basel) 2022; 15:707. [PMID: 35745625 PMCID: PMC9231127 DOI: 10.3390/ph15060707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/30/2022] Open
Abstract
Bioactive peptides are typically small functional peptides with 2-20 amino acid residues and play versatile roles in metabolic and biological processes. Bioactive peptides are multi-functional, so it is vastly challenging to accurately detect all their functions simultaneously. We proposed a convolution neural network (CNN) and bi-directional long short-term memory (Bi-LSTM)-based deep learning method (called MPMABP) for recognizing multi-activities of bioactive peptides. The MPMABP stacked five CNNs at different scales, and used the residual network to preserve the information from loss. The empirical results showed that the MPMABP is superior to the state-of-the-art methods. Analysis on the distribution of amino acids indicated that the lysine preferred to appear in the anti-cancer peptide, the leucine in the anti-diabetic peptide, and the proline in the anti-hypertensive peptide. The method and analysis are beneficial to recognize multi-activities of bioactive peptides.
Collapse
Affiliation(s)
- You Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Xueyong Li
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| | - Yuewu Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China;
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
| | - Guohua Huang
- School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China; (Y.L.); (X.L.)
| |
Collapse
|
104
|
Wang Y, Zhu X, Yang L, Hu X, He K, Yu C, Jiao S, Chen J, Guo R, Yang S. IDDLncLoc: Subcellular Localization of LncRNAs Based on a Framework for Imbalanced Data Distributions. Interdiscip Sci 2022; 14:409-420. [PMID: 35192174 DOI: 10.1007/s12539-021-00497-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs play a crucial role in many life processes of cell, such as genetic markers, RNA splicing, signaling, and protein regulation. Considering that identifying lncRNA's localization in the cell through experimental methods is complicated, hard to reproduce, and expensive, we propose a novel method named IDDLncLoc in this paper, which adopts an ensemble model to solve the problem of the subcellular localization. In the proposal model, dinucleotide-based auto-cross covariance features, k-mer nucleotide composition features, and composition, transition, and distribution features are introduced to encode a raw RNA sequence to vector. To screen out reliable features, feature selection through binomial distribution, and recursive feature elimination is employed. Furthermore, strategies of oversampling in mini-batch, random sampling, and stacking ensemble strategies are customized to overcome the problem of data imbalance on the benchmark dataset. Finally, compared with the latest methods, IDDLncLoc achieves an accuracy of 94.96% on the benchmark dataset, which is 2.59% higher than the best method, and the results further demonstrate IDDLncLoc is excellent on the subcellular localization of lncRNA. Besides, a user-friendly web server is available at http://lncloc.club .
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Xiaopeng Zhu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Lili Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
- Department of Obstetrics, The First Hospital of Jilin University, Changchun, China
| | - Xuemei Hu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Kai He
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Cuinan Yu
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Shaoqing Jiao
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jiali Chen
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Rui Guo
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China
| | - Sen Yang
- Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, China.
| |
Collapse
|
105
|
Yan J, Jiang T, Liu J, Lu Y, Guan S, Li H, Wu H, Ding Y. DNA-binding protein prediction based on deep transfer learning. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:7719-7736. [PMID: 35801442 DOI: 10.3934/mbe.2022362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of DNA binding proteins (DBPs) is of great importance in the biomedical field and plays a key role in this field. At present, many researchers are working on the prediction and detection of DBPs. Traditional DBP prediction mainly uses machine learning methods. Although these methods can obtain relatively high pre-diction accuracy, they consume large quantities of human effort and material resources. Transfer learning has certain advantages in dealing with such prediction problems. Therefore, in the present study, two features were extracted from a protein sequence, a transfer learning method was used, and two classical transfer learning algorithms were compared to transfer samples and construct data sets. In the final step, DBPs are detected by building a deep learning neural network model in a way that uses attention mechanisms.
Collapse
Affiliation(s)
- Jun Yan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tengsheng Jiang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Junkai Liu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yaoyao Lu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Shixuan Guan
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Haiou Li
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
106
|
Charoenkwan P, Ahmed S, Nantasenamat C, Quinn JMW, Moni MA, Lio' P, Shoombuatong W. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Sci Rep 2022; 12:7697. [PMID: 35546347 PMCID: PMC9095707 DOI: 10.1038/s41598-022-11897-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Amyloid proteins have the ability to form insoluble fibril aggregates that have important pathogenic effects in many tissues. Such amyloidoses are prominently associated with common diseases such as type 2 diabetes, Alzheimer's disease, and Parkinson's disease. There are many types of amyloid proteins, and some proteins that form amyloid aggregates when in a misfolded state. It is difficult to identify such amyloid proteins and their pathogenic properties, but a new and effective approach is by developing effective bioinformatics tools. While several machine learning (ML)-based models for in silico identification of amyloid proteins have been proposed, their predictive performance is limited. In this study, we present AMYPred-FRL, a novel meta-predictor that uses a feature representation learning approach to achieve more accurate amyloid protein identification. AMYPred-FRL combined six well-known ML algorithms (extremely randomized tree, extreme gradient boosting, k-nearest neighbor, logistic regression, random forest, and support vector machine) with ten different sequence-based feature descriptors to generate 60 probabilistic features (PFs), as opposed to state-of-the-art methods developed by a single feature-based approach. A logistic regression recursive feature elimination (LR-RFE) method was used to find the optimal m number of 60 PFs in order to improve the predictive performance. Finally, using the meta-predictor approach, the 20 selected PFs were fed into a logistic regression method to create the final hybrid model (AMYPred-FRL). Both cross-validation and independent tests showed that AMYPred-FRL achieved superior predictive performance than its constituent baseline models. In an extensive independent test, AMYPred-FRL outperformed the existing methods by 5.5% and 16.1%, respectively, with accuracy and MCC of 0.873 and 0.710. To expedite high-throughput prediction, a user-friendly web server of AMYPred-FRL is freely available at http://pmlabstack.pythonanywhere.com/AMYPred-FRL. It is anticipated that AMYPred-FRL will be a useful tool in helping researchers to identify new amyloid proteins.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Saeed Ahmed
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Mohammad Ali Moni
- Artificial Intelligence and Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Pietro Lio'
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
107
|
Development of Anticancer Peptides Using Artificial Intelligence and Combinational Therapy for Cancer Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14050997. [PMID: 35631583 PMCID: PMC9147327 DOI: 10.3390/pharmaceutics14050997] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is a group of diseases causing abnormal cell growth, altering the genome, and invading or spreading to other parts of the body. Among therapeutic peptide drugs, anticancer peptides (ACPs) have been considered to target and kill cancer cells because cancer cells have unique characteristics such as a high negative charge and abundance of microvilli in the cell membrane when compared to a normal cell. ACPs have several advantages, such as high specificity, cost-effectiveness, low immunogenicity, minimal toxicity, and high tolerance under normal physiological conditions. However, the development and identification of ACPs are time-consuming and expensive in traditional wet-lab-based approaches. Thus, the application of artificial intelligence on the approaches can save time and reduce the cost to identify candidate ACPs. Recently, machine learning (ML), deep learning (DL), and hybrid learning (ML combined DL) have emerged into the development of ACPs without experimental analysis, owing to advances in computer power and big data from the power system. Additionally, we suggest that combination therapy with classical approaches and ACPs might be one of the impactful approaches to increase the efficiency of cancer therapy.
Collapse
|
108
|
Wu X, Zeng W, Lin F, Xu P, Li X. Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model. Front Genet 2022; 13:887894. [PMID: 35571059 PMCID: PMC9092594 DOI: 10.3389/fgene.2022.887894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Modern lifestyles mean that people are more likely to suffer from some form of cancer. As anticancer peptides can effectively kill cancer cells and play an important role in fighting cancer, they have been a subject of increasing research interest. Methods: This study presents a useful tool to identify the anticancer peptides based on a multi-kernel CNN and attention model, called ACP-MCAM. This model can automatically learn adaptive embedding and the context sequence features of ACP. In addition, to obtain better interpretability and integrity, we visualized the model. Results: Benchmarking comparison shows that ACP-MCAM significantly outperforms several state-of-the-art models. Different encoding schemes have different impacts on the performance of the model. We also studied tmethod parameter optimization. Conclusion: The ACP-MCAM can integrate multi-kernel CNN and self-attention mechanism, which outperforms the previous model in identifying anticancer peptides. It is expected that the work will provide new research ideas for anticancer peptide prediction in the future. In addition, this work will promote the development of the interdisciplinary field of artificial intelligence and biomedicine.
Collapse
Affiliation(s)
- Xiujin Wu
- School of Informatics, Xiamen University, Xiamen, China
| | - Wenhua Zeng
- School of Informatics, Xiamen University, Xiamen, China
| | - Fan Lin
- School of Informatics, Xiamen University, Xiamen, China
- Boston Children’s Hospital, Boston, MA, United States
| | - Peng Xu
- Chongqing Michong Technology Co., Ltd., Chongqing, China
| | | |
Collapse
|
109
|
Ruenchit P, Reamtong O, Khowawisetsut L, Adisakwattana P, Chulanetra M, Kulkeaw K, Chaicumpa W. Peptide of Trichinella spiralis Infective Larval Extract That Harnesses Growth of Human Hepatoma Cells. Front Cell Infect Microbiol 2022; 12:882608. [PMID: 35558100 PMCID: PMC9086976 DOI: 10.3389/fcimb.2022.882608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Trichinella spiralis, a tissue-dwelling helminth, causes human trichinellosis through ingestion of undercooked meat containing the parasite’s infective larvae. However, benefits from T. spiralis infection have been documented: reduction of allergic diseases, inhibition of collagen-induced arthritis, delay of type 1 diabetes progression, and suppression of cancer cell proliferation. Since conventional cancer treatments have limited and unreliable efficacies with adverse side effects, novel adjunctive therapeutic agents and strategies are needed to enhance the overall treatment outcomes. This study aimed to validate the antitumor activity of T. spiralis infective larval extract (LE) and extricate the parasite-derived antitumor peptide. Extracts of T. spiralis infective larvae harvested from striated muscles of infected mice were prepared and tested for antitumor activity against three types of carcinoma cells: hepatocellular carcinoma HepG2, ovarian cancer SK-OV-3, and lung adenocarcinoma A549. The results showed that LE exerted the greatest antitumor effect on HepG2 cells. Proteomic analysis of the LE revealed 270 proteins. They were classified as cellular components, proteins involved in metabolic processes, and proteins with diverse biological functions. STRING analysis showed that most LE proteins were interconnected and played pivotal roles in various metabolic processes. In silico analysis of anticancer peptides identified three candidates. Antitumor peptide 2 matched the hypothetical protein T01_4238 of T. spiralis and showed a dose-dependent anti-HepG2 effect, not by causing apoptosis or necrosis but by inducing ROS accumulation, leading to inhibition of cell proliferation. The data indicate the potential application of LE-derived antitumor peptide as a complementary agent for human hepatoma treatment.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Ladawan Khowawisetsut
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Monrat Chulanetra
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kasem Kulkeaw
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence in Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Wanpen Chaicumpa,
| |
Collapse
|
110
|
Breast and Lung Anticancer Peptides Classification Using N-Grams and Ensemble Learning Techniques. BIG DATA AND COGNITIVE COMPUTING 2022. [DOI: 10.3390/bdcc6020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anticancer peptides (ACPs) are short protein sequences; they perform functions like some hormones and enzymes inside the body. The role of any protein or peptide is related to its structure and the sequence of amino acids that make up it. There are 20 types of amino acids in humans, and each of them has a particular characteristic according to its chemical structure. Current machine and deep learning models have been used to classify ACPs problems. However, these models have neglected Amino Acid Repeats (AARs) that play an essential role in the function and structure of peptides. Therefore, in this paper, ACPs offer a promising route for novel anticancer peptides by extracting AARs based on N-Grams and k-mers using two peptides’ datasets. These datasets pointed to breast and lung cancer cells assembled and curated manually from the Cancer Peptide and Protein Database (CancerPPD). Every dataset consists of a sequence of peptides and their synthesis and anticancer activity on breast and lung cancer cell lines. Five different feature selection methods were used in this paper to improve classification performance and reduce the experimental costs. After that, ACPs were classified using four classifiers, namely AdaBoost, Random Forest Tree (RFT), Multi-class Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP). These classifiers were evaluated by applying five well-known evaluation metrics. Experimental results showed that the breast and lung ACPs classification process provided an accurate performance that reached 89.25% and 92.56%, respectively. In terms of AUC, it reached 95.35% and 96.92% for both breast and lung ACPs, respectively. The proposed classifiers performed competently somewhat equally in AUC, accuracy, precision, F-measures, and recall, except for Multi-class SVM-based feature selection, which showed superior performance. As a result, this paper significantly improved the predictive performance that can effectively distinguish ACPs as virtual inactive, experimental inactive, moderately active, and very active.
Collapse
|
111
|
Linc00261 Inhibited High-Grade Serous Ovarian Cancer Progression through miR-552-ATG10-EMT Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9450353. [PMID: 35465017 PMCID: PMC9019445 DOI: 10.1155/2022/9450353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/05/2022]
Abstract
In recent years, long non-coding RNAs (lncRNAs) play an important role in a multitude of pathways across species; however, their functions are still unknown. In this study, we demonstrate that Linc00261 is downregulation in high-grade serous ovarian cancer (HGSOC) and can inhibit cell proliferation and migration of high-grade serous ovarian cancer cells. We further validate the targeting interactions among Linc00261, miR-552, and ATG10. Interestingly, they all play important roles for regulating epithelial-mesenchymal transition (EMT) progression. Collectively, these findings suggest that Linc00261, a mediator of EMT progression, can target oncogenic miR-552, elevating ATG10 expression, to prevent high-grade serous ovarian cancer tumorigenesis and may serve as a potential novel therapeutic target.
Collapse
|
112
|
Zhao S, Pan Q, Zou Q, Ju Y, Shi L, Su X. Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7518779. [PMID: 35422876 PMCID: PMC9005296 DOI: 10.1155/2022/7518779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/12/2022] [Indexed: 11/17/2022]
Abstract
Enhancers are a class of noncoding DNA elements located near structural genes. In recent years, their identification and classification have been the focus of research in the field of bioinformatics. However, due to their high free scattering and position variability, although the performance of the prediction model has been continuously improved, there is still a lot of room for progress. In this paper, density-based spatial clustering of applications with noise (DBSCAN) was used to screen the physicochemical properties of dinucleotides to extract dinucleotide-based auto-cross covariance (DACC) features; then, the features are reduced by feature selection Python toolkit MRMD 2.0. The reduced features are input into the random forest to identify enhancers. The enhancer classification model was built by word2vec and attention-based Bi-LSTM. Finally, the accuracies of our enhancer identification and classification models were 77.25% and 73.50%, respectively, and the Matthews' correlation coefficients (MCCs) were 0.5470 and 0.4881, respectively, which were better than the performance of most predictors.
Collapse
Affiliation(s)
- Shulin Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Qingfeng Pan
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Ying Ju
- School of Informatics, Xiamen University, Xiamen, China
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, Guangdong, China
| |
Collapse
|
113
|
Delaunay M, Ha-Duong T. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2405:205-230. [PMID: 35298816 DOI: 10.1007/978-1-0716-1855-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play crucial and subtle roles in many biological processes and modifications of their fine mechanisms generally result in severe diseases. Peptide derivatives are very promising therapeutic agents for modulating protein-protein associations with sizes and specificities between those of small compounds and antibodies. For the same reasons, rational design of peptide-based inhibitors naturally borrows and combines computational methods from both protein-ligand and protein-protein research fields. In this chapter, we aim to provide an overview of computational tools and approaches used for identifying and optimizing peptides that target protein-protein interfaces with high affinity and specificity. We hope that this review will help to implement appropriate in silico strategies for peptide-based drug design that builds on available information for the systems of interest.
Collapse
Affiliation(s)
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.
| |
Collapse
|
114
|
Jiao S, Chen Z, Zhang L, Zhou X, Shi L. ATGPred-FL: sequence-based prediction of autophagy proteins with feature representation learning. Amino Acids 2022; 54:799-809. [PMID: 35286461 DOI: 10.1007/s00726-022-03145-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/28/2022] [Indexed: 11/26/2022]
Abstract
Autophagy plays an important role in biological evolution and is regulated by many autophagy proteins. Accurate identification of autophagy proteins is crucially important to reveal their biological functions. Due to the expense and labor cost of experimental methods, it is urgent to develop automated, accurate and reliable sequence-based computational tools to enable the identification of novel autophagy proteins among numerous proteins and peptides. For this purpose, a new predictor named ATGPred-FL was proposed for the efficient identification of autophagy proteins. We investigated various sequence-based feature descriptors and adopted the feature learning method to generate corresponding, more informative probability features. Then, a two-step feature selection strategy based on accuracy was utilized to remove irrelevant and redundant features, leading to the most discriminative 14-dimensional feature set. The final predictor was built using a support vector machine classifier, which performed favorably on both the training and testing sets with accuracy values of 94.40% and 90.50%, respectively. ATGPred-FL is the first ATG machine learning predictor based on protein primary sequences. We envision that ATGPred-FL will be an effective and useful tool for autophagy protein identification, and it is available for free at http://lab.malab.cn/~acy/ATGPred-FL , the source code and datasets are accessible at https://github.com/jiaoshihu/ATGPred .
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, 7098 Liuxian Street, Shenzhen, 518055, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, No.4 Block 2 North Jianshe Road, Chengdu, 61005, China
| | - Lichao Zhang
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Xun Zhou
- Beidahuang Industry Group General Hospital, Harbin, 150001, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, No 415, Fengyang Road, Huangpu District, Shanghai, 210000, China.
| |
Collapse
|
115
|
Ahmad S, Charoenkwan P, Quinn JMW, Moni MA, Hasan MM, Lio' P, Shoombuatong W. SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins. Sci Rep 2022; 12:4106. [PMID: 35260777 PMCID: PMC8904530 DOI: 10.1038/s41598-022-08173-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 12/30/2022] Open
Abstract
Fast and accurate identification of phage virion proteins (PVPs) would greatly aid facilitation of antibacterial drug discovery and development. Although, several research efforts based on machine learning (ML) methods have been made for in silico identification of PVPs, these methods have certain limitations. Therefore, in this study, we propose a new computational approach, termed SCORPION, (StaCking-based Predictior fOR Phage VIrion PrOteiNs), to accurately identify PVPs using only protein primary sequences. Specifically, we explored comprehensive 13 different feature descriptors from different aspects (i.e., compositional information, composition-transition-distribution information, position-specific information and physicochemical properties) with 10 popular ML algorithms to construct a pool of optimal baseline models. These optimal baseline models were then used to generate probabilistic features (PFs) and considered as a new feature vector. Finally, we utilized a two-step feature selection strategy to determine the optimal PF feature vector and used this feature vector to develop a stacked model (SCORPION). Both tenfold cross-validation and independent test results indicate that SCORPION achieves superior predictive performance than its constitute baseline models and existing methods. We anticipate SCORPION will serve as a useful tool for the cost-effective and large-scale screening of new PVPs. The source codes and datasets for this work are available for downloading in the GitHub repository (https://github.com/saeed344/SCORPION).
Collapse
Affiliation(s)
- Saeed Ahmad
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Julian M W Quinn
- Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Mohammad Ali Moni
- Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Md Mehedi Hasan
- Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane Center for Biomedical Informatics and Genomics, Tulane University, New Orleans, LA, 70112, USA
| | - Pietro Lio'
- Department of Computer Science and Technology, University of Cambridge, Cambridge, CB3 0FD, UK
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
116
|
ACPNet: A Deep Learning Network to Identify Anticancer Peptides by Hybrid Sequence Information. Molecules 2022; 27:molecules27051544. [PMID: 35268644 PMCID: PMC8912097 DOI: 10.3390/molecules27051544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is one of the most dangerous threats to human health. One of the issues is drug resistance action, which leads to side effects after drug treatment. Numerous therapies have endeavored to relieve the drug resistance action. Recently, anticancer peptides could be a novel and promising anticancer candidate, which can inhibit tumor cell proliferation, migration, and suppress the formation of tumor blood vessels, with fewer side effects. However, it is costly, laborious and time consuming to identify anticancer peptides by biological experiments with a high throughput. Therefore, accurately identifying anti-cancer peptides becomes a key and indispensable step for anticancer peptides therapy. Although some existing computer methods have been developed to predict anticancer peptides, the accuracy still needs to be improved. Thus, in this study, we propose a deep learning-based model, called ACPNet, to distinguish anticancer peptides from non-anticancer peptides (non-ACPs). ACPNet employs three different types of peptide sequence information, peptide physicochemical properties and auto-encoding features linking the training process. ACPNet is a hybrid deep learning network, which fuses fully connected networks and recurrent neural networks. The comparison with other existing methods on ACPs82 datasets shows that ACPNet not only achieves the improvement of 1.2% Accuracy, 2.0% F1-score, and 7.2% Recall, but also gets balanced performance on the Matthews correlation coefficient. Meanwhile, ACPNet is verified on an independent dataset, with 20 proven anticancer peptides, and only one anticancer peptide is predicted as non-ACPs. The comparison and independent validation experiment indicate that ACPNet can accurately distinguish anticancer peptides from non-ACPs.
Collapse
|
117
|
Chen Z, Jiao S, Zhao D, Zou Q, Xu L, Zhang L, Su X. The Characterization of Structure and Prediction for Aquaporin in Tumour Progression by Machine Learning. Front Cell Dev Biol 2022; 10:845622. [PMID: 35178393 PMCID: PMC8844512 DOI: 10.3389/fcell.2022.845622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
Recurrence and new cases of cancer constitute a challenging human health problem. Aquaporins (AQPs) can be expressed in many types of tumours, including the brain, breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is positively correlated with AQP expression. Therefore, the identification of aquaporins is an area to explore. Computational tools play an important role in aquaporin identification. In this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF to identify AQPs. In this study, the feature extraction method was 188D (global protein sequence descriptor, GPSD). Six common classifiers, including random forest (RF), NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR) and decision tree (DT), were used for AQP classification. The classification results show that the random forest (RF) algorithm is the most suitable machine learning algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to analyse these characteristics. Feature rank based on the ANOVA method and IFS strategy was applied to search for the optimal features. The classification results suggest that the 26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most powerful and informative features that distinguish AQPs from non-AQPs. Previous studies reported that plasma membrane proteins have hydrophobic characteristics. Aquaporin subcellular localization prediction showed that all aquaporins were plasma membrane proteins with highly conserved transmembrane structures. In addition, the 3D structure of aquaporins was consistent with the localization results. Therefore, these studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins are highly conserved transmembrane structures, the phylogenetic tree shows the diversity of aquaporins during evolution. The PCA showed that positive and negative samples were well separated by 54D features, indicating that the 54D feature can effectively classify aquaporins. The online prediction server is accessible at http://lab.malab.cn/∼acy/iAQP.
Collapse
Affiliation(s)
- Zheng Chen
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Da Zhao
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.,Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Lijun Zhang
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China
| | - Xi Su
- Foshan Maternal and Child Health Hospital, Foshan, China
| |
Collapse
|
118
|
Kabir M, Nantasenamat C, Kanthawong S, Charoenkwan P, Shoombuatong W. Large-scale comparative review and assessment of computational methods for phage virion proteins identification. EXCLI JOURNAL 2022; 21:11-29. [PMID: 35145365 PMCID: PMC8822302 DOI: 10.17179/excli2021-4411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022]
Abstract
Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no deleterious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predictors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed (i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, we explored which factors are important for building more accurate and stable predictors and this included training/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design and development of new and more effective computational approaches for the detection and characterization of PVPs.
Collapse
Affiliation(s)
- Muhammad Kabir
- School of Systems and Technology, Department of Computer Science, University of Management and Technology, Lahore, Pakistan, 54770
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| | - Sakawrat Kanthawong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand, 40002
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand, 50200
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand, 10700
| |
Collapse
|
119
|
Ma D, Chen Z, He Z, Huang X. A SNARE Protein Identification Method Based on iLearnPlus to Efficiently Solve the Data Imbalance Problem. Front Genet 2022; 12:818841. [PMID: 35154261 PMCID: PMC8832978 DOI: 10.3389/fgene.2021.818841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Machine learning has been widely used to solve complex problems in engineering applications and scientific fields, and many machine learning-based methods have achieved good results in different fields. SNAREs are key elements of membrane fusion and required for the fusion process of stable intermediates. They are also associated with the formation of some psychiatric disorders. This study processes the original sequence data with the synthetic minority oversampling technique (SMOTE) to solve the problem of data imbalance and produces the most suitable machine learning model with the iLearnPlus platform for the identification of SNARE proteins. Ultimately, a sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were obtained in the cross-validation dataset, and a sensitivity of 66.67%, specificity of 93.63%, accuracy of 91.33%, and MCC of 0.528 were obtained in the independent dataset (the adaptive skip dipeptide composition descriptor was used for feature extraction, and LightGBM with proper parameters was used as the classifier). These results demonstrate that this combination can perform well in the classification of SNARE proteins and is superior to other methods.
Collapse
|
120
|
Gong Y, Dong B, Zhang Z, Zhai Y, Gao B, Zhang T, Zhang J. VTP-Identifier: Vesicular Transport Proteins Identification Based on PSSM Profiles and XGBoost. Front Genet 2022; 12:808856. [PMID: 35047020 PMCID: PMC8762342 DOI: 10.3389/fgene.2021.808856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Vesicular transport proteins are related to many human diseases, and they threaten human health when they undergo pathological changes. Protein function prediction has been one of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to identify vesicular transport proteins. Our strategy is to extract transition probability composition, autocovariance transformation and other information from the position-specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD) algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-validation and independent test sets to evaluate our model. On the test set, VTP-Identifier presented a higher performance compared with GRU. The accuracy, Matthew's correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531 and 0.873, respectively.
Collapse
Affiliation(s)
- Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Benzhi Dong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Bo Gao
- Department of Radiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
121
|
Zhai Y, Zhang J, Zhang T, Gong Y, Zhang Z, Zhang D, Zhao Y. AOPM: Application of Antioxidant Protein Classification Model in Predicting the Composition of Antioxidant Drugs. Front Pharmacol 2022; 12:818115. [PMID: 35115948 PMCID: PMC8803896 DOI: 10.3389/fphar.2021.818115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Antioxidant proteins can not only balance the oxidative stress in the body, but are also an important component of antioxidant drugs. Accurate identification of antioxidant proteins is essential to help humans fight diseases and develop new drugs. In this paper, we developed a friendly method AOPM to identify antioxidant proteins. 188D and the Composition of k-spaced Amino Acid Pairs were adopted as the feature extraction method. In addition, the Max-Relevance-Max-Distance algorithm (MRMD) and random forest were the feature selection and classifier, respectively. We used 5-folds cross-validation and independent test dataset to evaluate our model. On the test dataset, AOPM presented a higher performance compared with the state-of-the-art methods. The sensitivity, specificity, accuracy, Matthew’s Correlation Coefficient and an Area Under the Curve reached 87.3, 94.2, 92.0%, 0.815 and 0.972, respectively. In addition, AOPM still has excellent performance in predicting the catalytic enzymes of antioxidant drugs. This work proved the feasibility of virtual drug screening based on sequence information and provided new ideas and solutions for drug development.
Collapse
Affiliation(s)
- Yixiao Zhai
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Jingyu Zhang
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianjiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yue Gong
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zixiao Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Dandan Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Dandan Zhang, ; Yuming Zhao,
| | - Yuming Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
- *Correspondence: Dandan Zhang, ; Yuming Zhao,
| |
Collapse
|
122
|
Lin C, Wang L, Shi L. AAPred-CNN: accurate predictor based on deep convolution neural network for identification of anti-angiogenic peptides. Methods 2022; 204:442-448. [PMID: 35031486 DOI: 10.1016/j.ymeth.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Recently, deep learning techniques have been developed for various bioactive peptide prediction tasks. However, there are only conventional machine learning-based methods for the prediction of anti-angiogenic peptides (AAP), which play an important role in cancer treatment. The main reason why no deep learning method has been involved in this field is that there are too few experimentally validated AAPs to support the training of deep models but researchers have believed that deep learning seriously depends on the amounts of labeled data. In this paper, as a tentative work, we try to predict AAP by constructing different classical deep learning models and propose the first deep convolution neural network-based predictor (AAPred-CNN) for AAP. Contrary to intuition, the experimental results show that deep learning models can achieve superior or comparable performance to the state-of-the-art model, although they are given a few labeled sequences to train. We also decipher the influence of hyper-parameters and training samples on the performance of deep learning models to help understand how the model work. Furthermore, we also visualize the learned embeddings by dimension reduction to increase the model interpretability and reveal the residue propensity of AAP through the statistics of convolutional features for different residues. In summary, this work demonstrates the powerful representation ability of AAPred-CNNfor AAP prediction, further improving the prediction accuracy of AAP.
Collapse
Affiliation(s)
- Changhang Lin
- School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuzhou, China
| | - Lei Wang
- Beidahuang Industry Group General Hospital, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
123
|
Anticancer properties of colicin E7 against colon cancer. GASTROENTEROLOGY REVIEW 2022; 16:364-368. [PMID: 34976246 PMCID: PMC8690953 DOI: 10.5114/pg.2021.109622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Introduction Cancer is a major public health problem in the modern world. Every year, new cases of cancer are diagnosed around the world. Cancer cells are altered cells that have escaped the mechanisms that regulate natural growth. Bacteriocins are cationic peptides synthesized by ribosomes that are secreted by almost all groups of bacteria. Some bacteriocins have shown selective toxicity to cancer cells compared to normal cells. This makes them other candidates for research and clinical trials. Aim Due to the high prevalence of colon cancer and its therapeutic problems, this study was performed on colicin E7 to evaluate its anti-colon cancer properties. Material and methods For this reason, colE7 was cloned in pet32c vector and purified protein was affected on HT-29 cells to evaluate the expression of p53 and bcl2. Results Our in silco analysis demonstrated that colicin E7 has 87.23% confidence as anticancer peptide by ACPred-FL program. First, a PCR reaction was performed using specific primers of the colicin E7 gene, which formed the 1728 bp fragment that belongs to this gene. Conclusions Colicin E7 decreased the expression of bcl2 and increased P53. The results of this study showed the general effect of colicin E7 on cancer cells in vitro, which can be evaluated in the future with further experiments.
Collapse
|
124
|
Zhang L, Lv Y, Xu L, Zhou M. A Review of DNA Data Storage Technologies Based on Biomolecules. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210813101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
In the information age, data storage technology has become the key to improving computer
systems. Since traditional storage technologies cannot meet the demand for massive storage, new DNA
storage technology based on biomolecules attracts much attention. DNA storage refers to the technology
that uses artificially synthesized deoxynucleotide chains to store and read all information, such as documents,
pictures, and audio. First, data are encoded into binary number strings. Then, the four types of
base, A(Adenine), T(Thymine), C(Cytosine), and G(Guanine), are used to encode the corresponding binary
numbers so that the data can be used to construct the target DNA molecules in the form of deoxynucleotide
chains. Subsequently, the corresponding DNA molecules are artificially synthesized, enabling
the data to be stored within them. Compared with traditional storage systems, DNA storage has
major advantages, such as high storage density, long duration, as well as low hardware cost, high access
parallelism, and strong scalability, which satisfies the demands for big data storage. This manuscript
first reviews the origin and development of DNA storage technology, then the storage principles, contents,
and methods are introduced. Finally, the development of DNA storage technology is analyzed.
From the initial research to the cutting edge of this field and beyond, the advantages, disadvantages, and
practical applications of DNA storage technology require continuous exploration.
Collapse
Affiliation(s)
- Lichao Zhang
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, College of Physics and Optoelectronic
Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Lv
- Yangtze Delta Region Institute
(Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, Zhejiang, China
| | - Lei Xu
- School of
Electronic and Communication Engineering, ShenZhen Polytechnic, Shenzhen 518000, China
| | - Murong Zhou
- College of Information
and Computer Engineering, Northeast Forestry University, Harbin, 150000, China
| |
Collapse
|
125
|
Niu M, Zou Q, Lin C. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach. PLoS Comput Biol 2022; 18:e1009798. [PMID: 35051187 PMCID: PMC8806072 DOI: 10.1371/journal.pcbi.1009798] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/01/2022] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs with a special circular structure produced formed by the reverse splicing mechanism. Increasing evidence shows that circular RNAs can directly bind to RNA-binding proteins (RBP) and play an important role in a variety of biological activities. The interactions between circRNAs and RBPs are key to comprehending the mechanism of posttranscriptional regulation. Accurately identifying binding sites is very useful for analyzing interactions. In past research, some predictors on the basis of machine learning (ML) have been presented, but prediction accuracy still needs to be ameliorated. Therefore, we present a novel calculation model, CRBPDL, which uses an Adaboost integrated deep hierarchical network to identify the binding sites of circular RNA-RBP. CRBPDL combines five different feature encoding schemes to encode the original RNA sequence, uses deep multiscale residual networks (MSRN) and bidirectional gating recurrent units (BiGRUs) to effectively learn high-level feature representations, it is sufficient to extract local and global context information at the same time. Additionally, a self-attention mechanism is employed to train the robustness of the CRBPDL. Ultimately, the Adaboost algorithm is applied to integrate deep learning (DL) model to improve prediction performance and reliability of the model. To verify the usefulness of CRBPDL, we compared the efficiency with state-of-the-art methods on 37 circular RNA data sets and 31 linear RNA data sets. Moreover, results display that CRBPDL is capable of performing universal, reliable, and robust. The code and data sets are obtainable at https://github.com/nmt315320/CRBPDL.git. More and more evidences show that circular RNA can directly bind to proteins and participate in countless different biological processes. The calculation method can quickly and accurately predict the binding site of circular RNA and RBP. In order to identify the interaction of circRNA with 37 different types of circRNA binding proteins, we developed an integrated deep learning network based on hierarchical network, called CRBPDL. It can effectively learn high-level feature representations. The performance of the model was verified through comparative experiments of different feature extraction algorithms, different deep learning models and classifier models. Moreover, the CRBPDL model was applied to 31 linear RNAs, and the effectiveness of our method was proved by comparison with the results of current excellent algorithms. It is expected that the CRBPDL model can effectively predict the binding site of circular RNA-RBP and provide reliable candidates for further biological experiments.
Collapse
Affiliation(s)
- Mengting Niu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Chen Lin
- School of Informatics, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
126
|
Arif M, Ahmed S, Ge F, Kabir M, Khan YD, Yu DJ, Thafar M. StackACPred: Prediction of anticancer peptides by integrating optimized multiple feature descriptors with stacked ensemble approach. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2022; 220:104458. [DOI: 10.1016/j.chemolab.2021.104458] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
|
127
|
Zhou H, Wang H, Ding Y, Tang J. Multivariate Information Fusion for Identifying Antifungal Peptides with
Hilbert-Schmidt Independence Criterion. Curr Bioinform 2022. [DOI: 10.2174/1574893616666210727161003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antifungal Peptides (AFP) have been found to be effective against many fungal
infections.
Objective:
However, it is difficult to identify AFP. Therefore, it is great practical significance to identify
AFP via machine learning methods (with sequence information).
Method:
In this study, a Multi-Kernel Support Vector Machine (MKSVM) with Hilbert-Schmidt Independence
Criterion (HSIC) is proposed. Proteins are encoded with five types of features (188-bit,
AAC, ASDC, CKSAAP, DPC), and then construct kernels using Gaussian kernel function. HSIC are
used to combine kernels and multi-kernel SVM model is built.
Results:
Our model performed well on three AFPs datasets and the performance is better than or comparable
to other state-of-art predictive models.
Conclusion:
Our method will be a useful tool for identifying antifungal peptides.
Collapse
Affiliation(s)
- Haohao Zhou
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin,
300354, China
| | - Hao Wang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin,
300354, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou,
215009, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of
China, Quzhou, 324000, China
| | - Jijun Tang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055,
China
| |
Collapse
|
128
|
Abstract
Background:
Therapeutic peptide prediction is critical for drug development and therapy. Researchers have been studying this essential task, developing several computational methods to identify different therapeutic peptide types.
Objective:
Most predictors are the specific methods for certain peptides. Currently, developing methods to predict the presence of multiple peptides remains a challenging problem. Moreover, it is still challenging to combine different features to make the therapeutic prediction.
Method:
In this paper, we proposed a new ensemble method TP-MV for general therapeutic peptide recognition. TP-MV is developed using the stacking framework in conjunction with the KNN, SVM, ET, RF, and XGB. Then TP-MV constructs a multi-view learning model as meta-classifiers to extract the discriminative feature for different peptides.
Results:
In the experiment, the proposed method outperforms the other existing methods on the benchmark datasets, indicating that the proposed method has the ability to predict multiple therapeutic peptides simultaneously.
Conclusion:
The TP-MV is a useful tool for predicting therapeutic peptides.
Collapse
Affiliation(s)
- Ke Yan
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Hongwu Lv
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yichen Guo
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Jie Wen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
129
|
Zhao D, Teng Z, Li Y, Chen D. iAIPs: Identifying Anti-Inflammatory Peptides Using Random Forest. Front Genet 2021; 12:773202. [PMID: 34917130 PMCID: PMC8669811 DOI: 10.3389/fgene.2021.773202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, several anti-inflammatory peptides (AIPs) have been found in the process of the inflammatory response, and these peptides have been used to treat some inflammatory and autoimmune diseases. Therefore, identifying AIPs accurately from a given amino acid sequences is critical for the discovery of novel and efficient anti-inflammatory peptide-based therapeutics and the acceleration of their application in therapy. In this paper, a random forest-based model called iAIPs for identifying AIPs is proposed. First, the original samples were encoded with three feature extraction methods, including g-gap dipeptide composition (GDC), dipeptide deviation from the expected mean (DDE), and amino acid composition (AAC). Second, the optimal feature subset is generated by a two-step feature selection method, in which the feature is ranked by the analysis of variance (ANOVA) method, and the optimal feature subset is generated by the incremental feature selection strategy. Finally, the optimal feature subset is inputted into the random forest classifier, and the identification model is constructed. Experiment results showed that iAIPs achieved an AUC value of 0.822 on an independent test dataset, which indicated that our proposed model has better performance than the existing methods. Furthermore, the extraction of features for peptide sequences provides the basis for evolutionary analysis. The study of peptide identification is helpful to understand the diversity of species and analyze the evolutionary history of species.
Collapse
Affiliation(s)
- Dongxu Zhao
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Zhixia Teng
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Yanjuan Li
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| | - Dong Chen
- College of Electrical and Information Engineering, Quzhou University, Quzhou, China
| |
Collapse
|
130
|
Gong Y, Liao B, Wang P, Zou Q. DrugHybrid_BS: Using Hybrid Feature Combined With Bagging-SVM to Predict Potentially Druggable Proteins. Front Pharmacol 2021; 12:771808. [PMID: 34916947 PMCID: PMC8669608 DOI: 10.3389/fphar.2021.771808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Drug targets are biological macromolecules or biomolecule structures capable of specifically binding a therapeutic effect with a particular drug or regulating physiological functions. Due to the important value and role of drug targets in recent years, the prediction of potential drug targets has become a research hotspot. The key to the research and development of modern new drugs is first to identify potential drug targets. In this paper, a new predictor, DrugHybrid_BS, is developed based on hybrid features and Bagging-SVM to identify potentially druggable proteins. This method combines the three features of monoDiKGap (k = 2), cross-covariance, and grouped amino acid composition. It removes redundant features and analyses key features through MRMD and MRMD2.0. The cross-validation results show that 96.9944% of the potentially druggable proteins can be accurately identified, and the accuracy of the independent test set has reached 96.5665%. This all means that DrugHybrid_BS has the potential to become a useful predictive tool for druggable proteins. In addition, the hybrid key features can identify 80.0343% of the potentially druggable proteins combined with Bagging-SVM, which indicates the significance of this part of the features for research.
Collapse
Affiliation(s)
- Yuxin Gong
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Bo Liao
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Peng Wang
- School of Mathematics and Statistics, Hainan Normal University, Haikou, China.,Key Laboratory of Computational Science and Application of Hainan Province, Haikou, China.,Key Laboratory of Data Science and Smart Education, Hainan Normal University, Ministry of Education, Haikou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| |
Collapse
|
131
|
Lin X. Genomic Variation Prediction: A Summary From Different Views. Front Cell Dev Biol 2021; 9:795883. [PMID: 34901036 PMCID: PMC8656232 DOI: 10.3389/fcell.2021.795883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
Structural variations in the genome are closely related to human health and the occurrence and development of various diseases. To understand the mechanisms of diseases, find pathogenic targets, and carry out personalized precision medicine, it is critical to detect such variations. The rapid development of high-throughput sequencing technologies has accelerated the accumulation of large amounts of genomic mutation data, including synonymous mutations. Identifying pathogenic synonymous mutations that play important roles in the occurrence and development of diseases from all the available mutation data is of great importance. In this paper, machine learning theories and methods are reviewed, efficient and accurate pathogenic synonymous mutation prediction methods are developed, and a standardized three-level variant analysis framework is constructed. In addition, multiple variation tolerance prediction models are studied and integrated, and new ideas for structural variation detection based on deep information mining are explored.
Collapse
Affiliation(s)
- Xiuchun Lin
- College of Information and Electrical Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
132
|
Ahmed S, Muhammod R, Khan ZH, Adilina S, Sharma A, Shatabda S, Dehzangi A. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Sci Rep 2021; 11:23676. [PMID: 34880291 PMCID: PMC8654959 DOI: 10.1038/s41598-021-02703-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/17/2021] [Indexed: 01/10/2023] Open
Abstract
Although advancing the therapeutic alternatives for treating deadly cancers has gained much attention globally, still the primary methods such as chemotherapy have significant downsides and low specificity. Most recently, Anticancer peptides (ACPs) have emerged as a potential alternative to therapeutic alternatives with much fewer negative side-effects. However, the identification of ACPs through wet-lab experiments is expensive and time-consuming. Hence, computational methods have emerged as viable alternatives. During the past few years, several computational ACP identification techniques using hand-engineered features have been proposed to solve this problem. In this study, we propose a new multi headed deep convolutional neural network model called ACP-MHCNN, for extracting and combining discriminative features from different information sources in an interactive way. Our model extracts sequence, physicochemical, and evolutionary based features for ACP identification using different numerical peptide representations while restraining parameter overhead. It is evident through rigorous experiments using cross-validation and independent-dataset that ACP-MHCNN outperforms other models for anticancer peptide identification by a substantial margin on our employed benchmarks. ACP-MHCNN outperforms state-of-the-art model by 6.3%, 8.6%, 3.7%, 4.0%, and 0.20 in terms of accuracy, sensitivity, specificity, precision, and MCC respectively. ACP-MHCNN and its relevant codes and datasets are publicly available at: https://github.com/mrzResearchArena/Anticancer-Peptides-CNN . ACP-MHCNN is also publicly available as an online predictor at: https://anticancer.pythonanywhere.com/ .
Collapse
Affiliation(s)
- Sajid Ahmed
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Rafsanjani Muhammod
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Zahid Hossain Khan
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Sheikh Adilina
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh
| | - Alok Sharma
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Institute for Integrated and Intelligent Systems, Griffith University, Brisbane, QLD, 4111, Australia
| | - Swakkhar Shatabda
- Department of Computer Science and Engineering, United International University, Dhaka, Bangladesh.
| | - Abdollah Dehzangi
- Department of Computer Science, Rutgers University, Camden, NJ, 08102, USA.
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, 08102, USA.
| |
Collapse
|
133
|
Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Manavalan B, Shoombuatong W. UMPred-FRL: A New Approach for Accurate Prediction of Umami Peptides Using Feature Representation Learning. Int J Mol Sci 2021; 22:ijms222313124. [PMID: 34884927 PMCID: PMC8658322 DOI: 10.3390/ijms222313124] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Umami ingredients have been identified as important factors in food seasoning and production. Traditional experimental methods for characterizing peptides exhibiting umami sensory properties (umami peptides) are time-consuming, laborious, and costly. As a result, it is preferable to develop computational tools for the large-scale identification of available sequences in order to identify novel peptides with umami sensory properties. Although a computational tool has been developed for this purpose, its predictive performance is still insufficient. In this study, we use a feature representation learning approach to create a novel machine-learning meta-predictor called UMPred-FRL for improved umami peptide identification. We combined six well-known machine learning algorithms (extremely randomized trees, k-nearest neighbor, logistic regression, partial least squares, random forest, and support vector machine) with seven different feature encodings (amino acid composition, amphiphilic pseudo-amino acid composition, dipeptide composition, composition-transition-distribution, and pseudo-amino acid composition) to develop the final meta-predictor. Extensive experimental results demonstrated that UMPred-FRL was effective and achieved more accurate performance on the benchmark dataset compared to its baseline models, and consistently outperformed the existing method on the independent test dataset. Finally, to aid in the high-throughput identification of umami peptides, the UMPred-FRL web server was established and made freely available online. It is expected that UMPred-FRL will be a powerful tool for the cost-effective large-scale screening of candidate peptides with potential umami sensory properties.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Mohammad Ali Moni
- Artificial Intelligence & Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - Balachandran Manavalan
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Korea
- Correspondence: (B.M.); (W.S.)
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand;
- Correspondence: (B.M.); (W.S.)
| |
Collapse
|
134
|
ReRF-Pred: predicting amyloidogenic regions of proteins based on their pseudo amino acid composition and tripeptide composition. BMC Bioinformatics 2021; 22:545. [PMID: 34753427 PMCID: PMC8579573 DOI: 10.1186/s12859-021-04446-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Amyloids are insoluble fibrillar aggregates that are highly associated with complex human diseases, such as Alzheimer's disease, Parkinson's disease, and type II diabetes. Recently, many studies reported that some specific regions of amino acid sequences may be responsible for the amyloidosis of proteins. It has become very important for elucidating the mechanism of amyloids that identifying the amyloidogenic regions. Accordingly, several computational methods have been put forward to discover amyloidogenic regions. The majority of these methods predicted amyloidogenic regions based on the physicochemical properties of amino acids. In fact, position, order, and correlation of amino acids may also influence the amyloidosis of proteins, which should be also considered in detecting amyloidogenic regions. RESULTS To address this problem, we proposed a novel machine-learning approach for predicting amyloidogenic regions, called ReRF-Pred. Firstly, the pseudo amino acid composition (PseAAC) was exploited to characterize physicochemical properties and correlation of amino acids. Secondly, tripeptides composition (TPC) was employed to represent the order and position of amino acids. To improve the distinguishability of TPC, all possible tripeptides were analyzed by the binomial distribution method, and only those which have significantly different distribution between positive and negative samples remained. Finally, all samples were characterized by PseAAC and TPC of their amino acid sequence, and a random forest-based amyloidogenic regions predictor was trained on these samples. It was proved by validation experiments that the feature set consisted of PseAAC and TPC is the most distinguishable one for detecting amyloidosis. Meanwhile, random forest is superior to other concerned classifiers on almost all metrics. To validate the effectiveness of our model, ReRF-Pred is compared with a series of gold-standard methods on two datasets: Pep-251 and Reg33. The results suggested our method has the best overall performance and makes significant improvements in discovering amyloidogenic regions. CONCLUSIONS The advantages of our method are mainly attributed to that PseAAC and TPC can describe the differences between amyloids and other proteins successfully. The ReRF-Pred server can be accessed at http://106.12.83.135:8080/ReRF-Pred/.
Collapse
|
135
|
Wang X, Lin X, Wang R, Han N, Fan K, Han L, Ding Z. A Feature Fusion Predictor for RNA Pseudouridine Sites with Particle Swarm Optimizer Based Feature Selection and Ensemble Learning Approach. Curr Issues Mol Biol 2021; 43:1844-1858. [PMID: 34889887 PMCID: PMC8929013 DOI: 10.3390/cimb43030129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/28/2023] Open
Abstract
RNA pseudouridine modification is particularly important in a variety of cellular biological and physiological processes. It plays a significant role in understanding RNA functions, RNA structure stabilization, translation processes, etc. To understand its functional mechanisms, it is necessary to accurately identify pseudouridine sites in RNA sequences. Although some computational methods have been proposed for the identification of pseudouridine sites, it is still a challenge to improve the identification accuracy and generalization ability. To address this challenge, a novel feature fusion predictor, named PsoEL-PseU, is proposed for the prediction of pseudouridine sites. Firstly, this study systematically and comprehensively explored different types of feature descriptors and determined six feature descriptors with various properties. To improve the feature representation ability, a binary particle swarm optimizer was used to capture the optimal feature subset for six feature descriptors. Secondly, six individual predictors were trained by using the six optimal feature subsets. Finally, to fuse the effects of all six features, six individual predictors were fused into an ensemble predictor by a parallel fusion strategy. Ten-fold cross-validation on three benchmark datasets indicated that the PsoEL-PseU predictor significantly outperformed the current state-of-the-art predictors. Additionally, the new predictor achieved better accuracy in the independent dataset evaluation-accuracy which is significantly higher than that of its existing counterparts-and the user-friendly webserver developed by the PsoEL-PseU predictor has been made freely accessible.
Collapse
Affiliation(s)
- Xiao Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.L.); (R.W.); (N.H.); (L.H.); (Z.D.)
- Correspondence:
| | - Xi Lin
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.L.); (R.W.); (N.H.); (L.H.); (Z.D.)
| | - Rong Wang
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.L.); (R.W.); (N.H.); (L.H.); (Z.D.)
| | - Nijia Han
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.L.); (R.W.); (N.H.); (L.H.); (Z.D.)
| | - Kaiqi Fan
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China;
| | - Lijun Han
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.L.); (R.W.); (N.H.); (L.H.); (Z.D.)
| | - Zhaoyuan Ding
- School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (X.L.); (R.W.); (N.H.); (L.H.); (Z.D.)
| |
Collapse
|
136
|
Jiao S, Zou Q, Guo H, Shi L. iTTCA-RF: a random forest predictor for tumor T cell antigens. J Transl Med 2021; 19:449. [PMID: 34706730 PMCID: PMC8554859 DOI: 10.1186/s12967-021-03084-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer is one of the most serious diseases threatening human health. Cancer immunotherapy represents the most promising treatment strategy due to its high efficacy and selectivity and lower side effects compared with traditional treatment. The identification of tumor T cell antigens is one of the most important tasks for antitumor vaccines development and molecular function investigation. Although several machine learning predictors have been developed to identify tumor T cell antigen, more accurate tumor T cell antigen identification by existing methodology is still challenging. METHODS In this study, we used a non-redundant dataset of 592 tumor T cell antigens (positive samples) and 393 tumor T cell antigens (negative samples). Four types feature encoding methods have been studied to build an efficient predictor, including amino acid composition, global protein sequence descriptors and grouped amino acid and peptide composition. To improve the feature representation ability of the hybrid features, we further employed a two-step feature selection technique to search for the optimal feature subset. The final prediction model was constructed using random forest algorithm. RESULTS Finally, the top 263 informative features were selected to train the random forest classifier for detecting tumor T cell antigen peptides. iTTCA-RF provides satisfactory performance, with balanced accuracy, specificity and sensitivity values of 83.71%, 78.73% and 88.69% over tenfold cross-validation as well as 73.14%, 62.67% and 83.61% over independent tests, respectively. The online prediction server was freely accessible at http://lab.malab.cn/~acy/iTTCA . CONCLUSIONS We have proven that the proposed predictor iTTCA-RF is superior to the other latest models, and will hopefully become an effective and useful tool for identifying tumor T cell antigens presented in the context of major histocompatibility complex class I.
Collapse
Affiliation(s)
- Shihu Jiao
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Huannan Guo
- Department of Oncology, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China.
| | - Lei Shi
- Department of Spine Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
137
|
Wang H, Zhao J, Zhao H, Li H, Wang J. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model. BMC Bioinformatics 2021; 22:512. [PMID: 34670488 PMCID: PMC8527680 DOI: 10.1186/s12859-021-04433-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/05/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Anticancer peptides are defence substances with innate immune functions that can selectively act on cancer cells without harming normal cells and many studies have been conducted to identify anticancer peptides. In this paper, we introduce the anticancer peptide secondary structures as additional features and propose an effective computational model, CL-ACP, that uses a combined network and attention mechanism to predict anticancer peptides. RESULTS The CL-ACP model uses secondary structures and original sequences of anticancer peptides to construct the feature space. The long short-term memory and convolutional neural network are used to extract the contextual dependence and local correlations of the feature space. Furthermore, a multi-head self-attention mechanism is used to strengthen the anticancer peptide sequences. Finally, three categories of feature information are classified by cascading. CL-ACP was validated using two types of datasets, anticancer peptide datasets and antimicrobial peptide datasets, on which it achieved good results compared to previous methods. CL-ACP achieved the highest AUC values of 0.935 and 0.972 on the anticancer peptide and antimicrobial peptide datasets, respectively. CONCLUSIONS CL-ACP can effectively recognize antimicrobial peptides, especially anticancer peptides, and the parallel combined neural network structure of CL-ACP does not require complex feature design and high time cost. It is suitable for application as a useful tool in antimicrobial peptide design.
Collapse
Affiliation(s)
- Huiqing Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jian Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Hong Zhao
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Haolin Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Juan Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
138
|
Zhang W, Xia E, Dai R, Tang W, Bin Y, Xia J. PredAPP: Predicting Anti-Parasitic Peptides with Undersampling and Ensemble Approaches. Interdiscip Sci 2021; 14:258-268. [PMID: 34608613 DOI: 10.1007/s12539-021-00484-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
Anti-parasitic peptides (APPs) have been regarded as promising therapeutic candidate drugs against parasitic diseases. Due to the fact that the experimental techniques for identifying APPs are expensive and time-consuming, there is an urgent need to develop a computational approach to predict APPs on a large scale. In this study, we provided a computational method, termed PredAPP (Prediction of Anti-Parasitic Peptides) that could effectively identify APPs using an ensemble of well-performed machine learning (ML) classifiers. Firstly, to solve the class imbalance problem, a balanced training dataset was generated by the undersampling method. We found that the balanced dataset based on cluster centroid achieved the best performance. Then, nine groups of features and six ML algorithms were combined to generate 54 classifiers and the output of these classifiers formed 54 feature representations, and in each feature group, we selected the feature representation with best performance for classification. Finally, the selected feature representations were integrated using logistic regression algorithm to construct the prediction model PredAPP. On the independent dataset, PredAPP achieved accuracy and AUC of 0.880 and 0.922, respectively, compared to 0.739 and 0.873 of AMPfun, a state-of-the-art method to predict APPs. The web server of PredAPP is freely accessible at http://predapp.xialab.info and https://github.com/xialab-ahu/PredAPP .
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Ruyu Dai
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Wending Tang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China. .,Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, Anhui, China.
| | - Junfeng Xia
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education and Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, Anhui, China. .,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
139
|
Malik AA, Chotpatiwetchkul W, Phanus-Umporn C, Nantasenamat C, Charoenkwan P, Shoombuatong W. StackHCV: a web-based integrative machine-learning framework for large-scale identification of hepatitis C virus NS5B inhibitors. J Comput Aided Mol Des 2021; 35:1037-1053. [PMID: 34622387 DOI: 10.1007/s10822-021-00418-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
Fast and accurate identification of inhibitors with potency against HCV NS5B polymerase is currently a challenging task. As conventional experimental methods is the gold standard method for the design and development of new HCV inhibitors, they often require costly investment of time and resources. In this study, we develop a novel machine learning-based meta-predictor (termed StackHCV) for accurate and large-scale identification of HCV inhibitors. Unlike the existing method, which is based on single-feature-based approach, we first constructed a pool of various baseline models by employing a wide range of heterogeneous molecular fingerprints with five popular machine learning algorithms (k-nearest neighbor, multi-layer perceptron, partial least squares, random forest and support vectors machine). Secondly, we integrated these baseline models in order to develop the final meta-based model by means of the stacking strategy. Extensive benchmarking experiments showed that StackHCV achieved a more accurate and stable performance as compared to its constituent baseline models on the training dataset and also outperformed the existing predictor on the independent test dataset. To facilitate the high-throughput identification of HCV inhibitors, we built a web server that can be freely accessed at http://camt.pythonanywhere.com/StackHCV . It is expected that StackHCV could be a useful tool for fast and precise identification of potential drugs against HCV NS5B particularly for liver cancer therapy and other clinical applications.
Collapse
Affiliation(s)
- Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Warot Chotpatiwetchkul
- Applied Computational Chemistry Research Unit, Department of Chemistry, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Chuleeporn Phanus-Umporn
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
140
|
Cai L, Wang L, Fu X, Zeng X. Active Semisupervised Model for Improving the Identification of Anticancer Peptides. ACS OMEGA 2021; 6:23998-24008. [PMID: 34568678 PMCID: PMC8459422 DOI: 10.1021/acsomega.1c03132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Cancer is one of the most dangerous threats to human health. Accurate identification of anticancer peptides (ACPs) is valuable for the development and design of new anticancer agents. However, most machine-learning algorithms have limited ability to identify ACPs, and their accuracy is sensitive to the amount of label data. In this paper, we construct a new technology that combines active learning (AL) and label propagation (LP) algorithm to solve this problem, called (ACP-ALPM). First, we develop an efficient feature representation method based on various descriptor information and coding information of the peptide sequence. Then, an AL strategy is used to filter out the most informative data for model training, and a more powerful LP classifier is cast through continuous iterations. Finally, we evaluate the performance of ACP-ALPM and compare it with that of some of the state-of-the-art and classic methods; experimental results show that our method is significantly superior to them. In addition, through the experimental comparison of random selection and AL on three public data sets, it is proved that the AL strategy is more effective. Notably, a visualization experiment further verified that AL can utilize unlabeled data to improve the performance of the model. We hope that our method can be extended to other types of peptides and provide more inspiration for other similar work.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Information
Science and Technology, Hunan University, Changsha, Hunan 410000, China
| | - Li Wang
- Department of Information
Science and Technology, Hunan University, Changsha, Hunan 410000, China
| | - Xiangzheng Fu
- Department of Information
Science and Technology, Hunan University, Changsha, Hunan 410000, China
| | - Xiangxiang Zeng
- Department of Information
Science and Technology, Hunan University, Changsha, Hunan 410000, China
| |
Collapse
|
141
|
Zhao YW, Zhang S, Ding H. Recent development of machine learning methods in sumoylation sites prediction. Curr Med Chem 2021; 29:894-907. [PMID: 34525906 DOI: 10.2174/0929867328666210915112030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Sumoylation of proteins is an important reversible post-translational modification of proteins and mediates a variety of cellular processes. Sumo-modified proteins can change their subcellular localization, activity and stability. In addition, it also plays an important role in various cellular processes such as transcriptional regulation and signal transduction. The abnormal sumoylation is involved in many diseases, including neurodegeneration and immune-related diseases, as well as the development of cancer. Therefore, identification of the sumoylation site (SUMO site) is fundamental to understanding their molecular mechanisms and regulatory roles. In contrast to labor-intensive and costly experimental approaches, computational prediction of sumoylation sites in silico also attracted much attention for its accuracy, convenience and speed. At present, many computational prediction models have been used to identify SUMO sites, but these contents have not been comprehensively summarized and reviewed. Therefore, the research progress of relevant models is summarized and discussed in this paper. We will briefly summarize the development of bioinformatics methods on sumoylation site prediction. We will mainly focus on the benchmark dataset construction, feature extraction, machine learning method, published results and online tools. We hope the review will provide more help for wet-experimental scholars.
Collapse
Affiliation(s)
- Yi-Wei Zhao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054. China
| | - Shihua Zhang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan 430065. China
| | - Hui Ding
- School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054. China
| |
Collapse
|
142
|
Niu M, Wu J, Zou Q, Liu Z, Xu L. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning. IEEE J Biomed Health Inform 2021; 25:3668-3676. [PMID: 33780344 DOI: 10.1109/jbhi.2021.3069259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-binding protein (RBP) is a powerful and wide-ranging regulator that plays an important role in cell development, differentiation, metabolism, health and disease. The prediction of RBPs provides valuable guidance for biologists. Although experimental methods have made great progress in predicting RBP, they are time-consuming and not flexible. Therefore, we developed a network model, rBPDL, by combining a convolutional neural network and long short-term memory for multilabel classification of RBPs. Moreover, to achieve better prediction results, we used a voting algorithm for ensemble learning of the model. We compared rBPDL with state-of-the-art methods and found that rBPDL significantly improved identification performance for the RBP68 dataset, with a macro-Area Under Curve (AUC), micro-AUC, and weighted AUC of 0.936, 0.962, and 0.946, respectively. Furthermore, through AUC statistical analysis of the RBP domain, we analyzed the performance of rBPDL and found that the RBP identification performance in the same domain was similar. In addition, we analyzed the performance preferences and physicochemical properties of the binding protein amino acids and explored the characteristics that affect the binding by using the RBP86 dataset.
Collapse
|
143
|
Su R, Hu J, Zou Q, Manavalan B, Wei L. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform 2021; 21:408-420. [PMID: 30649170 DOI: 10.1093/bib/bby124] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Cell-penetrating peptides (CPPs) facilitate the delivery of therapeutically relevant molecules, including DNA, proteins and oligonucleotides, into cells both in vitro and in vivo. This unique ability explores the possibility of CPPs as therapeutic delivery and its potential applications in clinical therapy. Over the last few decades, a number of machine learning (ML)-based prediction tools have been developed, and some of them are freely available as web portals. However, the predictions produced by various tools are difficult to quantify and compare. In particular, there is no systematic comparison of the web-based prediction tools in performance, especially in practical applications. In this work, we provide a comprehensive review on the biological importance of CPPs, CPP database and existing ML-based methods for CPP prediction. To evaluate current prediction tools, we conducted a comparative study and analyzed a total of 12 models from 6 publicly available CPP prediction tools on 2 benchmark validation sets of CPPs and non-CPPs. Our benchmarking results demonstrated that a model from the KELM-CPPpred, namely KELM-hybrid-AAC, showed a significant improvement in overall performance, when compared to the other 11 prediction models. Moreover, through a length-dependency analysis, we find that existing prediction tools tend to more accurately predict CPPs and non-CPPs with the length of 20-25 residues long than peptides in other length ranges.
Collapse
Affiliation(s)
- Ran Su
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jie Hu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Leyi Wei
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
144
|
Charoenkwan P, Chiangjong W, Hasan MM, Nantasenamat C, Shoombuatong W. Review and comparative analysis of machine learning-based predictors for predicting and analyzing of anti-angiogenic peptides. Curr Med Chem 2021; 29:849-864. [PMID: 34375178 DOI: 10.2174/0929867328666210810145806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
Cancer is one of the leading causes of death worldwide and underlying this is angiogenesis that represents one of the hallmarks of cancer. Ongoing effort is already under way in the discovery of anti-angiogenic peptides (AAPs) as a promising therapeutic route by tackling the formation of new blood vessels. As such, the identification of AAPs constitutes a viable path for understanding their mechanistic properties pertinent for the discovery of new anti-cancer drugs. In spite of the abundance of peptide sequences in public databases, experimental efforts in the identification of anti-angiogenic peptides have progressed very slowly owing to its high expenditures and laborious nature. Owing to its inherent ability to make sense of large volumes of data, machine learning (ML) represents a lucrative technique that can be harnessed for peptide-based drug discovery. In this review, we conducted a comprehensive and comparative analysis of ML-based AAP predictors in terms of their employed feature descriptors, ML algorithms, cross-validation methods and prediction performance. Moreover, the common framework of these AAP predictors and their inherent weaknesses are also discussed. Particularly, we explore future perspectives for improving the prediction accuracy and model interpretability, which represents an interesting avenue for overcoming some of the inherent weaknesses of existing AAP predictors. We anticipate that this review would assist researchers in the rapid screening and identification of promising AAPs for clinical use.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Md Mehedi Hasan
- Tulane Center for Biomedical Informatics and Genomics, Division of Biomedical Informatics and Genomics, John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
145
|
HMP-S7 Is a Novel Anti-Leukemic Peptide Discovered from Human Milk. Biomedicines 2021; 9:biomedicines9080981. [PMID: 34440185 PMCID: PMC8394283 DOI: 10.3390/biomedicines9080981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 01/17/2023] Open
Abstract
Chemotherapy in childhood leukemia is associated with late morbidity in leukemic survivors, while certain patient subsets are relatively resistant to standard chemotherapy. It is therefore important to identify new agents with sensitivity and selectivity towards leukemic cells, while having less systemic toxicity. Peptide-based therapeutics has gained a great deal of attention during the last few years. Here, we used an integrative workflow combining mass spectrometric peptide library construction, in silico anticancer peptide screening, and in vitro leukemic cell studies to discover a novel anti-leukemic peptide having 3+ charges and an alpha helical structure, namely HMP-S7, from human breast milk. HMP-S7 showed cytotoxic activity against four distinct leukemic cell lines in a dose-dependent manner but had no effect on solid malignancies or representative normal cells. HMP-S7 induced leukemic cell death by penetrating the plasma membrane to enter the cytoplasm and cause the leakage of lactate dehydrogenase, thus acting in a membranolytic manner. Importantly, HMP-S7 exhibited anti-leukemic effects against patient-derived leukemic cells ex vivo. In conclusion, HMP-S7 is a selective anti-leukemic peptide with promise, which requires further validation in preclinical and clinical studies.
Collapse
|
146
|
Li Y, Pu F, Wang J, Zhou Z, Zhang C, He F, Ma Z, Zhang J. Machine Learning Methods in Prediction of Protein Palmitoylation Sites: A Brief Review. Curr Pharm Des 2021; 27:2189-2198. [PMID: 33183190 DOI: 10.2174/1381612826666201112142826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Protein palmitoylation is a fundamental and reversible post-translational lipid modification that involves a series of biological processes. Although a large number of experimental studies have explored the molecular mechanism behind the palmitoylation process, the computational methods has attracted much attention for its good performance in predicting palmitoylation sites compared with expensive and time-consuming biochemical experiments. The prediction of protein palmitoylation sites is helpful to reveal its biological mechanism. Therefore, the research on the application of machine learning methods to predict palmitoylation sites has become a hot topic in bioinformatics and promoted the development in the related fields. In this review, we briefly introduced the recent development in predicting protein palmitoylation sites by using machine learningbased methods and discussed their benefits and drawbacks. The perspective of machine learning-based methods in predicting palmitoylation sites was also provided. We hope the review could provide a guide in related fields.
Collapse
Affiliation(s)
- Yanwen Li
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Feng Pu
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingru Wang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Zhiguo Zhou
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Chunhua Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Fei He
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Zhiqiang Ma
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| | - Jingbo Zhang
- School of Information Science and Technology, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
147
|
Charoenkwan P, Anuwongcharoen N, Nantasenamat C, Hasan MM, Shoombuatong W. In Silico Approaches for the Prediction and Analysis of Antiviral Peptides: A Review. Curr Pharm Des 2021; 27:2180-2188. [PMID: 33138759 DOI: 10.2174/1381612826666201102105827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
In light of the growing resistance toward current antiviral drugs, efforts to discover novel and effective antiviral therapeutic agents remain a pressing scientific effort. Antiviral peptides (AVPs) represent promising therapeutic agents due to their extraordinary advantages in terms of potency, efficacy and pharmacokinetic properties. The growing volume of newly discovered peptide sequences in the post-genomic era requires computational approaches for timely and accurate identification of AVPs. Machine learning (ML) methods such as random forest and support vector machine represent robust learning algorithms that are instrumental in successful peptide-based drug discovery. Therefore, this review summarizes the current state-of-the-art application of ML methods for identifying AVPs directly from the sequence information. We compare the efficiency of these methods in terms of the underlying characteristics of the dataset used along with feature encoding methods, ML algorithms, cross-validation methods and prediction performance. Finally, guidelines for the development of robust AVP models are also discussed. It is anticipated that this review will serve as a useful guide for the design and development of robust AVP and related therapeutic peptide predictors in the future.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuttapat Anuwongcharoen
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Md Mehedi Hasan
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
148
|
Nasiri F, Atanaki FF, Behrouzi S, Kavousi K, Bagheri M. CpACpP: In Silico Cell-Penetrating Anticancer Peptide Prediction Using a Novel Bioinformatics Framework. ACS OMEGA 2021; 6:19846-19859. [PMID: 34368571 PMCID: PMC8340416 DOI: 10.1021/acsomega.1c02569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 05/12/2023]
Abstract
Cell-penetrating anticancer peptides (Cp-ACPs) are considered promising candidates in solid tumor and hematologic cancer therapies. Current approaches for the design and discovery of Cp-ACPs trust the expensive high-throughput screenings that often give rise to multiple obstacles, including instrumentation adaptation and experimental handling. The application of machine learning (ML) tools developed for peptide activity prediction is importantly of growing interest. In this study, we applied the random forest (RF)-, support vector machine (SVM)-, and eXtreme gradient boosting (XGBoost)-based algorithms to predict the active Cp-ACPs using an experimentally validated data set. The model, CpACpP, was developed on the basis of two independent cell-penetrating peptide (CPP) and anticancer peptide (ACP) subpredictors. Various compositional and physiochemical-based features were combined or selected using the multilayered recursive feature elimination (RFE) method for both data sets. Our results showed that the ACP subclassifiers obtain a mean performance accuracy (ACC) of 0.98 with an area under curve (AUC) ≈ 0.98 vis-à-vis the CPP predictors displaying relevant values of ∼0.94 and ∼0.95 via the hybrid-based features and independent data sets, respectively. Also, the predicting evaluation of Cp-ACPs gave accuracies of ∼0.79 and 0.89 on a series of independent sequences by applying our CPP and ACP classifiers, respectively, which leaves the performance of our predictors better than the earlier reported ACPred, mACPpred, MLCPP, and CPPred-RF. The described consensus-based fusion method additionally reached an AUC of 0.94 for the prediction of Cp-ACP (http://cbb1.ut.ac.ir/CpACpP/Index).
Collapse
Affiliation(s)
- Farid Nasiri
- Peptide
Chemistry Laboratory, Department of Biochemistry, Institute of Biochemistry
and Biophysics (IBB), University of Tehran, Tehran 14176-14335, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Saman Behrouzi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Kaveh Kavousi
- Laboratory
of Complex Biological Systems and Bioinformatics (CBB), Department
of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Mojtaba Bagheri
- Peptide
Chemistry Laboratory, Department of Biochemistry, Institute of Biochemistry
and Biophysics (IBB), University of Tehran, Tehran 14176-14335, Iran
| |
Collapse
|
149
|
Perpetuo L, Klein J, Ferreira R, Guedes S, Amado F, Leite-Moreira A, Silva AMS, Thongboonkerd V, Vitorino R. How can artificial intelligence be used for peptidomics? Expert Rev Proteomics 2021; 18:527-556. [PMID: 34343059 DOI: 10.1080/14789450.2021.1962303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Peptidomics is an emerging field of omics sciences using advanced isolation, analysis, and computational techniques that enable qualitative and quantitative analyses of various peptides in biological samples. Peptides can act as useful biomarkers and as therapeutic molecules for diseases. AREAS COVERED The use of therapeutic peptides can be predicted quickly and efficiently using data-driven computational methods, particularly artificial intelligence (AI) approach. Various AI approaches are useful for peptide-based drug discovery, such as support vector machine, random forest, extremely randomized trees, and other more recently developed deep learning methods. AI methods are relatively new to the development of peptide-based therapies, but these techniques already become essential tools in protein science by dissecting novel therapeutic peptides and their functions (Figure 1).[Figure: see text]. EXPERT OPINION Researchers have shown that AI models can facilitate the development of peptidomics and selective peptide therapies in the field of peptide science. Biopeptide prediction is important for the discovery and development of successful peptide-based drugs. Due to their ability to predict therapeutic roles based on sequence details, many AI-dependent prediction tools have been developed (Figure 1).
Collapse
Affiliation(s)
- Luís Perpetuo
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institute of Cardiovascular and Metabolic Disease, Université Toulouse III, Toulouse, France
| | - Rita Ferreira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Sofia Guedes
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Adelino Leite-Moreira
- UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto
| | - Artur M S Silva
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rui Vitorino
- iBiMED, Department of Medical Sciences, University of Aveiro, Aveiro.,LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro.,UnIC, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina da Universidade do Porto, Porto
| |
Collapse
|
150
|
Cao R, Wang M, Bin Y, Zheng C. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. PeerJ 2021; 9:e11906. [PMID: 34414035 PMCID: PMC8344685 DOI: 10.7717/peerj.11906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/14/2021] [Indexed: 01/10/2023] Open
Abstract
An emerging type of therapeutic agent, anticancer peptides (ACPs), has attracted attention because of its lower risk of toxic side effects. However process of identifying ACPs using experimental methods is both time-consuming and laborious. In this study, we developed a new and efficient algorithm that predicts ACPs by fusing multi-view features based on dual-channel deep neural network ensemble model. In the model, one channel used the convolutional neural network CNN to automatically extract the potential spatial features of a sequence. Another channel was used to process and extract more effective features from handcrafted features. Additionally, an effective feature fusion method was explored for the mutual fusion of different features. Finally, we adopted the neural network to predict ACPs based on the fusion features. The performance comparisons across the single and fusion features showed that the fusion of multi-view features could effectively improve the model's predictive ability. Among these, the fusion of the features extracted by the CNN and composition of k-spaced amino acid group pairs achieved the best performance. To further validate the performance of our model, we compared it with other existing methods using two independent test sets. The results showed that our model's area under curve was 0.90, which was higher than that of the other existing methods on the first test set and higher than most of the other existing methods on the second test set. The source code and datasets are available at https://github.com/wame-ng/DLFF-ACP.
Collapse
Affiliation(s)
- Ruifen Cao
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, Fujian, China
| | - Meng Wang
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Yannan Bin
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
- Engineering Research Center of Big Data Application in Private Health Medicine, Fujian Province University, Putian, Fujian, China
| |
Collapse
|