101
|
i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes. Comput Struct Biotechnol J 2020; 18:906-912. [PMID: 32322372 PMCID: PMC7168350 DOI: 10.1016/j.csbj.2020.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
N4-methylcytosine (4mC) is one of the most important DNA modifications and involved in regulating cell differentiations and gene expressions. The accurate identification of 4mC sites is necessary to understand various biological functions. In this work, we developed a new computational predictor called i4mC-Mouse to identify 4mC sites in the mouse genome. Herein, six encoding schemes of k-space nucleotide composition (KSNC), k-mer nucleotide composition (Kmer), mono nucleotide binary encoding (MBE), dinucleotide binary encoding, electron–ion interaction pseudo potentials (EIIP) and dinucleotide physicochemical composition were explored that cover different characteristics of DNA sequence information. Subsequently, we built six RF-based encoding models and then linearly combined their probability scores to construct the final predictor. Among the six RF-based models, the Kmer, KSNC, MBE, and EIIP encodings are sufficient, which contributed to 10%, 45%, 25%, and 20% of the prediction performance, respectively. On the independent test the i4mC-Mouse predicted the 4mC sites with accuracy and MCC of 0.816 and 0.633, respectively, which were approximately 2.5% and 5% higher than those of the existing method (4mCpred-EL). For experimental biologists, a freely available web application was implemented at http://kurata14.bio.kyutech.ac.jp/i4mC-Mouse/.
Collapse
|
102
|
Govindaraj RG, Subramaniyam S, Manavalan B. Extremely-randomized-tree-based Prediction of N 6-Methyladenosine Sites in Saccharomyces cerevisiae. Curr Genomics 2020; 21:26-33. [PMID: 32655295 PMCID: PMC7324895 DOI: 10.2174/1389202921666200219125625] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications in RNA, which has been related to several biological processes. The accurate prediction of m6A sites from RNA sequences is one of the challenging tasks in computational biology. Several computational methods utilizing machine-learning algorithms have been proposed that accelerate in silico screening of m6A sites, thereby drastically reducing the experimental time and labor costs involved. Methodology In this study, we proposed a novel computational predictor termed ERT-m6Apred, for the accurate prediction of m6A sites. To identify the feature encodings with more discriminative capability, we applied a two-step feature selection technique on seven different feature encodings and identified the corresponding optimal feature set. Results Subsequently, performance comparison of the corresponding optimal feature set-based extremely randomized tree model revealed that Pseudo k-tuple composition encoding, which includes 14 physicochemical properties significantly outperformed other encodings. Moreover, ERT-m6Apred achieved an accuracy of 78.84% during cross-validation analysis, which is comparatively better than recently reported predictors. Conclusion In summary, ERT-m6Apred predicts Saccharomyces cerevisiae m6A sites with higher accuracy, thus facilitating biological hypothesis generation and experimental validations.
Collapse
Affiliation(s)
- Rajiv G Govindaraj
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Balachandran Manavalan
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
103
|
Zeng F, Fang G, Yao L. A Deep Neural Network for Identifying DNA N4-Methylcytosine Sites. Front Genet 2020; 11:209. [PMID: 32211035 PMCID: PMC7067889 DOI: 10.3389/fgene.2020.00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/21/2020] [Indexed: 11/25/2022] Open
Abstract
Motivation: N4-methylcytosine (4mC) plays an important role in host defense and transcriptional regulation. Accurate identification of 4mc sites provides a more comprehensive understanding of its biological effects. At present, the traditional machine learning algorithms are used in the research on 4mC sites prediction, but the complexity of the algorithms is relatively high, which is not suitable for the processing of large data sets, and the accuracy of prediction needs to be improved. Therefore, it is necessary to develop a new and effective method to accurately identify 4mC sites. Results: In this work, we found a large number of 4mC sites and non 4mC sites of Caenorhabditis elegans (C. elegans) from the latest MethSMRT website, which greatly expanded the dataset of C. elegans, and developed a hybrid deep neural network framework named 4mcDeep-CBI, aiming to identify 4mC sites. In order to obtain the high latitude information of the feature, we input the preliminary extracted features into the Convolutional Neural Network (CNN) and Bidirectional Long Short Term Memory network (BLSTM) to generate advanced features. Taking the advanced features as algorithm input, we have proposed an integrated algorithm to improve feature representation. Experimental results on large new dataset show that the proposed predictor is able to achieve generally better performance in identifying 4mC sites as compared to the state-of-art predictor. Notably, this is the first study of identifying 4mC sites using deep neural network. Moreover, our model runs much faster than the state-of-art predictor.
Collapse
Affiliation(s)
- Feng Zeng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Guanyun Fang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Lan Yao
- College of Mathematics and Econometrics, Hunan University, Changsha, China
| |
Collapse
|
104
|
Lv Z, Zhang J, Ding H, Zou Q. RF-PseU: A Random Forest Predictor for RNA Pseudouridine Sites. Front Bioeng Biotechnol 2020; 8:134. [PMID: 32175316 PMCID: PMC7054385 DOI: 10.3389/fbioe.2020.00134] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
One of the ubiquitous chemical modifications in RNA, pseudouridine modification is crucial for various cellular biological and physiological processes. To gain more insight into the functional mechanisms involved, it is of fundamental importance to precisely identify pseudouridine sites in RNA. Several useful machine learning approaches have become available recently, with the increasing progress of next-generation sequencing technology; however, existing methods cannot predict sites with high accuracy. Thus, a more accurate predictor is required. In this study, a random forest-based predictor named RF-PseU is proposed for prediction of pseudouridylation sites. To optimize feature representation and obtain a better model, the light gradient boosting machine algorithm and incremental feature selection strategy were used to select the optimum feature space vector for training the random forest model RF-PseU. Compared with previous state-of-the-art predictors, the results on the same benchmark data sets of three species demonstrate that RF-PseU performs better overall. The integrated average leave-one-out cross-validation and independent testing accuracy scores were 71.4% and 74.7%, respectively, representing increments of 3.63% and 4.77% versus the best existing predictor. Moreover, the final RF-PseU model for prediction was built on leave-one-out cross-validation and provides a reliable and robust tool for identifying pseudouridine sites. A web server with a user-friendly interface is accessible at http://148.70.81.170:10228/rfpseu.
Collapse
Affiliation(s)
- Zhibin Lv
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Zhang
- Rehabilitation Department, Heilongjiang Province Land Reclamation Headquarters General Hospital, Harbin, China
| | - Hui Ding
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
105
|
Wang Z, He W, Tang J, Guo F. Identification of Highest-Affinity Binding Sites of Yeast Transcription Factor Families. J Chem Inf Model 2020; 60:1876-1883. [DOI: 10.1021/acs.jcim.9b01012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zongyu Wang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Wenying He
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| |
Collapse
|
106
|
Basith S, Manavalan B, Shin TH, Lee G. SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:131-141. [PMID: 31542696 PMCID: PMC6796762 DOI: 10.1016/j.omtn.2019.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022]
Abstract
DNA N6-adenine methylation (6mA) is an epigenetic modification in prokaryotes and eukaryotes. Identifying 6mA sites in rice genome is important in rice epigenetics and breeding, but non-random distribution and biological functions of these sites remain unclear. Several machine-learning tools can identify 6mA sites but show limited prediction accuracy, which limits their usability in epigenetic research. Here, we developed a novel computational predictor, called the Sequence-based DNA N6-methyladenine predictor (SDM6A), which is a two-layer ensemble approach for identifying 6mA sites in the rice genome. Unlike existing methods, which are based on single models with basic features, SDM6A explores various features, and five encoding methods were identified as appropriate for this problem. Subsequently, an optimal feature set was identified from encodings, and corresponding models were developed individually using support vector machine and extremely randomized tree. First, all five single models were integrated via ensemble approach to define the class for each classifier. Second, two classifiers were integrated to generate a final prediction. SDM6A achieved robust performance on cross-validation and independent evaluation, with average accuracy and Matthews correlation coefficient (MCC) of 88.2% and 0.764, respectively. Corresponding metrics were 4.7%-11.0% and 2.3%-5.5% higher than those of existing methods, respectively. A user-friendly, publicly accessible web server (http://thegleelab.org/SDM6A) was implemented to predict novel putative 6mA sites in rice genome.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
107
|
Wang J, Zhang J, Cai Y, Deng L. DeepMiR2GO: Inferring Functions of Human MicroRNAs Using a Deep Multi-Label Classification Model. Int J Mol Sci 2019; 20:E6046. [PMID: 31801264 PMCID: PMC6928926 DOI: 10.3390/ijms20236046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a highly abundant collection of functional non-coding RNAs involved in cellular regulation and various complex human diseases. Although a large number of miRNAs have been identified, most of their physiological functions remain unknown. Computational methods play a vital role in exploring the potential functions of miRNAs. Here, we present DeepMiR2GO, a tool for integrating miRNAs, proteins and diseases, to predict the gene ontology (GO) functions based on multiple deep neuro-symbolic models. DeepMiR2GO starts by integrating the miRNA co-expression network, protein-protein interaction (PPI) network, disease phenotype similarity network, and interactions or associations among them into a global heterogeneous network. Then, it employs an efficient graph embedding strategy to learn potential network representations of the global heterogeneous network as the topological features. Finally, a deep multi-label classification network based on multiple neuro-symbolic models is built and used to annotate the GO terms of miRNAs. The predicted results demonstrate that DeepMiR2GO performs significantly better than other state-of-the-art approaches in terms of precision, recall, and maximum F-measure.
Collapse
Affiliation(s)
- Jiacheng Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (J.W.); (Y.C.)
| | - Jingpu Zhang
- School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467000, China;
| | - Yideng Cai
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (J.W.); (Y.C.)
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha 410083, China; (J.W.); (Y.C.)
- School of Software, Xinjiang University, Urumqi 830008, China
| |
Collapse
|
108
|
Numerical Modeling of Suspension Force for Bearingless Flywheel Machine Based on Differential Evolution Extreme Learning Machine. ENERGIES 2019. [DOI: 10.3390/en12234470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The analytical model (AM) of suspension force in a bearingless flywheel machine has model mismatch problems due to magnetic saturation and rotor eccentricity. A numerical modeling method based on the differential evolution (DE) extreme learning machine (ELM) is proposed in this paper. The representative input and output sample set are obtained by finite-element analysis (FEA) and principal component analysis (PCA), and the numerical model of suspension force is obtained by training ELM. Additionally, the DE algorithm is employed to optimize the ELM parameters to improve the model accuracy. Finally, absolute error (AE) and root mean squared error (RMSE) are introduced as evaluation indexes to conduct comparative analyses with other commonly-used machine learning algorithms, such as k-Nearest Neighbor (KNN), the back propagation (BP) algorithm, and support vector machines (SVMs). The results show that, compared with the above algorithm, the proposed method has smaller fitting and prediction errors; the RMSE value is just 22.88% of KNN, 39.90% of BP, and 58.37% of SVM, which verifies the effectiveness and validity of the proposed numerical modeling method.
Collapse
|
109
|
4mCpred-EL: An Ensemble Learning Framework for Identification of DNA N4-methylcytosine Sites in the Mouse Genome. Cells 2019; 8:cells8111332. [PMID: 31661923 PMCID: PMC6912380 DOI: 10.3390/cells8111332] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/24/2022] Open
Abstract
DNA N4-methylcytosine (4mC) is one of the key epigenetic alterations, playing essential roles in DNA replication, differentiation, cell cycle, and gene expression. To better understand 4mC biological functions, it is crucial to gain knowledge on its genomic distribution. In recent times, few computational studies, in particular machine learning (ML) approaches have been applied in the prediction of 4mC site predictions. Although ML-based methods are promising for 4mC identification in other species, none are available for detecting 4mCs in the mouse genome. Our novel computational approach, called 4mCpred-EL, is the first method for identifying 4mC sites in the mouse genome where four different ML algorithms with a wide range of seven feature encodings are utilized. Subsequently, those feature encodings predicted probabilistic values are used as a feature vector and are once again inputted to ML algorithms, whose corresponding models are integrated into ensemble learning. Our benchmarking results demonstrated that 4mCpred-EL achieved an accuracy and MCC values of 0.795 and 0.591, which significantly outperformed seven other classifiers by more than 1.5–5.9% and 3.2–11.7%, respectively. Additionally, 4mCpred-EL attained an overall accuracy of 79.80%, which is 1.8–5.1% higher than that yielded by seven other classifiers in the independent evaluation. We provided a user-friendly web server, namely 4mCpred-EL which could be implemented as a pre-screening tool for the identification of potential 4mC sites in the mouse genome.
Collapse
|
110
|
Identifying DNase I hypersensitive sites using multi-features fusion and F-score features selection via Chou's 5-steps rule. Biophys Chem 2019; 253:106227. [DOI: 10.1016/j.bpc.2019.106227] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
|
111
|
Design of a Chamfering Tool Diagnosis System Using Autoencoder Learning Method. ENERGIES 2019. [DOI: 10.3390/en12193708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
. In this paper, the autoencoder learning method is proposed for the system diagnosis of chamfering tool equipment. The autoencoder uses unsupervised learning architecture. The training dataset that requires only a positive sample is quite suitable for industrial production lines. The abnormal tool can be diagnosed by comparing the output and input of the autoencoder neural network. The adjustable threshold can effectively improve accuracy. This method can effectively adapt to the current environment when the data contain multiple signals. In the experimental setup, the main diagnostic signal is the current of the motor. The current reflects the torque change when the tool is abnormal. Four-step conversions are developed to process the current signal, including (1) current-to-voltage conversion, (2) analog-digital conversion, (3) downsampling rate, and (4) discrete Fourier transform. The dataset is used to find the best autoencoder parameters by grid search. In training results, the testing accuracy, true positive rate, and precision approach are 87.5%, 83.33%, and 90.91%, respectively. The best model of the autoencoder is evaluated by online testing. The online test means loading the diagnosis model in the production line and evaluating the model. It is shown that the proposed tool can effectively detect abnormal conditions. The online assessment accuracy, true positive rate, and precision are 75%, 90%, and 69.23% in the original threshold, respectively. The accuracy can be up to 90% after adjusting the threshold, and the true positive rate and precision are up to 80% and 100%, respectively.
Collapse
|
112
|
Lv H, Dao FY, Guan ZX, Zhang D, Tan JX, Zhang Y, Chen W, Lin H. iDNA6mA-Rice: A Computational Tool for Detecting N6-Methyladenine Sites in Rice. Front Genet 2019; 10:793. [PMID: 31552096 PMCID: PMC6746913 DOI: 10.3389/fgene.2019.00793] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
DNA N6-methyladenine (6mA) is a dominant DNA modification form and involved in many biological functions. The accurate genome-wide identification of 6mA sites may increase understanding of its biological functions. Experimental methods for 6mA detection in eukaryotes genome are laborious and expensive. Therefore, it is necessary to develop computational methods to identify 6mA sites on a genomic scale, especially for plant genomes. Based on this consideration, the study aims to develop a machine learning-based method of predicting 6mA sites in the rice genome. We initially used mono-nucleotide binary encoding to formulate positive and negative samples. Subsequently, the machine learning algorithm named Random Forest was utilized to perform the classification for identifying 6mA sites. Our proposed method could produce an area under the receiver operating characteristic curve of 0.964 with an overall accuracy of 0.917, as indicated by the fivefold cross-validation test. Furthermore, an independent dataset was established to assess the generalization ability of our method. Finally, an area under the receiver operating characteristic curve of 0.981 was obtained, suggesting that the proposed method had good performance of predicting 6mA sites in the rice genome. For the convenience of retrieving 6mA sites, on the basis of the computational method, we built a freely accessible web server named iDNA6mA-Rice at http://lin-group.cn/server/iDNA6mA-Rice.
Collapse
Affiliation(s)
- Hao Lv
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fu-Ying Dao
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zheng-Xing Guan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiu-Xin Tan
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yong Zhang
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Chen
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
113
|
Wang X, Wang Y, Xu Z, Xiong Y, Wei DQ. ATC-NLSP: Prediction of the Classes of Anatomical Therapeutic Chemicals Using a Network-Based Label Space Partition Method. Front Pharmacol 2019; 10:971. [PMID: 31543820 PMCID: PMC6739564 DOI: 10.3389/fphar.2019.00971] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023] Open
Abstract
Anatomical Therapeutic Chemical (ATC) classification system proposed by the World Health Organization is a widely accepted drug classification scheme in both academic and industrial realm. It is a multilabeling system which categorizes drugs into multiple classes according to their therapeutic, pharmacological, and chemical attributes. In this study, we adopted a data-driven network-based label space partition (NLSP) method for prediction of ATC classes of a given compound within the multilabel learning framework. The proposed method ATC-NLSP is trained on the similarity-based features such as chemical–chemical interaction and structural and fingerprint similarities of a compound to other compounds belonging to the different ATC categories. The NLSP method trains predictors for each label cluster (possibly intersecting) detected by community detection algorithms and takes the ensemble labels for a compound as final prediction. Experimental evaluation based on the jackknife test on the benchmark dataset demonstrated that our method has boosted the absolute true rate, which is the most stringent evaluation metrics in this study, from 0.6330 to 0.7497, in comparison to the state-of-the-art approaches. Moreover, the community structures of the label relation graph were detected through the label propagation method. The advantage of multilabel learning over the single-label models was shown by label-wise analysis. Our study indicated that the proposed method ATC-NLSP, which adopts ideas from network research community and captures the correlation of labels in a data driven manner, is the top-performing model in the ATC prediction task. We believed that the power of NLSP remains to be unleashed for the multilabel learning tasks in drug discovery. The source codes are freely available at https://github.com/dqwei-lab/ATC.
Collapse
Affiliation(s)
- Xiangeng Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenyu Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
114
|
Zhang M, Li F, Marquez-Lago TT, Leier A, Fan C, Kwoh CK, Chou KC, Song J, Jia C. MULTiPly: a novel multi-layer predictor for discovering general and specific types of promoters. Bioinformatics 2019; 35:2957-2965. [PMID: 30649179 PMCID: PMC6736106 DOI: 10.1093/bioinformatics/btz016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/09/2018] [Accepted: 01/05/2019] [Indexed: 12/22/2022] Open
Abstract
MOTIVATION Promoters are short DNA consensus sequences that are localized proximal to the transcription start sites of genes, allowing transcription initiation of particular genes. However, the precise prediction of promoters remains a challenging task because individual promoters often differ from the consensus at one or more positions. RESULTS In this study, we present a new multi-layer computational approach, called MULTiPly, for recognizing promoters and their specific types. MULTiPly took into account the sequences themselves, including both local information such as k-tuple nucleotide composition, dinucleotide-based auto covariance and global information of the entire samples based on bi-profile Bayes and k-nearest neighbour feature encodings. Specifically, the F-score feature selection method was applied to identify the best unique type of feature prediction results, in combination with other types of features that were subsequently added to further improve the prediction performance of MULTiPly. Benchmarking experiments on the benchmark dataset and comparisons with five state-of-the-art tools show that MULTiPly can achieve a better prediction performance on 5-fold cross-validation and jackknife tests. Moreover, the superiority of MULTiPly was also validated on a newly constructed independent test dataset. MULTiPly is expected to be used as a useful tool that will facilitate the discovery of both general and specific types of promoters in the post-genomic era. AVAILABILITY AND IMPLEMENTATION The MULTiPly webserver and curated datasets are freely available at http://flagshipnt.erc.monash.edu/MULTiPly/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Meng Zhang
- School of Science, Dalian Maritime University, Dalian, China
| | - Fuyi Li
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
| | - Tatiana T Marquez-Lago
- Department of Genetics, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - André Leier
- Department of Genetics, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cunshuo Fan
- College of Information Engineering, Northwest A&F University, Yangling, China
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Jiangning Song
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology
- Monash Centre for Data Science, Faculty of Information Technology, Monash University, Melbourne, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian, China
- College of Information Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
115
|
FKRR-MVSF: A Fuzzy Kernel Ridge Regression Model for Identifying DNA-Binding Proteins by Multi-View Sequence Features via Chou's Five-Step Rule. Int J Mol Sci 2019; 20:ijms20174175. [PMID: 31454964 PMCID: PMC6747228 DOI: 10.3390/ijms20174175] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/10/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
DNA-binding proteins play an important role in cell metabolism. In biological laboratories, the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles and X-ray crystallography methods and others, but these methods involve a lot of labor, material and time. In recent years, many computation-based approachs have been proposed to detect DNA-binding proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences. Next, a Multiple Kernel Learning (MKL) algorithm is employed to combine multiple features. Finally, a Fuzzy Kernel Ridge Regression (FKRR) model is built to detect DNA-binding proteins. Compared with other methods, our model achieves good results. Our method obtains an accuracy of 83.26% and 81.72% on two benchmark datasets (PDB1075 and compared with PDB186), respectively.
Collapse
|
116
|
Tan KK, Le NQK, Yeh HY, Chua MCH. Ensemble of Deep Recurrent Neural Networks for Identifying Enhancers via Dinucleotide Physicochemical Properties. Cells 2019; 8:cells8070767. [PMID: 31340596 PMCID: PMC6678823 DOI: 10.3390/cells8070767] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 12/21/2022] Open
Abstract
Enhancers are short deoxyribonucleic acid fragments that assume an important part in the genetic process of gene expression. Due to their possibly distant location relative to the gene that is acted upon, the identification of enhancers is difficult. There are many published works focused on identifying enhancers based on their sequence information, however, the resulting performance still requires improvements. Using deep learning methods, this study proposes a model ensemble of classifiers for predicting enhancers based on deep recurrent neural networks. The input features of deep ensemble networks were generated from six types of dinucleotide physicochemical properties, which had outperformed the other features. In summary, our model which used this ensemble approach could identify enhancers with achieved sensitivity of 75.5%, specificity of 76%, accuracy of 75.5%, and MCC of 0.51. For classifying enhancers into strong or weak sequences, our model reached sensitivity of 83.15%, specificity of 45.61%, accuracy of 68.49%, and MCC of 0.312. Compared to the benchmark result, our results had higher performance in term of most measurement metrics. The results showed that deep model ensembles hold the potential for improving on the best results achieved to date using shallow machine learning methods.
Collapse
Affiliation(s)
- Kok Keng Tan
- Institute of Systems Science, 25 Heng Mui Keng Terrace, National University of Singapore, Singapore 119615, Singapore
| | - Nguyen Quoc Khanh Le
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, Singapore 639798, Singapore
| | - Hui-Yuan Yeh
- Medical Humanities Research Cluster, School of Humanities, Nanyang Technological University, 48 Nanyang Ave, Singapore 639798, Singapore.
| | - Matthew Chin Heng Chua
- Institute of Systems Science, 25 Heng Mui Keng Terrace, National University of Singapore, Singapore 119615, Singapore.
| |
Collapse
|
117
|
AtbPpred: A Robust Sequence-Based Prediction of Anti-Tubercular Peptides Using Extremely Randomized Trees. Comput Struct Biotechnol J 2019; 17:972-981. [PMID: 31372196 PMCID: PMC6658830 DOI: 10.1016/j.csbj.2019.06.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium tuberculosis is one of the most dangerous pathogens in humans. It acts as an etiological agent of tuberculosis (TB), infecting almost one-third of the world's population. Owing to the high incidence of multidrug-resistant TB and extensively drug-resistant TB, there is an urgent need for novel and effective alternative therapies. Peptide-based therapy has several advantages, such as diverse mechanisms of action, low immunogenicity, and selective affinity to bacterial cell envelopes. However, the identification of anti-tubercular peptides (AtbPs) via experimentation is laborious and expensive; hence, the development of an efficient computational method is necessary for the prediction of AtbPs prior to both in vitro and in vivo experiments. To this end, we developed a two-layer machine learning (ML)-based predictor called AtbPpred for the identification of AtbPs. In the first layer, we applied a two-step feature selection procedure and identified the optimal feature set individually for nine different feature encodings, whose corresponding models were developed using extremely randomized tree (ERT). In the second-layer, the predicted probability of AtbPs from the above nine models were considered as input features to ERT and developed the final predictor. AtbPpred respectively achieved average accuracies of 88.3% and 87.3% during cross-validation and an independent evaluation, which were ~8.7% and 10.0% higher than the state-of-the-art method. Furthermore, we established a user-friendly webserver which is currently available at http://thegleelab.org/AtbPpred. We anticipate that this predictor could be useful in the high-throughput prediction of AtbPs and also provide mechanistic insights into its functions. We developed a novel computational framework for the identification of anti-tubercular peptides using Extremely randomized tree. AtbPpred displayed superior performance compared to the existing method on both benchmark and independent datasets. We constructed a user-friendly web server that implements the proposed AtbPpred method.
Collapse
|
118
|
Forecasting Corporate Failure in the Chinese Energy Sector: A Novel Integrated Model of Deep Learning and Support Vector Machine. ENERGIES 2019. [DOI: 10.3390/en12122251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Accurate forecasts of corporate failure in the Chinese energy sector are drivers for both operational excellence in the national energy systems and sustainable investment of the energy sector. This paper proposes a novel integrated model (NIM) for corporate failure forecasting in the Chinese energy sector by considering textual data and numerical data simultaneously. Given the feature of textual data and numerical data, convolutional neural network oriented deep learning (CNN-DL) and support vector machine (SVM) are employed as the base classifiers to forecast using textual data and numerical data, respectively. Subsequently, soft set (SS) theory is applied to integrate outputs of CNN-DL and SVM. Hence, NIM inherits advantages and avoids disadvantages of CNN-DL, SVM, and SS. It is able to improve the forecasting performance by taking full use of textual data and numerical data. For verification, NIM is applied to the real data of Chinese listed energy firms. Empirical results indicate that, compared with benchmarks, NIM demonstrates superior performance of corporate failure forecasting in the Chinese energy sector.
Collapse
|
119
|
Predicting Apoptosis Protein Subcellular Locations based on the Protein Overlapping Property Matrix and Tri-Gram Encoding. Int J Mol Sci 2019; 20:ijms20092344. [PMID: 31083553 PMCID: PMC6539631 DOI: 10.3390/ijms20092344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/25/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
To reveal the working pattern of programmed cell death, knowledge of the subcellular location of apoptosis proteins is essential. Besides the costly and time-consuming method of experimental determination, research into computational locating schemes, focusing mainly on the innovation of representation techniques on protein sequences and the selection of classification algorithms, has become popular in recent decades. In this study, a novel tri-gram encoding model is proposed, which is based on using the protein overlapping property matrix (POPM) for predicting apoptosis protein subcellular location. Next, a 1000-dimensional feature vector is built to represent a protein. Finally, with the help of support vector machine-recursive feature elimination (SVM-RFE), we select the optimal features and put them into a support vector machine (SVM) classifier for predictions. The results of jackknife tests on two benchmark datasets demonstrate that our proposed method can achieve satisfactory prediction performance level with less computing capacity required and could work as a promising tool to predict the subcellular locations of apoptosis proteins.
Collapse
|
120
|
Han K, Wang M, Zhang L, Wang Y, Guo M, Zhao M, Zhao Q, Zhang Y, Zeng N, Wang C. Predicting Ion Channels Genes and Their Types With Machine Learning Techniques. Front Genet 2019; 10:399. [PMID: 31130983 PMCID: PMC6510169 DOI: 10.3389/fgene.2019.00399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 02/01/2023] Open
Abstract
Motivation: The number of ion channels is increasing rapidly. As many of them are associated with diseases, they are the targets of more than 700 drugs. The discovery of new ion channels is facilitated by computational methods that predict ion channels and their types from protein sequences. Methods: We used the SVMProt and the k-skip-n-gram methods to extract the feature vectors of ion channels, and obtained 188- and 400-dimensional features, respectively. The 188- and 400-dimensional features were combined to obtain 588-dimensional features. We then employed the maximum-relevance-maximum-distance method to reduce the dimensions of the 588-dimensional features. Finally, the support vector machine and random forest methods were used to build the prediction models to evaluate the classification effect. Results: Different methods were employed to extract various feature vectors, and after effective dimensionality reduction, different classifiers were used to classify the ion channels. We extracted the ion channel data from the Universal Protein Resource (UniProt, http://www.uniprot.org/) and Ligand-Gated Ion Channel databases (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), and then verified the performance of the classifiers after screening. The findings of this study could inform the research and development of drugs.
Collapse
Affiliation(s)
- Ke Han
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Miao Wang
- Life Sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin, China
| | - Lei Zhang
- Life Sciences and Environmental Sciences Development Center, Harbin University of Commerce, Harbin, China
| | - Ying Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Zhao
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Qian Zhao
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Yu Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin, China
- Heilongjiang Provincial Key Laboratory of Electronic Commerce and Information Processing, Harbin University of Commerce, Harbin, China
| | - Nianyin Zeng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen, China
| | - Chunyu Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
121
|
Manavalan B, Basith S, Shin TH, Wei L, Lee G. Meta-4mCpred: A Sequence-Based Meta-Predictor for Accurate DNA 4mC Site Prediction Using Effective Feature Representation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:733-744. [PMID: 31146255 PMCID: PMC6540332 DOI: 10.1016/j.omtn.2019.04.019] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/16/2019] [Accepted: 04/22/2019] [Indexed: 11/19/2022]
Abstract
DNA N4-methylcytosine (4mC) is an important genetic modification and plays crucial roles in differentiation between self and non-self DNA and in controlling DNA replication, cell cycle, and gene-expression levels. Accurate 4mC site identification is fundamental to improve the understanding of 4mC biological functions and mechanisms. Hence, it is necessary to develop in silico approaches for efficient and high-throughput 4mC site identification. Although some bioinformatic tools have been developed in this regard, their prediction accuracy and generalizability require improvement to optimize their usability in practical applications. For this purpose, we here proposed Meta-4mCpred, a meta-predictor for 4mC site prediction. In Meta-4mCpred, we employed a feature representation learning scheme and generated 56 probabilistic features based on four different machine-learning algorithms and seven feature encodings covering diverse sequence information, including compositional, physicochemical, and position-specific information. Subsequently, the probabilistic features were used as an input to support vector machine and developed a final meta-predictor. To the best of our knowledge, this is the first meta-predictor for 4mC site prediction. Cross-validation results show that Meta-4mCpred achieved an overall average accuracy of 84.2% from six different species, which is ∼2%–4% higher than those attainable using the state-of-the-art predictors. Furthermore, Meta-4mCpred achieved an overall average accuracy of 86% on independent datasets evaluation, which is over 4% higher than those yielded by the state-of-the-art predictors. The user-friendly webserver employed to implement the proposed Meta-4mCpred is freely accessible at http://thegleelab.org/Meta-4mCpred.
Collapse
Affiliation(s)
| | - Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea; Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Leyi Wei
- School of Computer Science and Technology, Tianjin University, China.
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea; Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
122
|
mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Int J Mol Sci 2019; 20:ijms20081964. [PMID: 31013619 PMCID: PMC6514805 DOI: 10.3390/ijms20081964] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 12/24/2022] Open
Abstract
Anticancer peptides (ACPs) are promising therapeutic agents for targeting and killing cancer cells. The accurate prediction of ACPs from given peptide sequences remains as an open problem in the field of immunoinformatics. Recently, machine learning algorithms have emerged as a promising tool for helping experimental scientists predict ACPs. However, the performance of existing methods still needs to be improved. In this study, we present a novel approach for the accurate prediction of ACPs, which involves the following two steps: (i) We applied a two-step feature selection protocol on seven feature encodings that cover various aspects of sequence information (composition-based, physicochemical properties and profiles) and obtained their corresponding optimal feature-based models. The resultant predicted probabilities of ACPs were further utilized as feature vectors. (ii) The predicted probability feature vectors were in turn used as an input to support vector machine to develop the final prediction model called mACPpred. Cross-validation analysis showed that the proposed predictor performs significantly better than individual feature encodings. Furthermore, mACPpred significantly outperformed the existing methods compared in this study when objectively evaluated on an independent dataset.
Collapse
|
123
|
Deep CNN for IIF Images Classification in Autoimmune Diagnostics. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081618] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The classification at the image-level was obtained by analyzing the pattern prevalence at cell-level. The layers of the pre-trained network and various system parameters were evaluated in order to optimize the process. This system has been developed and tested on the HEp-2 images indirect immunofluorescence images analysis (I3A) public database. To test the generalisation performance of the method, the leave-one-specimen-out procedure was used in this work. The performance analysis showed an accuracy of 96.4% and a mean class accuracy equal to 93.8%. The results have been evaluated comparing them with some of the most representative works using the same database.
Collapse
|
124
|
Chen ZH, You ZH, Li LP, Wang YB, Wong L, Yi HC. Prediction of Self-Interacting Proteins from Protein Sequence Information Based on Random Projection Model and Fast Fourier Transform. Int J Mol Sci 2019; 20:ijms20040930. [PMID: 30795499 PMCID: PMC6412412 DOI: 10.3390/ijms20040930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/30/2022] Open
Abstract
It is significant for biological cells to predict self-interacting proteins (SIPs) in the field of bioinformatics. SIPs mean that two or more identical proteins can interact with each other by one gene expression. This plays a major role in the evolution of protein‒protein interactions (PPIs) and cellular functions. Owing to the limitation of the experimental identification of self-interacting proteins, it is more and more significant to develop a useful biological tool for the prediction of SIPs from protein sequence information. Therefore, we propose a novel prediction model called RP-FFT that merges the Random Projection (RP) model and Fast Fourier Transform (FFT) for detecting SIPs. First, each protein sequence was transformed into a Position Specific Scoring Matrix (PSSM) using the Position Specific Iterated BLAST (PSI-BLAST). Second, the features of protein sequences were extracted by the FFT method on PSSM. Lastly, we evaluated the performance of RP-FFT and compared the RP classifier with the state-of-the-art support vector machine (SVM) classifier and other existing methods on the human and yeast datasets; after the five-fold cross-validation, the RP-FFT model can obtain high average accuracies of 96.28% and 91.87% on the human and yeast datasets, respectively. The experimental results demonstrated that our RP-FFT prediction model is reasonable and robust.
Collapse
Affiliation(s)
- Zhan-Heng Chen
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhu-Hong You
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li-Ping Li
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Yan-Bin Wang
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Leon Wong
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hai-Cheng Yi
- The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
125
|
Jiang L, Xiao Y, Ding Y, Tang J, Guo F. Discovering Cancer Subtypes via an Accurate Fusion Strategy on Multiple Profile Data. Front Genet 2019; 10:20. [PMID: 30804977 PMCID: PMC6370730 DOI: 10.3389/fgene.2019.00020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023] Open
Abstract
Discovering cancer subtypes is useful for guiding clinical treatment of multiple cancers. Progressive profile technologies for tissue have accumulated diverse types of data. Based on these types of expression data, various computational methods have been proposed to predict cancer subtypes. It is crucial to study how to better integrate these multiple profiles of data. In this paper, we collect multiple profiles of data for five cancers on The Cancer Genome Atlas (TCGA). Then, we construct three similarity kernels for all patients of the same cancer by gene expression, miRNA expression and isoform expression data. We also propose a novel unsupervised multiple kernel fusion method, Similarity Kernel Fusion (SKF), in order to integrate three similarity kernels into one combined kernel. Finally, we make use of spectral clustering on the integrated kernel to predict cancer subtypes. In the experimental results, the P-values from the Cox regression model and survival curve analysis can be used to evaluate the performance of predicted subtypes on three datasets. Our kernel fusion method, SKF, has outstanding performance compared with single kernel and other multiple kernel fusion strategies. It demonstrates that our method can accurately identify more accurate subtypes on various kinds of cancers. Our cancer subtype prediction method can identify essential genes and biomarkers for disease diagnosis and prognosis, and we also discuss the possible side effects of therapies and treatment.
Collapse
Affiliation(s)
- Limin Jiang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Yongkang Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yijie Ding
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC, United States
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
126
|
Zou Q, Xing P, Wei L, Liu B. Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA (NEW YORK, N.Y.) 2019; 25:205-218. [PMID: 30425123 PMCID: PMC6348985 DOI: 10.1261/rna.069112.118] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/01/2018] [Indexed: 05/20/2023]
Abstract
N6-Methyladenosine (m6A) refers to methylation modification of the adenosine nucleotide acid at the nitrogen-6 position. Many conventional computational methods for identifying N6-methyladenosine sites are limited by the small amount of data available. Taking advantage of the thousands of m6A sites detected by high-throughput sequencing, it is now possible to discover the characteristics of m6A sequences using deep learning techniques. To the best of our knowledge, our work is the first attempt to use word embedding and deep neural networks for m6A prediction from mRNA sequences. Using four deep neural networks, we developed a model inferred from a larger sequence shifting window that can predict m6A accurately and robustly. Four prediction schemes were built with various RNA sequence representations and optimized convolutional neural networks. The soft voting results from the four deep networks were shown to outperform all of the state-of-the-art methods. We evaluated these predictors mentioned above on a rigorous independent test data set and proved that our proposed method outperforms the state-of-the-art predictors. The training, independent, and cross-species testing data sets are much larger than in previous studies, which could help to avoid the problem of overfitting. Furthermore, an online prediction web server implementing the four proposed predictors has been built and is available at http://server.malab.cn/Gene2vec/.
Collapse
Affiliation(s)
- Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610051 Chengdu, China
- School of Computer Science and Technology, Tianjin University, 300350 Tianjin, China
| | - Pengwei Xing
- School of Computer Science and Technology, Tianjin University, 300350 Tianjin, China
| | - Leyi Wei
- School of Computer Science and Technology, Tianjin University, 300350 Tianjin, China
| | - Bin Liu
- School of Computer Science and Technology, Harbin Institute of Technology, 150001 Shenzhen, China
| |
Collapse
|
127
|
An Automatic HEp-2 Specimen Analysis System Based on an Active Contours Model and an SVM Classification. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9020307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The antinuclear antibody (ANA) test is widely used for screening, diagnosing, and monitoring of autoimmune diseases. The most common methods to determine ANA are indirect immunofluorescence (IIF), performed by human epithelial type 2 (HEp-2) cells, as substrate antigen. The evaluation of ANA consist an analysis of fluorescence intensity and staining patterns. This paper presents a complete and fully automatic system able to characterize IIF images. The fluorescence intensity classification was obtained by performing an image preprocessing phase and implementing a Support Vector Machines (SVM) classifier. The cells identification problem has been addressed by developing a flexible segmentation methods, based on the Hough transform for ellipses, and on an active contours model. In order to classify the HEp-2 cells, six SVM and one k-nearest neighbors (KNN)classifiers were developed. The system was tested on a public database consisting of 2080 IIF images. Unlike almost all work presented on this topic, the proposed system automatically addresses all phases of the HEp-2 image analysis process. All results have been evaluated by comparing them with some of the most representative state-of-the-art work, demonstrating the goodness of the system in the characterization of HEp-2 images.
Collapse
|
128
|
Bittrich S, Kaden M, Leberecht C, Kaiser F, Villmann T, Labudde D. Application of an interpretable classification model on Early Folding Residues during protein folding. BioData Min 2019; 12:1. [PMID: 30627219 PMCID: PMC6321665 DOI: 10.1186/s13040-018-0188-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/20/2018] [Indexed: 01/09/2023] Open
Abstract
Background Machine learning strategies are prominent tools for data analysis. Especially in life sciences, they have become increasingly important to handle the growing datasets collected by the scientific community. Meanwhile, algorithms improve in performance, but also gain complexity, and tend to neglect interpretability and comprehensiveness of the resulting models. Results Generalized Matrix Learning Vector Quantization (GMLVQ) is a supervised, prototype-based machine learning method and provides comprehensive visualization capabilities not present in other classifiers which allow for a fine-grained interpretation of the data. In contrast to commonly used machine learning strategies, GMLVQ is well-suited for imbalanced classification problems which are frequent in life sciences. We present a Weka plug-in implementing GMLVQ. The feasibility of GMLVQ is demonstrated on a dataset of Early Folding Residues (EFR) that have been shown to initiate and guide the protein folding process. Using 27 features, an area under the receiver operating characteristic of 76.6% was achieved which is comparable to other state-of-the-art classifiers. The obtained model is accessible at https://biosciences.hs-mittweida.de/efpred/. Conclusions The application on EFR prediction demonstrates how an easy interpretation of classification models can promote the comprehension of biological mechanisms. The results shed light on the special features of EFR which were reported as most influential for the classification: EFR are embedded in ordered secondary structure elements and they participate in networks of hydrophobic residues. Visualization capabilities of GMLVQ are presented as we demonstrate how to interpret the results. Electronic supplementary material The online version of this article (10.1186/s13040-018-0188-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Bittrich
- 1University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany.,2Biotechnology Center (BIOTEC) TU Dresden, Tatzberg 47/49, Dresden, 01307 Germany
| | - Marika Kaden
- 1University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| | - Christoph Leberecht
- 1University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany.,2Biotechnology Center (BIOTEC) TU Dresden, Tatzberg 47/49, Dresden, 01307 Germany
| | - Florian Kaiser
- 1University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany.,2Biotechnology Center (BIOTEC) TU Dresden, Tatzberg 47/49, Dresden, 01307 Germany
| | - Thomas Villmann
- 1University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| | - Dirk Labudde
- 1University of Applied Sciences Mittweida, Technikumplatz 17, Mittweida, 09648 Germany
| |
Collapse
|
129
|
Xu L, Liang G, Liao C, Chen GD, Chang CC. An Efficient Classifier for Alzheimer's Disease Genes Identification. Molecules 2018; 23:molecules23123140. [PMID: 30501121 PMCID: PMC6321377 DOI: 10.3390/molecules23123140] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is considered to one of 10 key diseases leading to death in humans. AD is considered the main cause of brain degeneration, and will lead to dementia. It is beneficial for affected patients to be diagnosed with the disease at an early stage so that efforts to manage the patient can begin as soon as possible. Most existing protocols diagnose AD by way of magnetic resonance imaging (MRI). However, because the size of the images produced is large, existing techniques that employ MRI technology are expensive and time-consuming to perform. With this in mind, in the current study, AD is predicted instead by the use of a support vector machine (SVM) method based on gene-coding protein sequence information. In our proposed method, the frequency of two consecutive amino acids is used to describe the sequence information. The accuracy of the proposed method for identifying AD is 85.7%, which is demonstrated by the obtained experimental results. The experimental results also show that the sequence information of gene-coding proteins can be used to predict AD.
Collapse
Affiliation(s)
- Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Guangmin Liang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chi-Chang Chang
- School of Medical Informatics, Chung Shan Medical University, Taichung 40201, Taiwan.
- IT Office, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
130
|
Xiong Y, Wang Q, Yang J, Zhu X, Wei DQ. PredT4SE-Stack: Prediction of Bacterial Type IV Secreted Effectors From Protein Sequences Using a Stacked Ensemble Method. Front Microbiol 2018; 9:2571. [PMID: 30416498 PMCID: PMC6212463 DOI: 10.3389/fmicb.2018.02571] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/09/2018] [Indexed: 11/13/2022] Open
Abstract
Gram-negative bacteria use various secretion systems to deliver their secreted effectors. Among them, type IV secretion system exists widely in a variety of bacterial species, and secretes type IV secreted effectors (T4SEs), which play vital roles in host-pathogen interactions. However, experimental approaches to identify T4SEs are time- and resource-consuming. In the present study, we aim to develop an in silico stacked ensemble method to predict whether a protein is an effector of type IV secretion system or not based on its sequence information. The protein sequences were encoded by the feature of position specific scoring matrix (PSSM)-composition by summing rows that correspond to the same amino acid residues in PSSM profiles. Based on the PSSM-composition features, we develop a stacked ensemble model PredT4SE-Stack to predict T4SEs, which utilized an ensemble of base-classifiers implemented by various machine learning algorithms, such as support vector machine, gradient boosting machine, and extremely randomized trees, to generate outputs for the meta-classifier in the classification system. Our results demonstrated that the framework of PredT4SE-Stack was a feasible and effective way to accurately identify T4SEs based on protein sequence information. The datasets and source code of PredT4SE-Stack are freely available at http://xbioinfo.sjtu.edu.cn/PredT4SE_Stack/index.php.
Collapse
Affiliation(s)
- Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiankun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Junchen Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolei Zhu
- School of Sciences, Anhui Agricultural University, Hefei, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
131
|
Qiang X, Chen H, Ye X, Su R, Wei L. M6AMRFS: Robust Prediction of N6-Methyladenosine Sites With Sequence-Based Features in Multiple Species. Front Genet 2018; 9:495. [PMID: 30410501 PMCID: PMC6209681 DOI: 10.3389/fgene.2018.00495] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/04/2018] [Indexed: 12/23/2022] Open
Abstract
As one of the well-studied RNA methylation modifications, N6-methyladenosine (m6A) plays important roles in various biological progresses, such as RNA splicing and degradation, etc. Identification of m6A sites is fundamentally important for better understanding of their functional mechanisms. Recently, machine learning based prediction methods have emerged as an effective approach for fast and accurate identification of m6A sites. In this paper, we proposed "M6AMRFS", a new machine learning based predictor for the identification of m6A sites. In this predictor, we exploited a new feature representation algorithm to encode RNA sequences with two feature descriptors (dinucleotide binary encoding and Local position-specific dinucleotide frequency), and used the F-score algorithm combined with SFS (Sequential Forward Search) to enhance the feature representation ability. To predict m6A sites, we employed the eXtreme Gradient Boosting (XGBoost) algorithm to build a predictive model. Benchmarking results showed that the proposed predictor is competitive with the state-of-the art predictors. Importantly, robust predictions for multiple species by our predictor demonstrate that our predictive models have strong generalization ability. To the best of our knowledge, M6AMRFS is the first tool that can be used for the identification of m6A sites in multiple species. To facilitate the use of our predictor, we have established a user-friendly webserver with the implementation of M6AMRFS, which is currently available in http://server.malab.cn/M6AMRFS/. We anticipate that it will be a useful tool for the relevant research of m6A sites.
Collapse
Affiliation(s)
- Xiaoli Qiang
- Institute of Computing Science and Technology, Guangzhou University, Guangzhou, China
| | - Huangrong Chen
- School of Computer Science and Technology, Tianjin University, Tianjin, China
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Ran Su
- School of Software, Tianjin University, Tianjin, China
| | - Leyi Wei
- School of Computer Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
132
|
Basith S, Manavalan B, Shin TH, Lee G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput Struct Biotechnol J 2018; 16:412-420. [PMID: 30425802 PMCID: PMC6222285 DOI: 10.1016/j.csbj.2018.10.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/04/2018] [Accepted: 10/12/2018] [Indexed: 11/27/2022] Open
Abstract
A soluble carrier growth hormone binding protein (GHBP) that can selectively and non-covalently interact with growth hormone, thereby acting as a modulator or inhibitor of growth hormone signalling. Accurate identification of the GHBP from a given protein sequence also provides important clues for understanding cell growth and cellular mechanisms. In the postgenomic era, there has been an abundance of protein sequence data garnered, hence it is crucial to develop an automated computational method which enables fast and accurate identification of putative GHBPs within a vast number of candidate proteins. In this study, we describe a novel machine-learning-based predictor called iGHBP for the identification of GHBP. In order to predict GHBP from a given protein sequence, we trained an extremely randomised tree with an optimal feature set that was obtained from a combination of dipeptide composition and amino acid index values by applying a two-step feature selection protocol. During cross-validation analysis, iGHBP achieved an accuracy of 84.9%, which was ~7% higher than the control extremely randomised tree predictor trained with all features, thus demonstrating the effectiveness of our feature selection protocol. Furthermore, when objectively evaluated on an independent data set, our proposed iGHBP method displayed superior performance compared to the existing method. Additionally, a user-friendly web server that implements the proposed iGHBP has been established and is available at http://thegleelab.org/iGHBP.
Collapse
Affiliation(s)
- Shaherin Basith
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
- Institute of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|