101
|
Manke A, Wang L, Rojanasakul Y. Pulmonary toxicity and fibrogenic response of carbon nanotubes. Toxicol Mech Methods 2013. [PMID: 23194015 DOI: 10.3109/15376516.2012.753967] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Carbon nanotubes (CNTs) have been a subject of intensive research for a wide range of applications. However, because of their extremely small size and light weight, CNTs are readily inhaled into human lungs resulting in increased rates of pulmonary disorders, most notably fibrosis. Several studies have demonstrated the fibrogenic effects of CNTs given their ability to translocate into the surrounding areas in the lung causing granulomatous lesions and interstitial and sub-pleural fibrosis. However, the mechanisms underlying the disease process remain obscure due to the lack of understanding of the cellular interactions and molecular targets involved. Interestingly, certain physicochemical properties of CNTs have been shown to affect their respiratory toxicity, thereby becoming significant determinants of fibrogenesis. CNT-induced fibrosis involves a multitude of cell types and is characterized by the early onset of inflammation, oxidative stress and accumulation of extracellular matrix. Increased reactive oxygen species activate various cytokine/growth factor signaling cascades resulting in increased expression of inflammatory and fibrotic genes. Profibrotic growth factors and cytokines contribute directly to fibroblast proliferation and collagen production. Given the role of multiple players during the pathogenesis of CNT-induced fibrosis, the objective of this review is to summarize the key findings and discuss major cellular and molecular events governing pulmonary fibrosis. We also discuss the physicochemical properties of CNTs and their effects on pulmonary toxicities as well as various biological factors contributing to the development of fibrosis.
Collapse
Affiliation(s)
- Amruta Manke
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
102
|
Kovacic P, Somanathan R. Nanoparticles: toxicity, radicals, electron transfer, and antioxidants. Methods Mol Biol 2013; 1028:15-35. [PMID: 23740111 DOI: 10.1007/978-1-62703-475-3_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, nanoparticles have received increasing attention in research and technology, including a variety of practical applications. The bioactivity appears to be related to the small particle size, in addition to inherent chemical activity as electron transfer (ET) agents, generators of reactive oxygen species (ROS) with subsequent oxidative stress (OS), and as antioxidants (AOs). The mechanism of toxicity, therapeutic action, and AO property is addressed based on the ET-ROS-OS approach. There are several main classes of ET functionalities, namely, quinones (or phenolic precursors), metal compounds, aromatic nitro compounds (or reduction products), and imine or iminium species. Most of the nanospecies fall within the metal category. Cell signaling is also discussed. This review discusses recent developments based on ET-ROS-OS-AO framework.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, USA
| | | |
Collapse
|
103
|
Genotoxic and mutagenic effects of lipid-coated CdSe/ZnS quantum dots. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 750:129-38. [DOI: 10.1016/j.mrgentox.2012.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/31/2012] [Accepted: 10/20/2012] [Indexed: 11/22/2022]
|
104
|
Lindberg HK, Falck GCM, Singh R, Suhonen S, Järventaus H, Vanhala E, Catalán J, Farmer PB, Savolainen KM, Norppa H. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology 2012; 313:24-37. [PMID: 23266321 DOI: 10.1016/j.tox.2012.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/11/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022]
Abstract
Although some types of carbon nanotubes (CNTs) have been described to induce mesothelioma in rodents and genotoxic effects in various cell systems, there are few previous studies on the genotoxicity of CNTs in mesothelial cells. Here, we examined in vitro DNA damage induction by short multi-wall CNTs (MWCNTs; 10-30 nm × 1-2 μm) and single-wall CNTs (SWCNTs; >50% SWCNTs, ~40% other CNTs; <2 nm × 1-5 μm) in human mesothelial (MeT-5A) cells and bronchial epithelial (BEAS 2B) cells, using the single cell gel electrophoresis (comet) assay and the immunoslot blot assay for the detection of malondialdehyde (M1dG) DNA adducts. In BEAS 2B cells, we also studied the induction of micronuclei (MN) by the CNTs using the cytokinesis-block method. The cells were exposed to the CNTs (5-200 μg/cm(2), corresponding to 19-760 μg/ml) for 24 and 48h in the comet assay and for 48 and 72 h in the MN and M1dG assays. Transmission electron microscopy (TEM) showed more MWCNT fibres and SWCNT clusters in BEAS 2B than MeT-5A cells, but no significant differences were seen in intracellular dose expressed as area of SWCNT clusters between TEM sections of the cell lines. In MeT-5A cells, both CNTs caused a dose-dependent induction of DNA damage (% DNA in comet tail) in the 48-h treatment and SWCNTs additionally in the 24-h treatment, with a statistically significant increase at 40 μg/cm(2) of SWCNTs and (after 48 h) 80 μg/cm(2) of both CNTs. SWCNTs also elevated the level of M1dG DNA adducts at 1, 5, 10 and 40 μg/cm(2) after the 48-h treatment, but both CNTs decreased M1dG adduct level at several doses after the 72-h treatment. In BEAS 2B cells, SWCNTs induced a statistically significant increase in DNA damage at 80 and 120 μg/cm(2) after the 24-h treatment and in M1dG adduct level at 5 μg/cm(2) after 48 h and 10 and 40 μg/cm(2) after 72 h; MWCNTs did not affect the level of DNA damage but produced a decrease in M1dG adducts in the 72-h treatment. The CNTs did not affect the level of MN. In conclusion, MWCNTs and SWCNTs induced DNA damage in MeT-5A cells but showed a lower (SWCNTs) or no (MWCNTs) effect in BEAS 2B cells, suggesting that MeT-5A cells were more sensitive to the DNA-damaging effect of CNTs than BEAS 2B cells, despite the fact that more CNT fibres or clusters were seen in BEAS 2B than MeT-5A cells. M1dG DNA adducts were induced by SWCNTs but decreased after a 3-day exposure to MWCNTs and (in MeT-5A cells) SWCNTs, indicating that CNTs may lead to alterations in oxidative effects within the cells. Neither of the CNTs was able to produce chromosomal damage (MN).
Collapse
Affiliation(s)
- Hanna K Lindberg
- Nanosafety Research Center, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland; Safe New Technologies, Work Environment Development, Finnish Institute of Occupational Health, FI-00250 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Liu W, Chaurand P, Di Giorgio C, De Méo M, Thill A, Auffan M, Masion A, Borschneck D, Chaspoul F, Gallice P, Botta A, Bottero JY, Rose J. Influence of the length of imogolite-like nanotubes on their cytotoxicity and genotoxicity toward human dermal cells. Chem Res Toxicol 2012; 25:2513-22. [PMID: 22989002 DOI: 10.1021/tx3003214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physical-chemical parameters such as purity, structure, chemistry, length, and aspect ratio of nanoparticles (NPs) are linked to their toxicity. Here, synthetic imogolite-like nanotubes with a set chemical composition but various sizes and shapes were used as models to investigate the influence of these physical parameters on the cyto- and genotoxicity and cellular uptake of NPs. The NPs were characterized using X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and atomic force microscopy (AFM). Imogolite precursors (PR, ca. 5 nm curved platelets), as well as short tubes (ST, ca. 6 nm) and long tubes (LT, ca. 50 nm), remained stable in the cell culture medium. Internalization into human fibroblasts was observed only for the small particles PR and ST. None of the tested particles induced a significant cytotoxicity up to a concentration of 10(-1) mg·mL(-1). However, small sized NPs (PR and ST) were found to be genotoxic at very low concentration 10(-6) mg·mL(-1), while LT particles exhibited a weak genotoxicity. Our results indicate that small size NPs (PR, ST) were able to induce primary lesions of DNA at very low concentrations and that this DNA damage was exclusively induced by oxidative stress. The higher aspect ratio LT particles exhibited a weaker genotoxicity, where oxidative stress is a minor factor, and the likely involvement of other mechanisms. Moreover, a relationship among cell uptake, particle aspect ratio, and DNA damage of NPs was observed.
Collapse
Affiliation(s)
- Wei Liu
- CEREGE, UMR 7330, CNRS-Aix Marseille University, BP 80, 13545 Aix en Provence, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Rodriguez-Fernandez L, Valiente R, Gonzalez J, Villegas JC, Fanarraga ML. Multiwalled carbon nanotubes display microtubule biomimetic properties in vivo, enhancing microtubule assembly and stabilization. ACS NANO 2012; 6:6614-6625. [PMID: 22769231 DOI: 10.1021/nn302222m] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microtubules are hollow protein cylinders of 25 nm diameter which are implicated in cytokinetics and proliferation in all eukaryotic cells. Here we demonstrate in vivo how multiwalled carbon nanotubes (MWCNTs) interact with microtubules in human cancer cells (HeLa) blocking mitosis and leading to cell death by apoptosis. Our data suggest that, inside the cells, MWCNTs display microtubule biomimetic properties, assisting and enhancing noncentrosomal microtubule polymerization and stabilization. These features might be useful for developing a revolutionary generation of chemotherapeutic agents based on nanomaterials.
Collapse
|
107
|
Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol 2012; 63:188-95. [DOI: 10.1016/j.yrtph.2012.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
108
|
Naya M, Kobayashi N, Endoh S, Maru J, Honda K, Ema M, Tanaka J, Fukumuro M, Hasegawa K, Nakajima M, Hayashi M, Nakanishi J. In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol 2012; 64:124-9. [PMID: 22735368 DOI: 10.1016/j.yrtph.2012.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 01/06/2023]
Abstract
The genotoxicity of single-wall carbon nanotubes (SWCNTs) was evaluated in vivo using the comet assay after intratracheal instillation in rats. The SWCNTs were instilled at a dosage of 0.2 or 1.0mg/kg body weight (single instillation group) and 0.04 or 0.2mg/kg body weight once a week for 5weeks (repeated instillation group). As a negative control, 1% Tween 80 was instilled in a similar manner. As a positive control, ethyl methanesulfonate (EMS) at 500mg/kg was administered once orally 3h prior to dissection. Histopathologically, inflammation in the lung was observed for all the SWCNTs in both single and repeated groups. In the comet assay, there was no increase in% tail DNA in any of the SWCNT-treated groups. In the EMS-treated groups, there was a significant increase in% tail DNA compared with the negative control group. The present study indicated that a single intratracheal instillation of SWCNTs (1.0mg/kg) or repeated intratracheal instillation (0.2mg/kg) once a week for five weeks induced a clear inflammatory response (hemorrhage in the alveolus, infiltration of alveolar macrophages and neutrophiles), but no DNA damage, in the lungs in rats. Under the conditions of the test, SWCNTs were not genotoxic in the comet assay following intratracheal instillation in rats.
Collapse
Affiliation(s)
- Masato Naya
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Doak SH, Manshian B, Jenkins GJS, Singh N. In vitro genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines. Mutat Res 2012; 745:104-11. [PMID: 21971291 PMCID: PMC4028084 DOI: 10.1016/j.mrgentox.2011.09.013] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 04/13/2023]
Abstract
There is a pressing requirement to define a hazard identification and risk management strategy for nanomaterials due to the rapid growth in the nanotechnology industry and their promise of life-style revolutions through the development of wide-ranging nano-containing consumer products. Consequently, a battery of well defined and appropriate in vitro assays to assess a number of genotoxicity endpoints is required to minimise extensive and costly in vivo testing. However, the validity of the established protocols in current OECD recognised genotoxicity assays for nanomaterials is currently being questioned. In this report, we therefore consider the in vitro OECD genotoxicity test battery including the Ames, micronucleus and HPRT forward mutation assays, and their potential role in the safety assessment of nanomaterial induced DNA damage in vitro.
Collapse
Affiliation(s)
- S H Doak
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK.
| | | | | | | |
Collapse
|
110
|
Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, Benkovic SA, Lowry DT, Murray AR, Kisin ER, Siegrist KJ, Battelli L, Mastovich J, Sturgeon JL, Bunker KL, Shvedova AA, Reynolds SH. Single-walled carbon nanotube-induced mitotic disruption. Mutat Res 2012; 745:28-37. [PMID: 22178868 PMCID: PMC4696046 DOI: 10.1016/j.mrgentox.2011.11.017] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 04/08/2023]
Abstract
Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm(2) single-walled carbon nanotubes (SWCNT). To investigate mitotic spindle aberrations at concentrations anticipated in exposed workers, primary and immortalized human airway epithelial cells were exposed to SWCNT for 24-72 h at doses equivalent to 20 weeks of exposure at the Permissible Exposure Limit for particulates not otherwise regulated. We have now demonstrated fragmented centrosomes, disrupted mitotic spindles and aneuploid chromosome number at those doses. The data further demonstrated multipolar mitotic spindles comprised 95% of the disrupted mitoses. The increased multipolar mitotic spindles were associated with an increased number of cells in the G2 phase of mitosis, indicating a mitotic checkpoint response. Nanotubes were observed in association with mitotic spindle microtubules, the centrosomes and condensed chromatin in cells exposed to 0.024, 0.24, 2.4 and 24 μg/cm(2) SWCNT. Three-dimensional reconstructions showed carbon nanotubes within the centrosome structure. The lower doses did not cause cytotoxicity or reduction in colony formation after 24h; however, after three days, significant cytotoxicity was observed in the SWCNT-exposed cells. Colony formation assays showed an increased proliferation seven days after exposure. Our results show significant disruption of the mitotic spindle by SWCNT at occupationally relevant doses. The increased proliferation that was observed in carbon nanotube-exposed cells indicates a greater potential to pass the genetic damage to daughter cells. Disruption of the centrosome is common in many solid tumors including lung cancer. The resulting aneuploidy is an early event in the progression of many cancers, suggesting that it may play a role in both tumorigenesis and tumor progression. These results suggest caution should be used in the handling and processing of carbon nanotubes.
Collapse
Affiliation(s)
- L M Sargent
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang Y, Biris AS, Heflich RH, Chen T. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 745:4-10. [DOI: 10.1016/j.mrgentox.2011.11.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 04/08/2023]
|
112
|
Lindberg HK, Falck GCM, Catalán J, Koivisto AJ, Suhonen S, Järventaus H, Rossi EM, Nykäsenoja H, Peltonen Y, Moreno C, Alenius H, Tuomi T, Savolainen KM, Norppa H. Genotoxicity of inhaled nanosized TiO2 in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 745:58-64. [DOI: 10.1016/j.mrgentox.2011.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 10/25/2011] [Indexed: 12/19/2022]
|
113
|
Schulte PA, Kuempel ED, Zumwalde RD, Geraci CL, Schubauer-Berigan MK, Castranova V, Hodson L, Murashov V, Dahm MM, Ellenbecker M. Focused actions to protect carbon nanotube workers. Am J Ind Med 2012; 55:395-411. [PMID: 22392774 DOI: 10.1002/ajim.22028] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2012] [Indexed: 12/16/2022]
Abstract
There is still uncertainty about the potential health hazards of carbon nanotubes (CNTs) particularly involving carcinogenicity. However, the evidence is growing that some types of CNTs and nanofibers may have carcinogenic properties. The critical question is that while the carcinogenic potential of CNTs is being further investigated, what steps should be taken to protect workers who face exposure to CNTs, current and future, if CNTs are ultimately found to be carcinogenic? This paper addresses five areas to help focus action to protect workers: (i) review of the current evidence on the carcinogenic potential of CNTs; (ii) role of physical and chemical properties related to cancer development; (iii) CNT doses associated with genotoxicity in vitro and in vivo; (iv) workplace exposures to CNT; and (v) specific risk management actions needed to protect workers.
Collapse
Affiliation(s)
- Paul A Schulte
- National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Kim JS, Sung JH, Song KS, Lee JH, Kim SM, Lee GH, Ahn KH, Lee JS, Shin JH, Park JD, Yu IJ. Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system. Toxicol Sci 2012; 128:439-48. [PMID: 22543278 DOI: 10.1093/toxsci/kfs161] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carbon nanotubes (CNTs) have specific physico-chemical properties that are useful for the electronics, automotive, and construction industries. Yet, despite their many advantages, there is a current lack of available information on the human health and environmental hazards of CNTs. For this reason, the current study investigated the inhalation toxicity potential of multiwall CNTs (MWCNTs). Eight-week-old rats were divided into four groups (10 rats in each group), the fresh-air control (0mg/m(3)), low-concentration group (0.16mg/m(3)), middle-concentration group (0.34mg/m(3)), and high-concentration group (0.94mg/m(3)), and the whole body was exposed to MWCNTs for 5 days (6h/day). Lung cells were then isolated from five rats in each group on day 0 and 1 month after the 5-day exposure, respectively. The MWCNTs were generated by a newly designed generation system, and the MWCNT concentrations in the exposure chambers monitored in accordance with National Institute for Occupational Safety and Health (NIOSH) 0500 using a membrane filter. The MWCNTs were also sampled for an elemental carbon concentration analysis using a glass filter. The animals exhibited no significant body weight changes, abnormal clinical signs, or mortality during the experiment. A single-cell gel electrophoresis assay (Comet assay) was conducted to determine the DNA damage in lung cells obtained from the right lung. As a result, the Olive tail moments were 23.00±1.76, 30.39±1.96, 22.96±1.26, and 33.98±2.21 for the control, low-, middle-, and high-concentration groups, respectively, on day 0 postexposure. Meanwhile, 1 month postexposure, the Olive tail moments were 25.00±2.71, 28.39±3.55, 22.56±1.36, and 31.97±3.16 for the control, low-, middle-, and high-concentration groups, respectively. Thus, the MWCNTs caused a statistically significant increase in lung DNA damage at high concentration (0.94mg/m(3)) when compared with the negative control group on day 0 and 1 month postexposure.
Collapse
Affiliation(s)
- Jin Sik Kim
- Bioconvergence Department, Korea Conformity Laboratories, 7-44, Songdo-dong, Yeonsu-gu, Incheon, 406-840, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, Goto S, Masuda S, Ogo S, Kawanishi M, Yagi T, Matsuda T, Watanabe M, Wakabayashi K. Genotoxicity of multi-walled carbon nanotubes in bothin vitroandin vivoassay systems. Nanotoxicology 2012; 7:452-61. [DOI: 10.3109/17435390.2012.674571] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
116
|
Genotoxicity investigations on nanomaterials. Arch Toxicol 2012; 86:985-94. [DOI: 10.1007/s00204-012-0838-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 03/01/2012] [Indexed: 11/26/2022]
|
117
|
Hirano S, Fujitani Y, Furuyama A, Kanno S. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 Cells. Toxicol Appl Pharmacol 2012; 259:96-103. [DOI: 10.1016/j.taap.2011.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/30/2011] [Accepted: 12/09/2011] [Indexed: 10/14/2022]
|
118
|
Qu C, Wang L, He J, Tan J, Liu W, Zhang S, Zhang C, Wang Z, Jiao S, Liu S, Jiang G. Carbon nanotubes provoke inflammation by inducing the pro-inflammatory genes IL-1β and IL-6. Gene 2012; 493:9-12. [DOI: 10.1016/j.gene.2011.11.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 11/14/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
|
119
|
Guo NL, Wan YW, Denvir J, Porter DW, Pacurari M, Wolfarth MG, Castranova V, Qian Y. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:1129-53. [PMID: 22891886 PMCID: PMC3422779 DOI: 10.1080/15287394.2012.699852] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Concerns over the potential for multiwalled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n = 160) exposed to 0, 10, 20, 40, or 80 μg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 d postexposure. By using pairwise statistical analysis of microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5-fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at d 56 postexposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at d 56 postexposure to 10 μg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n = 256) and test set (n = 186). Furthermore, both gene signatures were associated with human lung cancer risk (n = 164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace.
Collapse
Affiliation(s)
- Nancy L Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
- Department of Community Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506
| | - Ying-Wooi Wan
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - James Denvir
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Dale W Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Maricica Pacurari
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Michael G Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Vincent Castranova
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| |
Collapse
|
120
|
Snyder-Talkington BN, Qian Y, Castranova V, Guo NL. New perspectives for in vitro risk assessment of multiwalled carbon nanotubes: application of coculture and bioinformatics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:468-492. [PMID: 23190270 PMCID: PMC3513758 DOI: 10.1080/10937404.2012.736856] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanotechnology is a rapidly expanding field with wide application for industrial and medical use; therefore, understanding the toxicity of engineered nanomaterials is critical for their commercialization. While short-term in vivo studies have been performed to understand the toxicity profile of various nanomaterials, there is a current effort to shift toxicological testing from in vivo observational models to predictive and high-throughput in vitro models. However, conventional monoculture results of nanoparticle exposure are often disparate and not predictive of in vivo toxic effects. A coculture system of multiple cell types allows for cross-talk between cells and better mimics the in vivo environment. This review proposes that advanced coculture models, combined with integrated analysis of genome-wide in vivo and in vitro toxicogenomic data, may lead to development of predictive multigene expression-based models to better determine toxicity profiles of nanomaterials and consequent potential human health risk due to exposure to these compounds.
Collapse
Affiliation(s)
- Brandi N. Snyder-Talkington
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Vincent Castranova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Nancy L. Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
121
|
Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. JOURNAL OF HAZARDOUS MATERIALS 2011; 197:327-336. [PMID: 21999988 DOI: 10.1016/j.jhazmat.2011.09.090] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 05/26/2023]
Abstract
Increasing use of multiwalled carbon nanotubes (MWCNT) necessitates an improved understanding of their potential impact on environment health. In the present study we evaluated the genotoxicity of MWCNT on plant and mammalian test systems. Genotoxic responses such as chromosomal aberrations and DNA strand breakages were studied in Allium cepa, human lymphocytes, mouse bone marrow cells and pBR322 plasmid DNA. Results showed that MWCNT could cause chromosomal aberrations, DNA fragmentation and apoptosis in Allium root cells that could be correlated with the internalization of MWCNT in the plant cells. In human lymphocytes significant genotoxic response was observed at the concentration 2 μg/ml. Higher concentrations led to a decrease in values of the tail DNA percent that may be due to the formation of crosslinks. Annexin V-FITC-PI staining indicated only a small percentage of cells were undergoing apoptosis. Genotoxic effects were shown by micronuclei (MN) frequencies in experiments on mouse bone marrow cells. In the cell free DNA system (plasmid pBR322), a strong correlation between DNA strand break and concentration was observed. Based on the findings of the present study MWCNT may have significant impact on genomic activities.
Collapse
Affiliation(s)
- Manosij Ghosh
- Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, India.
| | | | | | | |
Collapse
|
122
|
Patlolla AK, Berry A, Tchounwou PB. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol Cell Biochem 2011; 358:189-99. [PMID: 21725842 PMCID: PMC3768273 DOI: 10.1007/s11010-011-0934-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/21/2011] [Indexed: 12/21/2022]
Abstract
Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanisms behind the interaction of these particles with cells and their toxicity. The aim of this study was to assess the effects, after intraperitoneal (ip) injection, of functionalized multi-walled carbon nanotubes (MWCNT) (carboxyl groups) on various hepatotoxicity and oxidative stress biomarkers (ROS, LHP, ALT, AST, ALP, and morphology of liver) in the mouse model. The mice were dosed ip at 0.25, 0.5, and 0.75 mg/kg/day for 5 days of purified/functionalized MWCNTs and two controls (negative; saline and positive; carbon black 0.75 mg/kg) as appropriate. Samples were collected 24 h after the fifth day treatment following standard protocols. Exposure to carboxylated functionalized MWCNT; the body-weight gain of the mice decreased, induced reactive oxygen species (ROS), and enhanced the activities of serum amino-transferases (ALT/AST), alkaline phosphatases (ALP), and concentration of lipid hydro peroxide compared to control. Histopathology of exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared to controls. The cellular findings reported here do suggest that purified carboxylated functionalized MWCNT has the potential to induce hepatotoxicity in Swiss-Webster mice through activation of the mechanisms of oxidative stress, which warrant in vivo animal exposure studies. However, more studies of functionalization in the in vivo toxicity of MWCNTs are required and parallel comparison is preferred.
Collapse
Affiliation(s)
- Anita K Patlolla
- Molecular Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, CSET, Jackson State University, Jackson, MS, USA.
| | | | | |
Collapse
|
123
|
Naya M, Kobayashi N, Mizuno K, Matsumoto K, Ema M, Nakanishi J. Evaluation of the genotoxic potential of single-wall carbon nanotubes by using a battery of in vitro and in vivo genotoxicity assays. Regul Toxicol Pharmacol 2011; 61:192-8. [DOI: 10.1016/j.yrtph.2011.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 01/29/2023]
|
124
|
Catalán J, Järventaus H, Vippola M, Savolainen K, Norppa H. Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytesin vitro. Nanotoxicology 2011; 6:825-36. [DOI: 10.3109/17435390.2011.625130] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
125
|
Srivastava RK, Rahman Q, Kashyap MP, Lohani M, Pant AB. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549. PLoS One 2011; 6:e25767. [PMID: 21980536 PMCID: PMC3183081 DOI: 10.1371/journal.pone.0025767] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022] Open
Abstract
We study the ameliorative potential of dimetylthiourea (DMTU), an OH• radical trapper and N-acetylcysteine (NAC), a glutathione precursor/H2O2 scavenger against titanium dioxide nanoparticles (TiO2-NPs) and multi-walled carbon nanotubes (MWCNTs) induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml) of either of TiO2-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure), while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure). Investigations were carried out for cell viability, generation of reactive oxygen species (ROS), micronuclei (MN), and expression of markers of oxidative stress (HSP27, CYP2E1), genotoxicity (P53) and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d) activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO2-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO2-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.
Collapse
Affiliation(s)
- Ritesh Kumar Srivastava
- Indian Institute of Toxicology Research, Lucknow, India
- Council of Scientific and Industrial Research, New Delhi, India
| | - Qamar Rahman
- Department of Biotechnology, Integral University, Lucknow, India
| | - Mahendra Pratap Kashyap
- Indian Institute of Toxicology Research, Lucknow, India
- Council of Scientific and Industrial Research, New Delhi, India
| | - Mohtashim Lohani
- Department of Biotechnology, Integral University, Lucknow, India
| | - Aditya Bhushan Pant
- Indian Institute of Toxicology Research, Lucknow, India
- Council of Scientific and Industrial Research, New Delhi, India
- * E-mail:
| |
Collapse
|
126
|
Shi D, Bedford NM, Cho HS. Engineered multifunctional nanocarriers for cancer diagnosis and therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2549-2567. [PMID: 21648074 DOI: 10.1002/smll.201100436] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/23/2011] [Indexed: 05/30/2023]
Abstract
This article reviews advances in the design and development of multifunctional carbon-based and/or magnetic nanoparticle systems (or simply 'nanocarriers') for early cancer diagnosis and spatially and temporally controlled therapy. The critical issues in cancer diagnosis and treatment are addressed based on novel nanotechnologies such as real-time in-vivo imaging, drug storage and release, and specific cancer-cell targeting. The implementation of nanocarriers into animal models and the subsequent effectiveness in treating tumors is also reviewed. Recommendations for future research are given.
Collapse
Affiliation(s)
- Donglu Shi
- The Institute for Advanced Materials and Nano Biomedicine, Tongji University, Shanghai 200092, China.
| | | | | |
Collapse
|
127
|
Pacurari M, Qian Y, Porter DW, Wolfarth M, Wan Y, Luo D, Ding M, Castranova, Guo NL. Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol Appl Pharmacol 2011; 255:18-31. [PMID: 21624382 PMCID: PMC3148292 DOI: 10.1016/j.taap.2011.05.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n=80) exposed to 0, 10, 20, 40, or 80μg of MWCNT by pharyngeal aspiration at 7 and 56days post-exposure using quantitative PCR assays. At 7 and 56days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7days post-exposure were attenuated at 56days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs.
Collapse
Affiliation(s)
- M Pacurari
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
| | - Y Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - DW Porter
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - M Wolfarth
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Y Wan
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
| | - D Luo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
| | - M Ding
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Castranova
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - NL Guo
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
- Department of Community Medicine, School of Medicine, West Virginia University, Morgantown, WV 26506-9190
| |
Collapse
|
128
|
Zhang F, Wang N, Kong J, Dai J, Chang F, Feng G, Bi S. Multi-walled carbon nanotubes decrease lactate dehydrogenase activity in enzymatic reaction. Bioelectrochemistry 2011; 82:74-8. [DOI: 10.1016/j.bioelechem.2011.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 03/19/2011] [Accepted: 04/21/2011] [Indexed: 11/25/2022]
|
129
|
Wadhwa S, Rea C, O'Hare P, Mathur A, Roy SS, Dunlop PSM, Byrne JA, Burke G, Meenan B, McLaughlin JA. Comparative in vitro cytotoxicity study of carbon nanotubes and titania nanostructures on human lung epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:56-61. [PMID: 21601355 DOI: 10.1016/j.jhazmat.2011.04.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 05/30/2023]
Abstract
The aim of this study is to assess in vitro cytotoxic effects of titania nanostructures and carbon nanotubes (CNTs) by exposing A549 lung epithelial cell line to these materials. Titania nanotubes (TiNTs) were grown by hydrothermal treatment of TiO(2) nanoparticles, followed by annealing them at 400°C. The titania nanostructures obtained on annealing (mixture of nanotubes and nanorods) were hollow and open ended, containing 3-5 layers of titania sheets, with an internal diameter ∼3-5 nm and external diameter ∼8-10 nm, and a specific surface area of 265 m(2)/g. As-supplied single walled (SWCNTs) and microwave plasma enhanced chemical vapour deposition (MPCVD) grown multi walled carbon nanotubes (MWCNTs) were used in this study. The lengths and diameters of the SWCNTs were 5-10nm and 0.5-3 nm respectively. The lengths and diameters of the MWCNTs were 25-30 μm and 10-30 nm respectively. The cell viability was evaluated using the MTT (3-(4,-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium) assay. No significant cytotoxic effects of titania nanostructures were observed over a period of a week of testing time, while the presence of CNTs in some cases demonstrated significant cytotoxic effects. Finally, possible reason of cytotoxicity is discussed in the light of microstructures of materials.
Collapse
Affiliation(s)
- S Wadhwa
- Nanotechnology and Integrated Bio-Engineering Center, School of Engineering, University of Ulster, Jordanstown, Co Antrim, Northern Ireland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kisin ER, Murray A, Sargent L, Lowry D, Chirila M, Siegrist K, Schwegler-Berry D, Leonard S, Castranova V, Fadeel B, Kagan V, Shvedova A. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 2011; 252:1-10. [PMID: 21310169 PMCID: PMC5014234 DOI: 10.1016/j.taap.2011.02.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/28/2011] [Accepted: 02/01/2011] [Indexed: 12/21/2022]
Abstract
The production of carbon nanofibers and nanotubes (CNF/CNT) and their composite products is increasing globally. CNF are generating great interest in industrial sectors such as energy production and electronics, where alternative materials may have limited performance or are produced at a much higher cost. However, despite the increasing industrial use of carbon nanofibers, information on their potential adverse health effects is limited. In the current study, we examine the cytotoxic and genotoxic potential of carbon-based nanofibers (Pyrograf®-III) and compare this material with the effects of asbestos fibers (crocidolite) or single-walled carbon nanotubes (SWCNT). The genotoxic effects in the lung fibroblast (V79) cell line were examined using two complementary assays: the comet assay and micronucleus (MN) test. In addition, we utilized fluorescence in situ hybridization to detect the chromatin pan-centromeric signals within the MN indicating their origin by aneugenic (chromosomal malsegregation) or clastogenic (chromosome breakage) mechanisms. Cytotoxicity tests revealed a concentration- and time-dependent loss of V79 cell viability after exposure to all tested materials in the following sequence: asbestos>CNF>SWCNT. Additionally, cellular uptake and generation of oxygen radicals was seen in the murine RAW264.7 macrophages following exposure to CNF or asbestos but not after administration of SWCNT. DNA damage and MN induction were found after exposure to all tested materials with the strongest effect seen for CNF. Finally, we demonstrated that CNF induced predominantly centromere-positive MN in primary human small airway epithelial cells (SAEC) indicating aneugenic events. Further investigations are warranted to elucidate the possible mechanisms involved in CNF-induced genotoxicity.
Collapse
Affiliation(s)
- E. R. Kisin
- Pathology and Physiology Research Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - A.R. Murray
- Pathology and Physiology Research Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - L. Sargent
- Toxicology and Molecular Biology Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - D. Lowry
- Toxicology and Molecular Biology Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - M. Chirila
- Exposure Assessment Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - K.J. Siegrist
- Toxicology and Molecular Biology Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - D. Schwegler-Berry
- Pathology and Physiology Research Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - S. Leonard
- Pathology and Physiology Research Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - V. Castranova
- Pathology and Physiology Research Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| | - B. Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - V.E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA
| | - A.A. Shvedova
- Pathology and Physiology Research Branch, Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV
| |
Collapse
|
131
|
Gonzalez L, Sanderson BJS, Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 2011; 26:185-91. [PMID: 21164201 DOI: 10.1093/mutage/geq088] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The issue of appropriate testing strategies has been raised for the genotoxicity assessment of nanomaterials. Recently, efforts have been made to evaluate the adequacy of Organisation for Economic Co-operation and Development-standardised tests to assess the genotoxicity of nanomaterials. The aim of this review was to examine whether the current guideline for the in vitro micronucleus (MN) assay is applicable for testing nanomaterials. From a Pubmed literature search, 21 available studies were identified for analysis. We reviewed all protocols used for testing nanomaterials with the in vitro MN assay. All studies were categorised based on the particle type and size. Different aspects of the protocols were evaluated such as the exposure (duration and doses), the cytochalasin-B treatment, serum levels and cytotoxicity assessment. Sixteen of the 21 studies demonstrated increased frequencies of MN. Some recommendations regarding the protocol were formulated to maximise sensitivity and avoid false negatives. Determination of the cellular dose was advised for a better interpretation of MN frequency results. The level of serum can modulate the cellular response, therefore the serum percentage used should enable cell growth and proliferation and a maximal sensitivity of the assay. Furthermore, different types of cytochalasin-B treatment were used, co-treatment, post-treatment and delayed co-treatment. In order to avoid decreased cellular uptake as a consequence of actin inhibition, post-treatment or delayed co-treatment is suggested. Exposure during mitosis should be recommended to allow contact with the chromatin or mitotic apparatus for nanomaterials that are unable to cross the nuclear membrane. With these adaptations, the in vitro MN assay can be recommended for genotoxicity testing of nanomaterials.
Collapse
Affiliation(s)
- L Gonzalez
- Laboratorium voor Cellulaire Genetica, Department of Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | |
Collapse
|
132
|
Abstract
NMs (nanomaterials), defined as materials with at least one dimension smaller than 100 nm, are able to induce genotoxic effects. One of the hypotheses of the mode-of-action in which they exert their genotoxic potential is to mechanically interfere with subcellular structures, in particular the microtubules. In the present paper, we review studies exploring interactions between NMs and tubulin; therefore a PubMed literature search was performed. From this search 12 studies, applying both acellular and cellular assays, were retrieved and are summarized according to endpoint and particle type. These studies show that there are interactions between different types of NMs and tubulins in both acellular and cellular systems. For several types of NMs, the multi-walled carbon nanotubes, amorphous SiO(2), TiO(2) and CoCr, an induction of aneuploidy was observed in vitro. There is, therefore, a critical need to assess the capacity of NMs to interfere with the cytoskeleton, and in particular the tubulins. This might require definition of relevant dosimetry, adaptations of some testing protocols, possibly development of new methodologies and studies on a larger size-range of NMs.
Collapse
|
133
|
Yacobi NR, Fazllolahi F, Kim YH, Sipos A, Borok Z, Kim KJ, Crandall ED. Nanomaterial interactions with and trafficking across the lung alveolar epithelial barrier: implications for health effects of air-pollution particles. AIR QUALITY, ATMOSPHERE, & HEALTH 2011; 4:65-78. [PMID: 25568662 PMCID: PMC4283834 DOI: 10.1007/s11869-010-0098-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Studies on the health effects of air-pollution particles suggest that injury may result from inhalation of airborne ultrafine particles (<100 nm in diameter). Engineered nanomaterials (<100 nm in at least one dimension) may also be harmful if inhaled. Nanomaterials deposited on the respiratory epithelial tract are thought to cross the air-blood barrier, especially via the expansive alveolar region, into the systemic circulation to reach end organs (e.g., myocardium, liver, pancreas, kidney, and spleen). Since ambient ultrafine particles are difficult to track, studies of defined engineered nanomaterials have been used to obtain valuable information on how nanomaterials interact with and traffic across the air-blood barrier of mammalian lungs. Since specific mechanistic information on how nanomaterials interact with the lung is difficult to obtain using in vivo or ex vivo lungs due to their complex anatomy, in vitro alveolar epithelial models have been of considerable value in determining nanomaterial-lung interactions. In this review, we provide information on mechanisms underlying lung alveolar epithelial injury caused by various nanomaterials and on nanomaterial trafficking across alveolar epithelium that may lead to end-organ injury.
Collapse
Affiliation(s)
- Nazanin R. Yacobi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Farnoosh Fazllolahi
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| | - Yong Ho Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arnold Sipos
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Kwang-Jin Kim
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Physiology and Biophysics, University of Southern California, Los Angeles, CA 90033, USA. Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033, USA. Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Edward D. Crandall
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Department of Medicine, University of Southern California, IRD 620, 2020 Zonal Avenue, Los Angeles, CA 90033, USA. Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA. Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
134
|
Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, Kaiser JP, Krug HF, Rothen-Rutishauser B, Wick P. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett 2011; 200:176-86. [DOI: 10.1016/j.toxlet.2010.11.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 12/15/2022]
|
135
|
Yan L, Zhao F, Li S, Hu Z, Zhao Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. NANOSCALE 2011; 3:362-382. [PMID: 21157592 DOI: 10.1039/c0nr00647e] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The toxicity grade for a bulk material can be approximately determined by three factors (chemical composition, dose, and exposure route). However, for a nanomaterial it depends on more than ten factors. Interestingly, some nano-factors (like huge surface adsorbability, small size, etc.) that endow nanomaterials with new biomedical functions are also potential causes leading to toxicity or damage to the living organism. Is it possible to create safe nanomaterials if such a number of complicated factors need to be regulated? We herein try to find answers to this important question. We first discuss chemical processes that are applicable for nanosurface modifications, in order to improve biocompatibility, regulate ADME, and reduce the toxicity of carbon nanomaterials (carbon nanotubes, fullerenes, metallofullerenes, and graphenes). Then the biological/toxicological effects of surface-modified and unmodified carbon nanomaterials are comparatively discussed from two aspects: the lowered toxic responses or the enhanced biomedical functions. We summarize the eight biggest challenges in creating low-toxicity and safer nanomaterials and some significant topics of future research needs: to find out safer nanofactors; to establish controllable surface modifications and simpler chemistries for low-toxic nanomaterials; to explore the nanotoxicity mechanisms; to justify the validity of current toxicological theories in nanotoxicology; to create standardized nanomaterials for toxicity tests; to build theoretical models for cellular and molecular interactions of nanoparticles; and to establish systematical knowledge frameworks for nanotoxicology.
Collapse
Affiliation(s)
- Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), National Center for Nanosciences and Technology of China, Beijing, 100049, China
| | | | | | | | | |
Collapse
|
136
|
Hubbs AF, Mercer RR, Benkovic SA, Harkema JACK, Sriram K, Schwegler-Berry D, Goravanahally MP, Nurkiewicz TR, Castranova V, Sargent LM. Nanotoxicology--a pathologist's perspective. Toxicol Pathol 2011; 39:301-24. [PMID: 21422259 PMCID: PMC9808592 DOI: 10.1177/0192623310390705] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Advances in chemistry and engineering have created a new technology, nanotechnology, involving the tiniest known manufactured products. These products have a rapidly increasing market share and appear poised to revolutionize engineering, cosmetics, and medicine. Unfortunately, nanotoxicology, the study of nanoparticulate health effects, lags behind advances in nanotechnology. Over the past decade, existing literature on ultrafine particles and respirable durable fibers has been supplemented by studies of first-generation nanotechnology products. These studies suggest that nanosizing increases the toxicity of many particulates. First, as size decreases, surface area increases, thereby speeding up dissolution of soluble particulates and exposing more of the reactive surface of durable but reactive particulates. Second, nanosizing facilitates movement of particulates across cellular and intracellular barriers. Third, nanosizing allows particulates to interact with, and sometimes even hybridize with, subcellular structures, including in some cases microtubules and DNA. Finally, nanosizing of some particulates, increases pathologic and physiologic responses, including inflammation, fibrosis, allergic responses, genotoxicity, and carcinogenicity, and may alter cardiovascular and lymphatic function. Knowing how the size and physiochemical properties of nanoparticulates affect bioactivity is important in assuring that the exciting new products of nanotechnology are used safely. This review provides an introduction to the pathology and toxicology of nanoparticulates.
Collapse
Affiliation(s)
- Ann F. Hubbs
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Stanley A. Benkovic
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - JACK Harkema
- Michigan State University, East Lansing, Michigan, USA
| | - Krishnan Sriram
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Diane Schwegler-Berry
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Madhusudan P. Goravanahally
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Timothy R. Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Vincent Castranova
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Linda M. Sargent
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| |
Collapse
|
137
|
Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 2011; 4:207-46. [PMID: 20795897 DOI: 10.3109/17435390903569639] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This critical review of the available human health safety data, relating to carbon nanotubes (CNTs), was conducted in order to assess the risks associated with CNT exposure. Determining the toxicity related to CNT exploitation is of great relevance and importance due to the increased potential for human exposure to CNTs within occupational, environmental and consumer settings. When this information is combined with knowledge on the likely exposure levels of humans to CNTs, it will enable risk assessments to be conducted to assess the risks posed to human health. CNTs are a diverse group of materials and vary with regards to their wall number (single and multi-walled CNTs are evident), length, composition, and surface chemistry. The attributes of CNTs that were identified as being most likely to drive the observed toxicity have been considered, and include CNT length, metal content, tendency to aggregate/agglomerate and surface chemistry. Of particular importance, is the contribution of the fibre paradigm to CNT toxicity, whereby the length of CNTs appears to be critical to their toxic potential. Mechanistic processes that are critical to CNT toxicity will also be discussed, with the findings insinuating that CNTs can exert an oxidative response that stimulates inflammatory, genotoxic and cytotoxic consequences. Consequently, it may transpire that a common mechanism is responsible for driving CNT toxicity, despite the fact that CNTs are a diverse population of materials. The similarity of the structure of CNTs to that of asbestos has prompted concern surrounding the exposure of humans, and so the applicability of the fibre paradigm to CNTs will be evaluated. It is also necessary to determine the systemic availability of CNTs following exposure, to determine where potential targets of toxicity are, and to thereby direct in vitro investigations within the most appropriate target cells. CNTs are therefore a group of materials whose useful exploitable properties prompts their increased production and utilization within diverse applications, so that ensuring their safety is of vital importance.
Collapse
Affiliation(s)
- Helinor J Johnston
- Centre for Nano Safety, School of Life Sciences, Edinburgh Napier University, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
138
|
Pacchierotti F, Eichenlaub-Ritter U. Environmental Hazard in the Aetiology of Somatic and Germ Cell Aneuploidy. Cytogenet Genome Res 2011; 133:254-68. [DOI: 10.1159/000323284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
139
|
Aust AE, Cook PM, Dodson RF. Morphological and chemical mechanisms of elongated mineral particle toxicities. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:40-75. [PMID: 21534085 PMCID: PMC3118489 DOI: 10.1080/10937404.2011.556046] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Much of our understanding regarding the mechanisms for induction of disease following inhalation of respirable elongated mineral particles (REMP) is based on studies involving the biological effects of asbestos fibers. The factors governing the disease potential of an exposure include duration and frequency of exposures; tissue-specific dose over time; impacts on dose persistence from in vivo REMP dissolution, comminution, and clearance; individual susceptibility; and the mineral type and surface characteristics. The mechanisms associated with asbestos particle toxicity involve two facets for each particle's contribution: (1) the physical features of the inhaled REMP, which include width, length, aspect ratio, and effective surface area available for cell contact; and (2) the surface chemical composition and reactivity of the individual fiber/elongated particle. Studies in cell-free systems and with cultured cells suggest an important way in which REMP from asbestos damage cellular molecules or influence cellular processes. This may involve an unfortunate combination of the ability of REMP to chemically generate potentially damaging reactive oxygen species, through surface iron, and the interaction of the unique surfaces with cell membranes to trigger membrane receptor activation. Together these events appear to lead to a cascade of cellular events, including the production of damaging reactive nitrogen species, which may contribute to the disease process. Thus, there is a need to be more cognizant of the potential impact that the total surface area of REMP contributes to the generation of events resulting in pathological changes in biological systems. The information presented has applicability to inhaled dusts, in general, and specifically to respirable elongated mineral particles.
Collapse
Affiliation(s)
- Ann E. Aust
- Chemistry and Biochemistry Department (Emeritus), Utah State University, Huachuca City, Arizona
| | - Philip M. Cook
- U.S. EPA NHEERL Mid-Continent Ecology Division, Duluth, Minnesota
| | - Ronald F. Dodson
- Dodson Environmental Consulting, Inc., and ERI Environmental Consulting, Inc., Tyler, Texas, USA
| |
Collapse
|
140
|
UO M, AKASAKA T, WATARI F, SATO Y, TOHJI K. Toxicity evaluations of various carbon nanomaterials. Dent Mater J 2011; 30:245-63. [DOI: 10.4012/dmj.2010-039] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
141
|
Patlolla A, McGinnis B, Tchounwou P. Biochemical and histopathological evaluation of functionalized single-walled carbon nanotubes in Swiss-Webster mice. J Appl Toxicol 2011; 31:75-83. [PMID: 20737426 PMCID: PMC3004017 DOI: 10.1002/jat.1579] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/25/2010] [Accepted: 07/01/2010] [Indexed: 11/08/2022]
Abstract
With their unique physicochemical properties, single-walled carbon nanotubes (SWCNTs) have many potential new applications in medicine and industry. A biomedical application of single-wall carbon nanotubes such as drug delivery requires a fundamental understanding of their fate and toxicological profile after administration. However, the toxicity of SWCNT is barely known when they are introduced into the blood circulation, which is especially vital for their biomedical applications. The aim of this study was to assess the effects, after intraperitoneal injection, of functionalized SWCNTs (carboxyl groups) on reactive oxygen species (ROS) induction and various hepatotoxicity markers (ALT, AST, ALP, LPO and morphology of liver) in the mouse model. We exposed mice to three different concentrations of functionalized SWCNTs (0.25, 0.5 and 0.75 mg kg⁻¹ b.w.) and two controls (negative and positive). Samples were collected 24 h after the last treatment following standard protocols. Exposure to carboxylated functionalized SWCNT induced ROS and enhanced the activities of serum amino-transferases (ALT/AST) and alkaline phosphatases (ALP) and the concentration of lipid hydroperoxide compared with control. Histopathology of the exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared with controls. The cellular findings reported here do suggest that purified carboxylated functionalized SWCNT has the potential to induce hepatotoxicity in Swiss-Webster mice through activation of the mechanisms of oxidative stress, which is of sufficient significance to warrant in vivo animal exposure studies. However, more studies to clarify the role of functionalization in the in vivo toxicity of SWCNTs are required and parallel comparison is preferred.
Collapse
Affiliation(s)
- Anita Patlolla
- Molecular Toxicology Research Laboratory, NIH-RCMI Center for Environmental Health, College of Science Engineering and Technology, Jackson State University, Jackson, MS, USA.
| | | | | |
Collapse
|
142
|
Aschberger K, Johnston HJ, Stone V, Aitken RJ, Hankin SM, Peters SAK, Tran CL, Christensen FM. Review of carbon nanotubes toxicity and exposure--appraisal of human health risk assessment based on open literature. Crit Rev Toxicol 2010; 40:759-90. [PMID: 20860524 DOI: 10.3109/10408444.2010.506638] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Carbon nanotubes (CNTs) possess many unique electronic and mechanical properties and are thus interesting for numerous novel industrial and biomedical applications. As the level of production and use of these materials increases, so too does the potential risk to human health. This study aims to investigate the feasibility and challenges associated with conducting a human health risk assessment for carbon nanotubes based on the open literature, utilising an approach similar to that of a classical regulatory risk assessment. Results indicate that the main risks for humans arise from chronic occupational inhalation, especially during activities involving high CNT release and uncontrolled exposure. It is not yet possible to draw definitive conclusions with regards the potential risk for long, straight multi-walled carbon nanotubes to pose a similar risk as asbestos by inducing mesothelioma. The genotoxic potential of CNTs is currently inconclusive and could be either primary or secondary. Possible systemic effects of CNTs would be either dependent on absorption and distribution of CNTs to sensitive organs or could be induced through the release of inflammatory mediators. In conclusion, gaps in the data set in relation to both exposure and hazard do not allow any definite conclusions suitable for regulatory decision-making. In order to enable a full human health risk assessment, future work should focus on the generation of reliable occupational, environmental and consumer exposure data. Data on toxicokinetics and studies investigating effects of chronic exposure under conditions relevant for human exposure should also be prioritised.
Collapse
Affiliation(s)
- Karin Aschberger
- Nanobiosciences Unit, European Commission-DG Joint Research Centre (JRC), Institute for Health and Consumer Protection (IHCP), Ispra, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB. Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. ENVIRONMENTAL TOXICOLOGY 2010; 25:608-21. [PMID: 20549644 PMCID: PMC2944913 DOI: 10.1002/tox.20621] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/11/2010] [Indexed: 05/25/2023]
Abstract
The development of nanotechnologies may lead to environmental release of nanomaterials that are potentially harmful to human health. Among the nanomaterials, multiwalled carbon nanotubes (MWCNTs) are already commercialized in various products which can be in direct contact with populations. However, few studies address their potential toxicity. Although a few reports on the cytotoxicity of carbon nanotubes (CNTs) have been published, very little is known about their toxicity or genotoxicity in mammalian cells. We have for the first time compared the clastogenic/genotoxic potential of functionalized and nonfunctionalized MWCNTs in bone marrow cells of Swiss-Webster mice; using mitotic index (MI), chromosome aberrations (CA), micronuclei (MN) formation, and DNA damage in leukocytes as toxicologic endpoints. Six groups of five male mice, each weighing ∼30 ± 2 g, were administered intraperitoneally, once a day for five days with doses of 0.25, 0.5, 0.75, mg/kg body weight (BW) of functionalized and nonfunctionalized MWCNTs. Four vehicle control groups (negative) and a positive control group (carbon black) were also made of 5 mice each. Chromosome and micronuclei from bone marrow cells and comet slides from leukocytes were examined following standard protocols. The results demonstrated that MWCNTs exposure significantly increased (P < 0.05) the number of structural chromosomal aberrations, the frequency of micronucleated cells and the level of DNA damage, and decreased the mitotic index in treated groups compared to control groups. MWCNTs were shown to be toxic at sufficiently high concentrations, however purified functionalized MWCNTs had a higher clastogenic/genotoxic potential compared to nonfunctionalized form of MWCNT. The results of our study suggest that exposure to MWCNT has the potential to cause genetic damage. Hence, careful monitoring should be done with respect to designing/synthesizing biocompatible carbon nanomaterials. Further characterization of their systemic toxicity, genotoxicity and carcinogenicity is also essential.
Collapse
Affiliation(s)
- Anita K Patlolla
- Molecular Toxicology Research Laboratory, NIH-RCMI-Center for Environmental Health, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi 39217, USA.
| | | | | | | | | |
Collapse
|
144
|
Beg S, Rizwan M, Sheikh AM, Hasnain MS, Anwer K, Kohli K. Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J Pharm Pharmacol 2010; 63:141-63. [DOI: 10.1111/j.2042-7158.2010.01167.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
Carbon nanotubes (CNTs) have attracted much attention by researchers worldwide in recent years for their small dimensions and unique architecture, and for having immense potential in nanomedicine as biocompatible and supportive substrates, as a novel tool for the delivery of therapeutic molecules including peptides, RNA and DNA, and also as sensors, actuators and composites.
Key findings
CNTs have been employed in the development of molecular electronic, composite materials and others due to their unique atomic structure, high surface area-to-volume ratio and excellent electronic, mechanical and thermal properties. Recently they have been exploited as novel nanocarriers in drug delivery systems and biomedical applications. Their larger inner volume as compared with the dimensions of the tube and easy immobilization of their outer surface with biocompatible materials make CNTs a superior nanomaterial for drug delivery. Literature reveals that CNTs are versatile carriers for controlled and targeted drug delivery, especially for cancer cells, because of their cell membrane penetrability.
Summary
This review enlightens the biomedical application of CNTs with special emphasis on utilization in controlled and targeted drug delivery, as a diagnostics tool and other possible uses in therapeutic systems. The review also focuses on the toxicity aspects of CNTs, and revealed that genotoxic potential, mutagenic and carcinogenic effects of different types of CNTs must be explored and overcome by formulating safe biomaterial for drug delivery. The review also describes the regulatory aspects and clinical and market status of CNTs.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Mohammad Rizwan
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Asif M Sheikh
- Formulation Research, Wockhardt Research Center, Aurangabad, Maharashtra, India
| | - M Saquib Hasnain
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi, India
| | - Khalid Anwer
- King Saud University, Al-Kharj, Riyadh, Kingdom of Saudi Arabia
| | - Kanchan Kohli
- Department of Pharmaceutics, Faculty of Pharmacy, Hamdard University, New Delhi, India
| |
Collapse
|
145
|
Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 2010; 5:354-71. [PMID: 21067278 DOI: 10.3109/17435390.2010.514076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To assess effects of carbon nanoparticle (CNP) exposure on renal epithelial cells, fullerenes (C(60)), single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT) were incubated with a confluent renal epithelial line for 48 h. At low concentrations, CNP-treated cells exhibited significant decreases in transepithelial electrical resistance (TEER) but no changes in hormone-stimulated ion transport or CNP-induced toxicity or stress responses as measured by lactate dehydrogenase or cytokine release. The changes in TEER, manifested as an inverse relationship with CNP concentration, were mirrored by an inverse correlation between dose and changes in protein expression. Lower, more physiologically relevant, concentrations of CNP have the most profound effects on barrier cell function and protein expression. These results indicate an impact of CNPs on renal epithelial cells at concentrations lower than have been previously studied and suggest caution with regard to increasing CNP levels entering the food chain due to increasing environmental pollution.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology , Indiana University Purdue University at Indianapolis, Indianapolis, Indiana
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Philbrick M. An anticipatory governance approach to carbon nanotubes. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2010; 30:1708-1722. [PMID: 20626694 DOI: 10.1111/j.1539-6924.2010.01445.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Carbon nanotubes (CNTs) are novel materials with remarkable properties; possible beneficial applications include aircraft frames, hydrogen storage, environmental sensors, electrical transmission, and many more. At the same time, precise characterization of their potential toxicity remains elusive, in part because engineered nanostructures pose challenges to existing assays, predictive models, and dosimetry. While these obstacles are surmountable, their presence suggests that scientific uncertainty regarding the hazards of CNTs is likely to persist. Traditional U.S. policy approaches implicitly pose the question: "What level of evidence is necessary and sufficient to justify regulatory action?" In the case of CNTs, such a strategy of risk analysis is of limited immediate utility to both regulators essaying to carry out their mandates, and users of CNTs seeking to provide an appropriate level of protection to employees, customers, and other stakeholders. In contrast, the concept of anticipatory governance suggests an alternative research focus, that is: "Given the conflicted character of the data, how should relevant actors respond?" Adopting the latter theoretical framework, this article argues that currently available data support treating CNTs "as if" they are hazardous, while simultaneously highlighting some systemic uncertainties in many of the experiments carried out to date. Such a conclusion implies limiting exposure throughout product lifecycles, and also points to the possible applicability of various conceptual tools, such as life-cycle and multicriteria decision analysis approaches, in choosing appropriate courses of action in the face of prolonged uncertainty.
Collapse
Affiliation(s)
- Mark Philbrick
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
147
|
|
148
|
Sargent LM, Reynolds SH, Castranova V. Potential pulmonary effects of engineered carbon nanotubes:in vitrogenotoxic effects. Nanotoxicology 2010; 4:396-408. [DOI: 10.3109/17435390.2010.500444] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
149
|
Gonzalez L, Thomassen LCJ, Plas G, Rabolli V, Napierska D, Decordier I, Roelants M, Hoet PH, Kirschhock CEA, Martens JA, Lison D, Kirsch-Volders M. Exploring the aneugenic and clastogenic potential in the nanosize range: A549 human lung carcinoma cells and amorphous monodisperse silica nanoparticles as models. Nanotoxicology 2010; 4:382-95. [DOI: 10.3109/17435390.2010.501913] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
150
|
Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2010; 7:40-9. [PMID: 20620235 DOI: 10.1016/j.nano.2010.06.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 05/06/2010] [Accepted: 06/08/2010] [Indexed: 12/26/2022]
Abstract
UNLABELLED Carbon nanotubes (CNTs) are nanosized cylindrical hollow tubes consisting entirely of the element carbon. Currently, CNTs are playing an important role in drug delivery as a carrier system because of their several unique physical and chemical properties. Studies show that CNTs are toxic and that the extent of that toxicity depends on properties of the CNTs, such as their structure (single wall or multiple wall), length and aspects ratios, surface area, degree of aggregation, extent of oxidation, bound functional group(s), method of manufacturing, concentration, and dose. People could be exposed to CNTs either accidentally by coming in contact with the aerosol form of CNTs during production or by exposure as a result of biomedical use. Numerous in vitro and in vivo studies have shown that CNTs and/or associated contaminants or catalytic materials that arise during the production process may induce oxidative stress, prominent pulmonary inflammation, apoptosis in different cell types, and induction of cytotoxic effects on lungs. Studies on the toxicity of CNTs have mainly focused on the pulmonary effects of intratracheal or pharyngeally administered CNTs. This review examines the potential pulmonary toxicity of CNTs. FROM THE CLINICAL EDITOR Carbon nanotubes are promising drug delivery agents; however, their pulmonary toxicity may represent a substantial limitation to their applicability. This detailed review discusses critical aspects of the above problem.
Collapse
Affiliation(s)
- Jitendra Kayat
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar, India
| | | | | | | |
Collapse
|