101
|
Subramanian M, Srinivasan T, Sudarsanam D. Examining the Gm18 and m(1)G Modification Positions in tRNA Sequences. Genomics Inform 2014; 12:71-5. [PMID: 25031570 PMCID: PMC4099351 DOI: 10.5808/gi.2014.12.2.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/20/2014] [Accepted: 03/26/2014] [Indexed: 12/30/2022] Open
Abstract
The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA m1G37 methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves itself in methylation process at the 2'-OH group of ribose at the 18th position of guanosine (G) in tRNAs. TrmD methylates the G residue next to the anticodon in selected tRNA subsets. Initially, m1G37 modification was reported to take place on three conserved tRNA subsets (tRNAArg, tRNALeu, tRNAPro); later on, few archaea and eukaryotes organisms revealed that other tRNAs also have the m1G37 modification. The present study reveals Gm18, m1G37 modification, and positions of m1G that take place next to the anticodon in tRNA sequences. We selected extremophile organisms and attempted to retrieve the m1G and Gm18 modification bases in tRNA sequences. Results showed that the Gm18 modification G residue occurs in all tRNA subsets except three tRNAs (tRNAMet, tRNAPro, tRNAVal). Whereas the m1G37 modification base G is formed only on tRNAArg, tRNALeu, tRNAPro, and tRNAHis, the rest of the tRNAs contain adenine (A) next to the anticodon. Thus, we hypothesize that Gm18 modification and m1G modification occur irrespective of a G residue in tRNAs.
Collapse
Affiliation(s)
- Mayavan Subramanian
- Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110 067, India
| | - Thangavelu Srinivasan
- DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, India
| | - Dorairaj Sudarsanam
- DST-FIST Bioinformatics and Principal Investigator, School of Genomics and Bioinformatics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai 600 034, India
| |
Collapse
|
102
|
Urbonavičius J, Meškys R, Grosjean H. Biosynthesis of wyosine derivatives in tRNA(Phe) of Archaea: role of a remarkable bifunctional tRNA(Phe):m1G/imG2 methyltransferase. RNA (NEW YORK, N.Y.) 2014; 20:747-753. [PMID: 24837075 PMCID: PMC4024628 DOI: 10.1261/rna.043315.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The presence of tricyclic wyosine derivatives 3'-adjacent to anticodon is a hallmark of tRNA(Phe) in eukaryotes and archaea. In yeast, formation of wybutosine (yW) results from five enzymes acting in a strict sequential order. In archaea, the intermediate compound imG-14 (4-demethylwyosine) is a target of three different enzymes, leading to the formation of distinct wyosine derivatives (yW-86, imG, and imG2). We focus here on a peculiar methyltransferase (aTrm5a) that catalyzes two distinct reactions: N(1)-methylation of guanosine and C(7)-methylation of imG-14, whose function is to allow the production of isowyosine (imG2), an intermediate of the 7-methylwyosine (mimG) biosynthetic pathway. Based on the formation of mesomeric forms of imG-14, a rationale for such dual enzymatic activities is proposed. This bifunctional tRNA:m(1)G/imG2 methyltransferase, acting on two chemically distinct guanosine derivatives located at the same position of tRNA(Phe), is unique to certain archaea and has no homologs in eukaryotes. This enzyme here referred to as Taw22, probably played an important role in the emergence of the multistep biosynthetic pathway of wyosine derivatives in archaea and eukaryotes.
Collapse
Affiliation(s)
- Jaunius Urbonavičius
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, LT-08662 Vilnius, Lithuania
| | - Henri Grosjean
- Centre de Génétique Moléculaire, UPR 3404, CNRS, Associée à l'Université Paris-Sud 11, FRC 3115, 91190 Gif-sur-Yvette, France
| |
Collapse
|
103
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
104
|
Eichhorn CD, Kang M, Feigon J. Structure and function of preQ 1 riboswitches. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:939-950. [PMID: 24798077 DOI: 10.1016/j.bbagrm.2014.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 12/17/2022]
Abstract
PreQ1 riboswitches help regulate the biosynthesis and transport of preQ1 (7-aminomethyl-7-deazaguanine), a precursor of the hypermodified guanine nucleotide queuosine (Q), in a number of Firmicutes, Proteobacteria, and Fusobacteria. Queuosine is almost universally found at the wobble position of the anticodon in asparaginyl, tyrosyl, histidyl and aspartyl tRNAs, where it contributes to translational fidelity. Two classes of preQ1 riboswitches have been identified (preQ1-I and preQ1-II), and structures of examples from both classes have been determined. Both classes form H-type pseudoknots upon preQ1 binding, each of which has distinct unusual features and modes of preQ1 recognition. These features include an unusually long loop 2 in preQ1-I pseudoknots and an embedded hairpin in loop 3 in preQ1-II pseudoknots. PreQ1-I riboswitches are also notable for their unusually small aptamer domain, which has been extensively investigated by NMR, X-ray crystallography, FRET, and other biophysical methods. Here we review the discovery, structural biology, ligand specificity, cation interactions, folding, dynamics, and applications to biotechnology of preQ1 riboswitches. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Mijeong Kang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA; UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
105
|
Björk GR, Hagervall TG. Transfer RNA Modification: Presence, Synthesis, and Function. EcoSal Plus 2014; 6. [PMID: 26442937 DOI: 10.1128/ecosalplus.esp-0007-2013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 06/05/2023]
Abstract
Transfer RNA (tRNA) from all organisms on this planet contains modified nucleosides, which are derivatives of the four major nucleosides. tRNA from Escherichia coli/Salmonella enterica serovar Typhimurium contains 33 different modified nucleosides, which are all, except one (Queuosine [Q]), synthesized on an oligonucleotide precursor, which by specific enzymes later matures into tRNA. The structural genes for these enzymes are found in mono- and polycistronic operons, the latter of which have a complex transcription and translation pattern. The synthesis of the tRNA-modifying enzymes is not regulated similarly, and it is not coordinated to that of their substrate, the tRNA. The synthesis of some of them (e.g., several methylated derivatives) is catalyzed by one enzyme, which is position and base specific, whereas synthesis of some has a very complex biosynthetic pathway involving several enzymes (e.g., 2-thiouridines, N 6-cyclicthreonyladenosine [ct6A], and Q). Several of the modified nucleosides are essential for viability (e.g., lysidin, ct6A, 1-methylguanosine), whereas the deficiency of others induces severe growth defects. However, some have no or only a small effect on growth at laboratory conditions. Modified nucleosides that are present in the anticodon loop or stem have a fundamental influence on the efficiency of charging the tRNA, reading cognate codons, and preventing missense and frameshift errors. Those that are present in the body of the tRNA primarily have a stabilizing effect on the tRNA. Thus, the ubiquitous presence of these modified nucleosides plays a pivotal role in the function of the tRNA by their influence on the stability and activity of the tRNA.
Collapse
Affiliation(s)
- Glenn R Björk
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| | - Tord G Hagervall
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden
| |
Collapse
|
106
|
Shao Z, Yan W, Peng J, Zuo X, Zou Y, Li F, Gong D, Ma R, Wu J, Shi Y, Zhang Z, Teng M, Li X, Gong Q. Crystal structure of tRNA m1G9 methyltransferase Trm10: insight into the catalytic mechanism and recognition of tRNA substrate. Nucleic Acids Res 2014; 42:509-25. [PMID: 24081582 PMCID: PMC3874184 DOI: 10.1093/nar/gkt869] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023] Open
Abstract
Transfer RNA (tRNA) methylation is necessary for the proper biological function of tRNA. The N(1) methylation of guanine at Position 9 (m(1)G9) of tRNA, which is widely identified in eukaryotes and archaea, was found to be catalyzed by the Trm10 family of methyltransferases (MTases). Here, we report the first crystal structures of the tRNA MTase spTrm10 from Schizosaccharomyces pombe in the presence and absence of its methyl donor product S-adenosyl-homocysteine (SAH) and its ortholog scTrm10 from Saccharomyces cerevisiae in complex with SAH. Our crystal structures indicated that the MTase domain (the catalytic domain) of the Trm10 family displays a typical SpoU-TrmD (SPOUT) fold. Furthermore, small angle X-ray scattering analysis reveals that Trm10 behaves as a monomer in solution, whereas other members of the SPOUT superfamily all function as homodimers. We also performed tRNA MTase assays and isothermal titration calorimetry experiments to investigate the catalytic mechanism of Trm10 in vitro. In combination with mutational analysis and electrophoretic mobility shift assays, our results provide insights into the substrate tRNA recognition mechanism of Trm10 family MTases.
Collapse
Affiliation(s)
- Zhenhua Shao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Wei Yan
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Junhui Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Xiaobing Zuo
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Yang Zou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Fudong Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Deshun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Rongsheng Ma
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Zhiyong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China and X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60349, USA
| |
Collapse
|
107
|
Posttranscriptional RNA Modifications: playing metabolic games in a cell's chemical Legoland. ACTA ACUST UNITED AC 2013; 21:174-85. [PMID: 24315934 DOI: 10.1016/j.chembiol.2013.10.015] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Nature combines existing biochemical building blocks, at times with subtlety of purpose. RNA modifications are a prime example of this, where standard RNA nucleosides are decorated with chemical groups and building blocks that we recall from our basic biochemistry lectures. The result: a wealth of chemical diversity whose full biological relevance has remained elusive despite being public knowledge for some time. Here, we highlight several modifications that, because of their chemical intricacy, rely on seemingly unrelated pathways to provide cofactors for their synthesis. Besides their immediate role in affecting RNA function, modifications may act as sensors and transducers of information that connect a cell's metabolic state to its translational output, carefully orchestrating a delicate balance between metabolic rate and protein synthesis at a system's level.
Collapse
|
108
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
109
|
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 2013; 194:43-67. [PMID: 23633143 DOI: 10.1534/genetics.112.147470] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transfer RNAs (tRNAs) are essential for protein synthesis. In eukaryotes, tRNA biosynthesis employs a specialized RNA polymerase that generates initial transcripts that must be subsequently altered via a multitude of post-transcriptional steps before the tRNAs beome mature molecules that function in protein synthesis. Genetic, genomic, biochemical, and cell biological approaches possible in the powerful Saccharomyces cerevisiae system have led to exciting advances in our understandings of tRNA post-transcriptional processing as well as to novel insights into tRNA turnover and tRNA subcellular dynamics. tRNA processing steps include removal of transcribed leader and trailer sequences, addition of CCA to the 3' mature sequence and, for tRNA(His), addition of a 5' G. About 20% of yeast tRNAs are encoded by intron-containing genes. The three-step splicing process to remove the introns surprisingly occurs in the cytoplasm in yeast and each of the splicing enzymes appears to moonlight in functions in addition to tRNA splicing. There are 25 different nucleoside modifications that are added post-transcriptionally, creating tRNAs in which ∼15% of the residues are nucleosides other than A, G, U, or C. These modified nucleosides serve numerous important functions including tRNA discrimination, translation fidelity, and tRNA quality control. Mature tRNAs are very stable, but nevertheless yeast cells possess multiple pathways to degrade inappropriately processed or folded tRNAs. Mature tRNAs are also dynamic in cells, moving from the cytoplasm to the nucleus and back again to the cytoplasm; the mechanism and function of this retrograde process is poorly understood. Here, the state of knowledge for tRNA post-transcriptional processing, turnover, and subcellular dynamics is addressed, highlighting the questions that remain.
Collapse
|
110
|
Hill PJ, Abibi A, Albert R, Andrews B, Gagnon MM, Gao N, Grebe T, Hajec LI, Huang J, Livchak S, Lahiri SD, McKinney DC, Thresher J, Wang H, Olivier N, Buurman ET. Selective Inhibitors of Bacterial t-RNA-(N1G37) Methyltransferase (TrmD) That Demonstrate Novel Ordering of the Lid Domain. J Med Chem 2013; 56:7278-88. [DOI: 10.1021/jm400718n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pamela J. Hill
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ayome Abibi
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Robert Albert
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Beth Andrews
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Moriah M. Gagnon
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ning Gao
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tyler Grebe
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Laurel I. Hajec
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jian Huang
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Stephania Livchak
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sushmita D. Lahiri
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - David C. McKinney
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Jason Thresher
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Hongming Wang
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Nelson Olivier
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ed T. Buurman
- Departments of Chemistry, ‡Biosciences and §Discovery Sciences, Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
111
|
Christian T, Gamper H, Hou YM. Conservation of structure and mechanism by Trm5 enzymes. RNA (NEW YORK, N.Y.) 2013; 19:1192-1199. [PMID: 23887145 PMCID: PMC3753926 DOI: 10.1261/rna.039503.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Enzymes of the Trm5 family catalyze methyl transfer from S-adenosyl methionine (AdoMet) to the N¹ of G37 to synthesize m¹ G37-tRNA as a critical determinant to prevent ribosome frameshift errors. Trm5 is specific to eukaryotes and archaea, and it is unrelated in evolution from the bacterial counterpart TrmD, which is a leading anti-bacterial target. The successful targeting of TrmD requires detailed information on Trm5 to avoid cross-species inhibition. However, most information on Trm5 is derived from studies of the archaeal enzyme Methanococcus jannaschii (MjTrm5), whereas little information is available for eukaryotic enzymes. Here we use human Trm5 (Homo sapiens; HsTrm5) as an example of eukaryotic enzymes and demonstrate that it has retained key features of catalytic properties of the archaeal MjTrm5, including the involvement of a general base to mediate one proton transfer. We also address the protease sensitivity of the human enzyme upon expression in bacteria. Using the tRNA-bound crystal structure of the archaeal enzyme as a model, we have identified a single substitution in the human enzyme that improves resistance to proteolysis. These results establish conservation in both the catalytic mechanism and overall structure of Trm5 between evolutionarily distant eukaryotic and archaeal species and validate the crystal structure of the archaeal enzyme as a useful model for studies of the human enzyme.
Collapse
|
112
|
Masuda I, Sakaguchi R, Liu C, Gamper H, Hou YM. The temperature sensitivity of a mutation in the essential tRNA modification enzyme tRNA methyltransferase D (TrmD). J Biol Chem 2013; 288:28987-96. [PMID: 23986443 DOI: 10.1074/jbc.m113.485797] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conditional temperature-sensitive (ts) mutations are important reagents to study essential genes. Although it is commonly assumed that the ts phenotype of a specific mutation arises from thermal denaturation of the mutant enzyme, the possibility also exists that the mutation decreases the enzyme activity to a certain level at the permissive temperature and aggravates the negative effect further upon temperature upshifts. Resolving these possibilities is important for exploiting the ts mutation for studying the essential gene. The trmD gene is essential for growth in bacteria, encoding the enzyme for converting G37 to m(1)G37 on the 3' side of the tRNA anticodon. This conversion involves methyl transfer from S-adenosyl methionine and is critical to minimize tRNA frameshift errors on the ribosome. Using the ts-S88L mutation of Escherichia coli trmD as an example, we show that although the mutation confers thermal lability to the enzyme, the effect is relatively minor. In contrast, the mutation decreases the catalytic efficiency of the enzyme to 1% at the permissive temperature, and at the nonpermissive temperature, it renders further deterioration of activity to 0.1%. These changes are accompanied by losses of both the quantity and quality of tRNA methylation, leading to the potential of cellular pleiotropic effects. This work illustrates the principle that the ts phenotype of an essential gene mutation can be closely linked to the catalytic defect of the gene product and that such a mutation can provide a useful tool to study the mechanism of catalytic inactivation.
Collapse
Affiliation(s)
- Isao Masuda
- From the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | | | | | | | | |
Collapse
|
113
|
Swinehart WE, Henderson JC, Jackman JE. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10. RNA (NEW YORK, N.Y.) 2013; 19:1137-46. [PMID: 23793893 PMCID: PMC3708533 DOI: 10.1261/rna.039651.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.
Collapse
MESH Headings
- Genes, Fungal
- Guanosine/analogs & derivatives
- Guanosine/chemistry
- Humans
- Kinetics
- Methylation
- RNA Processing, Post-Transcriptional
- RNA, Fungal/chemistry
- RNA, Fungal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Val/chemistry
- RNA, Transfer, Val/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Substrate Specificity
- tRNA Methyltransferases/genetics
- tRNA Methyltransferases/metabolism
Collapse
Affiliation(s)
- William E. Swinehart
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jeremy C. Henderson
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jane E. Jackman
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Corresponding authorE-mail
| |
Collapse
|
114
|
Fernández-Vázquez J, Vargas-Pérez I, Sansó M, Buhne K, Carmona M, Paulo E, Hermand D, Rodríguez-Gabriel M, Ayté J, Leidel S, Hidalgo E. Modification of tRNA(Lys) UUU by elongator is essential for efficient translation of stress mRNAs. PLoS Genet 2013; 9:e1003647. [PMID: 23874237 PMCID: PMC3715433 DOI: 10.1371/journal.pgen.1003647] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/04/2013] [Indexed: 12/25/2022] Open
Abstract
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNALysUUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery. The success of a biological event such as cellular adaptation to environmental changes requires the complex process of protein expression to be carried out with high efficiency and fidelity. Thus, not only transcription but also mRNA homeostasis and translation have to be performed with maximum efficiency, or survival would be hampered. Our study demonstrates that the role of Elongator, a putative Pol II-associated complex, in survival to stress is to optimize translation efficiency by modifying some particular tRNAs. We show here that Sin3/Elp3, an Elongator component, participates in the modification of the anticodon of the low copy number tRNALysUUU, which probably favours codon recognition. This tRNA recognizes one of the two codons for lysine, which is down-represented in highly expressed constitutive genes. The stress mRNAs, highly-expressed upon stress conditions, have not adapted their lysine codon usage from AAA-to-AAG, and proper tRNALysUUU modification by Elongator is an alternative strategy to accomplish efficient translation of these AAA-containing, abundant stress mRNAs.
Collapse
Affiliation(s)
- Jorge Fernández-Vázquez
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Itzel Vargas-Pérez
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Miriam Sansó
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Karin Buhne
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Esther Paulo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Damien Hermand
- Namur Research College (NARC), The University of Namur, Namur, Belgium
| | - Miguel Rodríguez-Gabriel
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid (UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sebastian Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| |
Collapse
|
115
|
Ochi A, Makabe K, Yamagami R, Hirata A, Sakaguchi R, Hou YM, Watanabe K, Nureki O, Kuwajima K, Hori H. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process. J Biol Chem 2013; 288:25562-25574. [PMID: 23867454 DOI: 10.1074/jbc.m113.485128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2'-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.
Collapse
Affiliation(s)
- Anna Ochi
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Koki Makabe
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ryota Yamagami
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Akira Hirata
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Reiko Sakaguchi
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Ya-Ming Hou
- the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kazunori Watanabe
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Osamu Nureki
- the Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan, and
| | - Kunihiro Kuwajima
- the Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Hiroyuki Hori
- From the Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan,; the Venture Business Laboratory, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
116
|
Liu RJ, Zhou M, Fang ZP, Wang M, Zhou XL, Wang ED. The tRNA recognition mechanism of the minimalist SPOUT methyltransferase, TrmL. Nucleic Acids Res 2013; 41:7828-42. [PMID: 23804755 PMCID: PMC3763551 DOI: 10.1093/nar/gkt568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike other transfer RNAs (tRNA)-modifying enzymes from the SPOUT methyltransferase superfamily, the tRNA (Um34/Cm34) methyltransferase TrmL lacks the usual extension domain for tRNA binding and consists only of a SPOUT domain. Both the catalytic and tRNA recognition mechanisms of this enzyme remain elusive. By using tRNAs purified from an Escherichia coli strain with the TrmL gene deleted, we found that TrmL can independently catalyze the methyl transfer from S-adenosyl-L-methionine to and isoacceptors without the involvement of other tRNA-binding proteins. We have solved the crystal structures of TrmL in apo form and in complex with S-adenosyl-homocysteine and identified the cofactor binding site and a possible active site. Methyltransferase activity and tRNA-binding affinity of TrmL mutants were measured to identify residues important for tRNA binding of TrmL. Our results suggest that TrmL functions as a homodimer by using the conserved C-terminal half of the SPOUT domain for catalysis, whereas residues from the less-conserved N-terminal half of the other subunit participate in tRNA recognition.
Collapse
Affiliation(s)
- Ru-Juan Liu
- Center for RNA research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
117
|
Srinivasan T, Kumaran K, Selvakumar R, Velmurugan D, Sudarsanam D. Exploring GpG bases next to anticodon in tRNA subsets. Bioinformation 2013; 9:466-70. [PMID: 23847401 PMCID: PMC3705617 DOI: 10.6026/97320630009466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 11/23/2022] Open
Abstract
Transfer RNA (tRNA) structure, modifications and functions are evolutionary and established in bacteria, archaea and eukaryotes.
Typically the tRNA modifications are indispensable for its stability and are required for decoding the mRNA into amino acids for
protein synthesis. A conserved methylation has been located on the anticodon loop specifically at the 37th position and it is next to
the anticodon bases. This modification is called as m1G37 and it is catalyzed by tRNA (m1G37) methyltransferase (TrmD). It is
deciphered that G37 positions occur on few additional amino acids specific tRNA subsets in bacteria. Furthermore, Archaea and
Eukaryotes have more number of tRNA subsets which contains G37 position next to the anticodon and the G residue are located at
different positions such as G36, G37, G38, 39, and G40. In eight bacterial species, G (guanosine) residues are presents at the 37th and
38th position except three tRNA subsets having G residues at 36th and 39th positions. Therefore we propose that m1G37 modification
may be feasible at 36th, 37th, 38th, 39th and 40th positions next to the anticodon of tRNAs. Collectively, methylation at G residues
close to the anticodon may be possible at different positions and without restriction of anticodon 3rd base A, C, U or G.
Collapse
Affiliation(s)
- Thangavelu Srinivasan
- DST-FIST Bioinformatics & Principal Investigator, School of Genomics, Department of Advanced Zoology and Biotechnology, Loyola College, Chennai - 600 034, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
118
|
Paris Z, Horáková E, Rubio MAT, Sample P, Fleming IM, Armocida S, Lukeš J, Alfonzo JD. The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function. RNA (NEW YORK, N.Y.) 2013; 19:649-658. [PMID: 23520175 PMCID: PMC3677280 DOI: 10.1261/rna.036665.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/01/2013] [Indexed: 06/01/2023]
Abstract
All tRNAs undergo post-transcriptional chemical modifications as part of their natural maturation pathway. Some modifications, especially those in the anticodon loop, play important functions in translational efficiency and fidelity. Among these, 1-methylguanosine, at position 37 (m(1)G37) of the anticodon loop in several tRNAs, is evolutionarily conserved and participates in translational reading frame maintenance. In eukaryotes, the tRNA methyltransferase TRM5 is responsible for m(1)G formation in nucleus-encoded as well as mitochondria-encoded tRNAs, reflecting the universal importance of this modification for protein synthesis. However, it is not clear what role, if any, mitochondrial TRM5 serves in organisms that do not encode tRNAs in their mitochondrial genomes. These organisms may easily satisfy the m(1)G37 requirement through their robust mitochondrial tRNA import mechanisms. We have explored this possibility in the parasitic protist Trypanosoma brucei and show that down-regulation of TRM5 by RNAi leads to the expected disappearance of m(1)G37, but with surprisingly little effect on cytoplasmic translation. On the contrary, lack of TRM5 causes a marked growth phenotype and a significant decrease in mitochondrial functions, including protein synthesis. These results suggest mitochondrial TRM5 may be needed to mature unmethylated tRNAs that reach the mitochondria and that could pose a problem for translational fidelity. This study also reveals an unexpected lack of import specificity between some fully matured and potentially defective tRNA species.
Collapse
Affiliation(s)
- Zdeněk Paris
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eva Horáková
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Mary Anne T. Rubio
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Sample
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ian M.C. Fleming
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Stephanie Armocida
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Juan D. Alfonzo
- Department of Microbiology, Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
119
|
Preston MA, D’Silva S, Kon Y, Phizicky EM. tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2013; 19:243-56. [PMID: 23249748 PMCID: PMC3543094 DOI: 10.1261/rna.035808.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
tRNAs are highly modified, each with a unique set of modifications. Several reports suggest that tRNAs are hypomodified or, in some cases, hypermodified under different growth conditions and in certain cancers. We previously demonstrated that yeast strains depleted of tRNA(His) guanylyltransferase accumulate uncharged tRNA(His) lacking the G(-1) residue and subsequently accumulate additional 5-methylcytidine (m(5)C) at residues C(48) and C(50) of tRNA(His), due to the activity of the m(5)C-methyltransferase Trm4. We show here that the increase in tRNA(His) m(5)C levels does not require loss of Thg1, loss of G(-1) of tRNA(His), or cell death but is associated with growth arrest following different stress conditions. We find substantially increased tRNA(His) m(5)C levels after temperature-sensitive strains are grown at nonpermissive temperature, and after wild-type strains are grown to stationary phase, starved for required amino acids, or treated with rapamycin. We observe more modest accumulations of m(5)C in tRNA(His) after starvation for glucose and after starvation for uracil. In virtually all cases examined, the additional m(5)C on tRNA(His) occurs while cells are fully viable, and the increase is neither due to the GCN4 pathway, nor to increased Trm4 levels. Moreover, the increased m(5)C appears specific to tRNA(His), as tRNA(Val(AAC)) and tRNA(Gly(GCC)) have much reduced additional m(5)C during these growth arrest conditions, although they also have C(48) and C(50) and are capable of having increased m(5)C levels. Thus, tRNA(His) m(5)C levels are unusually responsive to yeast growth conditions, although the significance of this additional m(5)C remains unclear.
Collapse
|
120
|
Wetzel C, Limbach PA. The global identification of tRNA isoacceptors by targeted tandem mass spectrometry. Analyst 2013; 138:6063-72. [DOI: 10.1039/c3an01224g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
121
|
Abstract
Transfer RNA (tRNA) molecules play the key role in adapting the genetic code sequences with amino acids. The execution of this key role is highly dependent on the presence of modified nucleotides in tRNA, each of which performs a distinct function. To better understand how individual modifications modulate tRNA function, a method to isolate and purify a site-specifically modified tRNA is essential. This chapter describes an enzymatic method to synthesize a site-specifically modified tRNA, followed by purification of this tRNA away from unmodified tRNA using a selective oligonucleotide-based hybridization approach. This method is broadly applicable to site-specific tRNA modifications that interfere with nucleic-acid base-pairing principles.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, BLSB, Philadelphia, PA, USA.
| |
Collapse
|
122
|
El Yacoubi B, Bailly M, de Crécy-Lagard V. Biosynthesis and Function of Posttranscriptional Modifications of Transfer RNAs. Annu Rev Genet 2012; 46:69-95. [DOI: 10.1146/annurev-genet-110711-155641] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Basma El Yacoubi
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700;
| | - Marc Bailly
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700;
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700;
| |
Collapse
|
123
|
Jackman JE, Alfonzo JD. Transfer RNA modifications: nature's combinatorial chemistry playground. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:35-48. [PMID: 23139145 DOI: 10.1002/wrna.1144] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following synthesis, tRNAs are peppered by numerous chemical modifications which may differentially affect a tRNA's structure and function. Although modifications affecting the business ends of a tRNA are predictably important for cell viability, a majority of modifications play more subtle structural roles that can affect tRNA stability and folding. The current trend is that modifications act in concert and it is in the context of the specific sequence of a given tRNA that they impart their differing effects. Recent developments in the modification field have highlighted the diversity of modifications in tRNA. From these, the combinatorial nature of modifications in explaining previously described phenotypes derived from their absence has emerged as a growing theme.
Collapse
Affiliation(s)
- Jane E Jackman
- The Ohio State Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
124
|
Vilardo E, Nachbagauer C, Buzet A, Taschner A, Holzmann J, Rossmanith W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase--extensive moonlighting in mitochondrial tRNA biogenesis. Nucleic Acids Res 2012; 40:11583-93. [PMID: 23042678 PMCID: PMC3526285 DOI: 10.1093/nar/gks910] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Transfer RNAs (tRNAs) reach their mature functional form through several steps of processing and modification. Some nucleotide modifications affect the proper folding of tRNAs, and they are crucial in case of the non-canonically structured animal mitochondrial tRNAs, as exemplified by the apparently ubiquitous methylation of purines at position 9. Here, we show that a subcomplex of human mitochondrial RNase P, the endonuclease removing tRNA 5′ extensions, is the methyltransferase responsible for m1G9 and m1A9 formation. The ability of the mitochondrial tRNA:m1R9 methyltransferase to modify both purines is uncommon among nucleic acid modification enzymes. In contrast to all the related methyltransferases, the human mitochondrial enzyme, moreover, requires a short-chain dehydrogenase as a partner protein. Human mitochondrial RNase P, thus, constitutes a multifunctional complex, whose subunits moonlight in cascade: a fatty and amino acid degradation enzyme in tRNA methylation and the methyltransferase, in turn, in tRNA 5′ end processing.
Collapse
Affiliation(s)
- Elisa Vilardo
- Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
125
|
Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM. Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA (NEW YORK, N.Y.) 2012; 18:1921-33. [PMID: 22912484 PMCID: PMC3446714 DOI: 10.1261/rna.035287.112] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/19/2012] [Indexed: 05/17/2023]
Abstract
Post-transcriptional modification of the tRNA anticodon loop is critical for translation. Yeast Trm7 is required for 2'-O-methylation of C(32) and N(34) of tRNA(Phe), tRNA(Trp), and tRNA(Leu(UAA)) to form Cm(32) and Nm(34), and trm7-Δ mutants have severe growth and translation defects, but the reasons for these defects are not known. We show here that overproduction of tRNA(Phe) suppresses the growth defect of trm7-Δ mutants, suggesting that the crucial biological role of Trm7 is the modification of tRNA(Phe). We also provide in vivo and in vitro evidence that Trm7 interacts with ORF YMR259c (now named Trm732) for 2'-O-methylation of C(32), and with Rtt10 (named Trm734) for 2'-O-methylation of N(34) of substrate tRNAs and provide evidence for a complex circuitry of anticodon loop modification of tRNA(Phe), in which formation of Cm(32) and Gm(34) drives modification of m(1)G(37) (1-methylguanosine) to yW (wyebutosine). Further genetic analysis shows that the slow growth of trm7-Δ mutants is due to the lack of both Cm(32) and Nm(34), and the accompanying loss of yW, because trm732-Δ trm734-Δ mutants phenocopy trm7-Δ mutants, whereas each single mutant is healthy; nonetheless, TRM732 and TRM734 each have distinct roles, since mutations in these genes have different genetic interactions with trm1-Δ mutants, which lack m(2,2)G(26) in their tRNAs. We speculate that 2'-O-methylation of the anticodon loop may be important throughout eukaryotes because of the widespread conservation of Trm7, Trm732, and Trm734 proteins, and the corresponding modifications, and because the putative human TRM7 ortholog FTSJ1 is implicated in nonsyndromic X-linked mental retardation.
Collapse
Affiliation(s)
- Michael P. Guy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Brandon M. Podyma
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Melanie A. Preston
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Hussam H. Shaheen
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kady L. Krivos
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | - Patrick A. Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221-0172, USA
| | - Anita K. Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Eric M. Phizicky
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
- Corresponding authorE-mail
| |
Collapse
|
126
|
Benítez-Páez A, Villarroya M, Armengod ME. The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA (NEW YORK, N.Y.) 2012; 18:1783-1795. [PMID: 22891362 PMCID: PMC3446703 DOI: 10.1261/rna.033266.112] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/26/2012] [Indexed: 05/28/2023]
Abstract
Modifying RNA enzymes are highly specific for substrate-rRNA or tRNA-and the target position. In Escherichia coli, there are very few multisite acting enzymes, and only one rRNA/tRNA dual-specificity enzyme, pseudouridine synthase RluA, has been identified to date. Among the tRNA-modifying enzymes, the methyltransferase responsible for the m(2)A synthesis at purine 37 in a tRNA set still remains unknown. m(2)A is also present at position 2503 in the peptidyl transferase center of 23S RNA, where it is introduced by RlmN, a radical S-adenosyl-L-methionine (SAM) enzyme. Here, we show that E. coli RlmN is a dual-specificity enzyme that catalyzes methylation of both rRNA and tRNA. The ΔrlmN mutant lacks m(2)A in both RNA types, whereas the expression of recombinant RlmN from a plasmid introduced into this mutant restores tRNA modification. Moreover, RlmN performs m(2)A(37) synthesis in vitro using a tRNA chimera as a substrate. This chimera has also proved useful to characterize some tRNA identity determinants for RlmN and other tRNA modification enzymes. Our data suggest that RlmN works in a late step during tRNA maturation by recognizing a precise 3D structure of tRNA. RlmN inactivation increases the misreading of a UAG stop codon. Since loss of m(2)A(37) from tRNA is expected to produce a hyperaccurate phenotype, we believe that the error-prone phenotype exhibited by the ΔrlmN mutant is due to loss of m(2)A from 23S rRNA and, accordingly, that the m(2)A2503 modification plays a crucial role in the proofreading step occurring at the peptidyl transferase center.
Collapse
Affiliation(s)
- Alfonso Benítez-Páez
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Bioinformatic Analysis Group—GABi, Centro de Investigación y Desarrollo en Biotecnología, Bogotá D.C., 111221 Colombia
| | - Magda Villarroya
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - M.-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Unidad 721, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
127
|
Sakaguchi R, Giessing A, Dai Q, Lahoud G, Liutkeviciute Z, Klimasauskas S, Piccirilli J, Kirpekar F, Hou YM. Recognition of guanosine by dissimilar tRNA methyltransferases. RNA (NEW YORK, N.Y.) 2012; 18:1687-1701. [PMID: 22847817 PMCID: PMC3425783 DOI: 10.1261/rna.032029.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Anders Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Qing Dai
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Zita Liutkeviciute
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Saulius Klimasauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Joseph Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
128
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Struktur und Funktion nicht-kanonischer Nukleobasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
129
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 2012; 51:7110-31. [PMID: 22744788 DOI: 10.1002/anie.201201193] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Indexed: 12/19/2022]
Abstract
DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.
Collapse
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Global identification of transfer RNAs by liquid chromatography–mass spectrometry (LC–MS). J Proteomics 2012; 75:3450-64. [DOI: 10.1016/j.jprot.2011.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/18/2011] [Accepted: 09/21/2011] [Indexed: 11/17/2022]
|
131
|
Towns WL, Begley TJ. Transfer RNA methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health. DNA Cell Biol 2012; 31:434-54. [PMID: 22191691 PMCID: PMC3322404 DOI: 10.1089/dna.2011.1437] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022] Open
Abstract
Throughout the kingdoms of life, transfer RNA (tRNA) undergoes over 100 enzyme-catalyzed, methyl-based modifications. Although a majority of the methylations are conserved from bacteria to mammals, the functions of a number of these modifications are unknown. Many of the proteins responsible for tRNA methylation, named tRNA methyltransferases (Trms), have been characterized in Saccharomyces cerevisiae. In contrast, only a few human Trms have been characterized. A BLAST search for human homologs of each S. cerevisiae Trm revealed a total of 34 human proteins matching our search criteria for an S. cerevisiae Trm homolog candidate. We have compiled a database cataloging basic information about each human and yeast Trm. Every S. cerevisiae Trm has at least one human homolog, while several Trms have multiple candidates. A search of cancer cell versus normal cell mRNA expression studies submitted to Oncomine found that 30 of the homolog genes display a significant change in mRNA expression levels in at least one data set. While 6 of the 34 human homolog candidates have confirmed tRNA methylation activity, the other candidates remain uncharacterized. We believe that our database will serve as a resource for investigating the role of human Trms in cellular stress signaling.
Collapse
Affiliation(s)
- William L. Towns
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
| | - Thomas J. Begley
- College of Nanoscale Science and Engineering, University at Albany, Albany, New York
- RNA Institute, University at Albany, Rensselaer, New York
- Cancer Research Center, University at Albany, Rensselaer, New York
| |
Collapse
|
132
|
Chen C, Huang B, Eliasson M, Rydén P, Byström AS. Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 2011; 7:e1002258. [PMID: 21912530 PMCID: PMC3164696 DOI: 10.1371/journal.pgen.1002258] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/12/2011] [Indexed: 11/25/2022] Open
Abstract
Elongator complex is required for formation of the side chains at position 5 of modified nucleosides 5-carbamoylmethyluridine (ncm5U34), 5-methoxycarbonylmethyluridine (mcm5U34), and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U34) at wobble position in tRNA. These modified nucleosides are important for efficient decoding during translation. In a recent publication, Elongator complex was implicated to participate in telomeric gene silencing and DNA damage response by interacting with proliferating cell nuclear antigen (PCNA). Here we show that elevated levels of tRNALyss2UUU, tRNAGlns2UUG, and tRNAGlus2UUC, which in a wild-type background contain the mcm5s2U nucleoside at position 34, suppress the defects in telomeric gene silencing and DNA damage response observed in the Elongator mutants. We also found that the reported differences in telomeric gene silencing and DNA damage response of various elp3 alleles correlated with the levels of modified nucleosides at U34. Defects in telomeric gene silencing and DNA damage response are also observed in strains with the tuc2Δ mutation, which abolish the formation of the 2-thio group of the mcm5s2U nucleoside in tRNALysmcm5s2UUU, tRNAGlnmcm5s2UUG, and tRNAGlumcm5s2UUC. These observations show that Elongator complex does not directly participate in telomeric gene silencing and DNA damage response, but rather that modified nucleosides at U34 are important for efficient expression of gene products involved in these processes. Consistent with this notion, we found that expression of Sir4, a silent information regulator required for assembly of silent chromatin at telomeres, was decreased in the elp3Δ mutants. Elongator is a conserved protein complex in eukaryotes. Studies in yeast, worms, and plants have revealed that Elongator complex is required for formation of mcm5 and ncm5 side chains at wobble uridines in a subset of tRNA species. The primary function of Elongator complex in yeast is to modify U34 in tRNAs. Lack of these tRNA modifications causes pleiotropic phenotypes in yeast Elongator mutants due to inefficient translation. In this report, we demonstrate that the defects in telomeric silencing and DNA damage response observed in yeast Elongator mutants are a consequence of a tRNA modification defect. We suggest that the requirement of Elongator complex in tRNA modification is conserved in all eukaryotes, and diseases linked to human Elongator mutations may involve impaired translation due to lack of tRNA modifications.
Collapse
MESH Headings
- Chromatin/genetics
- Chromatin/metabolism
- DNA Damage/genetics
- Gene Expression Regulation
- Gene Silencing
- Humans
- Mutation
- Proliferating Cell Nuclear Antigen/genetics
- Proliferating Cell Nuclear Antigen/metabolism
- Protein Biosynthesis
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Glu/genetics
- RNA, Transfer, Lys/genetics
- Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
- Telomere/genetics
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bo Huang
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Division of Epidemiology, Department of Medicine and Public Health, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mattias Eliasson
- Department of Chemistry, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Anders S. Byström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
133
|
Globisch D, Pearson D, Hienzsch A, Brückl T, Wagner M, Thoma I, Thumbs P, Reiter V, Kneuttinger AC, Müller M, Sieber SA, Carell T. Systems-based analysis of modified tRNA bases. Angew Chem Int Ed Engl 2011; 50:9739-42. [PMID: 21882308 DOI: 10.1002/anie.201103229] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Indexed: 01/08/2023]
Affiliation(s)
- Daniel Globisch
- Center for Integrated Protein Science, Department of Chemistry, Ludwig Maximilian University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Globisch D, Pearson D, Hienzsch A, Brückl T, Wagner M, Thoma I, Thumbs P, Reiter V, Kneuttinger AC, Müller M, Sieber SA, Carell T. Systembasierte Analyse von modifizierten tRNA-Basen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201103229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
135
|
Lahoud G, Goto-Ito S, Yoshida KI, Ito T, Yokoyama S, Hou YM. Differentiating analogous tRNA methyltransferases by fragments of the methyl donor. RNA (NEW YORK, N.Y.) 2011; 17:1236-1246. [PMID: 21602303 PMCID: PMC3138561 DOI: 10.1261/rna.2706011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/15/2011] [Indexed: 05/30/2023]
Abstract
Bacterial TrmD and eukaryotic-archaeal Trm5 form a pair of analogous tRNA methyltransferase that catalyze methyl transfer from S-adenosyl methionine (AdoMet) to N(1) of G37, using catalytic motifs that share no sequence or structural homology. Here we show that natural and synthetic analogs of AdoMet are unable to distinguish TrmD from Trm5. Instead, fragments of AdoMet, adenosine and methionine, are selectively inhibitory of TrmD rather than Trm5. Detailed structural information of the two enzymes in complex with adenosine reveals how Trm5 escapes targeting by adopting an altered structure, whereas TrmD is trapped by targeting due to its rigid structure that stably accommodates the fragment. Free energy analysis exposes energetic disparities between the two enzymes in how they approach the binding of AdoMet versus fragments and provides insights into the design of inhibitors selective for TrmD.
Collapse
Affiliation(s)
- Georges Lahoud
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| | - Sakurako Goto-Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ken-ichi Yoshida
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takuhiro Ito
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Shigeyuki Yokoyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Department of Biophysics and Biochemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ya-Ming Hou
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
136
|
Chen C, Huang B, Anderson JT, Byström AS. Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U. PLoS One 2011; 6:e20783. [PMID: 21687733 PMCID: PMC3110198 DOI: 10.1371/journal.pone.0020783] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transfer RNAs are synthesized as a primary transcript that is processed to produce a mature tRNA. As part of the maturation process, a subset of the nucleosides are modified. Modifications in the anticodon region often modulate the decoding ability of the tRNA. At position 34, the majority of yeast cytosolic tRNA species that have a uridine are modified to 5-carbamoylmethyluridine (ncm(5)U), 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um), 5-methoxycarbonylmethyl-uridine (mcm(5)U) or 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). The formation of mcm(5) and ncm(5) side chains involves a complex pathway, where the last step in formation of mcm(5) is a methyl esterification of cm(5) dependent on the Trm9 and Trm112 proteins. METHODOLOGY AND PRINCIPAL FINDINGS Both Trm9 and Trm112 are required for the last step in formation of mcm(5) side chains at wobble uridines. By co-expressing a histidine-tagged Trm9p together with a native Trm112p in E. coli, these two proteins purified as a complex. The presence of Trm112p dramatically improves the methyltransferase activity of Trm9p in vitro. Single tRNA species that normally contain mcm(5)U or mcm(5)s(2)U nucleosides were isolated from trm9Δ or trm112Δ mutants and the presence of modified nucleosides was analyzed by HPLC. In both mutants, mcm(5)U and mcm(5)s(2)U nucleosides are absent in tRNAs and the major intermediates accumulating were ncm(5)U and ncm(5)s(2)U, not the expected cm(5)U and cm(5)s(2)U. CONCLUSIONS Trm9p and Trm112p function together at the final step in formation of mcm(5)U in tRNA by using the intermediate cm(5)U as a substrate. In tRNA isolated from trm9Δ and trm112Δ strains, ncm(5)U and ncm(5)s(2)U nucleosides accumulate, questioning the order of nucleoside intermediate formation of the mcm(5) side chain. We propose two alternative explanations for this observation. One is that the intermediate cm(5)U is generated from ncm(5)U by a yet unknown mechanism and the other is that cm(5)U is formed before ncm(5)U and mcm(5)U.
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
| | - Bo Huang
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
- Division of Epidemiology, Department of
Medicine and Public Health, Vanderbilt University School of Medicine, Nashville,
Tennessee, United States of America
| | - James T. Anderson
- Department of Biological Sciences, Marquette
University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (ASB)
| | - Anders S. Byström
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
- * E-mail: (JTA); (ASB)
| |
Collapse
|
137
|
D'Silva S, Haider SJ, Phizicky EM. A domain of the actin binding protein Abp140 is the yeast methyltransferase responsible for 3-methylcytidine modification in the tRNA anti-codon loop. RNA (NEW YORK, N.Y.) 2011; 17:1100-10. [PMID: 21518804 PMCID: PMC3096042 DOI: 10.1261/rna.2652611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/09/2011] [Indexed: 05/25/2023]
Abstract
The 3-methylcytidine (m³C) modification is widely found in eukaryotic species of tRNA(Ser), tRNA(Thr), and tRNA(Arg); at residue 32 in the anti-codon loop; and at residue e2 in the variable stem of tRNA(Ser). Little is known about the function of this modification or about the specificity of the corresponding methyltransferase, since the gene has not been identified. We have used a primer extension assay to screen a battery of methyltransferase candidate knockout strains in the yeast Saccharomyces cerevisiae, and find that tRNA(Thr(IGU)) from abp140-Δ strains lacks m³C. Curiously, Abp140p is composed of a poorly conserved N-terminal ORF fused by a programed +1 frameshift in budding yeasts to a C-terminal ORF containing an S-adenosylmethionine (SAM) domain that is highly conserved among eukaryotes. We show that ABP140 is required for m³C modification of substrate tRNAs, since primer extension is similarly affected for all tRNA species expected to have m³C and since quantitative analysis shows explicitly that tRNA(Thr(IGU)) from an abp140-Δ strain lacks m³C. We also show that Abp140p (now named Trm140p) purified after expression in yeast or Escherichia coli has m³C methyltransferase activity, which is specific for tRNA(Thr(IGU)) and not tRNA(Phe) and occurs specifically at C₃₂. We suggest that the C-terminal ORF of Trm140p is necessary and sufficient for activity in vivo and in vitro, based on analysis of constructs deleted for most or all of the N-terminal ORF. We also suggest that m³C has a role in translation, since trm140-Δ trm1-Δ strains (also lacking m²,²G₂₆) are sensitive to low concentrations of cycloheximide.
Collapse
Affiliation(s)
- Sonia D'Silva
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | |
Collapse
|
138
|
Kuratani M, Kasai T, Akasaka R, Higashijima K, Terada T, Kigawa T, Shinkai A, Bessho Y, Yokoyama S. Crystal structure of Sulfolobus tokodaii Sua5 complexed with L-threonine and AMPPNP. Proteins 2011; 79:2065-75. [PMID: 21538543 DOI: 10.1002/prot.23026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/31/2011] [Accepted: 02/25/2011] [Indexed: 11/09/2022]
Abstract
The hypermodified nucleoside N(6)-threonylcarbamoyladenosine resides at position 37 of tRNA molecules bearing U at position 36 and maintains translational fidelity in the three kingdoms of life. The N(6)-threonylcarbamoyl moiety is composed of L-threonine and bicarbonate, and its synthesis was genetically shown to require YrdC/Sua5. YrdC/Sua5 binds to tRNA and ATP. In this study, we analyzed the L-threonine-binding mode of Sua5 from the archaeon Sulfolobus tokodaii. Isothermal titration calorimetry measurements revealed that S. tokodaii Sua5 binds L-threonine more strongly than L-serine and glycine. The Kd values of Sua5 for L-threonine and L-serine are 9.3 μM and 2.6 mM, respectively. We determined the crystal structure of S. tokodaii Sua5, complexed with AMPPNP and L-threonine, at 1.8 Å resolution. The L-threonine is bound next to AMPPNP in the same pocket of the N-terminal domain. Thr118 and two water molecules form hydrogen bonds with AMPPNP in a unique manner for adenine-specific recognition. The carboxyl group and the side-chain hydroxyl and methyl groups of L-threonine are buried deep in the pocket, whereas the amino group faces AMPPNP. The L-threonine is located in a suitable position to react together with ATP for the synthesis of N(6)-threonylcarbamoyladenosine.
Collapse
Affiliation(s)
- Mitsuo Kuratani
- RIKEN Systems and Structural Biology Center, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Phillips G, de Crécy-Lagard V. Biosynthesis and function of tRNA modifications in Archaea. Curr Opin Microbiol 2011; 14:335-41. [PMID: 21470902 DOI: 10.1016/j.mib.2011.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/04/2011] [Accepted: 03/11/2011] [Indexed: 11/25/2022]
Abstract
tRNA modifications are important for decoding, translation accuracy, and structural integrity of tRNAs. Archaeal tRNAs contain at least 47 different tRNA modifications, some of them, including archaeosine, agmatidine, and mimG, are specific to the archaeal domain. The biosynthetic pathways for these complex signature modifications have recently been elucidated and are extensively described in this review. Archaeal organisms still lag Escherichia coli and Saccharomyces cerevisiae in terms of genetic characterization and in vivo function of tRNA modifications. However, recent advances in the model Haloferax volcanii, described here, should allow closing this gap soon. Consequently, an update on experimental characterizations of archaeal tRNA modification genes and proteins is given to set the stage for future work in this field.
Collapse
Affiliation(s)
- Gabriela Phillips
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
140
|
Chan CTY, Dyavaiah M, DeMott MS, Taghizadeh K, Dedon PC, Begley TJ. A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress. PLoS Genet 2010; 6:e1001247. [PMID: 21187895 PMCID: PMC3002981 DOI: 10.1371/journal.pgen.1001247] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/15/2010] [Indexed: 11/18/2022] Open
Abstract
Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m(5)C, and m(2) (2)G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m(5)C, and m(2) (2)G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.
Collapse
Affiliation(s)
- Clement T. Y. Chan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Madhu Dyavaiah
- Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Koli Taghizadeh
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (PCD); (TJB)
| | - Thomas J. Begley
- Department of Biomedical Sciences, Gen*NY*sis Center for Excellence in Cancer Genomics, University at Albany, State University of New York, Rensselaer, New York, United States of America
- * E-mail: (PCD); (TJB)
| |
Collapse
|
141
|
Christian T, Lahoud G, Liu C, Hoffmann K, Perona JJ, Hou YM. Mechanism of N-methylation by the tRNA m1G37 methyltransferase Trm5. RNA (NEW YORK, N.Y.) 2010; 16:2484-2492. [PMID: 20980671 PMCID: PMC2995409 DOI: 10.1261/rna.2376210] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/22/2010] [Indexed: 05/30/2023]
Abstract
Trm5 is a eukaryal and archaeal tRNA methyltransferase that catalyzes methyl transfer from S-adenosylmethionine (AdoMet) to the N(1) position of G37 directly 3' to the anticodon. While the biological role of m(1)G37 in enhancing translational fidelity is well established, the catalytic mechanism of Trm5 has remained obscure. To address the mechanism of Trm5 and more broadly the mechanism of N-methylation to nucleobases, we examined the pH-activity profile of an archaeal Trm5 enzyme, and performed structure-guided mutational analysis. The data reveal a marked dependence of enzyme-catalyzed methyl transfer on hydrogen ion equilibria: the single-turnover rate constant for methylation increases by one order of magnitude from pH 6.0 to reach a plateau at pH 7.0. This suggests a mechanism involving proton transfer from G37 as the key element in catalysis. Consideration of the kinetic data in light of the Trm5-tRNA-AdoMet ternary cocrystal structure, determined in a precatalytic conformation, suggests that proton transfer is associated with an induced fit rearrangement of the complex that precedes formation of the reactive configuration in the active site. Key roles for the conserved R145 side chain in stabilizing a proposed oxyanion at G37-O(6), and for E185 as a general base to accept the proton from G37-N(1), are suggested based on the mutational analysis.
Collapse
Affiliation(s)
- Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
142
|
Abstract
tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
| | | |
Collapse
|
143
|
Chen P, Jäger G, Zheng B. Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:201. [PMID: 20836892 PMCID: PMC2956550 DOI: 10.1186/1471-2229-10-201] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/14/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND In all domains of life, transfer RNA (tRNA) molecules contain modified nucleosides. Modifications to tRNAs affect their coding capacity and influence codon-anticodon interactions. Nucleoside modification deficiencies have a diverse range of effects, from decreased virulence in bacteria, neural system disease in human, and gene expression and stress response changes in plants. The purpose of this study was to identify genes involved in tRNA modification in the model plant Arabidopsis thaliana, to understand the function of nucleoside modifications in plant growth and development. RESULTS In this study, we established a method for analyzing modified nucleosides in tRNAs from the model plant species, Arabidopsis thaliana and hybrid aspen (Populus tremula × tremuloides). 21 modified nucleosides in tRNAs were identified in both species. To identify the genes responsible for the plant tRNA modifications, we performed global analysis of the Arabidopsis genome for candidate genes. Based on the conserved domains of homologs in Sacccharomyces cerevisiae and Escherichia coli, more than 90 genes were predicted to encode tRNA modifying enzymes in the Arabidopsis genome. Transcript accumulation patterns for the genes in Arabidopsis and the phylogenetic distribution of the genes among different plant species were investigated. Transcripts for the majority of the Arabidopsis candidate genes were found to be most abundant in rosette leaves and shoot apices. Whereas most of the tRNA modifying gene families identified in the Arabidopsis genome was found to be present in other plant species, there was a big variation in the number of genes present for each family.Through a loss of function mutagenesis study, we identified five tRNA modification genes (AtTRM10, AtTRM11, AtTRM82, AtKTI12 and AtELP1) responsible for four specific modified nucleosides (m1G, m2G, m7G and ncm5U), respectively (two genes: AtKTI12 and AtELP1 identified for ncm5U modification). The AtTRM11 mutant exhibited an early-flowering phenotype, and the AtELP1 mutant had narrow leaves, reduced root growth, an aberrant silique shape and defects in the generation of secondary shoots. CONCLUSIONS Using a reverse genetics approach, we successfully isolated and identified five tRNA modification genes in Arabidopsis thaliana. We conclude that the method established in this study will facilitate the identification of tRNA modification genes in a wide variety of plant species.
Collapse
Affiliation(s)
- Peng Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, China
- Department of Forest Genetics and Plant Physiology, Swedish Agricultural University, S-901 83, Umeå, Sweden
| | - Gunilla Jäger
- Department of Molecular Biology, Umeå University, S-901 87, Umeå, Sweden
| | - Bo Zheng
- Department of Forest Genetics and Plant Physiology, Swedish Agricultural University, S-901 83, Umeå, Sweden
| |
Collapse
|
144
|
Saikia M, Fu Y, Pavon-Eternod M, He C, Pan T. Genome-wide analysis of N1-methyl-adenosine modification in human tRNAs. RNA (NEW YORK, N.Y.) 2010; 16:1317-27. [PMID: 20484468 PMCID: PMC2885681 DOI: 10.1261/rna.2057810] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/14/2010] [Indexed: 05/19/2023]
Abstract
The N(1)-methyl-Adenosine (m(1)A58) modification at the conserved nucleotide 58 in the TPsiC loop is present in most eukaryotic tRNAs. In yeast, m(1)A58 modification is essential for viability because it is required for the stability of the initiator-tRNA(Met). However, m(1)A58 modification is not required for the stability of several other tRNAs in yeast. This differential m(1)A58 response for different tRNA species raises the question of whether some tRNAs are hypomodified at A58 in normal cells, and how hypomodification at A58 may affect the stability and function of tRNA. Here, we apply a genomic approach to determine the presence of m(1)A58 hypomodified tRNAs in human cell lines and show how A58 hypomodification affects stability and involvement of tRNAs in translation. Our microarray-based method detects the presence of m(1)A58 hypomodified tRNA species on the basis of their permissiveness in primer extension. Among five human cell lines examined, approximately one-quarter of all tRNA species are hypomodified in varying amounts, and the pattern of the hypomodified tRNAs is quite similar. In all cases, no hypomodified initiator-tRNA(Met) is detected, consistent with the requirement of this modification in stabilizing this tRNA in human cells. siRNA knockdown of either subunit of the m(1)A58-methyltransferase results in a slow-growth phenotype, and a marked increase in the amount of m(1)A58 hypomodified tRNAs. Most m(1)A58 hypomodified tRNAs can associate with polysomes in varying extents. Our results show a distinct pattern for m(1)A58 hypomodification in human tRNAs, and are consistent with the notion that this modification fine tunes tRNA functions in different contexts.
Collapse
Affiliation(s)
- Mridusmita Saikia
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
145
|
Kempenaers M, Roovers M, Oudjama Y, Tkaczuk KL, Bujnicki JM, Droogmans L. New archaeal methyltransferases forming 1-methyladenosine or 1-methyladenosine and 1-methylguanosine at position 9 of tRNA. Nucleic Acids Res 2010; 38:6533-43. [PMID: 20525789 PMCID: PMC2965216 DOI: 10.1093/nar/gkq451] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N1-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N1 atom of a purine residue is discussed.
Collapse
Affiliation(s)
- Morgane Kempenaers
- Laboratoire de Microbiologie, Université Libre de Bruxelles, Institut de Recherches Microbiologiques Jean-Marie Wiame, Avenue E Gryson 1, B-1070 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
146
|
Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström AS, Schaffrath R, Breunig KD. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 2010; 76:1082-94. [PMID: 20398216 PMCID: PMC2904499 DOI: 10.1111/j.1365-2958.2010.07163.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2010] [Indexed: 01/17/2023]
Abstract
Based on studies in yeast and mammalian cells the Elongator complex has been implicated in functions as diverse as histone acetylation, polarized protein trafficking and tRNA modification. Here we show that Arabidopsis mutants lacking the Elongator subunit AtELP3/ELO3 have a defect in tRNA wobble uridine modification. Moreover, we demonstrate that yeast elp3 and elp1 mutants expressing the respective Arabidopsis Elongator homologues AtELP3/ELO3 and AtELP1/ELO2 assemble integer Elongator complexes indicating a high degree of structural conservation. Surprisingly, in vivo complementation studies based on Elongator-dependent tRNA nonsense suppression and zymocin tRNase toxin assays indicated that while AtELP1 rescued defects of a yeast elp1 mutant, the most conserved Elongator gene AtELP3, failed to complement an elp3 mutant. This lack of complementation is due to incompatibility with yeast ELP1 as coexpression of both plant genes in an elp1 elp3 yeast mutant restored Elongator's tRNA modification function in vivo. Similarly, AtELP1, not ScELP1 also supported partial complementation by yeast-plant Elp3 hybrids suggesting that AtElp1 has less stringent sequence requirements for Elp3 than ScElp1. We conclude that yeast and plant Elongator share tRNA modification roles and propose that this function might be conserved in Elongator from all eukaryotic kingdoms of life.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Daniel Jablonowski
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Uta Wrackmeyer
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Susan Tschitschmann
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - David Sondermann
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Gunilla Jäger
- Department of Molecular Biology, Umea University90187 Umea, Sweden
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural UniversityBeijing 100094, China
| | - Anders S Byström
- Department of Molecular Biology, Umea University90187 Umea, Sweden
| | - Raffael Schaffrath
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| | - Karin D Breunig
- Institut für Biologie, Genetik, Martin-Luther-Universität Halle-WittenbergWeinbergweg 10, D-06120 Halle (Saale), Germany
| |
Collapse
|
147
|
Christian T, Lahoud G, Liu C, Hou YM. Control of catalytic cycle by a pair of analogous tRNA modification enzymes. J Mol Biol 2010; 400:204-17. [PMID: 20452364 DOI: 10.1016/j.jmb.2010.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/13/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
Abstract
Enzymes that use distinct active site structures to perform identical reactions are known as analogous enzymes. The isolation of analogous enzymes suggests the existence of multiple enzyme structural pathways that can catalyze the same chemical reaction. A fundamental question concerning analogous enzymes is whether their distinct active-site structures would confer the same or different kinetic constraints to the chemical reaction, particularly with respect to the control of enzyme turnover. Here, we address this question with the analogous enzymes of bacterial TrmD and its eukaryotic and archaeal counterpart Trm5. TrmD and Trm5 catalyze methyl transfer to synthesize the m1G37 base at the 3' position adjacent to the tRNA anticodon, using S-adenosyl methionine (AdoMet) as the methyl donor. TrmD features a trefoil-knot active-site structure whereas Trm5 features the Rossmann fold. Pre-steady-state analysis revealed that product synthesis by TrmD proceeds linearly with time, whereas that by Trm5 exhibits a rapid burst followed by a slower and linear increase with time. The burst kinetics of Trm5 suggests that product release is the rate-limiting step of the catalytic cycle, consistent with the observation of higher enzyme affinity to the products of tRNA and AdoMet. In contrast, the lack of burst kinetics of TrmD suggests that its turnover is controlled by a step required for product synthesis. Although TrmD exists as a homodimer, it showed half-of-the-sites reactivity for tRNA binding and product synthesis. The kinetic differences between TrmD and Trm5 are parallel with those between the two classes of aminoacyl-tRNA synthetases, which use distinct active site structures to catalyze tRNA aminoacylation. This parallel suggests that the findings have a fundamental importance for enzymes that catalyze both methyl and aminoacyl transfer to tRNA in the decoding process.
Collapse
Affiliation(s)
- Thomas Christian
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10th Street, BLSB 220, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
148
|
Iyer LM, Abhiman S, de Souza RF, Aravind L. Origin and evolution of peptide-modifying dioxygenases and identification of the wybutosine hydroxylase/hydroperoxidase. Nucleic Acids Res 2010; 38:5261-79. [PMID: 20423905 PMCID: PMC2938197 DOI: 10.1093/nar/gkq265] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Unlike classical 2-oxoglutarate and iron-dependent dioxygenases, which include several nucleic acid modifiers, the structurally similar jumonji-related dioxygenase superfamily was only known to catalyze peptide modifications. Using comparative genomics methods, we predict that a family of jumonji-related enzymes catalyzes wybutosine hydroxylation/peroxidation at position 37 of eukaryotic tRNAPhe. Identification of this enzyme raised questions regarding the emergence of protein- and nucleic acid-modifying activities among jumonji-related domains. We addressed these with a natural classification of DSBH domains and reconstructed the precursor of the dioxygenases as a sugar-binding domain. This precursor gave rise to sugar epimerases and metal-binding sugar isomerases. The sugar isomerase active site was exapted for catalysis of oxygenation, with a radiation of these enzymes in bacteria, probably due to impetus from the primary oxygenation event in Earth’s history. 2-Oxoglutarate-dependent versions appear to have further expanded with rise of the tricarboxylic acid cycle. We identify previously under-appreciated aspects of their active site and multiple independent innovations of 2-oxoacid-binding basic residues among these superfamilies. We show that double-stranded β-helix dioxygenases diversified extensively in biosynthesis and modification of halogenated siderophores, antibiotics, peptide secondary metabolites and glycine-rich collagen-like proteins in bacteria. Jumonji-related domains diversified into three distinct lineages in bacterial secondary metabolism systems and these were precursors of the three major clades of eukaryotic enzymes. The specificity of wybutosine hydroxylase/peroxidase probably relates to the structural similarity of the modified moiety to the ancestral amino acid substrate of this superfamily.
Collapse
Affiliation(s)
- Lakshminarayan M Iyer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
149
|
de Crécy-Lagard V, Brochier-Armanet C, Urbonavicius J, Fernandez B, Phillips G, Lyons B, Noma A, Alvarez S, Droogmans L, Armengaud J, Grosjean H. Biosynthesis of wyosine derivatives in tRNA: an ancient and highly diverse pathway in Archaea. Mol Biol Evol 2010; 27:2062-77. [PMID: 20382657 DOI: 10.1093/molbev/msq096] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wyosine (imG) and its derivatives such as wybutosine (yW) are found at position 37 of phenylalanine-specific transfer RNA (tRNA(Phe)), 3' adjacent to the anticodon in Eucarya and Archaea. In Saccharomyces cerevisiae, formation of yW requires five enzymes acting in a strictly sequential order: Trm5, Tyw1, Tyw2, Tyw3, and Tyw4. Archaea contain wyosine derivatives, but their diversity is greater than in eukaryotes and the corresponding biosynthesis pathways still unknown. To identify these pathways, we analyzed the phylogenetic distribution of homologues of the yeast wybutosine biosynthesis proteins in 62 archaeal genomes and proposed a scenario for the origin and evolution of wyosine derivatives biosynthesis in Archaea that was partly experimentally validated. The key observations were 1) that four of the five wybutosine biosynthetic enzymes are ancient and may have been present in the last common ancestor of Archaea and Eucarya, 2) that the variations in the distribution pattern of biosynthesis enzymes reflect the diversity of the wyosine derivatives found in different Archaea. We also identified 7-aminocarboxypropyl-demethylwyosine (yW-86) and its N4-methyl derivative (yW-72) as final products in tRNAs of several Archaea when these were previously thought to be only intermediates of the eukaryotic pathway. We confirmed that isowyosine (imG2) and 7-methylwyosine (mimG) are two archaeal-specific guanosine-37 derivatives found in tRNA of both Euryarchaeota and Crenarchaeota. Finally, we proposed that the duplication of the trm5 gene in some Archaea led to a change in function from N1 methylation of guanosine to C7 methylation of 4-demethylwyosine (imG-14).
Collapse
|
150
|
Behura SK, Stanke M, Desjardins CA, Werren JH, Severson DW. Comparative analysis of nuclear tRNA genes of Nasonia vitripennis and other arthropods, and relationships to codon usage bias. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:49-58. [PMID: 20167017 PMCID: PMC4046259 DOI: 10.1111/j.1365-2583.2009.00933.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Using bioinformatics methods, we identified a total of 221 and 199 tRNA genes in the nuclear genomes of Nasonia vitripennis and honey bee (Apis mellifera), respectively. We performed comparative analyses of Nasonia tRNA genes with honey bee and other selected insects to understand genomic distribution, sequence evolution and relationship of tRNA copy number with codon usage patterns. Many tRNA genes are located physically close to each other in the form of small clusters in the Nasonia genome. However, the number of clusters and the tRNA genes that form such clusters vary from species to species. In particular, the Ala-, Pro-, Tyr- and His-tRNA genes tend to accumulate in clusters in Nasonia but not in honey bee, whereas the bee contains a long cluster of 15 tRNA genes (of which 13 are Gln-tRNAs) that is absent in Nasonia. Though tRNA genes are highly conserved, contrasting patterns of nucleotide diversity are observed among the arm and loop regions of tRNAs between Nasonia and honey bee. Also, the sequence convergence between the reconstructed ancestral tRNAs and the present day tRNAs suggests a common ancestral origin of Nasonia and honey bee tRNAs. Furthermore, we also present evidence that the copy number of isoacceptor tRNAs (those having a different anticodon but charge the same amino acid) is correlated with codon usage patterns of highly expressed genes in Nasonia.
Collapse
Affiliation(s)
- S K Behura
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | |
Collapse
|