101
|
Abstract
Fragile X Syndrome (FXS) is commonly thought to arise from dysfunction of the synapse, the site of communication between neurons. However, loss of the protein that results in FXS occurs early in embryonic development, while synapses are formed relatively late. Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction; however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles that express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or overexpression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
Collapse
|
102
|
Santos AR, Kanellopoulos AK, Bagni C. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. ACTA ACUST UNITED AC 2014; 21:543-55. [PMID: 25227249 PMCID: PMC4175497 DOI: 10.1101/lm.035956.114] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Fragile X syndrome (FXS) is the most frequent form of inherited mental disability and is considered a monogenic cause of autism spectrum disorder. FXS is caused by a triplet expansion that inhibits the expression of the FMR1 gene. The gene product, the Fragile X Mental Retardation Protein (FMRP), regulates mRNA metabolism in brain and nonneuronal cells. During brain development, FMRP controls the expression of key molecules involved in receptor signaling, cytoskeleton remodeling, protein synthesis and, ultimately, spine morphology. Symptoms associated with FXS include neurodevelopmental delay, cognitive impairment, anxiety, hyperactivity, and autistic-like behavior. Twenty years ago the first Fmr1 KO mouse to study FXS was generated, and several years later other key models including the mutant Drosophila melanogaster, dFmr1, have further helped the understanding of the cellular and molecular causes behind this complex syndrome. Here, we review to which extent these biological models are affected by the absence of FMRP, pointing out the similarities with the observed human dysfunction. Additionally, we discuss several potential treatments under study in animal models that are able to partially revert some of the FXS abnormalities.
Collapse
Affiliation(s)
- Ana Rita Santos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Alexandros K Kanellopoulos
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium
| | - Claudia Bagni
- VIB Center for the Biology of Disease, 3000 Leuven, Belgium Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium Leuven Institute for Neurodegenerative Diseases (LIND), KU Leuven, 3000 Leuven, Belgium Department of Biomedicine and Prevention, University of Rome "Tor Vergata" 00133, Rome, Italy
| |
Collapse
|
103
|
Chen T, Lu JS, Song Q, Liu MG, Koga K, Descalzi G, Li YQ, Zhuo M. Pharmacological rescue of cortical synaptic and network potentiation in a mouse model for fragile X syndrome. Neuropsychopharmacology 2014; 39:1955-67. [PMID: 24553731 PMCID: PMC4059905 DOI: 10.1038/npp.2014.44] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 02/04/2014] [Indexed: 12/29/2022]
Abstract
Fragile X syndrome, caused by the mutation of the Fmr1 gene, is characterized by deficits of attention and learning ability. In the hippocampus of Fmr1 knockout mice (KO), long-term depression is enhanced whereas long-term potentiation (LTP) including late-phase LTP (L-LTP) is reduced or unaffected. Here we examined L-LTP in the anterior cingulate cortex (ACC) in Fmr1 KO mice by using a 64-electrode array recording system. In wild-type mice, theta-burst stimulation induced L-LTP that does not occur in all active electrodes/channels within the cingulate circuit and is typically detected in ∼75% of active channels. Furthermore, L-LTP recruited new responses from previous inactive channels. Both L-LTP and the recruitment of inactive responses were blocked in the ACC slices of Fmr1 KO mice. Bath application of metabotropic glutamate receptor 5 (mGluR5) antagonist or glycogen synthase kinase-3 (GSK3) inhibitors rescued the L-LTP and network recruitment. Our results demonstrate that loss of FMRP will greatly impair L-LTP and recruitment of cortical network in the ACC that can be rescued by pharmacological inhibition of mGluR5 or GSK3. This study is the first report of the network properties of L-LTP in the ACC, and provides basic mechanisms for future treatment of cortex-related cognitive defects in fragile X patients.
Collapse
Affiliation(s)
- Tao Chen
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming-Gang Liu
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kohei Koga
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giannina Descalzi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yun-Qing Li
- Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, China,Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an 710032, China, Tel: +86 29 84774501, Fax: +86 29 83283229, E-mail:
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada, Tel: +1 416 978 4018, Fax: +1 416 978 7398, E-mail:
| |
Collapse
|
104
|
Li Y, Zhao X. Concise review: Fragile X proteins in stem cell maintenance and differentiation. Stem Cells 2014; 32:1724-33. [PMID: 24648324 PMCID: PMC4255947 DOI: 10.1002/stem.1698] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 02/18/2014] [Accepted: 03/01/2014] [Indexed: 12/15/2022]
Abstract
Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research and scientific progress, understanding how FMRP regulates brain development and function remains a major challenge. FMRP is a neuronal RNA-binding protein that binds about a third of messenger RNAs in the brain and controls their translation, stability, and cellular localization. The absence of FMRP results in increased protein synthesis, leading to enhanced signaling in a number of intracellular pathways, including the mTOR, mGLuR5, ERK, Gsk3β, PI3K, and insulin pathways. Until recently, FXS was largely considered a deficit of mature neurons; however, a number of new studies have shown that FMRP may also play important roles in stem cells, among them neural stem cells, germline stem cells, and pluripotent stem cells. In this review, we will cover these newly discovered functions of FMRP, as well as the other two fragile X-related proteins, in stem cells. We will also discuss the literature on the use of stem cells, particularly neural stem cells and induced pluripotent stem cells, as model systems for studying the functions of FMRP in neuronal development.
Collapse
Affiliation(s)
- Yue Li
- Waisman Center and Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | | |
Collapse
|
105
|
Rui Y, Myers KR, Yu K, Wise A, De Blas AL, Hartzell HC, Zheng JQ. Activity-dependent regulation of dendritic growth and maintenance by glycogen synthase kinase 3β. Nat Commun 2014; 4:2628. [PMID: 24165455 PMCID: PMC3821971 DOI: 10.1038/ncomms3628] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/16/2013] [Indexed: 01/31/2023] Open
Abstract
Activity-dependent dendritic development represents a crucial step in brain development, but its underlying mechanisms remain to be fully elucidated. Here we report that glycogen synthase kinase 3β (GSK3β) regulates dendritic development in an activity-dependent manner. We find that GSK3β in somatodendritic compartments of hippocampal neurons becomes highly phosphorylated at serine-9 upon synaptogenesis. This phosphorylation-dependent GSK3β inhibition is mediated by neurotrophin signalling and is required for dendritic growth and arbourization. Elevation of GSK3β activity leads to marked shrinkage of dendrites, whereas its inhibition enhances dendritic growth. We further show that these effects are mediated by GSK3β regulation of surface GABAA receptor levels via the scaffold protein gephyrin. GSK3β activation leads to gephyrin phosphorylation to reduce surface GABAA receptor clusters, resulting in neuronal hyperexcitability that causes dendrite shrinkage. These findings thus identify GSK3β as a key player in activity-dependent regulation of dendritic development by targeting the excitatory-inhibitory balance of the neuron.
Collapse
Affiliation(s)
- Yanfang Rui
- 1] Department of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA [2] Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
106
|
Sun MK, Hongpaisan J, Lim CS, Alkon DL. Bryostatin-1 restores hippocampal synapses and spatial learning and memory in adult fragile x mice. J Pharmacol Exp Ther 2014; 349:393-401. [PMID: 24659806 DOI: 10.1124/jpet.114.214098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Fragile X syndrome (FXS) is caused by transcriptional silencing in neurons of the FMR1 gene product, fragile X mental retardation protein (FMRP), a repressor of dendritic mRNA translation. The lack of FMRP leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, a disorder that currently has no effective therapeutics. Fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase ε activator with pharmacological profiles of rapid mGluR desensitization, synaptogenesis, and synaptic maturation/repairing. Differences in the major FXS phenotypes, synapses, and cognitive functions were evaluated and compared among the age-matched groups. Long-term treatment with bryostatin-1 rescues adult fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in hippocampal brain-derived neurotrophic factor expression and secretion, postsynaptic density-95 levels, glycogen synthase kinase-3β phosphorylation, transformation of immature dendritic spines to mature synapses, densities of the presynaptic and postsynaptic membranes, and spatial learning and memory. Our results show that synaptic and cognitive function of adult FXS mice can be normalized through pharmacologic treatment and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation even after postpartum brain development has largely completed.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | | | | | | |
Collapse
|
107
|
In vivo activation of Wnt signaling pathway enhances cognitive function of adult mice and reverses cognitive deficits in an Alzheimer's disease model. J Neurosci 2014; 34:2191-202. [PMID: 24501359 DOI: 10.1523/jneurosci.0862-13.2014] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The role of the Wnt signaling pathway during synaptic development has been well established. In the adult brain, different components of Wnt signaling are expressed, but little is known about its role in mature synapses. Emerging in vitro studies have implicated Wnt signaling in synaptic plasticity. Furthermore, activation of Wnt signaling has shown to protect against amyloid-β-induced synaptic impairment. The present study provides the first evidence that in vivo activation of Wnt signaling improves episodic memory, increases excitatory synaptic transmission, and enhances long-term potentiation in adult wild-type mice. Moreover, the activation of Wnt signaling also rescues memory loss and improves synaptic dysfunction in APP/PS1-transgenic mice that model the amyloid pathology of Alzheimer's diseases. These findings indicate that Wnt signaling modulates cognitive function in the adult brain and could be a novel promising target for Alzheimer's disease therapy.
Collapse
|
108
|
Pitychoutis PM, Sanoudou D, Papandreou M, Nasias D, Kouskou M, Tomlinson CR, Tsonis PA, Papadopoulou-Daifoti Z. Forced swim test induces divergent global transcriptomic alterations in the hippocampus of high versus low novelty-seeker rats. Hum Genomics 2014; 8:4. [PMID: 24568636 PMCID: PMC3941591 DOI: 10.1186/1479-7364-8-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/14/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Many neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Susceptibility to stress and depression is individually different. The best animal model of individual differences that can be used to study the neurobiology of affect regards spontaneous reactions to novelty. Experimentally, when naive rats are exposed to the stress of a novel environment, they display a highly variable exploratory activity and are classified as high or low responders (HR or LR, respectively). Importantly, HR and LR rats do not seem to exhibit a substantial differentiation in relation to their 'depressive-like' status in the forced swim test (FST), a widely used animal model of 'behavioral despair'. In the present study, we investigated whether FST exposure would be accompanied by phenotype-dependent differences in hippocampal gene expression in HR and LR rats. RESULTS HR and LR rats present a distinct behavioral pattern in the pre-test session but develop comparable depressive-like status in the second FST session. At 24 h following the second FST session, HR and LR rats (stressed and unstressed controls) were sacrificed and hippocampal samples were independently analyzed on whole rat genome Illumina arrays. Functional analysis into pathways and networks was performed using Ingenuity Pathway Analysis (IPA) software. Notably, hippocampal gene expression signatures between HR and LR rats were markedly divergent, despite their comparable depressive-like status in the FST. These molecular differences are reflected in both the extent of transcriptional remodeling (number of significantly changed genes) and the types of molecular pathways affected following FST exposure. A markedly higher number of genes (i.e., 2.28-fold) were statistically significantly changed following FST in LR rats, as compared to their HR counterparts. Notably, genes associated with neurogenesis and synaptic plasticity were induced in the hippocampus of LR rats in response to FST, whereas in HR rats, FST induced pathways directly or indirectly associated with induction of apoptotic mechanisms. CONCLUSIONS The markedly divergent gene expression signatures exposed herein support the notion that the hippocampus of HR and LR rats undergoes distinct transcriptional remodeling in response to the same stress regimen, thus yielding a different FST-related 'endophenotype', despite the seemingly similar depressive-like phenotype.
Collapse
Affiliation(s)
- Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering (TREND), University of Dayton, 300 College Park, Dayton, OH 45469-2320, USA.
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Uzunova G, Hollander E, Shepherd J. The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome. Curr Neuropharmacol 2014; 12:71-98. [PMID: 24533017 PMCID: PMC3915351 DOI: 10.2174/1570159x113116660046] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/20/2013] [Accepted: 09/25/2013] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are relatively common childhood neurodevelopmental disorders with increasing incidence in recent years. They are currently accepted as disorders of the synapse with alterations in different forms of synaptic communication and neuronal network connectivity. The major excitatory neurotransmitter system in brain, the glutamatergic system, is implicated in learning and memory, synaptic plasticity, neuronal development. While much attention is attributed to the role of metabotropic glutamate receptors in ASD and FXS, studies indicate that the ionotropic glutamate receptors (iGluRs) and their regulatory proteins are also altered in several brain regions. Role of iGluRs in the neurobiology of ASD and FXS is supported by a weight of evidence that ranges from human genetics to in vitro cultured neurons. In this review we will discuss clinical, molecular, cellular and functional changes in NMDA, AMPA and kainate receptors and the synaptic proteins that regulate them in the context of ASD and FXS. We will also discuss the significance for the development of translational biomarkers and treatments for the core symptoms of ASD and FXS.
Collapse
Affiliation(s)
- Genoveva Uzunova
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th St, Bronx, New York 10467-2490
| | - Eric Hollander
- Autism and Obsessive Compulsive Spectrum Program, Department of Psychiatry, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th St, Bronx, New York 10467-2490
| | - Jason Shepherd
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 531A Wintrobe, 20N 1900 E, Salt Lake City, Utah 84132
| |
Collapse
|
110
|
Braat S, Kooy RF. Fragile X syndrome neurobiology translates into rational therapy. Drug Discov Today 2014; 19:510-9. [PMID: 24508819 DOI: 10.1016/j.drudis.2014.01.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/19/2014] [Accepted: 01/27/2014] [Indexed: 12/29/2022]
Abstract
Causal genetic defects have been identified for various neurodevelopmental disorders. A key example in this respect is fragile X syndrome, one of the most frequent genetic causes of intellectual disability and autism. Since the discovery of the causal gene, insights into the underlying pathophysiological mechanisms have increased exponentially. Over the past years, defects were discovered in pathways that are potentially amendable by pharmacological treatment. These findings have inspired the initiation of clinical trials in patients. The targeted pathways converge in part with those of related neurodevelopmental disorders raising hopes that the treatments developed for this specific disorder might be more broadly applicable.
Collapse
Affiliation(s)
- Sien Braat
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, Antwerp, Belgium.
| |
Collapse
|
111
|
Franklin AV, King MK, Palomo V, Martinez A, McMahon LL, Jope RS. Glycogen synthase kinase-3 inhibitors reverse deficits in long-term potentiation and cognition in fragile X mice. Biol Psychiatry 2014; 75:198-206. [PMID: 24041505 PMCID: PMC3874248 DOI: 10.1016/j.biopsych.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Identifying feasible therapeutic interventions is crucial for ameliorating the intellectual disability and other afflictions of fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism. Hippocampal glycogen synthase kinase-3 (GSK3) is hyperactive in the mouse model of FXS (FX mice), and hyperactive GSK3 promotes locomotor hyperactivity and audiogenic seizure susceptibility in FX mice, raising the possibility that specific GSK3 inhibitors may improve cognitive processes. METHODS We tested if specific GSK3 inhibitors improve deficits in N-methyl-D-aspartate receptor-dependent long-term potentiation at medial perforant path synapses onto dentate granule cells and dentate gyrus-dependent cognitive behavioral tasks. RESULTS GSK3 inhibitors completely rescued deficits in long-term potentiation at medial perforant path-dentate granule cells synapses in FX mice. Furthermore, synaptosomes from the dentate gyrus of FX mice displayed decreased inhibitory serine-phosphorylation of GSK3β compared with wild-type littermates. The potential therapeutic utility of GSK3 inhibitors was further tested on dentate gyrus-dependent cognitive behaviors. In vivo administration of GSK3 inhibitors completely reversed impairments in several cognitive tasks in FX mice, including novel object detection, coordinate and categorical spatial processing, and temporal ordering for visual objects. CONCLUSIONS These findings establish that synaptic plasticity and cognitive deficits in FX mice can be improved by intervention with inhibitors of GSK3, which may prove therapeutically beneficial in FXS.
Collapse
Affiliation(s)
- Aimee V. Franklin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Margaret K. King
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Valle Palomo
- Instituto Quimica Medica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Martinez
- Instituto Quimica Medica-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Lori L. McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Richard S. Jope
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136,Corresponding author: Richard S. Jope, Miller School of Medicine, University of Miami, 1011 NW 15th Street, Gautier Building room 416, Miami, Florida 33136, phone: 305-243-0262,
| |
Collapse
|
112
|
Chern CM, Wang YH, Liou KT, Hou YC, Chen CC, Shen YC. 2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke. Biochem Pharmacol 2014; 87:502-14. [DOI: 10.1016/j.bcp.2013.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/20/2013] [Accepted: 11/22/2013] [Indexed: 11/15/2022]
|
113
|
Datusalia AK, Sharma SS. Amelioration of Diabetes-induced Cognitive Deficits by GSK-3β Inhibition is Attributed to Modulation of Neurotransmitters and Neuroinflammation. Mol Neurobiol 2014; 50:390-405. [DOI: 10.1007/s12035-014-8632-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/02/2014] [Indexed: 12/21/2022]
|
114
|
Amiri A, Sanchez-Ortiz E, Cho W, Birnbaum SG, Xu J, McKay RM, Parada LF. Analysis ofFmr1Deletion in a Subpopulation of Post-Mitotic Neurons in Mouse Cortex and Hippocampus. Autism Res 2014; 7:60-71. [DOI: 10.1002/aur.1342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/08/2013] [Indexed: 01/28/2023]
Affiliation(s)
- Anahita Amiri
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Efrain Sanchez-Ortiz
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Woosung Cho
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Shari G. Birnbaum
- Department of Psychiatry; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Jing Xu
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Renée M. McKay
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| | - Luis F. Parada
- Department of Developmental Biology; University of Texas Southwestern Medical Center; Dallas Texas USA
| |
Collapse
|
115
|
King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments. Pharmacol Ther 2014; 141:1-12. [PMID: 23916593 PMCID: PMC3867580 DOI: 10.1016/j.pharmthera.2013.07.010] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/18/2013] [Indexed: 01/02/2023]
Abstract
Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions.
Collapse
Affiliation(s)
- Margaret K King
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yuyan Cheng
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kimberlee Downey
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
116
|
Sethna F, Moon C, Wang H. From FMRP function to potential therapies for fragile X syndrome. Neurochem Res 2013; 39:1016-31. [PMID: 24346713 DOI: 10.1007/s11064-013-1229-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/12/2013] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is caused by mutations in the fragile X mental retardation 1 (FMR1) gene. Most FXS cases occur due to the expansion of the CGG trinucleotide repeats in the 5' un-translated region of FMR1, which leads to hypermethylation and in turn silences the expression of FMRP (fragile X mental retardation protein). Numerous studies have demonstrated that FMRP interacts with both coding and non-coding RNAs and represses protein synthesis at dendritic and synaptic locations. In the absence of FMRP, the basal protein translation is enhanced and not responsive to neuronal stimulation. The altered protein translation may contribute to functional abnormalities in certain aspects of synaptic plasticity and intracellular signaling triggered by Gq-coupled receptors. This review focuses on the current understanding of FMRP function and potential therapeutic strategies that are mainly based on the manipulation of FMRP targets and knowledge gained from FXS pathophysiology.
Collapse
Affiliation(s)
- Ferzin Sethna
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
117
|
Oliva CA, Vargas JY, Inestrosa NC. Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 2013; 7:224. [PMID: 24348327 PMCID: PMC3847898 DOI: 10.3389/fncel.2013.00224] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/03/2013] [Indexed: 01/21/2023] Open
Abstract
During development of the central nervous system the Wnt signaling pathway has been implicated in a wide spectrum of physiological processes, including neuronal connectivity and synapse formation. Wnt proteins and components of the Wnt pathway are expressed in the brain since early development to the adult life, however, little is known about its role in mature synapses. Here, we review evidences indicating that Wnt proteins participate in the remodeling of pre- and post-synaptic regions, thus modulating synaptic function. We include the most recent data in the literature showing that Wnts are constantly released in the brain to maintain the basal neural activity. Also, we review the evidences that involve components of the Wnt pathway in the development of neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling. Finally, we include the evidences that support a neuroprotective role of Wnt proteins in Alzheimer’s disease. We postulate that deregulation in Wnt signaling might have a fundamental role in the origin of neurological diseases, by altering the synaptic function at stages where the phenotype is not yet established but when the cognitive decline starts.
Collapse
Affiliation(s)
- Carolina A Oliva
- Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Departamento de Biologïa Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jessica Y Vargas
- Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Departamento de Biologïa Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Departamento de Biologïa Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
118
|
Medina M, Avila J. New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease. Expert Opin Ther Targets 2013; 18:69-77. [DOI: 10.1517/14728222.2013.843670] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
119
|
Wei H, Yao X, Yang L, Wang S, Guo F, Zhou H, Marsicano G, Wang Q, Xiong L. Glycogen synthase kinase-3β is involved in electroacupuncture pretreatment via the cannabinoid CB1 receptor in ischemic stroke. Mol Neurobiol 2013; 49:326-36. [PMID: 23943518 DOI: 10.1007/s12035-013-8524-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 07/24/2013] [Indexed: 01/10/2023]
Abstract
We have previously shown that electroacupuncture (EA) pretreatment produces neuroprotective effects, which were mediated through an endocannabinoid signal transduction mechanism. Herein, we have studied the possible contribution of the phosphorylated form of glycogen synthase kinase-3β (GSK-3β) in EA pretreatment-induced neuroprotection via the cannabinoid CB1 receptor (CB1R). Focal transient cerebral ischemia was induced by middle cerebral artery occlusion in rats. Phosphorylation of GSK-3β at Ser-9 [p-GSK-3β (Ser-9)] was evaluated in the penumbra tissue following reperfusion. Infarct size and neurological score were assessed in the presence of either PI3K inhibitors or a GSK-3β inhibitor 72 h after reperfusion. Cellular apoptosis was evidenced by TUNEL staining and determination of the Bax/Bcl-2 ratio 24 h after reperfusion. The present study showed that EA pretreatment increased p-GSK-3β(Ser-9) 2 h after reperfusion in the ipsilateral penumbra. Augmented phosphorylation of GSK-3β induced similar neuroprotective effects as did EA pretreatment. By contrast, inhibition of PI3K dampened the levels of p-GSK-3β(Ser-9), and reversed not only the neuroprotective effect but also the anti-apoptotic effect following EA pretreatment. Regulation of GSK-3β by EA pretreatment was abolished following treatment with a CB1R antagonist and CB1R knockdown, whereas two CB1R agonists enhanced the phosphorylation of GSK-3β. Therefore we conclude that EA pretreatment protects against cerebral ischemia/reperfusion injury through CB1R-mediated phosphorylation of GSK-3β.
Collapse
Affiliation(s)
- Haidong Wei
- Department of Anesthesiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Avrahami L, Licht-Murava A, Eisenstein M, Eldar-Finkelman H. GSK-3 inhibition: Achieving moderate efficacy with high selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1410-4. [DOI: 10.1016/j.bbapap.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
|
121
|
SB216763, a selective small molecule inhibitor of glycogen synthase kinase-3, improves bleomycin-induced pulmonary fibrosis via activating autophagy. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
122
|
Oliva CA, Vargas JY, Inestrosa NC. Wnt signaling: role in LTP, neural networks and memory. Ageing Res Rev 2013; 12:786-800. [PMID: 23665425 DOI: 10.1016/j.arr.2013.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 01/07/2023]
Abstract
Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulates the function of the adult nervous system. In fact, most of the key components including Wnts and Frizzled receptors are expressed in the adult brain. Wnt ligands have been implicated in the regulation of synaptic assembly as well as in neurotransmission and synaptic plasticity. Deregulation of Wnt signaling has been associated with several pathologies, and more recently has been related to neurodegenerative diseases and to mental and mood disorders. In this review, we focus our attention on the Wnt signaling cascade in postnatal life and we review in detail the presence of Wnt signaling components in pre- and postsynaptic regions. Due to the important role of Wnt proteins in wiring neural circuits, we discuss recent findings about the role of Wnt pathways both in basal spontaneous activities as well as in activity-dependent processes that underlie synaptic plasticity. Finally, we review the role of Wnt in vivo and we finish with the most recent data in literature that involves the effect of components of the Wnt signaling pathway in neurological and mental disorders, including a special emphasis on in vivo studies that relate behavioral abnormalities to deficiencies in Wnt signaling, as well as the data that support a neuroprotective role of Wnt proteins in relation to the pathogenesis of Alzheimer's disease.
Collapse
|
123
|
Functional implications of hippocampal adult neurogenesis in intellectual disabilities. Amino Acids 2013; 45:113-31. [DOI: 10.1007/s00726-013-1489-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 12/19/2022]
|
124
|
The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 2013; 16:1530-6. [PMID: 23584741 DOI: 10.1038/nn.3379] [Citation(s) in RCA: 364] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022]
Abstract
De novo protein synthesis is necessary for long-lasting modifications in synaptic strength and dendritic spine dynamics that underlie cognition. Fragile X syndrome (FXS), characterized by intellectual disability and autistic behaviors, holds promise for revealing the molecular basis for these long-term changes in neuronal function. Loss of function of the fragile X mental retardation protein (FMRP) results in defects in synaptic plasticity and cognition in many models of the disease. FMRP is a polyribosome-associated RNA-binding protein that regulates the synthesis of a set of plasticity-reated proteins by stalling ribosomal translocation on target mRNAs. The recent identification of mRNA targets of FMRP and its upstream regulators, and the use of small molecules to stall ribosomes in the absence of FMRP, have the potential to be translated into new therapeutic avenues for the treatment of FXS.
Collapse
|
125
|
Reduced beta-catenin expression in the hippocampal CA1 region following transient cerebral ischemia in the gerbil. Neurochem Res 2013; 38:1045-54. [PMID: 23504294 DOI: 10.1007/s11064-013-1015-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 02/08/2013] [Accepted: 03/05/2013] [Indexed: 12/16/2022]
Abstract
Beta-catenin, a transcription factor, plays a critical role in cell survival and degradation after stroke. In this study, we examined changes of expression in beta-catenin in the hippocampal CA1 region of the gerbil following 5 min of transient cerebral ischemia. We observed neuronal damage using cresyl violet staining, neuronal nuclei immunohistochemistry and Fluro-Jade B immunofluorescence. Four days after ischemia-reperfusion (I-R), most of pyramidal cells in the CA1 region were damaged. In addition, early damage in dendrites was detected 1 day after I-R by immunohistochemical staining for microtubule-associated protein 2 (MAP-2), and MAP-2 immunoreactivity was hardly detected in the CA1 region 4 days after I-R. We found that beta-catenin (a synapse-enriched cell adhesion molecule) was well expressed in dendrites before I-R. Its immunoreactivity was well colocalized with MAP-2. Chronological change of beta-catenin immunoreactivity was novelty in the present study. Twelve hours after I-R, its immunoreactivity was decreased in the stratum radiatum of the CA1 region, however, its immunoreactivity was increased 1 and 2 days after I-R, and decreased sharply 4 days after I-R. However, we did not find any change in beta-catenin immunoreactivity in the CA2 and CA3 region. In brief, we suggest that early change of beta-catenin expression in the stratum pyramidale of ischemic hippocampal CA1 region is associated with early dendrite damage following transient cerebral ischemia.
Collapse
|
126
|
TNiK is required for postsynaptic and nuclear signaling pathways and cognitive function. J Neurosci 2013; 32:13987-99. [PMID: 23035106 DOI: 10.1523/jneurosci.2433-12.2012] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Traf2 and NcK interacting kinase (TNiK) contains serine-threonine kinase and scaffold domains and has been implicated in cell proliferation and glutamate receptor regulation in vitro. Here we report its role in vivo using mice carrying a knock-out mutation. TNiK binds protein complexes in the synapse linking it to the NMDA receptor (NMDAR) via AKAP9. NMDAR and metabotropic receptors bidirectionally regulate TNiK phosphorylation and TNiK is required for AMPA expression and synaptic function. TNiK also organizes nuclear complexes and in the absence of TNiK, there was a marked elevation in GSK3β and phosphorylation levels of its cognate phosphorylation sites on NeuroD1 with alterations in Wnt pathway signaling. We observed impairments in dentate gyrus neurogenesis in TNiK knock-out mice and cognitive testing using the touchscreen apparatus revealed impairments in pattern separation on a test of spatial discrimination. Object-location paired associate learning, which is dependent on glutamatergic signaling, was also impaired. Additionally, TNiK knock-out mice displayed hyperlocomotor behavior that could be rapidly reversed by GSK3β inhibitors, indicating the potential for pharmacological rescue of a behavioral phenotype. These data establish TNiK as a critical regulator of cognitive functions and suggest it may play a regulatory role in diseases impacting on its interacting proteins and complexes.
Collapse
|
127
|
An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation. PLoS One 2013; 8:e51436. [PMID: 23349673 PMCID: PMC3547917 DOI: 10.1371/journal.pone.0051436] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/31/2012] [Indexed: 01/05/2023] Open
Abstract
Background Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play pivotal roles in stem cell biology. Methyl-CpG binding protein 1 (MBD1), an important epigenetic regulator of adult neurogenesis, controls the proliferation and differentiation of adult neural stem/progenitor cells (aNSCs). We recently demonstrated that MBD1 deficiency in aNSCs leads to altered expression of several noncoding microRNAs (miRNAs). Methodology/Principal Findings Here we show that one of these miRNAs, miR-195, and MBD1 form a negative feedback loop. While MBD1 directly represses the expression of miR-195 in aNSCs, high levels of miR-195 in turn repress the expression of MBD1. Both gain-of-function and loss-of-function investigations show that alterations of the MBD1–miR-195 feedback loop tip the balance between aNSC proliferation and differentiation. Conclusions/Significance Therefore the regulatory loop formed by MBD1 and miR-195 is an important component of the epigenetic network that controls aNSC fate.
Collapse
|
128
|
Fuster-Matanzo A, Llorens-Martín M, Sirerol-Piquer MS, García-Verdugo JM, Avila J, Hernández F. Dual effects of increased glycogen synthase kinase-3β activity on adult neurogenesis. Hum Mol Genet 2012; 22:1300-15. [PMID: 23257288 DOI: 10.1093/hmg/dds533] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adult neurogenesis, the generation of new neurons during the adulthood, is a process controlled by several kinases and phosphatases among which GSK3β exerts important functions. This protein is particularly abundant in the central nervous system, and its activity deregulation is believed to play a key role in chronic disorders such as Alzheimer's disease. Previously, we reported that in vivo overexpression of GSK3β (Tet/GSK3β mice) causes alterations in adult neurogenesis, leading to a depletion of the neurogenic niches. Here, we have further characterized those alterations, finding a delay in the switching-off of doublecortin marker as well as changes in the survival and death rates of immature precursors and a decrease in the total number of mature neurons. Besides, we have highlighted the importance of the inflammatory environment, identifying eotaxin as a possible modulator of the detrimental effects on adult neurogenesis. Taking advantage of the conditional system, we have also explored whether these negative consequences of increasing GSK3 activity are susceptible to revert after doxycycline treatment. We show that transgene shutdown in symptomatic mice reverts microgliosis, abnormal eotaxin levels as well as the aforementioned alterations concerning immature neurons. Unexpectedly, the decrease in the number of mature neurons and neuronal precursor cells of the subgranular zone of Tet/GSK3β mice could not be reverted. Thus, alterations in adult neurogenesis and likely in neurodegenerative disorders can be restored in part, although neurogenic niche depletion represents a non-reversible damage persisting during lifetime with a remarkable impact in adult mature neurons.
Collapse
Affiliation(s)
- Almudena Fuster-Matanzo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas/UniversidadAutónoma de Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
129
|
Jobe EM, McQuate AL, Zhao X. Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Front Neurosci 2012; 6:59. [PMID: 22586361 PMCID: PMC3347638 DOI: 10.3389/fnins.2012.00059] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/04/2012] [Indexed: 12/20/2022] Open
Abstract
The process of neurogenesis includes neural stem cell proliferation, fate specification, young neuron migration, neuronal maturation, and functional integration into existing circuits. Although neurogenesis occurs largely during embryonic development, low levels but functionally important neurogenesis persists in restricted regions of the postnatal brain, including the subgranular zone of the dentate gyrus in the hippocampus and the subventricular zone of the lateral ventricles. This review will cover both embryonic and adult neurogenesis with an emphasis on the latter. Of the many endogenous mediators of postnatal neurogenesis, epigenetic pathways, such as mediators of DNA methylation, chromatin remodeling systems, and non-coding RNA modulators, appear to play an integral role. Mounting evidence shows that such epigenetic factors form regulatory networks, which govern each step of postnatal neurogenesis. In this review, we explore the emerging roles of epigenetic mechanisms particularly microRNAs, element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF), polycomb proteins, and methyl-CpG bindings proteins, in regulating the entire process of postnatal and adult neurogenesis. We further summarize recent data regarding how the crosstalk among these different epigenetic proteins forms the critical regulatory network that regulates neuronal development. We finally discuss how crosstalk between these pathways may serve to translate environmental cues into control of the neurogenic process.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
130
|
Bhakar AL, Dölen G, Bear MF. The pathophysiology of fragile X (and what it teaches us about synapses). Annu Rev Neurosci 2012; 35:417-43. [PMID: 22483044 DOI: 10.1146/annurev-neuro-060909-153138] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X is the most common known inherited cause of intellectual disability and autism, and it typically results from transcriptional silencing of FMR1 and loss of the encoded protein, FMRP (fragile X mental retardation protein). FMRP is an mRNA-binding protein that functions at many synapses to inhibit local translation stimulated by metabotropic glutamate receptors (mGluRs) 1 and 5. Recent studies on the biology of FMRP and the signaling pathways downstream of mGluR1/5 have yielded deeper insight into how synaptic protein synthesis and plasticity are regulated by experience. This new knowledge has also suggested ways that altered signaling and synaptic function can be corrected in fragile X, and human clinical trials based on this information are under way.
Collapse
Affiliation(s)
- Asha L Bhakar
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
131
|
Abstract
Glycogen synthase kinase 3β (GSK3β) is a multifunctional serine/threonine kinase. It is particularly abundant in the developing central nervous system (CNS). Since GSK3β has diverse substrates ranging from metabolic/signaling proteins and structural proteins to transcription factors, it is involved in many developmental events in the immature brain, such as neurogenesis, neuronal migration, differentiation and survival. The activity of GSK3β is developmentally regulated and is affected by various environmental/cellular insults, such as deprivation of nutrients/trophic factors, oxidative stress and endoplasmic reticulum stress. Abnormalities in GSK3β activity may disrupt CNS development. Therefore, GSK3β is a critical signaling protein that regulates brain development. It may also determine neuronal susceptibility to damages caused by various environmental insults.
Collapse
|