101
|
Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. THE PLANT CELL 2015; 27:44-63. [PMID: 25604447 PMCID: PMC4330578 DOI: 10.1105/tpc.114.133595] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/15/2014] [Accepted: 12/26/2014] [Indexed: 05/18/2023]
Abstract
The phytohormones auxin and cytokinin interact to regulate many plant growth and developmental processes. Elements involved in the biosynthesis, inactivation, transport, perception, and signaling of these hormones have been elucidated, revealing the variety of mechanisms by which signal output from these pathways can be regulated. Recent studies shed light on how these hormones interact with each other to promote and maintain plant growth and development. In this review, we focus on the interaction of auxin and cytokinin in several developmental contexts, including its role in regulating apical meristems, the patterning of the root, the development of the gynoecium and female gametophyte, and organogenesis and phyllotaxy in the shoot.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Anthony Bishopp
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280
| |
Collapse
|
102
|
Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A. The crucial elements of the 'last step' of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. PLANT CELL REPORTS 2014; 33:2063-76. [PMID: 25213134 DOI: 10.1007/s00299-014-1681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 05/09/2023]
Abstract
Kinetin-induced programmed cell death, manifested by condensation, degradation and methylation of DNA and fluctuation of kinase activities and ATP levels, is an autolytic and root cortex cell-specific process. The last step of programmed cell death (PCD) induced by kinetin in the root cortex of V. faba ssp. minor seedlings was explained using morphologic (nuclear chromatin/aggregation) and metabolic (DNA degradation, DNA methylation and kinases activity) analyses. This step involves: (1) decrease in nuclear DNA content, (2) increase in the number of 4',6-diamidino-2-phenylindole (DAPI)-stained chromocenters, and decrease in chromomycin A3 (CMA3)-stained chromocenters, (3) increase in fluorescence intensity of CMA3-stained chromocenters, (4) condensation of DAPI-stained and loosening of CMA3-stained chromatin, (5) fluctuation of the level of DNA methylation, (6) fluctuation of activities of exo-/endonucleolytic Zn(2+) and Ca(2+)/Mg(2+)-dependent nucleases, (7) changes in H1 and core histone kinase activities and (8) decrease in cellular ATP amount. These results confirmed that kinetin-induced PCD was a specific process. Additionally, based on data presented in this paper (DNA condensation and ATP depletion) and previous studies [increase in vacuole, increase in amount of cytosolic calcium ions, ROS production and cytosol acidification "in Byczkowska et al. (Protoplasma 250:121-128, 2013)"], we propose that the process resembles autolytic type of cell death, the most common type of death during development of plants. Lastly, the observations also suggested that regulation of these processes might be under control of epigenetic (methylation/phosphorylation) mechanisms.
Collapse
Affiliation(s)
- Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | |
Collapse
|
103
|
Engelsdorf T, Hamann T. An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. ANNALS OF BOTANY 2014; 114:1339-47. [PMID: 24723447 PMCID: PMC4195549 DOI: 10.1093/aob/mcu043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/18/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases. SCOPE AND CONCLUSIONS This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.
Collapse
Affiliation(s)
- Timo Engelsdorf
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Thorsten Hamann
- Department of Biology, Høgskoleringen 5, Realfagbygget, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
104
|
Liu Z, Zhang M, Kong L, Lv Y, Zou M, Lu G, Cao J, Yu X. Genome-wide identification, phylogeny, duplication, and expression analyses of two-component system genes in Chinese cabbage (Brassica rapa ssp. pekinensis). DNA Res 2014; 21:379-96. [PMID: 24585003 PMCID: PMC4131832 DOI: 10.1093/dnares/dsu004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 01/20/2014] [Indexed: 12/27/2022] Open
Abstract
In plants, a two component system (TCS) composed of sensor histidine kinases (HKs), histidine phosphotransfer proteins (HPs), and response regulators (RRs) has been employed in cytokinin signal transduction. A TCS exhibits important functions in diverse biological processes, including plant growth, development, and response to environmental stimuli. Conducting an exhaustive search of the Chinese cabbage genome, a total of 20 HK(L) (11 HKs and 9 HKLs), 8 HP (7 authentic and 1 pseudo), and 57 RR (21 Type-A, 17 Type-B, 4 Type-C, and 15 pseudo) proteins were identified. The structures, conserved domains, and phylogenetic relationships of these protein-coding genes were analysed in detail. The duplications, evolutionary patterns, and divergence of the TCS genes were investigated. The transcription levels of TCS genes in various tissues, organs, and developmental stages were further analysed to obtain information of the functions of these genes. Cytokinin-related binding elements were found in the putative promoter regions of Type-A BrRR genes. Furthermore, gene expression patterns to adverse environmental stresses (drought and high salinity) and exogenous phytohormones (tZ and ABA) were investigated. Numerous stress-responsive candidate genes were obtained. Our systematic analyses provided insights into the characterization of the TCS genes in Chinese cabbage and basis for further functional studies of such genes.
Collapse
Affiliation(s)
- Zhenning Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Mei Zhang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Lijun Kong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Yanxia Lv
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Minghua Zou
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Gang Lu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| | - Xiaolin Yu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China Laboratory of Horticultural Plant Growth and Quality Regulation, Ministry of Agriculture, Hangzhou 310058, PR China
| |
Collapse
|
105
|
Kudoyarova GR, Korobova AV, Akhiyarova GR, Arkhipova TN, Zaytsev DY, Prinsen E, Egutkin NL, Medvedev SS, Veselov SY. Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2287-94. [PMID: 24692646 PMCID: PMC4036502 DOI: 10.1093/jxb/eru113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cytokinin flow from roots to shoots can serve as a long-distance signal important for root-to-shoot communication. In the past, changes in cytokinin flow from roots to shoots have been mainly attributed to changes in the rate of synthesis or breakdown in the roots. The present research tested the possibility that active uptake of cytokinin by root cells may also influence its export to shoots. To this end, we collapsed the proton gradient across root membranes using the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) to inhibit secondary active uptake of exogenous and endogenous cytokinins. We report the impact of CCCP on cytokinin concentrations and delivery in xylem sap and on accumulation in shoots of 7-day-old wheat plants in the presence and absence of exogenous cytokinin applied as zeatin. Zeatin treatment increased the total accumulation of cytokinin in roots and shoots but the effect was smaller for the shoots. Immunohistochemical localization of cytokinins using zeatin-specific antibodies showed an increase in immunostaining of the cells adjacent to xylem in the roots of zeatin-treated plants. Inhibition of secondary active cytokinin uptake by CCCP application decreased cytokinin accumulation in root cells but increased both flow from the roots and accumulation in the shoots. The possible importance of secondary active uptake of cytokinins by root cells for the control of their export to the shoot is discussed.
Collapse
Affiliation(s)
- Guzel R Kudoyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Alla V Korobova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Guzel R Akhiyarova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Tatiana N Arkhipova
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Denis Yu Zaytsev
- Institute of Biology, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Els Prinsen
- Department of Biology, Laboratory for Plant Biochemistry and Physiology, University of Antwerpen, 2020 Antwerpen, Belgium
| | - Naum L Egutkin
- Institute of Organic Chemistry, Ufa Research Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054, Ufa, Russia
| | - Sergey S Medvedev
- St Petersburg State University, Universitetskaya naberezhnaya 7/9, 199034, St Petersburg, Russia
| | | |
Collapse
|
106
|
Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc Natl Acad Sci U S A 2014; 111:7150-5. [PMID: 24778257 DOI: 10.1073/pnas.1321519111] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cytokinins are phytohormones that induce cytokinesis and are essential for diverse developmental and physiological processes in plants. Cytokinins of the trans-zeatin type are mainly synthesized in root vasculature and transported to the shoot, where they regulate shoot growth. However, the mechanism of long-distance transport of cytokinin was hitherto unknown. Here, we report that the Arabidopsis ATP-binding cassette (ABC) transporter subfamily G14 (AtABCG14) is mainly expressed in roots and plays a major role in delivering cytokinins to the shoot. Loss of AtABCG14 expression resulted in severe shoot growth retardation, which was rescued by exogenous trans-zeatin application. Cytokinin content was decreased in the shoots of atabcg14 plants and increased in the roots, with consistent changes in the expression of cytokinin-responsive genes. Grafting of atabcg14 scions onto wild-type rootstocks restored shoot growth, whereas wild-type scions grafted onto atabcg14 rootstocks exhibited shoot growth retardation similar to that of atabcg14. Cytokinin concentrations in the xylem are reduced by ∼90% in the atabcg14 mutant. These results indicate that AtABCG14 is crucial for the translocation of cytokinin to the shoot. Our results provide molecular evidence for the long-distance transport of cytokinin and show that this transport is necessary for normal shoot development.
Collapse
|
107
|
Schuster C, Gaillochet C, Medzihradszky A, Busch W, Daum G, Krebs M, Kehle A, Lohmann JU. A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals. Dev Cell 2014; 28:438-49. [PMID: 24576426 DOI: 10.1016/j.devcel.2014.01.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/25/2013] [Accepted: 01/13/2014] [Indexed: 11/24/2022]
Abstract
Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated.
Collapse
Affiliation(s)
- Christoph Schuster
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Christophe Gaillochet
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Anna Medzihradszky
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Wolfgang Busch
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gabor Daum
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Andreas Kehle
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
108
|
Borkovcová P, Pekárová B, Válková M, Dopitová R, Brzobohatý B, Janda L, Hejátko J. Antibodies against CKI1RD, a receiver domain of the sensor histidine kinase in Arabidopsis thaliana: from antigen preparation to in planta immunolocalization. PHYTOCHEMISTRY 2014; 100:6-15. [PMID: 24529575 DOI: 10.1016/j.phytochem.2014.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/17/2014] [Indexed: 06/03/2023]
Abstract
Immunodetection is a powerful tool in functional studies of all organisms. In plants, the gene redundancy and presence of gene families composed of highly homologous members often impedes the unambiguous identification of individual gene products. A family of eight sensor histidine kinases (HKs) mediates the transduction of diverse signals into Arabidopsis thaliana cells, thereby ensuring the initiation of appropriate adaptive responses. Antibodies recognizing specific members of the HK family would be valuable for studying their functions in Arabidopsis and other plant species including important crops. We have focused on developing and applying antibodies against CYTOKININ-INDEPENDENT 1 (CKI1), which encodes a constitutively active membrane-bound sensor HK that regulates the development of female gametophytes and vascular tissue in Arabidopsis. A coding sequence delimiting the C-terminal receiver domain of CKI1 (CKI1(RD)) was expressed in Escherichia coli using the IPTG-inducible expression system and purified to give a highly pure target protein. The purified CKI1(RD) protein was then used as an antigen for anti-CKI1(RD) antibody production. The resulting polyclonal antibodies had a detection limit of 10 ng of target protein at 1:20,000 dilution and were able to specifically distinguish CKI1, both in vitro and in situ, even in a direct comparison with highly homologous members of the same HK family AHK4, CKI2 and ETR1. Finally, anti-CKI1(RD) antibodies were able to selectively bind CKI1-GFP fusion protein in a pull-down assay using crude lysate from an Arabidopsis cell suspension culture. Our results suggest that the receiver domain is a useful target for the functional characterization of sensor HKs in immunological and biochemical studies.
Collapse
Affiliation(s)
- Petra Borkovcová
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Blanka Pekárová
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Martina Válková
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Radka Dopitová
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-612 65 Brno, Czech Republic; Department of Molecular Biology and Radiobiology, CEITEC - Central European Institute of Technology, Mendel University of Agriculture and Forestry, Zemědělská 1, CZ-613 00 Brno, Czech Republic
| | - Lubomír Janda
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A2, CZ-625 00 Brno, Czech Republic.
| |
Collapse
|
109
|
Kiba T, Takei K, Kojima M, Sakakibara H. Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev Cell 2014; 27:452-61. [PMID: 24286826 DOI: 10.1016/j.devcel.2013.10.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/12/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023]
Abstract
Cytokinins (CKs), a class of plant hormones, are central regulators of plant growth and development. Based on numerous physiological and genetic studies, the quantitative regulation of cytokinin levels is the major mechanism regulating cytokinin action in diverse developmental processes. Here, we identified a different mechanism with which the physiological function of CK is modulated through side-chain modification (trans-hydroxylation). The trans-hydroxylation that forms trans-zeatin (tZ)-type CK from N(6)-(Δ(2)-isopentenyl)adenine (iP)-type CK is catalyzed by the cytochrome P450 enzymes CYP735A1 and CYP735A2 in Arabidopsis. Deficiency in trans-hydroxylation activity results in dramatic retardation of shoot growth without affecting total CK quantity, while augmentation of the activity enhances shoot growth. Application of exogenous tZ but not iP recovers the wild-type phenotype in the mutants, indicating that trans-hydroxylation modifies the physiological function of CK. We propose that the control of cytokinin function by side-chain modification is crucial for shoot growth regulation in plants.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
110
|
Abstract
Cytokinins are N (6) substituted adenine derivatives that affect many aspects of plant growth and development, including cell division, shoot initiation and growth, leaf senescence, apical dominance, sink/source relationships, nutrient uptake, phyllotaxis, and vascular, gametophyte, and embryonic development, as well as the response to biotic and abiotic factors. Molecular genetic studies in Arabidopsis have helped elucidate the mechanisms underlying the function of this phytohormone in plants. Here, we review our current understanding of cytokinin biosynthesis and signaling in Arabidopsis, the latter of which is similar to bacterial two-component phosphorelays. We discuss the perception of cytokinin by the ER-localized histidine kinase receptors, the role of the AHPs in mediating the transfer of the phosphoryl group from the receptors to the response regulators (ARRs), and finally the role of the large ARR family in cytokinin function. The identification and genetic manipulation of the genes involved in cytokinin metabolism and signaling have helped illuminate the roles of cytokinins in Arabidopsis. We discuss these diverse roles, and how other signaling pathways influence cytokinin levels and sensitivity though modulation of the expression of cytokinin signaling and metabolic genes.
Collapse
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599-3280
| | - G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755
| |
Collapse
|
111
|
Strasser R. Biological significance of complex N-glycans in plants and their impact on plant physiology. FRONTIERS IN PLANT SCIENCE 2014; 5:363. [PMID: 25101107 PMCID: PMC4105690 DOI: 10.3389/fpls.2014.00363] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/08/2014] [Indexed: 05/18/2023]
Abstract
Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.
Collapse
Affiliation(s)
- Richard Strasser
- *Correspondence: Richard Strasser, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria e-mail:
| |
Collapse
|
112
|
Immanen J, Nieminen K, Duchens Silva H, Rodríguez Rojas F, Meisel LA, Silva H, Albert VA, Hvidsten TR, Helariutta Y. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica. BMC Genomics 2013; 14:885. [PMID: 24341635 PMCID: PMC3866579 DOI: 10.1186/1471-2164-14-885] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/27/2013] [Indexed: 01/01/2023] Open
Abstract
Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ykä Helariutta
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
113
|
Ruszkowski M, Szpotkowski K, Sikorski M, Jaskolski M. The landscape of cytokinin binding by a plant nodulin. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:2365-80. [PMID: 24311578 PMCID: PMC3852650 DOI: 10.1107/s0907444913021975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 08/06/2013] [Indexed: 11/10/2022]
Abstract
Nodulation is an extraordinary symbiotic interaction between leguminous plants and nitrogen-fixing bacteria (rhizobia) that assimilate atmospheric nitrogen (in root nodules) and convert it into compounds suitable for the plant host. A class of plant hormones called cytokinins are involved in the nodulation process. In the model legume Medicago truncatula, nodulin 13 (MtN13), which belongs to the pathogenesis-related proteins of class 10 (PR-10), is expressed in the outer cortex of the nodules. In general, PR-10 proteins are small and monomeric and have a characteristic fold with an internal hydrophobic cavity formed between a seven-stranded antiparallel β-sheet and a C-terminal α-helix. Previously, some PR-10 proteins not related to nodulation were found to bind cytokinins such as trans-zeatin. Here, four crystal structures of the MtN13 protein are reported in complexes with several cytokinins, namely trans-zeatin, N6-isopentenyladenine, kinetin and N6-benzyladenine. All four phytohormones are bound in the hydrophobic cavity in the same manner and have excellent definition in the electron-density maps. The binding of the cytokinins appears to be strong and specific and is reinforced by several hydrogen bonds. Although the binding stoichiometry is 1:1, the complex is actually dimeric, with a cytokinin molecule bound in each subunit. The ligand-binding site in each cavity is formed with the participation of a loop element from the other subunit, which plugs the only entrance to the cavity. Interestingly, a homodimer of MtN13 is also formed in solution, as confirmed by small-angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- M. Ruszkowski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - K. Szpotkowski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - M. Sikorski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - M. Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| |
Collapse
|
114
|
Gruhn N, Heyl A. Updates on the model and the evolution of cytokinin signaling. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:569-74. [PMID: 24080474 DOI: 10.1016/j.pbi.2013.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 05/09/2023]
Abstract
Cytokinins represent a class of phytohormones, which are key players not only in many processes important for plant growth and development, but also in the response to changes in their environment. The model for the cytokinin signaling pathway was established at the turn of the last century and many experiments confirmed its validity. In recent years several changes and extensions to the model were necessary to accommodate new findings concerning its components, such as subcellular localization, selective protein degradation and new modes of cross talk. In addition phylogenetic analyses of components of the cytokinin circuitry started to reveal the origin and evolution of the cytokinin regulatory system.
Collapse
Affiliation(s)
- Nijuscha Gruhn
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Germany
| | | |
Collapse
|
115
|
Ren B, Chen Q, Hong S, Zhao W, Feng J, Feng H, Zuo J. The Arabidopsis eukaryotic translation initiation factor eIF5A-2 regulates root protoxylem development by modulating cytokinin signaling. THE PLANT CELL 2013; 25:3841-57. [PMID: 24163315 PMCID: PMC3877783 DOI: 10.1105/tpc.113.116236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/04/2013] [Accepted: 10/06/2013] [Indexed: 05/07/2023]
Abstract
The phytohormone cytokinin regulates various aspects of plant growth and development, including root vascular development. In Arabidopsis thaliana, mutations in the cytokinin signaling components cause misspecification of protoxylem cell files. Auxin antagonizes cytokinin-regulated root protoxylem differentiation by inducing expression of Arabidopsis phosphotransfer protein6 (AHP6), a negative regulator of cytokinin signaling. However, the molecular mechanism of cytokinin-regulated protoxylem differentiation is not fully understood. Here, we show that a mutation in Arabidopsis fumonisin B1-resistant12 (FBR12), which encodes a eukaryotic translation initiation factor 5A, causes defective protoxylem development and reduced sensitivity to cytokinin. FBR12 genetically interacts with the cytokinin receptor cytokinin response1 (CRE1) and downstream AHP genes, as double mutants show enhanced phenotypes. FBR12 forms a protein complex with CRE1 and AHP1, and cytokinin regulates formation of this protein complex. Intriguingly, ahp6 partially suppresses the fbr12 mutant phenotype, and the fbr12 mutation causes increased expression of AHP6, indicating that FBR12 negatively regulates AHP6. Consistent with this, ectopic expression of FBR12 in the CRE1-expressing domain partially rescues defective protoxylem development in fbr12, and overexpression of AHP6 causes an fbr12-like phenotype. These results define a regulatory role of the highly conserved FBR12 in cytokinin-mediated root protoxylem specification.
Collapse
Affiliation(s)
- Bo Ren
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingguo Chen
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sulei Hong
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenming Zhao
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Feng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haizhong Feng
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
116
|
Héricourt F, Chefdor F, Bertheau L, Tanigawa M, Maeda T, Guirimand G, Courdavault V, Larcher M, Depierreux C, Bénédetti H, Morabito D, Brignolas F, Carpin S. Characterization of histidine-aspartate kinase HK1 and identification of histidine phosphotransfer proteins as potential partners in a Populus multistep phosphorelay. PHYSIOLOGIA PLANTARUM 2013; 149:188-199. [PMID: 23330606 DOI: 10.1111/ppl.12024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 05/29/2023]
Abstract
In poplar, we identified proteins homologous to yeast proteins involved in osmosensing multistep phosphorelay Sln1p-Ypd1p-Ssk1p. This finding led us to speculate that Populus cells could sense osmotic stress by a similar mechanism. This study focuses on first and second protagonists of this possible pathway: a histidine-aspartate kinase (HK1), putative osmosensor and histidine phosphotransfer proteins (HPt1 to 10), potential partners of this HK. Characterization of HK1 showed its ability to homodimerize in two-hybrid tests and to act as an osmosensor with a kinase activity in yeast, by functional complementation of sln1Δ sho1Δ strain. Moreover, in plant cells, plasma membrane localization of HK1 is shown. Further analysis on HPts allowed us to isolate seven new cDNAs, leading to a total of 10 different HPts identified in poplar. Interaction tests showed that almost all HPts can interact with HK1, but two of them exhibit stronger interactions, suggesting a preferential partnership in poplar. The importance of the phosphorylation status in these interactions has been investigated with two-hybrid tests carried out with mutated HK1 forms. Finally, in planta co-expression analysis of genes encoding these potential partners revealed that only three HPts are co-expressed with HK1 in different poplar organs. This result reinforces the hypothesis of a partnership between HK1 and these three preferential HPts in planta. Taken together, these results shed some light on proteins partnerships that could be involved in the osmosensing pathway in Populus.
Collapse
Affiliation(s)
- François Héricourt
- Université d'Orléans, UPRES EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), 45067, Orléans Cedex 2, France; INRA, USC1328, Arbres et Réponses aux Contraintes Hydriques et Environnementales (ARCHE), 45067, Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Kunikowska A, Byczkowska A, Kaźmierczak A. Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings. PROTOPLASMA 2013; 250:851-61. [PMID: 23143313 PMCID: PMC3728429 DOI: 10.1007/s00709-012-0466-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/24/2012] [Indexed: 05/09/2023]
Abstract
The double fluorescence staining with acridine orange and ethidium bromide (AO/EB) revealed that treatment of Vicia faba ssp. minor seedlings with kinetin-induced programmed cell death (PCD) in root cortex cells. Kinetin-induced cell death reflected by the morphological changes of nuclei including their invagination, volume increase, chromatin condensation and degradation as well as formation of micronuclei showed by AO/EB and 4,6-diamidino-2-phenylindol staining was accompanied by changes including increase in conductivity of cell electrolytes secreted to culture media, decrease in the number of the G1- and G2-phase cells and appearance of fraction of hypoploid cells as the effect of DNA degradation without ladder formation. Decrease in the number of mitochondria and in the activity of cellular dehydrogenases, production of reactive oxygen species (ROS), appearance of small and then large lytic vacuoles and increase in the amount of cytosolic calcium ions were also observed. The PCD was also manifested by increased width and weight of apical fragments of roots as well as decreased length of cortex cells which led to shortening of the whole roots. The kinetin-induced PCD process was almost completely inhibited by adenine, an inhibitor of phosphoribosyl transferase, and mannitol, an inhibitor of ROS production. These cell-death hallmarks and pathway of this process suggested that the induction of kinetin-specific vacuolar type of death, expressed itself with similar intensity on both morphological and metabolic levels, was a transient protecting whole roots and whole seedlings against elimination.
Collapse
Affiliation(s)
- Anita Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| | - Anna Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90236 Łódź, Poland
| |
Collapse
|
118
|
Ramireddy E, Brenner WG, Pfeifer A, Heyl A, Schmülling T. In planta analysis of a cis-regulatory cytokinin response motif in Arabidopsis and identification of a novel enhancer sequence. PLANT & CELL PHYSIOLOGY 2013; 54:1079-92. [PMID: 23620480 DOI: 10.1093/pcp/pct060] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The phytohormone cytokinin plays a key role in regulating plant growth and development, and is involved in numerous physiological responses to environmental changes. The type-B response regulators, which regulate the transcription of cytokinin response genes, are a part of the cytokinin signaling system. Arabidopsis thaliana encodes 11 type-B response regulators (type-B ARRs), and some of them were shown to bind in vitro to the core cytokinin response motif (CRM) 5'-(A/G)GAT(T/C)-3' or, in the case of ARR1, to an extended motif (ECRM), 5'-AAGAT(T/C)TT-3'. Here we obtained in planta proof for the functionality of the latter motif. Promoter deletion analysis of the primary cytokinin response gene ARR6 showed that a combination of two extended motifs within the promoter is required to mediate the full transcriptional activation by ARR1 and other type-B ARRs. CRMs were found to be over-represented in the vicinity of ECRMs in the promoters of cytokinin-regulated genes, suggesting their functional relevance. Moreover, an evolutionarily conserved 27 bp long T-rich region between -220 and -193 bp was identified and shown to be required for the full activation by type-B ARRs and the response to cytokinin. This novel enhancer is not bound by the DNA-binding domain of ARR1, indicating that additional proteins might be involved in mediating the transcriptional cytokinin response. Furthermore, genome-wide expression profiling identified genes, among them ARR16, whose induction by cytokinin depends on both ARR1 and other specific type-B ARRs. This together with the ECRM/CRM sequence clustering indicates cooperative action of different type-B ARRs for the activation of particular target genes.
Collapse
Affiliation(s)
- Eswarayya Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
119
|
Kunikowska A, Byczkowska A, Doniak M, Kaźmierczak A. Cytokinins résumé: their signaling and role in programmed cell death in plants. PLANT CELL REPORTS 2013; 32:771-80. [PMID: 23579381 PMCID: PMC3654191 DOI: 10.1007/s00299-013-1436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/21/2023]
Abstract
Cytokinins (CKs) are a large group of plant hormones which play a crucial role in many physiological processes in plants. One of the interesting functions of CKs is the control of programmed cell death (PCD). It seems that all CKs-dependent phenomena including PCD are accompanied by special multi-step phosphorelay signaling pathway. This pathway consists of three elements: histidine kinase receptors (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). This review shows the résumé of the latest knowledge about CKs signaling pathways in many physiological processes in plants with special attention paid to PCD process.
Collapse
Affiliation(s)
- A. Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - M. Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| |
Collapse
|
120
|
Steklov MY, Lomin SN, Osolodkin DI, Romanov GA. Structural basis for cytokinin receptor signaling: an evolutionary approach. PLANT CELL REPORTS 2013; 32:781-93. [PMID: 23525743 DOI: 10.1007/s00299-013-1408-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/27/2013] [Accepted: 03/01/2013] [Indexed: 05/10/2023]
Abstract
Cytokinins are ubiquitous plant hormones; their signal is perceived by sensor histidine kinases-cytokinin receptors. This review focuses on recent advances on cytokinin receptor structure, in particular sensing module and adjacent domains which play an important role in hormone recognition, signal transduction and receptor subcellular localization. Principles of cytokinin binding site organization and point mutations affecting signaling are discussed. To date, more than 100 putative cytokinin receptor genes from different plant species were revealed due to the total genome sequencing. This allowed us to employ an evolutionary and bioinformatics approaches to clarify some new aspects of receptor structure and function. Non-transmembrane areas adjacent to the ligand-binding CHASE domain were characterized in detail and new conserved protein motifs were recovered. Putative mechanisms for cytokinin-triggered receptor activation were suggested.
Collapse
Affiliation(s)
- Mikhail Yu Steklov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia
| | | | | | | |
Collapse
|
121
|
El-Showk S, Ruonala R, Helariutta Y. Crossing paths: cytokinin signalling and crosstalk. Development 2013; 140:1373-83. [PMID: 23482484 DOI: 10.1242/dev.086371] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokinins are a major class of plant hormones that are involved in various aspects of plant development, ranging from organ formation and apical dominance to leaf senescence. Cytokinin and auxin have long been known to interact antagonistically, and more recent studies have shown that cytokinins also interact with other plant hormones to regulate plant development. A growing body of research has begun to elucidate the molecular and genetic underpinnings of this extensive crosstalk. The rich interconnections between the synthesis, perception and transport networks of these plant hormones provide a wide range of opportunities for them to modulate, amplify or buffer one another. Here, we review this exciting and rapidly growing area of cytokinin research.
Collapse
Affiliation(s)
- Sedeer El-Showk
- Institute of Biotechnology/Department of Biosciences, University of Helsinki, Helsinki FI-00014, Finland
| | | | | |
Collapse
|
122
|
Li Y, Kurepa J, Smalle J. AXR1 promotes the Arabidopsis cytokinin response by facilitating ARR5 proteolysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:13-24. [PMID: 23279608 DOI: 10.1111/tpj.12098] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/07/2012] [Accepted: 12/11/2012] [Indexed: 05/26/2023]
Abstract
The plant hormone cytokinin plays essential roles in many aspects of growth and development. The cytokinin signal is transmitted by a multi-step phosphorelay to the members of two functionally antagonistic classes of Arabidopsis response regulators (ARRs): type B ARRs (response activators) and type A ARRs (negative-feedback regulators). Previous studies have shown that mutations in AXR1, encoding a subunit of the E1 enzyme in the RUB (related to ubiquitin) modification pathway, lead to decreased cytokinin sensitivity. Here we show that the cytokinin resistance of axr1 seedlings is suppressed by loss of function of the type A ARR family member ARR5. Based on the established role of the RUB pathway in ubiquitin-dependent proteolysis, these data suggest that AXR1 promotes the cytokinin response by facilitating type A ARR degradation. Indeed, both genetic (axr1 mutants) and chemical (MLN4924) suppression of RUB E1 increased ARR5 stability, suggesting that the ubiquitin ligase that promotes ARR5 proteolysis requires RUB modification for optimal activity.
Collapse
Affiliation(s)
- Yan Li
- Plant Physiology, Biochemistry and Molecular Biology Program, Department of Plant and Soil Science, University of Kentucky, Lexington, KY 40546, USA
| | | | | |
Collapse
|
123
|
Fanata WID, Lee KH, Son BH, Yoo JY, Harmoko R, Ko KS, Ramasamy NK, Kim KH, Oh DB, Jung HS, Kim JY, Lee SY, Lee KO. N-glycan maturation is crucial for cytokinin-mediated development and cellulose synthesis in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:966-979. [PMID: 23199012 DOI: 10.1111/tpj.12087] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/19/2012] [Accepted: 11/27/2012] [Indexed: 05/18/2023]
Abstract
To explore the physiological significance of N-glycan maturation in the plant Golgi apparatus, gnt1, a mutant with loss of N-acetylglucosaminyltransferase I (GnTI) function, was isolated in Oryza sativa. gnt1 exhibited complete inhibition of N-glycan maturation and accumulated high-mannose N-glycans. Phenotypic analyses revealed that gnt1 shows defective post-seedling development and incomplete cell wall biosynthesis, leading to symptoms such as failure in tiller formation, brittle leaves, reduced cell wall thickness, and decreased cellulose content. The developmental defects of gnt1 ultimately resulted in early lethality without transition to the reproductive stage. However, callus induced from gnt1 seeds could be maintained for periods, although it exhibited a low proliferation rate, small size, and hypersensitivity to salt stress. Shoot regeneration and dark-induced leaf senescence assays indicated that the loss of GnTI function results in reduced sensitivity to cytokinin in rice. Reduced expression of A-type O. sativa response regulators that are rapidly induced by cytokinins in gnt1 confirmed that cytokinin signaling is impaired in the mutant. These results strongly support the proposed involvement of N-glycan maturation in transport as well as in the function of membrane proteins that are synthesized via the endomembrane system.
Collapse
Affiliation(s)
- Wahyu Indra Duwi Fanata
- Division of Applied Life Science (BK21 Program) and PMBBRC, Gyeongsang National University, 501 Jinju-daero, Jinju, 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Žd'árská M, Zatloukalová P, Benítez M, Šedo O, Potěšil D, Novák O, Svačinová J, Pešek B, Malbeck J, Vašíčková J, Zdráhal Z, Hejátko J. Proteome analysis in Arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. PLANT PHYSIOLOGY 2013; 161:918-30. [PMID: 23209126 PMCID: PMC3561029 DOI: 10.1104/pp.112.202853] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The plant hormones cytokinins (CKs) regulate multiple developmental and physiological processes in Arabidopsis (Arabidopsis thaliana). Responses to CKs vary in different organs and tissues (e.g. the response to CKs has been shown to be opposite in shoot and root samples). However, the tissue-specific targets of CKs and the mechanisms underlying such specificity remain largely unclear. Here, we show that the Arabidopsis proteome responds with strong tissue and time specificity to the aromatic CK 6-benzylaminopurine (BAP) and that fast posttranscriptional and/or posttranslational regulation of protein abundance is involved in the contrasting shoot and root proteome responses to BAP. We demonstrate that BAP predominantly regulates proteins involved in carbohydrate and energy metabolism in the shoot as well as protein synthesis and destination in the root. Furthermore, we found that BAP treatment affects endogenous hormonal homeostasis, again with strong tissue specificity. In the shoot, BAP up-regulates the abundance of proteins involved in abscisic acid (ABA) biosynthesis and the ABA response, whereas in the root, BAP rapidly and strongly up-regulates the majority of proteins in the ethylene biosynthetic pathway. This was further corroborated by direct measurements of hormone metabolites, showing that BAP increases ABA levels in the shoot and 1-aminocyclopropane-1-carboxylic acid, the rate-limiting precursor of ethylene biosynthesis, in the root. In support of the physiological importance of these findings, we identified the role of proteins mediating BAP-induced ethylene production, METHIONINE SYNTHASE1 and ACC OXIDASE2, in the early root growth response to BAP.
Collapse
|
125
|
Veerabagu M, Elgass K, Kirchler T, Huppenberger P, Harter K, Chaban C, Mira-Rodado V. The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:721-31. [PMID: 22775331 DOI: 10.1111/j.1365-313x.2012.05101.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In higher plants, the two-component system (TCS) is a signaling mechanism based on a His-to-Asp phosphorelay. The Arabidopsis TCS involves three different types of proteins, namely the histidine kinases (AHKs), the histidine phosphotransfer proteins (AHPs) and the response regulators (ARRs). The ARRs comprise three different families, namely A, B and C types, according to their protein structure. While some members of the B-type family of ARRs have been studied extensively and reported to act as DNA-binding transcriptional regulators, very limited information is available for other B-type ARRs such as ARR18. In this study, we characterize in detail the molecular and functional properties of ARR18. ARR18 acts as a transcriptional regulator in plant cells and forms homodimers in planta as shown by FRET-FLIM studies. As demonstrated by mutational analysis, the aspartate at position 70 (D70) in the receiver domain of ARR18 acts as crucial phosphorylation site. The modification of D70 affects the response regulator's ability to homodimerize and to activate its target genes. Furthermore, physiological investigations of Arabidopsis lines ectopically expressing ARR18 introduce ARR18 as a new member within the cytokinin-regulated response pathway regulating root elongation.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- Center for Plant Molecular Biology-ZMBP, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
126
|
Nongpiur R, Soni P, Karan R, Singla-Pareek SL, Pareek A. Histidine kinases in plants: cross talk between hormone and stress responses. PLANT SIGNALING & BEHAVIOR 2012; 7:1230-7. [PMID: 22902699 PMCID: PMC3493402 DOI: 10.4161/psb.21516] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two-component signaling pathways involve sensory histidine kinases (HK), histidine phosphotransfer proteins (HpT) and response regulators (RR). Recent advancements in genome sequencing projects for a number of plant species have established the TCS family to be multigenic one. In plants, HKs operate through the His-Asp phosphorelay and control many physiological and developmental processes throughout the lifecycle of plants. Despite the huge diversity reported for the structural features of the HKs, their functional redundancy has also been reported via mutant approach. Several sensory HKs having a CHASE domain, transmembrane domain(s), transmitter domain and receiver domain have been reported to be involved in cytokinin and ethylene signaling. On the other hand, there are also increasing evidences for some of the sensory HKs to be performing their role as osmosensor, clearly indicating toward a possible cross-talk between hormone and stress responsive cascades. In this review, we bring out the latest knowledge about the structure and functions of histidine kinases in cytokinin and ethylene signaling and their role(s) in development and the regulation of environmental stress responses.
Collapse
Affiliation(s)
- Ramsong Nongpiur
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Praveen Soni
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
- Correspondence to: Ashwani Pareek,
| |
Collapse
|
127
|
Lomin S, Krivosheev D, Steklov M, Osolodkin D, Romanov G. Receptor properties and features of cytokinin signaling. Acta Naturae 2012; 4:31-45. [PMID: 23150802 PMCID: PMC3491891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cytokinins belong to one of the most important and well-known classes of plant hormones. Discovered over half a century ago, cytokinins have retained the attention of researchers due to the variety of the effects they have on the growth and development of vegetable organisms, their participation in a plant adaptation to external conditions, and the potential to be used in biotechnology, agriculture, medicine and even cosmetics. The molecular mechanism by which cytokinins function remained unknown for a long time. Things started to change only in the 21(st)century, after the discovery of the receptors for these phytohormones. It appeared that plants found ways to adapt a two-component signal transduction system borrowed from prokaryotic organisms for cytokinin signalling. This review covers the recent advances in research of the molecular basis for the perception and transduction of the cytokinin signal. Emphasis is placed on cytokinin receptors, their domain and three-dimensional structures, subcellular localization, signalling activity, effect of mutations, ligand-binding properties, and phylogeny.
Collapse
Affiliation(s)
- S.N. Lomin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences,
Botanicheskaya Str., 35, Moscow, Russia,127276
| | - D.M. Krivosheev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences,
Botanicheskaya Str., 35, Moscow, Russia,127276
| | - M.Yu. Steklov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences,
Botanicheskaya Str., 35, Moscow, Russia,127276
| | - D.I. Osolodkin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie
Gory, 1/3, Moscow, Russia, 119991
| | - G.A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences,
Botanicheskaya Str., 35, Moscow, Russia,127276
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State
University, Leninskie Gory, 1/40, Moscow, Russia, 119992
| |
Collapse
|
128
|
Kim K, Hwang I. Attenuation of cytokinin signaling via proteolysis of a type-B response regulator. PLANT SIGNALING & BEHAVIOR 2012; 7:756-9. [PMID: 22751310 PMCID: PMC3583957 DOI: 10.4161/psb.20469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Type-B response regulators (ARRs) are a group of transcription factors that are activated by cytokinin-initiated phospho-relays and regulate the expression of cytokinin-responsive genes. Recently, we reported that proteolysis of ARR2 in Arabidopsis is facilitated by cytokinins, resulting in attenuation of the signaling output of two-component circuitry. Interestingly, despite similarities in the primary structures and conserved receiver domains, the proteolytic properties of ARR2 are distinct from those of the other type-B ARRs. Using a gain-of-function mutant (ARR2(K90G)) resistant to protein degradation, we clearly demonstrated that increased levels of ARR2 affected cytokinin-mediated processes such as primary root growth, callus induction, hypocotyl elongation and leaf senescence. At the molecular level, expression of type-A ARRs was increased in transgenics expressing ARR2(K90G), resulting in enhanced cytokinin sensitivity. Here, we describe these findings and how they may be incorporated into the currently accepted model for the regulation of cytokinin signaling. In addition, we describe the proteomic approaches used to identify proteins that interact with ARR2. The putative roles of ARR2 proteolysis are also addressed with regard to other developmental processes. In conclusion, cytokinin-facilitated degradation of ARR2 must be appreciated as a post-translational event important for regulating cytokinin signaling intensity.
Collapse
|
129
|
Hall BP, Shakeel SN, Amir M, Haq NU, Qu X, Schaller GE. Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:682-95. [PMID: 22467798 PMCID: PMC3375934 DOI: 10.1104/pp.112.196790] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/29/2012] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), ethylene is perceived by a receptor family consisting of five members. Subfamily 1 members ETHYLENE RESPONSE1 (ETR1) and ETHYLENE RESPONSE SENSOR1 (ERS1) have histidine kinase activity, unlike the subfamily 2 members ETR2, ERS2, and ETHYLENE INSENSITIVE4 (EIN4), which lack amino acid residues critical for this enzymatic activity. To resolve the role of histidine kinase activity in signaling by the receptors, we transformed an etr1-9;ers1-3 double mutant with wild-type and kinase-inactive versions of the receptor ETR1. Both wild-type and kinase-inactive ETR1 rescue the constitutive ethylene-response phenotype of etr1-9;ers1-3, restoring normal growth to the mutant in air. However, the lines carrying kinase-inactive ETR1 exhibit reduced sensitivity to ethylene based on several growth response assays. Microarray and real-time polymerase chain reaction analyses of gene expression support a role for histidine kinase activity in eliciting the ethylene response. In addition, protein levels of the Raf-like kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1), which physically associates with the ethylene receptor ETR1, are less responsive to ethylene in lines containing kinase-inactive ETR1. These data indicate that the histidine kinase activity of ETR1 is not required for but plays a modulating role in the regulation of ethylene responses. Models for how enzymatic and nonenzymatic regulation may facilitate signaling from the ethylene receptors are discussed.
Collapse
|
130
|
Shi X, Rashotte AM. Advances in upstream players of cytokinin phosphorelay: receptors and histidine phosphotransfer proteins. PLANT CELL REPORTS 2012; 31:789-99. [PMID: 22350315 DOI: 10.1007/s00299-012-1229-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 05/09/2023]
Abstract
Cytokinins are a class of plant hormones that have been linked to numerous growth and developmental aspects in plants. The cytokinin signal is perceived by sensor histidine kinase receptors and transmitted via histidine phosphotransfer proteins (HPts) to downstream response regulators. Since their discovery, cytokinin receptors have been a focus of interest for many researchers. Ongoing research on these transmembrane receptors has greatly broadened our knowledge in terms of cytokinin-receptor interaction, receptor specificity, receptor cellular localization, and receptor functions in cytokinin related growth and developmental processes. This review focuses on the recent advances on the cytokinin receptors and HPt proteins in Arabidopsis.
Collapse
Affiliation(s)
- Xiuling Shi
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | |
Collapse
|
131
|
Sp Chal LX. Cytokinins - recent news and views of evolutionally old molecules. FUNCTIONAL PLANT BIOLOGY : FPB 2012; 39:267-284. [PMID: 32480780 DOI: 10.1071/fp11276] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/06/2012] [Indexed: 05/03/2023]
Abstract
Cytokinins (CKs) are evolutionally old and highly conserved low-mass molecules that have been identified in almost all known organisms. In plants, they evolved into an important group of plant hormones controlling many physiological and developmental processes throughout the whole lifespan of the plant. CKs and their functions are, however, not unique to plants. In this review, the strategies and mechanisms of plants - and phylogenetically distinct plant-interacting organisms such as bacteria, fungi, nematodes and insects employing CKs or regulation of CK status in plants - are described and put into their evolutionary context. The major breakthroughs made in the last decade in the fields of CK biosynthesis, degradation and signalling are also summarised.
Collapse
Affiliation(s)
- Luk X Sp Chal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic. Email
| |
Collapse
|
132
|
Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ. Characterization of genes involved in cytokinin signaling and metabolism from rice. PLANT PHYSIOLOGY 2012; 158:1666-84. [PMID: 22383541 PMCID: PMC3320177 DOI: 10.1104/pp.111.192765] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/23/2012] [Indexed: 05/18/2023]
Abstract
Two-component signaling elements play important roles in plants, including a central role in cytokinin signaling. We characterized two-component elements from the monocot rice (Oryza sativa) using several complementary approaches. Phylogenetic analysis reveals relatively simple orthologous relationships among the histidine kinases in rice and Arabidopsis (Arabidopsis thaliana). In contrast, the histidine-containing phosphotransfer proteins (OsHPs) and response regulators (OsRRs) display a higher degree of lineage-specific expansion. The intracellular localizations of several OsHPs and OsRRs were examined in rice and generally found to correspond to the localizations of their dicot counterparts. The functionality of rice type-B OsRRs was tested in Arabidopsis; one from a clade composed of both monocot and dicot type-B OsRRs complemented an Arabidopsis type-B response regulator mutant, but a type-B OsRR from a monocot-specific subfamily generally did not. The expression of genes encoding two-component elements and proteins involved in cytokinin biosynthesis and degradation was analyzed in rice roots and shoots and in response to phytohormones. Nearly all type-A OsRRs and OsHK4 were up-regulated in response to cytokinin, but other cytokinin signaling elements were not appreciably affected. Furthermore, multiple cytokinin oxidase (OsCKX) genes were up-regulated by cytokinin. Abscisic acid treatment decreased the expression of several genes involved in cytokinin biosynthesis and degradation. Auxin affected the expression of a few genes; brassinosteroid and gibberellin had only modest effects. Our results support a shared role for two-component elements in mediating cytokinin signaling in monocots and dicots and reveal how phytohormones can impact cytokinin function through modulating gene expression.
Collapse
|
133
|
Kim K, Ryu H, Cho YH, Scacchi E, Sabatini S, Hwang I. Cytokinin-facilitated proteolysis of ARABIDOPSIS RESPONSE REGULATOR 2 attenuates signaling output in two-component circuitry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:934-45. [PMID: 22050482 DOI: 10.1111/j.1365-313x.2011.04843.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cytokinins propagate signals via multiple phosphorelays in a mechanism similar to bacterial two-component systems. In Arabidopsis, signal outputs are determined by the activation state of transcription factors termed type-B Arabidopsis response regulators (ARRs); however, their regulatory mechanisms are largely unknown. In this study, we demonstrate that the proteolysis of ARR2, a type-B ARR, modulates cytokinin signaling outputs. ARR2-hemagglutinin (HA) is rapidly degraded by cytokinin treatment, but other type-B ARRs, such as ARR1-HA, ARR10-HA, ARR12-HA and ARR18-HA, are not. ARR2 degradation is mediated by the 26S proteasome pathway, and requires cytokinin-induced phosphorylation of Asp80 residue in the receiver domain. Through mutational analysis of amino acid residues in the receiver domain, we found that substitution of Lys90 with Gly inhibits ARR2 degradation. ARR2(K90G) -HA in transgenic Arabidopsis conferred enhanced cytokinin sensitivity in various developmental processes, including primary root elongation, callus induction, leaf senescence and hypocotyl growth. ARR2(K90G) -HA increased the expression of type-A ARRs, primary cytokinin-responsive genes and indicators of signaling output in two-component circuits. Expression of ARR2(K90G) -HA from the native ARR2 promoter in the arr2-4 knock-out mutant also increased cytokinin sensitivity. In conclusion, ARR2 proteolysis is involved in the maintenance of the primary signaling output for normal developmental processes mediated by cytokinin in Arabidopsis.
Collapse
Affiliation(s)
- Kangmin Kim
- Department of Life Sciences and Biotechnology Research Center, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
134
|
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. TRENDS IN PLANT SCIENCE 2012; 17:172-9. [PMID: 22236698 DOI: 10.1016/j.tplants.2011.12.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 05/18/2023]
Abstract
In plants, the cytokinin (CK) phytohormones regulate numerous biological processes, including responses to environmental stresses, via a complex network of CK signaling. By an unknown mechanism, stress signals are perceived and transmitted through the His-Asp phosphorelay, an important component of the CK signal transduction pathway, triggering CK-responsive genes. Because of the intensive crosstalk between CKs and abscisic acid (ABA), modulation of CK levels and their signal transduction affects both ABA-dependent and ABA-independent pathways, enabling plant adaptation to adverse conditions. This review presents our current understanding of the functions of CKs and CK signaling in the regulation of plant adaptation to stress. Biotechnological strategies based on the modulation of CK levels have been examined with the aim of stabilizing agriculture yields.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | | | | | | | | |
Collapse
|
135
|
Abstract
Despite long-standing observations on diverse cytokinin actions, the discovery path to cytokinin signaling mechanisms was tortuous. Unyielding to conventional genetic screens, experimental innovations were paramount in unraveling the core cytokinin signaling circuitry, which employs a large repertoire of genes with overlapping and specific functions. The canonical two-component transcription circuitry involves His kinases that perceive cytokinin and initiate signaling, as well as His-to-Asp phosphorelay proteins that transfer phosphoryl groups to response regulators, transcriptional activators, or repressors. Recent advances have revealed the complex physiological functions of cytokinins, including interactions with auxin and other signal transduction pathways. This review begins by outlining the historical path to cytokinin discovery and then elucidates the diverse cytokinin functions and key signaling components. Highlights focus on the integration of cytokinin signaling components into regulatory networks in specific contexts, ranging from molecular, cellular, and developmental regulations in the embryo, root apical meristem, shoot apical meristem, stem and root vasculature, and nodule organogenesis to organismal responses underlying immunity, stress tolerance, and senescence.
Collapse
Affiliation(s)
- Ildoo Hwang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.
| | | | | |
Collapse
|
136
|
Harter K, Meixner AJ, Schleifenbaum F. Spectro-microscopy of living plant cells. MOLECULAR PLANT 2012; 5:14-26. [PMID: 21914652 DOI: 10.1093/mp/ssr075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.
Collapse
Affiliation(s)
- Klaus Harter
- Center for Plant Molecular Biology, Plant Physiology and Biophysical Chemistry, University of Tübingen, Auf der Morgenstelle 1, 72076 Tuebingen, Germany
| | | | | |
Collapse
|
137
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|