101
|
Wang J, Liang Y, Gong Z, Zheng J, Li Z, Zhou G, Xu Y, Li X. Genomic and epigenomic insights into the mechanism of cold response in upland cotton (Gossypium hirsutum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108206. [PMID: 38029617 DOI: 10.1016/j.plaphy.2023.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Functional genome research, including gene transcriptional and posttranslational modifications of histones, can benefit greatly from a high-quality genome assembly. Histone modification plays a significant role in modulating the responses to abiotic stress in plants. However, there are limited reports on the involvement of dynamic changes in histone modification in cold stress response in upland cotton. In this study, the genome of an elite accession, YM11, with considerable cold stress tolerance was de novo assembled, which yielded a genome of 2343.06 Mb with a contig N50 of 88.96 Mb, and a total of 73,821 protein-coding gene models were annotated. Comparisons among YM11 and five Gossypium allopolyploid cotton assemblies highlighted a large amount of structural variations and presence/absence variations. We analyzed transcriptome and metabolome changes in YM11 seedlings subjected to cold stress. Using the CUT&Tag method, genome-wide H3K4me3 and H3K9ac modification patterns and effect of histone changes on gene expression were profiled during cold stress. Significant and consistently changing histone modifications and the gene expressions were screened, of which transcription factors (TFs) were highlighted. Our results suggest a positive correlation between the changes in H3K4me3, H3K9ac modifications and cold stress-responsive gene activation. This genome assembly and comprehensive analysis of genome-wide histone modifications and gene expression provide insights into the genomic variation and epigenetic responses to cold stress in upland cotton.
Collapse
Affiliation(s)
- Junduo Wang
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Yajun Liang
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Zhaolong Gong
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Juyun Zheng
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China
| | - Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumqi, 830022, Xinjiang, China
| | - Guohui Zhou
- Adsen Biotechnology Co., Ltd., Urumqi, 830022, Xinjiang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumqi, 830022, Xinjiang, China.
| | - Xueyuan Li
- Xinjiang Academy of Agricultural Science, Urumqi, 830091, Xinjiang, China.
| |
Collapse
|
102
|
Hribovšek P, Olesin Denny E, Dahle H, Mall A, Øfstegaard Viflot T, Boonnawa C, Reeves EP, Steen IH, Stokke R. Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems 2023; 8:e0054323. [PMID: 37921472 PMCID: PMC10734525 DOI: 10.1128/msystems.00543-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Knowledge on microbial iron oxidation is important for understanding the cycling of iron, carbon, nitrogen, nutrients, and metals. The current study yields important insights into the niche sharing, diversification, and Fe(III) oxyhydroxide morphology of Ghiorsea, an iron- and hydrogen-oxidizing Zetaproteobacteria representative belonging to Zetaproteobacteria operational taxonomic unit 9. The study proposes that Ghiorsea exhibits a more extensive morphology of Fe(III) oxyhydroxide than previously observed. Overall, the results increase our knowledge on potential drivers of Zetaproteobacteria diversity in iron microbial mats and can eventually be used to develop strategies for the cultivation of sheath-forming Zetaproteobacteria.
Collapse
Affiliation(s)
- Petra Hribovšek
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Emily Olesin Denny
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Håkon Dahle
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Berge, Bergen, Norway
| | - Achim Mall
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Thomas Øfstegaard Viflot
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Chanakan Boonnawa
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Eoghan P. Reeves
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Earth Science, University of Bergen, Bergen, Norway
| | - Ida Helene Steen
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Runar Stokke
- Centre for Deep Sea Research, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
103
|
Koedooder C, Zhang F, Wang S, Basu S, Haley ST, Tolic N, Nicora CD, Glavina del Rio T, Dyhrman ST, Gledhill M, Boiteau RM, Rubin-Blum M, Shaked Y. Taxonomic distribution of metabolic functions in bacteria associated with Trichodesmium consortia. mSystems 2023; 8:e0074223. [PMID: 37916816 PMCID: PMC10734445 DOI: 10.1128/msystems.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Colonies of the cyanobacteria Trichodesmium act as a biological hotspot for the usage and recycling of key resources such as C, N, P, and Fe within an otherwise oligotrophic environment. While Trichodesmium colonies are known to interact and support a unique community of algae and particle-associated microbes, our understanding of the taxa that populate these colonies and the gene functions they encode is still limited. Characterizing the taxa and adaptive strategies that influence consortium physiology and its concomitant biogeochemistry is critical in a future ocean predicted to have increasingly resource-depleted regions.
Collapse
Affiliation(s)
- Coco Koedooder
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Futing Zhang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Siyuan Wang
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Subhajit Basu
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
- Microsensor Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sheean T. Haley
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
| | - Nikola Tolic
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Earth and Biological Sciences, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tijana Glavina del Rio
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sonya T. Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, New York, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, USA
| | | | - Rene M. Boiteau
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | | | - Yeala Shaked
- The Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| |
Collapse
|
104
|
Liu B, Zhong X, Liu Z, Guan X, Wang Q, Qi R, Zhou X, Huang J. Probiotic Potential and Safety Assessment of Lactiplantibacillus plantarum cqf-43 and Whole-Genome Sequence Analysis. Int J Mol Sci 2023; 24:17570. [PMID: 38139398 PMCID: PMC10744225 DOI: 10.3390/ijms242417570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study reports the whole-genome sequence of Lactiplantibacillus plantarum cqf-43 isolated from healthy sow feces. Based on genomic analysis, we performed a comprehensive safety assessment of strain cqf-43, using both in vitro and in vivo experiments, and explored its probiotic potential. The total genome length measures 3,169,201 bp, boasting a GC content of 44.59%. Through phylogenetic analyses, leveraging both 16S rRNA gene and whole-genome sequences, we confidently categorize strain cqf-43 as a member of Lactiplantibacillus. Genome annotation using Prokka unveiled a total of 3141 genes, encompassing 2990 protein-coding sequences, 71 tRNAs, 16 rRNAs, and 1 tmRNA. Functional annotations derived from COG and KEGG databases highlighted a significant abundance of genes related to metabolism, with a notable emphasis on carbohydrate utilization. The genome also revealed the presence of prophage regions and CRISPR-Cas regions while lacking virulence and toxin genes. Screening for antibiotic resistance genes via the CARD database yielded no detectable transferable resistance genes, effectively eliminating the potential for harmful gene transfer. It is worth highlighting that the virulence factors identified via the VFDB database primarily contribute to bolstering pathogen resilience in hostile environments. This characteristic is particularly advantageous for probiotics. Furthermore, the genome is devoid of menacing genes such as hemolysin, gelatinase, and biogenic amine-producing genes. Our investigation also unveiled the presence of three unannotated secondary metabolite biosynthetic gene clusters, as detected by the online tool antiSMASH, suggesting a great deal of unknown potential for this strain. Rigorous in vitro experiments confirmed tolerance of strain cqf-43 in the intestinal environment, its antimicrobial efficacy, sensitivity to antibiotics, absence of hemolysis and gelatinase activity, and its inability to produce biogenic amines. In addition, a 28-day oral toxicity test showed that the strain cqf-43 did not pose a health hazard in mice, further establishing it as a safe strain.
Collapse
Affiliation(s)
- Baiheng Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- College of Animal Science and Technology, Southwest University, Chongqing 402460, China
| | - Xiaoxia Zhong
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Zhiyun Liu
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Xiaofeng Guan
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Qi Wang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Renli Qi
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Xiaorong Zhou
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| | - Jinxiu Huang
- Chongqing Academy of Animal Science, Chongqing 402460, China; (B.L.); (X.Z.); (Z.L.); (X.G.); (Q.W.); (R.Q.); (X.Z.)
- National Pig Technology Innovation Center, Chongqing 402460, China
| |
Collapse
|
105
|
Khelghatibana F, Javan-Nikkhah M, Safaie N, Sobhani A, Shams S, Sari E. A reference transcriptome for walnut anthracnose pathogen, Ophiognomonia leptostyla, guides the discovery of candidate virulence genes. Fungal Genet Biol 2023; 169:103828. [PMID: 37657751 DOI: 10.1016/j.fgb.2023.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.
Collapse
Affiliation(s)
- Fatemeh Khelghatibana
- Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Sobhani
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Somayeh Shams
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Lorestan, Khorramabad, Iran
| | - Ehsan Sari
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
106
|
Du HT, Lu JQ, Ji K, Wang CC, Yao ZC, Liu F, Li Y. Comparative Transcriptomic Assessment of Chemosensory Genes in Adult and Larval Olfactory Organs of Cnaphalocrocis medinalis. Genes (Basel) 2023; 14:2165. [PMID: 38136987 PMCID: PMC10742765 DOI: 10.3390/genes14122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a notorious pest of rice in Asia. The larvae and adults of C. medinalis utilize specialized chemosensory systems to adapt to different environmental odors and physiological behaviors. However, the differences in chemosensory genes between the olfactory organs of these two different developmental stages remain unclear. Here, we conducted a transcriptome analysis of larvae heads, male antennae, and female antennae in C. medinalis and identified 131 putative chemosensory genes, including 32 OBPs (8 novel OBPs), 23 CSPs (2 novel CSPs), 55 ORs (17 novel ORs), 19 IRs (5 novel IRs) and 2 SNMPs. Comparisons between larvae and adults of C. medinalis by transcriptome and RT-qPCR analysis revealed that the number and expression of chemosensory genes in larval heads were less than that of adult antennae. Only 17 chemosensory genes (7 OBPs and 10 CSPs) were specifically or preferentially expressed in the larval heads, while a total of 101 chemosensory genes (21 OBPs, 9 CSPs, 51 ORs, 18 IRs, and 2 SNMPs) were specifically or preferentially expressed in adult antennae. Our study found differences in chemosensory gene expression between larvae and adults, suggesting their specialized functions at different developmental stages of C. medinalis. These results provide a theoretical basis for screening chemosensory genes as potential molecular targets and developing novel management strategies to control C. medinalis.
Collapse
Affiliation(s)
- Hai-Tao Du
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Jia-Qi Lu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Kun Ji
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Chu-Chu Wang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Zhi-Chao Yao
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| | - Fang Liu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Yao Li
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China; (H.-T.D.); (J.-Q.L.); (K.J.); (C.-C.W.); (Z.-C.Y.)
| |
Collapse
|
107
|
Sahu SK, Liu M, Wang G, Chen Y, Li R, Fang D, Sahu DN, Mu W, Wei J, Liu J, Zhao Y, Zhang S, Lisby M, Liu X, Xu X, Li L, Wang S, Liu H, He C. Chromosome-scale genomes of commercially important mahoganies, Swietenia macrophylla and Khaya senegalensis. Sci Data 2023; 10:832. [PMID: 38007506 PMCID: PMC10676371 DOI: 10.1038/s41597-023-02707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
Mahogany species (family Meliaceae) are highly valued for their aesthetic and durable wood. Despite their economic and ecological importance, genomic resources for mahogany species are limited, hindering genetic improvement and conservation efforts. Here we perform chromosome-scale genome assemblies of two commercially important mahogany species: Swietenia macrophylla and Khaya senegalensis. By combining 10X sequencing and Hi-C data, we assemble high-quality genomes of 274.49 Mb (S. macrophylla) and 406.50 Mb (K. senegalensis), with scaffold N50 lengths of 8.51 Mb and 7.85 Mb, respectively. A total of 99.38% and 98.05% of the assembled sequences are anchored to 28 pseudo-chromosomes in S. macrophylla and K. senegalensis, respectively. We predict 34,129 and 31,908 protein-coding genes in S. macrophylla and K. senegalensis, respectively, of which 97.44% and 98.49% are functionally annotated. The chromosome-scale genome assemblies of these mahogany species could serve as a vital genetic resource, especially in understanding the properties of non-model woody plants. These high-quality genomes could support the development of molecular markers for breeding programs, conservation efforts, and the sustainable management of these valuable forest resources.
Collapse
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China
| | - Guanlong Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Ruirui Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Durgesh Nandini Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jie Liu
- Forestry Bureau of Ruili, Yunnan Dehong, Ruili, 678600, China
| | - Yuxian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shouzhou Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, DK-2100, Denmark
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518083, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China.
| | - Chengzhong He
- Key Laboratory for Forest Genetic & Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
108
|
Qu Y, Niu Z, Ding Q, Zhao T, Kong T, Bai B, Ma J, Zhao Y, Zheng J. Ensemble Learning with Supervised Methods Based on Large-Scale Protein Language Models for Protein Mutation Effects Prediction. Int J Mol Sci 2023; 24:16496. [PMID: 38003686 PMCID: PMC10671426 DOI: 10.3390/ijms242216496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Machine learning has been increasingly utilized in the field of protein engineering, and research directed at predicting the effects of protein mutations has attracted increasing attention. Among them, so far, the best results have been achieved by related methods based on protein language models, which are trained on a large number of unlabeled protein sequences to capture the generally hidden evolutionary rules in protein sequences, and are therefore able to predict their fitness from protein sequences. Although numerous similar models and methods have been successfully employed in practical protein engineering processes, the majority of the studies have been limited to how to construct more complex language models to capture richer protein sequence feature information and utilize this feature information for unsupervised protein fitness prediction. There remains considerable untapped potential in these developed models, such as whether the prediction performance can be further improved by integrating different models to further improve the accuracy of prediction. Furthermore, how to utilize large-scale models for prediction methods of mutational effects on quantifiable properties of proteins due to the nonlinear relationship between protein fitness and the quantification of specific functionalities has yet to be explored thoroughly. In this study, we propose an ensemble learning approach for predicting mutational effects of proteins integrating protein sequence features extracted from multiple large protein language models, as well as evolutionarily coupled features extracted in homologous sequences, while comparing the differences between linear regression and deep learning models in mapping these features to quantifiable functional changes. We tested our approach on a dataset of 17 protein deep mutation scans and indicated that the integrated approach together with linear regression enables the models to have higher prediction accuracy and generalization. Moreover, we further illustrated the reliability of the integrated approach by exploring the differences in the predictive performance of the models across species and protein sequence lengths, as well as by visualizing clustering of ensemble and non-ensemble features.
Collapse
Affiliation(s)
- Yang Qu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Qiaojiao Ding
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Taowa Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Tong Kong
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Bing Bai
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Jianwei Ma
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Yitian Zhao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo 315300, China; (Y.Q.); (Z.N.); (Q.D.); (T.Z.)
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China; (T.K.); (B.B.); (J.M.)
| |
Collapse
|
109
|
Chakraborty A, Mahajan S, Bisht MS, Sharma VK. Genome sequencing of Syzygium cumini (jamun) reveals adaptive evolution in secondary metabolism pathways associated with its medicinal properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1260414. [PMID: 38046611 PMCID: PMC10693344 DOI: 10.3389/fpls.2023.1260414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 12/05/2023]
Abstract
Syzygium cumini, also known as jambolan or jamun, is an evergreen tree widely known for its medicinal properties, fruits, and ornamental value. To understand the genomic and evolutionary basis of its medicinal properties, we sequenced S. cumini genome for the first time from the world's largest tree genus Syzygium using Oxford Nanopore and 10x Genomics sequencing technologies. We also sequenced and assembled the transcriptome of S. cumini in this study. The tetraploid and highly heterozygous draft genome of S. cumini had a total size of 709.9 Mbp with 61,195 coding genes. The phylogenetic position of S. cumini was established using a comprehensive genome-wide analysis including species from 18 Eudicot plant orders. The existence of neopolyploidy in S. cumini was evident from the higher number of coding genes and expanded gene families resulting from gene duplication events compared to the other two sequenced species from this genus. Comparative evolutionary analyses showed the adaptive evolution of genes involved in the phenylpropanoid-flavonoid (PF) biosynthesis pathway and other secondary metabolites biosynthesis such as terpenoid and alkaloid in S. cumini, along with genes involved in stress tolerance mechanisms, which was also supported by leaf transcriptome data generated in this study. The adaptive evolution of secondary metabolism pathways is associated with the wide range of pharmacological properties, specifically the anti-diabetic property, of this species conferred by the bioactive compounds that act as nutraceutical agents in modern medicine.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
110
|
Mahendrarajah TA, Moody ERR, Schrempf D, Szánthó LL, Dombrowski N, Davín AA, Pisani D, Donoghue PCJ, Szöllősi GJ, Williams TA, Spang A. ATP synthase evolution on a cross-braced dated tree of life. Nat Commun 2023; 14:7456. [PMID: 37978174 PMCID: PMC10656485 DOI: 10.1038/s41467-023-42924-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/25/2023] [Indexed: 11/19/2023] Open
Abstract
The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications. This approach results in a highly resolved, dated species tree and establishes an absolute timeline for ATP synthase evolution. Our analyses show that the divergence of ATP synthase into F- and A/V-type lineages was a very early event in cellular evolution dating back to more than 4 Ga, potentially predating the diversification of Archaea and Bacteria. Our cross-braced, dated tree of life also provides insight into more recent evolutionary transitions including eukaryogenesis, showing that the eukaryotic nuclear and mitochondrial lineages diverged from their closest archaeal (2.67-2.19 Ga) and bacterial (2.58-2.12 Ga) relatives at approximately the same time, with a slightly longer nuclear stem-lineage.
Collapse
Affiliation(s)
- Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Dominik Schrempf
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
| | - Lénárd L Szánthó
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Karolina ut 29, H-1113, Budapest, Hungary
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands
| | - Adrián A Davín
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Gergely J Szöllősi
- Department Biological Physics, Eötvös University, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- MTA-ELTE "Lendulet" Evolutionary Genomics Research Group, Pázmány P. stny. 1A., H-1117, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, The Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
111
|
Liu Z, Huang Y, Chen H, Liu C, Wang M, Bian C, Wang L, Song L. Chromosome-level genome assembly of the deep-sea snail Phymorhynchus buccinoides provides insights into the adaptation to the cold seep habitat. BMC Genomics 2023; 24:679. [PMID: 37950158 PMCID: PMC10638732 DOI: 10.1186/s12864-023-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is characterized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide (H2S), exploration of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and transcriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments. RESULTS The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assembled base pairs of contigs were anchored to 34 pseudo-chromosomes with a scaffold N50 size of 60.0 Mb. Compared with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. buccinoides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing H2S detoxification. Many genes involved in H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting that these tissues might be critical for H2S detoxification and sulfite tolerance. CONCLUSIONS In summary, our report of this chromosome-level deep-sea snail genome provides a comprehensive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment at the deep-sea cold seeps.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
112
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
113
|
Omondi DO, Dida MM, Berger DK, Beyene Y, Nsibo DL, Juma C, Mahabaleswara SL, Gowda M. Combination of linkage and association mapping with genomic prediction to infer QTL regions associated with gray leaf spot and northern corn leaf blight resistance in tropical maize. Front Genet 2023; 14:1282673. [PMID: 38028598 PMCID: PMC10661943 DOI: 10.3389/fgene.2023.1282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Among the diseases threatening maize production in Africa are gray leaf spot (GLS) caused by Cercospora zeina and northern corn leaf blight (NCLB) caused by Exserohilum turcicum. The two pathogens, which have high genetic diversity, reduce the photosynthesizing ability of susceptible genotypes and, hence, reduce the grain yield. To identify population-based quantitative trait loci (QTLs) for GLS and NCLB resistance, a biparental population of 230 lines derived from the tropical maize parents CML511 and CML546 and an association mapping panel of 239 tropical and sub-tropical inbred lines were phenotyped across multi-environments in western Kenya. Based on 1,264 high-quality polymorphic single-nucleotide polymorphisms (SNPs) in the biparental population, we identified 10 and 18 QTLs, which explained 64.2% and 64.9% of the total phenotypic variance for GLS and NCLB resistance, respectively. A major QTL for GLS, qGLS1_186 accounted for 15.2% of the phenotypic variance, while qNCLB3_50 explained the most phenotypic variance at 8.8% for NCLB resistance. Association mapping with 230,743 markers revealed 11 and 16 SNPs significantly associated with GLS and NCLB resistance, respectively. Several of the SNPs detected in the association panel were co-localized with QTLs identified in the biparental population, suggesting some consistent genomic regions across genetic backgrounds. These would be more relevant to use in field breeding to improve resistance to both diseases. Genomic prediction models trained on the biparental population data yielded average prediction accuracies of 0.66-0.75 for the disease traits when validated in the same population. Applying these prediction models to the association panel produced accuracies of 0.49 and 0.75 for GLS and NCLB, respectively. This research conducted in maize fields relevant to farmers in western Kenya has combined linkage and association mapping to identify new QTLs and confirm previous QTLs for GLS and NCLB resistance. Overall, our findings imply that genetic gain can be improved in maize breeding for resistance to multiple diseases including GLS and NCLB by using genomic selection.
Collapse
Affiliation(s)
- Dennis O. Omondi
- Department of Crops and Soil Sciences, School of Agriculture, Food Security and Environmental Sciences, Maseno University, Kisumu, Kenya
- Crop Science Division Bayer East Africa Limited, Nairobi, Kenya
| | - Mathews M. Dida
- Department of Crops and Soil Sciences, School of Agriculture, Food Security and Environmental Sciences, Maseno University, Kisumu, Kenya
| | - Dave K. Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Yoseph Beyene
- The Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - David L. Nsibo
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Collins Juma
- Crop Science Division Bayer East Africa Limited, Nairobi, Kenya
- The Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Suresh L. Mahabaleswara
- The Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Manje Gowda
- The Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
114
|
Zou Y, Wei Z, Xiao K, Wu Z, Xu X. Genomic analysis of the emergent aquatic plant Sparganium stoloniferum provides insights into its clonality, local adaptation and demographic history. Mol Ecol Resour 2023; 23:1868-1879. [PMID: 37489278 DOI: 10.1111/1755-0998.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
Clonal propagation and extensive dispersal of seeds and asexual propagules are two important features of aquatic plants that help them adapt to aquatic environments. Accurate measurements of clonality and effective clonal dispersal are essential for understanding the evolution of aquatic plants. Here, we first assembled a high-quality chromosome-level genome of a widespread emergent aquatic plant Sparganium stoloniferum to provide a reference for its population genomic study. We then performed high-depth resequencing of 173 individuals from 20 populations covering different basins across its range in China. Population genomic analyses revealed three genetic lineages reflecting the northeast (NE), southwest (SW) and northwest (NW) of its geographical distribution. The NE lineage diverged in the middle Pleistocene while the SW and NW lineages diverged until about 2400 years ago. Clonal relationship analyses identified nine populations as monoclonal population. Dispersal of vegetative propagules was identified between five populations covering three basins in the NE lineage, and dispersal distance was up to 1041 km, indicating high dispersibility in emergent aquatic plant species. We also identified lineage-specific positively selected genes that are likely to be involved in adaptations to saline wetlands and high-altitude environments. Our findings accurately measure the clonality, determine the dispersal range and frequency of vegetative propagules, and detect genetic signatures of local adaptation in a widespread emergent aquatic plant species, providing new perspectives on the evolution of aquatic plants.
Collapse
Affiliation(s)
- Yang Zou
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zijie Wei
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, China
| | - Keyan Xiao
- Hubei Xiuhu Botanical Garden, Xiaogan, China
| | - Zhigang Wu
- The State Key Laboratory of Freshwater Ecology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xinwei Xu
- National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
115
|
Tahir ul Qamar M, Sadaqat M, Zhu XT, Li H, Huang X, Fatima K, Almutairi MM, Chen LL. Comparative genomics profiling revealed multi-stress responsive roles of the CC-NBS-LRR genes in three mango cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1285547. [PMID: 37965009 PMCID: PMC10642748 DOI: 10.3389/fpls.2023.1285547] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023]
Abstract
The nucleotide-binding site-leucine-rich repeat (NBS-LRR) gene family is the largest group of disease resistance (R) genes in plants and is active in response to viruses, bacteria, and fungi usually involved in effector-triggered immunity (ETI). Pangenome-wide studies allow researchers to analyze the genetic diversity of multiple species or their members simultaneously, providing a comprehensive understanding of the evolutionary relationships and diversity present among them. The draft pan-genome of three Mangifera indica cultivars (Alphonso, Hong Xiang Ya, and Tommy atkins) was constructed and Presence/absence variants (PAVs) were filtered through the ppsPCP pipeline. As a result, 2823 genes and 5907 PAVs from H. Xiang Ya, and 1266 genes and 2098 PAVs from T. atkins were added to the reference genome. For the identification of CC-NBS-LRR (CNL) genes in these mango cultivars, this draft pan-genome study has successfully identified 47, 27, and 36 members in Alphonso, H. Xiang Ya, and T. atkins respectively. The phylogenetic analysis divided MiCNL proteins into four distinct subgroups. All MiCNL genes are unevenly distributed on chromosomes. Both tandem and segmental duplication events played a significant role in the expansion of the CNL gene family. These genes contain cis-elements related to light, stress, hormone, and development. The analysis of protein-protein interactions (PPI) revealed that MiCNL proteins interacted with other defense-responsive proteins. Gene Ontology (GO) analysis indicated that MiCNL genes play a role in defense mechanisms within the organism. The expression level of the identified genes in fruit peel was observed under disease and cold stress which showed that Mi_A_CNL13 and 14 were up-regulated while Mi_A_CNL15, 25, 30, 31, and 40 were down-regulated in disease stress. On the other hand, Mi_A_CNL2, 14, 41, and 45 were up-regulated and Mi_A_CNL47 is down-regulated in cold stress. Subsequently, the Random Forest (RF) classifier was used to assess the multi-stress response of MiCNLs. It was found that Mi_A_CNL14 is a gene that responds to multiple stress conditions. The CNLs have similar protein structures which show that they are involved in the same function. The above findings provide a foundation for a deeper understanding of the functional characteristics of the mango CNL gene family.
Collapse
Affiliation(s)
- Muhammad Tahir ul Qamar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Huan Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
116
|
Yu H, Wu X, Liang J, Han Z, Xiao Y, Du H, Liu Y, Guo J, Peng F. Genome-wide identification of nucleotide-binding domain leucine-rich repeat (NLR) genes and their association with green peach aphid (Myzus persicae) resistance in peach. BMC PLANT BIOLOGY 2023; 23:513. [PMID: 37880593 PMCID: PMC10598982 DOI: 10.1186/s12870-023-04474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Resistance genes (R genes) are a class of genes that are immune to a wide range of diseases and pests. In planta, NLR genes are essential components of the innate immune system. Currently, genes belonging to NLR family have been found in a number of plant species, but little is known in peach. Here, 286 NLR genes were identified on peach genome by using their homologous genes in Arabidopsis thaliana as queries. These 286 NLR genes contained at least one NBS domain and LRR domain. Phylogenetic and N-terminal domain analysis showed that these NLRs could be separated into four subfamilies (I-IV) and their promoters contained many cis-elements in response to defense and phytohormones. In addition, transcriptome analysis showed that 22 NLR genes were up-regulated after infected by Green Peach Aphid (GPA), and showed different expression patterns. This study clarified the NLR gene family and their potential functions in aphid resistance process. The candidate NLR genes might be useful in illustrating the mechanism of aphid resistance in peach.
Collapse
Affiliation(s)
- Haixiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xuelian Wu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jiahui Liang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ziying Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yuansong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hao Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, Shandong, 276000, China
| | - Jian Guo
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| | - Futian Peng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
117
|
Yan XM, Zhou SS, Liu H, Zhao SW, Tian XC, Shi TL, Bao YT, Li ZC, Jia KH, Nie S, Guo JF, Kong L, Porth IM, Mao JF. Unraveling the evolutionary dynamics of the TPS gene family in land plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1273648. [PMID: 37900760 PMCID: PMC10600500 DOI: 10.3389/fpls.2023.1273648] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023]
Abstract
Terpenes and terpenoids are key natural compounds for plant defense, development, and composition of plant oil. The synthesis and accumulation of a myriad of volatile terpenoid compounds in these plants may dramatically alter the quality and flavor of the oils, which provide great commercial utilization value for oil-producing plants. Terpene synthases (TPSs) are important enzymes responsible for terpenic diversity. Investigating the differentiation of the TPS gene family could provide valuable theoretical support for the genetic improvement of oil-producing plants. While the origin and function of TPS genes have been extensively studied, the exact origin of the initial gene fusion event - it occurred in plants or microbes - remains uncertain. Furthermore, a comprehensive exploration of the TPS gene differentiation is still pending. Here, phylogenetic analysis revealed that the fusion of the TPS gene likely occurred in the ancestor of land plants, following the acquisition of individual C- and N- terminal domains. Potential mutual transfer of TPS genes was observed among microbes and plants. Gene synteny analysis disclosed a differential divergence pattern between TPS-c and TPS-e/f subfamilies involved in primary metabolism and those (TPS-a/b/d/g/h subfamilies) crucial for secondary metabolites. Biosynthetic gene clusters (BGCs) analysis suggested a correlation between lineage divergence and potential natural selection in structuring terpene diversities. This study provides fresh perspectives on the origin and evolution of the TPS gene family.
Collapse
Affiliation(s)
- Xue-Mei Yan
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shan-Shan Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Shuangyushu No.1 Primary School, Beijing, China
| | - Hui Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shi-Wei Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xue-Chan Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhi-Chao Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai-Hua Jia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Crop Genetic Improvement & Ecology and Physiology, Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuai Nie
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Jing-Fang Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Horticulture and Food, Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - Lei Kong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Personnel Section, Qufu Nishan National Forest Park Management Service Center, Qufu, China
| | - Ilga M. Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval Québec, Québec, QC, Canada
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| |
Collapse
|
118
|
Yao P, Zhang C, Qin T, Liu Y, Liu Z, Xie X, Bai J, Sun C, Bi Z. Comprehensive Analysis of GH3 Gene Family in Potato and Functional Characterization of StGH3.3 under Drought Stress. Int J Mol Sci 2023; 24:15122. [PMID: 37894803 PMCID: PMC10606756 DOI: 10.3390/ijms242015122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
As an important hormone response gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids during plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but they are rarely reported in potato. Here, 19 StGH3 genes were isolated and characterized. Phylogenetic analysis indicated that StGH3s were divided into two categories (group I and group III). Analyses of gene structure and motif composition showed that the members of a specific StGH3 subfamily are relatively conserved. Collinearity analysis of StGH3 genes in potato and other plants laid a foundation for further exploring the evolutionary characteristics of the StGH3 genes. Promoter analysis showed that most StGH3 promoters contained hormone and abiotic stress response elements. Multiple transcriptome studies indicated that some StGH3 genes were responsive to ABA, water deficits, and salt treatments. Moreover, qRT-PCR analysis indicated that StGH3 genes could be induced by phytohormones (ABA, SA, and MeJA) and abiotic stresses (water deficit, high salt, and low temperature), although with different patterns. Furthermore, transgenic tobacco with transient overexpression of the StGH3.3 gene showed positive regulation in response to water deficits by increasing proline accumulation and reducing the leaf water loss rate. These results suggested that StGH3 genes may be involved in the response to abiotic stress through hormonal signal pathways. Overall, this study provides useful insights into the evolution and function of StGH3s and lays a foundation for further study on the molecular mechanisms of StGH3s in the regulation of potato drought resistance.
Collapse
Affiliation(s)
- Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
| | - Chunli Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyuan Qin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
| | - Xiaofei Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (P.Y.); (C.Z.); (T.Q.); (Y.L.); (Z.L.); (X.X.); (J.B.); (C.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
119
|
Sharuddin SS, Ramli N, Yusoff MZM, Muhammad NAN, Ho LS, Maeda T. Insights into bacterial community metatranscriptome and metabolome in river water influenced by palm oil mill effluent final discharge. J Appl Microbiol 2023; 134:lxad219. [PMID: 37757470 DOI: 10.1093/jambio/lxad219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
AIMS This study aimed to investigate the effect of palm oil mill effluent (POME) final discharge on the active bacterial composition, gene expression, and metabolite profiles in the receiving rivers to establish a foundation for identifying potential biomarkers for monitoring POME pollution in rivers. METHODS AND RESULTS The POME final discharge, upstream (unpolluted by POME), and downstream (effluent receiving point) parts of the rivers from two sites were physicochemically characterized. The taxonomic and gene profiles were then evaluated using de novo metatranscriptomics, while the metabolites were detected using qualitative metabolomics. A similar bacterial community structure in the POME final discharge samples from both sites was recorded, but their composition varied. Redundancy analysis showed that several families, particularly Comamonadaceae and Burkholderiaceae [Pr(>F) = 0.028], were positively correlated with biochemical oxygen demand (BOD5) and chemical oxygen demand (COD). The results also showed significant enrichment of genes regulating various metabolisms in the POME-receiving rivers, with methane, carbon fixation pathway, and amino acids among the predominant metabolisms identified (FDR < 0.05, PostFC > 4, and PPDE > 0.95). This was further validated through qualitative metabolomics, whereby amino acids were detected as the predominant metabolites. CONCLUSIONS The results suggest that genes regulating amino acid metabolism have significant potential for developing effective biomonitoring and bioremediation strategies in river water influenced by POME final discharge, fostering a sustainable palm oil industry.
Collapse
Affiliation(s)
- Siti S Sharuddin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Mohd Z M Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Nor A N Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor 43600, Malaysia
| | - Li S Ho
- Sime Darby Plantation Technology Centre Sdn Bhd, Sime Darby Plantation, Serdang, Selangor 43400, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| |
Collapse
|
120
|
Alarcón-Schumacher T, Lücking D, Erdmann S. Revisiting evolutionary trajectories and the organization of the Pleolipoviridae family. PLoS Genet 2023; 19:e1010998. [PMID: 37831715 PMCID: PMC10599561 DOI: 10.1371/journal.pgen.1010998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Archaeal pleomorphic viruses belonging to the Pleolipoviridae family represent an enigmatic group as they exhibit unique genomic features and are thought to have evolved through recombination with different archaeal plasmids. However, most of our understanding of the diversity and evolutionary trajectories of this clade comes from a handful of isolated representatives. Here we present 164 new genomes of pleolipoviruses obtained from metagenomic data of Australian hypersaline lakes and publicly available metagenomic data. We perform a comprehensive analysis on the diversity and evolutionary relationships of the newly discovered viruses and previously described pleolipoviruses. We propose to classify the viruses into five genera within the Pleolipoviridae family, with one new genus represented only by virus genomes retrieved in this study. Our data support the current hypothesis that pleolipoviruses reshaped their genomes through recombining with multiple different groups of plasmids, which is reflected in the diversity of their predicted replication strategies. We show that the proposed genus Epsilonpleolipovirus has evolutionary ties to pRN1-like plasmids from Sulfolobus, suggesting that this group could be infecting other archaeal phyla. Interestingly, we observed that the genome size of pleolipoviruses is correlated to the presence or absence of an integrase. Analyses of the host range revealed that all but one virus exhibit an extremely narrow range, and we show that the predicted tertiary structure of the spike protein is strongly associated with the host family, suggesting a specific adaptation to the host S-layer glycoprotein organization.
Collapse
Affiliation(s)
| | - Dominik Lücking
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Susanne Erdmann
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
121
|
Liu Y, Sheng X, Tang X, Xing J, Chi H, Zhan W. Genome-wide identification, phylogenetic relationships and expression patterns of the NOD-like receptor (NLR) gene family in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2023; 141:109083. [PMID: 37722442 DOI: 10.1016/j.fsi.2023.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
NOD-like receptors (NLRs) are one of the pattern recognition receptors which have been widely known for identifying pathogens and regulating innate immunity in mammals, but the functions of the NLR gene family in teleost fish remain poorly understood. In this study, we conducted a comprehensive identification and analysis of the flounder (Paralichthys olivaceus) NLR gene family, including bioinformatics information, evolutionary relationships, gene structures, conserved motifs, domain composition, expression patterns and protein-protein interaction (PPI). We identified 22 NLRs in flounder (flNLRs) which were clustered into three subfamilies according to their domain organizations and phylogenetic features, i.e., NLR-A (6 members) resembling mammalian NODs, NLR-B (1 member) resembling mammalian NLRPs, and NLR-C (15 members) unique to teleost fish. All flNLRs shared a conserved NACHT domain including an N-terminal nucleotide-binding domain, a middle helical domain 1, and a winged helix domain. Gene structure analysis displayed that flNLRs were significantly different, with exon numbers from 1 to 52. Conserved domain analysis showed that the N-terminus of flNLRs possessed different characteristics of the domains including CARD domain, PYRIN domain, RING domain, and fish-specific FISNA domain, and the C-terminus of seven NLR-C members contained an extra B30.2 domain, named NLRC-B30.2 group. Notably, flNLRs were expressed in all nine tested tissues, showing higher expressions in the systemic and mucosal immune tissues (e.g., kidney, spleen, hindgut, gills, skin, liver) in healthy flounder, and significant responses to intraperitoneal injection and immersion immunization of inactivated Vibrio anguillarum in mucosal tissues, especially the NLR-C members. In addition, PPI analysis demonstrated that some flNLRs of NLR-A and NLR-C shared the same interacting proteins such as RIPK2, TRAF6, MAVS, CASP, ASC, and ATG5, suggesting they might play crucial roles in host defense, antiviral innate immunity, inflammation, apoptosis and autophagy. This study for the first time characterized the NLR gene family of flounder at the genome-wide level, and the results provided a better understanding of the evolution of the NLR gene family and their immune functions in innate immunity in fish.
Collapse
Affiliation(s)
- Yingqin Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, PR China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| |
Collapse
|
122
|
Mugge RL, Moseley RD, Hamdan LJ. Substrate Specificity of Biofilms Proximate to Historic Shipwrecks. Microorganisms 2023; 11:2416. [PMID: 37894074 PMCID: PMC10608953 DOI: 10.3390/microorganisms11102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The number of built structures on the seabed, such as shipwrecks, energy platforms, and pipelines, is increasing in coastal and offshore regions. These structures, typically composed of steel or wood, are substrates for microbial attachment and biofilm formation. The success of biofilm growth depends on substrate characteristics and local environmental conditions, though it is unclear which feature is dominant in shaping biofilm microbiomes. The goal of this study was to understand the substrate- and site-specific impacts of built structures on short-term biofilm composition and functional potential. Seafloor experiments were conducted wherein steel and wood surfaces were deployed for four months at distances extending up to 115 m away from three historic (>50 years old) shipwrecks in the Gulf of Mexico. DNA from biofilms on the steel and wood was extracted, and metagenomes were sequenced on an Illumina NextSeq. A bioinformatics analysis revealed that the taxonomic composition was significantly different between substrates and sites, with substrate being the primary determining factor. Regardless of site, the steel biofilms had a higher abundance of genes related to biofilm formation, and sulfur, iron, and nitrogen cycling, while the wood biofilms showed a higher abundance of manganese cycling and methanol oxidation genes. This study demonstrates how substrate composition shapes biofilm microbiomes and suggests that marine biofilms may contribute to nutrient cycling at depth. Analyzing the marine biofilm microbiome provides insight into the ecological impact of anthropogenic structures on the seabed.
Collapse
Affiliation(s)
- Rachel L. Mugge
- U.S. Naval Research Laboratory, Ocean Sciences Division, Stennis Space Center, MS 39529, USA;
| | - Rachel D. Moseley
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| | - Leila J. Hamdan
- School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS 39564, USA
| |
Collapse
|
123
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
124
|
Li Z, Gong T, Wu Q, Zhang Y, Zheng X, Li Y, Ren B, Peng X, Zhou X. Lysine lactylation regulates metabolic pathways and biofilm formation in Streptococcus mutans. Sci Signal 2023; 16:eadg1849. [PMID: 37669396 DOI: 10.1126/scisignal.adg1849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/11/2023] [Indexed: 09/07/2023]
Abstract
In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.
Collapse
Affiliation(s)
- Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qinrui Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
125
|
Perry BW, McDonald AL, Trojahn S, Saxton MW, Vincent EP, Lowry C, Evans Hutzenbiler BD, Cornejo OE, Robbins CT, Jansen HT, Kelley JL. Feeding during hibernation shifts gene expression toward active season levels in brown bears ( Ursus arctos). Physiol Genomics 2023; 55:368-380. [PMID: 37486084 PMCID: PMC10642923 DOI: 10.1152/physiolgenomics.00030.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Hibernation in bears involves a suite of metabolical and physiological changes, including the onset of insulin resistance, that are driven in part by sweeping changes in gene expression in multiple tissues. Feeding bears glucose during hibernation partially restores active season physiological phenotypes, including partial resensitization to insulin, but the molecular mechanisms underlying this transition remain poorly understood. Here, we analyze tissue-level gene expression in adipose, liver, and muscle to identify genes that respond to midhibernation glucose feeding and thus potentially drive postfeeding metabolical and physiological shifts. We show that midhibernation feeding stimulates differential expression in all analyzed tissues of hibernating bears and that a subset of these genes responds specifically by shifting expression toward levels typical of the active season. Inferences of upstream regulatory molecules potentially driving these postfeeding responses implicate peroxisome proliferator-activated receptor gamma (PPARG) and other known regulators of insulin sensitivity, providing new insight into high-level regulatory mechanisms involved in shifting metabolic phenotypes between hibernation and active states.
Collapse
Affiliation(s)
- Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Anna L McDonald
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Michael W Saxton
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | - Courtney Lowry
- School of Biological Sciences, Washington State University, Pullman, Washington, United States
| | | | - Omar E Cornejo
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| | - Charles T Robbins
- School of the Environment, Washington State University, Pullman, Washington, United States
| | - Heiko T Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington, United States
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, United States
| |
Collapse
|
126
|
Mahajan S, Bisht MS, Chakraborty A, Sharma VK. Genome of Phyllanthus emblica: the medicinal plant Amla with super antioxidant properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1210078. [PMID: 37727852 PMCID: PMC10505619 DOI: 10.3389/fpls.2023.1210078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023]
Abstract
Phyllanthus emblica or Indian gooseberry, commonly known as amla, is an important medicinal horticultural plant used in traditional and modern medicines. It bears stone fruits with immense antioxidant properties due to being one of the richest natural sources of vitamin C and numerous flavonoids. This study presents the first genome sequencing of this species performed using 10x Genomics and Oxford Nanopore Technology. The draft genome assembly was 519 Mbp in size and consisted of 4,384 contigs, N50 of 597 Kbp, 98.4% BUSCO score, and 37,858 coding sequences. This study also reports the genome-wide phylogeny of this species with 26 other plant species that resolved the phylogenetic position of P. emblica. The presence of three ascorbate biosynthesis pathways including L-galactose, galacturonate, and myo-inositol pathways was confirmed in this genome. A comprehensive comparative evolutionary genomic analysis including gene family expansion/contraction and identification of multiple signatures of adaptive evolution provided evolutionary insights into ascorbate and flavonoid biosynthesis pathways and stone fruit formation through lignin biosynthesis. The availability of this genome will be beneficial for its horticultural, medicinal, dietary, and cosmetic applications and will also help in comparative genomics analysis studies.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
127
|
Hu S, Chen L, Bai Y, He Q, Liu Y, Xu P. Epigenetic mechanisms of lncRNA in response to thermal stress during embryogenesis of allotetraploid Cyprinus carpio. Genomics 2023; 115:110698. [PMID: 37595932 DOI: 10.1016/j.ygeno.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Embryogenesis and epigenetic mechanisms of lncRNA may play an important role in the formation of temperature tolerance in allotetraploid Cyprinus carpio. To investigate the response of lncRNA to thermal stress during embryogenesis of C. carpio, transcriptome sequencing was performed on 81 embryo or larva samples from different early development stages and temperatures. We identified 45,097 lncRNAs and analyzed transcriptome variation during embryogenesis. Stage-specific and temperature-specific DE lncRNAs and DEGs were screened. GO and KEGG analysis identified numerous pathways involved in thermal stress. Temperature-specific regulation of cis-/trans-/antisense lncRNAs was analyzed. Interaction network analysis identified 6 hub lncRNAs and many hub genes, such as cdk1 and hsf1. Decreased expression of many essential genes regulated by lncRNAs may lead to the death of embryos at 33 °C. Our findings provide new insights into the regulation of lncRNA in thermal stress response during embryogenesis and contribute to the understanding of environmental adaptation of allotetraploid species.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yue Liu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
128
|
Carr EC, Barton Q, Grambo S, Sullivan M, Renfro CM, Kuo A, Pangilinan J, Lipzen A, Keymanesh K, Savage E, Barry K, Grigoriev IV, Riekhof WR, Harris SD. Characterization of a novel polyextremotolerant fungus, Exophiala viscosa, with insights into its melanin regulation and ecological niche. G3 (BETHESDA, MD.) 2023; 13:jkad110. [PMID: 37221014 PMCID: PMC10411609 DOI: 10.1093/g3journal/jkad110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Black yeasts are polyextremotolerant fungi that contain high amounts of melanin in their cell wall and maintain a primar yeast form. These fungi grow in xeric, nutrient depletes environments which implies that they require highly flexible metabolisms and have been suggested to contain the ability to form lichen-like mutualisms with nearby algae and bacteria. However, the exact ecological niche and interactions between these fungi and their surrounding community are not well understood. We have isolated 2 novel black yeasts from the genus Exophiala that were recovered from dryland biological soil crusts. Despite notable differences in colony and cellular morphology, both fungi appear to be members of the same species, which has been named Exophiala viscosa (i.e. E. viscosa JF 03-3 Goopy and E. viscosa JF 03-4F Slimy). A combination of whole genome sequencing, phenotypic experiments, and melanin regulation experiments have been performed on these isolates to fully characterize these fungi and help decipher their fundamental niche within the biological soil crust consortium. Our results reveal that E. viscosa is capable of utilizing a wide variety of carbon and nitrogen sources potentially derived from symbiotic microbes, can withstand many forms of abiotic stresses, and excretes melanin which can potentially provide ultraviolet resistance to the biological soil crust community. Besides the identification of a novel species within the genus Exophiala, our study also provides new insight into the regulation of melanin production in polyextremotolerant fungi.
Collapse
Affiliation(s)
- Erin C Carr
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Quin Barton
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Sarah Grambo
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Mitchell Sullivan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Cecile M Renfro
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Keykhosrow Keymanesh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emily Savage
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Wayne R Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Steven D Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
129
|
Shome S, Jia K, Sivasankar S, Jernigan RL. Characterizing interactions in E-cadherin assemblages. Biophys J 2023; 122:3069-3077. [PMID: 37345249 PMCID: PMC10432173 DOI: 10.1016/j.bpj.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/26/2022] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
Cadherin intermolecular interactions are critical for cell-cell adhesion and play essential roles in tissue formation and the maintenance of tissue structures. In this study, we focus on E-cadherin, a classical cadherin that connects epithelial cells, to understand how they interact in cis and trans conformations when attached to the same cell or opposing cells. We employ coevolutionary sequence analysis and molecular dynamics simulations to confirm previously known interaction sites as well as to identify new interaction sites. The sequence coevolutionary results yield a surprising result indicating that there are no strongly favored intermolecular interaction sites, which is unusual and suggests that many interaction sites may be possible, with none being strongly preferred over others. By using molecular dynamics, we test the persistence of these interactions and how they facilitate adhesion. We build several types of cadherin assemblages, with different numbers and combinations of cis and trans interfaces to understand how these conformations act to facilitate adhesion. Our results suggest that, in addition to the established interaction sites on the EC1 and EC2 domains, an additional plausible cis interface at the EC3-EC5 domain exists. Furthermore, we identify specific mutations at cis/trans binding sites that impair adhesion within E-cadherin assemblages.
Collapse
Affiliation(s)
- Sayane Shome
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Kejue Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, Davis, California
| | - Robert L Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa.
| |
Collapse
|
130
|
Sahu SK, Liu M, Chen Y, Gui J, Fang D, Chen X, Yang T, He C, Cheng L, Yang J, Sahu DN, Li L, Wang H, Mu W, Wei J, Liu J, Zhao Y, Zhang S, Lisby M, Liu X, Xu X, Li L, Wang S, Liu H. Chromosome-scale genomes of commercial timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis). Sci Data 2023; 10:512. [PMID: 37537171 PMCID: PMC10400565 DOI: 10.1038/s41597-023-02420-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Wood is the most important natural and endlessly renewable source of energy. Despite the ecological and economic importance of wood, many aspects of its formation have not yet been investigated. We performed chromosome-scale genome assemblies of three timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis) which exhibit different wood properties such as wood density, hardness, growth rate, and fiber cell wall thickness. The combination of 10X, stLFR, Hi-Fi sequencing and HiC data led us to assemble high-quality genomes evident by scaffold N50 length of 55.97 Mb (O. pyramidale), 22.37 Mb (M. ferrea) and 14.55 Mb (T. grandis) with >97% BUSCO completeness of the assemblies. A total of 35774, 24027, and 44813 protein-coding genes were identified in M. ferrea, T. grandis and O. pyramidale, respectively. The data generated in this study is anticipated to serve as a valuable genetic resource and will promote comparative genomic analyses, and it is of practical importance in gaining a further understanding of the wood properties in non-model woody species.
Collapse
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Le Cheng
- BGI Research, Kunming, Yunnan, 650106, China
| | - Jinlong Yang
- BGI Research, Kunming, Yunnan, 650106, China
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Durgesh Nandini Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jie Liu
- Forestry Bureau of Ruili, Yunnan Dehong, Ruili, 678600, China
| | | | - Shouzhou Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China.
| |
Collapse
|
131
|
Chakraborty A, Mondal S, Mahajan S, Sharma VK. High-quality genome assemblies provide clues on the evolutionary advantage of blue peafowl over green peafowl. Heliyon 2023; 9:e18571. [PMID: 37576271 PMCID: PMC10412995 DOI: 10.1016/j.heliyon.2023.e18571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
An intriguing example of differential adaptability is the case of two Asian peafowl species, Pavo cristatus (blue peafowl) and Pavo muticus (green peafowl), where the former has a "Least Concern" conservation status and the latter is an "Endangered" species. To understand the genetic basis of this differential adaptability of the two peafowl species, a comparative analysis of these species is much needed to gain the genomic and evolutionary insights. Thus, we constructed a high-quality genome assembly of blue peafowl with an N50 value of 84.81 Mb (pseudochromosome-level assembly), and a high-confidence coding gene set to perform the genomic and evolutionary analyses of blue and green peafowls with 49 other avian species. The analyses revealed adaptive evolution of genes related to neuronal development, immunity, and skeletal muscle development in these peafowl species. Major genes related to axon guidance such as NEO1 and UNC5, semaphorin (SEMA), and ephrin receptor showed adaptive evolution in peafowl species. However, blue peafowl showed the presence of 42% more coding genes compared to the green peafowl along with a higher number of species-specific gene clusters, segmental duplicated genes and expanded gene families, and comparatively higher evolution in neuronal and developmental pathways. Blue peafowl also showed longer branch length compared to green peafowl in the species phylogenetic tree. These genomic insights obtained from the high-quality genome assembly of P. cristatus constructed in this study provide new clues on the superior adaptability of the blue peafowl over green peafowl despite having a recent species divergence time.
Collapse
Affiliation(s)
- Abhisek Chakraborty
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Samuel Mondal
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
132
|
Oladzad A, Roy J, Mamidi S, Miklas PN, Lee R, Clevenger J, Myers Z, Korani W, McClean PE. Linked candidate genes of different functions for white mold resistance in common bean ( Phaseolus vulgaris L) are identified by multiple QTL mapping approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1233285. [PMID: 37583595 PMCID: PMC10425182 DOI: 10.3389/fpls.2023.1233285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023]
Abstract
White mold (WM) is a major disease in common bean (Phaseolus vulgaris L.), and its complex quantitative genetic control limits the development of WM resistant cultivars. WM2.2, one of the nine meta-QTL with a major effect on WM tolerance, explains up to 35% of the phenotypic variation and was previously mapped to a large genomic interval on Pv02. Our objective was to narrow the interval of this QTL using combined approach of classic QTL mapping and QTL-based bulk segregant analysis (BSA), and confirming those results with Khufu de novo QTL-seq. The phenotypic and genotypic data from two RIL populations, 'Raven'/I9365-31 (R31) and 'AN-37'/PS02-029C-20 (Z0726-9), were used to select resistant and susceptible lines to generate subpopulations for bulk DNA sequencing. The QTL physical interval was determined by considering overlapping interval of the identified QTL or peak region in both populations by three independent QTL mapping analyses. Our findings revealed that meta-QTL WM2.2 consists of three regions, WM2.2a (4.27-5.76 Mb; euchromatic), WM 2.2b (12.19 to 17.61 Mb; heterochromatic), and WM2.2c (23.01-25.74 Mb; heterochromatic) found in both populations. Gene models encoding for gibberellin 2-oxidase 8, pentatricopeptide repeat, and heat-shock proteins are the likely candidate genes associated with WM2.2a resistance. A TIR-NBS-LRR class of disease resistance protein (Phvul.002G09200) and LRR domain containing family proteins are potential candidate genes associated with WM2.2b resistance. Nine gene models encoding disease resistance protein [pathogenesis-related thaumatin superfamily protein and disease resistance-responsive (dirigent-like protein) family protein etc] found within the WM2.2c QTL interval are putative candidate genes. WM2.2a region is most likely associated with avoidance mechanisms while WM2.2b and WM2.2c regions trigger physiological resistance based on putative candidate genes.
Collapse
Affiliation(s)
- Atena Oladzad
- Genomics Data Scientist II, Sound Agriculture, Emeryville, CA, United States
| | - Jayanta Roy
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip N. Miklas
- Grain Legume Genetics and Physiology Research Unit, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Prosser, WA, United States
| | - Rian Lee
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Josh Clevenger
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Zachary Myers
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Walid Korani
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, United States
| | - Phillip E. McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
- Genomics, Phenomics, and Bioinformatics Program, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
133
|
Xue G, Fan Y, Zheng C, Yang H, Feng L, Chen X, Yang Y, Yao X, Weng W, Kong L, Liu C, Cheng J, Ruan J. bHLH transcription factor family identification, phylogeny, and its response to abiotic stress in Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2023; 14:1171518. [PMID: 37476176 PMCID: PMC10355129 DOI: 10.3389/fpls.2023.1171518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 07/22/2023]
Abstract
The second-largest transcription factor superfamily in plants is that of the basic helix-loop-helix (bHLH) family, which plays an important complex physiological role in plant growth, tissue development, and environmental adaptation. Systematic research on the Chenopodium quinoa bHLH family will enable a better understanding of this species. Herein, authors used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 218 CqbHLH genes identified. A total of 218 CqbHLH transcription factor genes were identified in the whole genome, located on 18 chromosomes. A phylogenetic tree was constructed using the CqbHLH and AtbHLH proteins to determine their homology, and the members were divided into 20 subgroups and one unclustered gene. Authors also analyzed 218 CqbHLH genes, conservative motifs, chromosome diffusion, and gene replication. The author constructed one Neighbor-Joining (NJ) tree and a collinearity analysis map of the bHLH family in C. quinoa and six other plant species to study the evolutionary relationship and homology among multiple species. In addition, the expression levels of 20 CqbHLH members from different subgroups in various tissues, different fruit developmental stages, and six abiotic stresses were analyzed. Authors identified 218 CqbHLH genes and studied their biological functions, providing a basis for better understanding and further studying the bHLH family in quinoa.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Hao Yang
- Agricultural Service Center of Langde Town, Kaili, Guizhou, China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, Sichuan, China
| | - Xingyu Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yanqi Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Lingyan Kong
- The First Senior Middle School of Yuanyang County, Xinxiang, Henan, China
| | - Chuang Liu
- Henan Institute of Technology, Xinxiang, Henan, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
134
|
Sun R, Zhang X, Ma D, Liu C. Identification and Evolutionary Analysis of Cotton ( Gossypium hirsutum) WOX Family Genes and Their Potential Function in Somatic Embryogenesis. Int J Mol Sci 2023; 24:11077. [PMID: 37446257 DOI: 10.3390/ijms241311077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
WUSCHEL-related homeobox (WOX) proteins participate profoundly in plant development and stress responses. As the difficulty of somatic embryogenesis severely constrains cotton genetic modification, in this study, we identified and comprehensively analyzed WOX genes in cotton. As a result, 40 WOX genes were identified in the upland cotton genome. All these cotton WOX genes were classified into three clades, ancient, intermediate, and modern clades, based on the phylogenetic analysis of previous studies. The majority (24) of the cotton WOX genes belonged to the modern clade, in which all gene members contain the vital functional domain WUS-box, which is necessary for plant stem cell regulation and maintenance. Collinearity analysis indicated that the WOX gene family in cotton expanded to some degree compared to Arabidopsis, especially in the modern clade. Genome duplication and segmental duplication may greatly contribute to expansion. Hormone-response- and abiotic-stress-response-related cis-acting regulatory elements were widely distributed in the promoter regions of cotton WOX genes, suggesting that the corresponding functions of stress responses and the participation of development processes were involved in hormone responses. By RNA sequencing, we profiled the expression patterns of cotton WOX genes in somatic embryogenesis. Only about half of cotton WOX genes were actively expressed during somatic embryogenesis; different cotton WOX genes may function in different development stages. The most representative, GhWOX4 and GhWOX13, may function in almost all stages of somatic embryogenesis; GhWOX2 and GhWOX9 function in the late stages of embryo patterning and embryo development during cotton somatic embryogenesis. Co-expression analysis showed that the cotton WOXs co-expressed with genes involved in extensive genetic information processing, including DNA replication, DNA repair, homologous recombination, RNA transport, protein processing, and several signaling and metabolism pathways, in which plant hormones signal transduction, MAPK signaling pathways, phosphatidylinositol signaling systems, and ABC transporters, as well as the metabolism of fatty acid; valine, leucine, and isoleucine biosynthesis; and cutin, suberine, and wax biosynthesis, were most significantly enriched. Taken together, the present study provides useful information and new insights into the functions of cotton WOX genes during somatic embryogenesis. The specific regulatory roles of some WOX genes in somatic embryogenesis are worthy of further functional research.
Collapse
Affiliation(s)
- Ruibin Sun
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xue Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dan Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chuanliang Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
135
|
Thieringer PH, Boyd ES, Templeton AS, Spear JR. Metapangenomic investigation provides insight into niche differentiation of methanogenic populations from the subsurface serpentinizing environment, Samail Ophiolite, Oman. Front Microbiol 2023; 14:1205558. [PMID: 37465028 PMCID: PMC10350532 DOI: 10.3389/fmicb.2023.1205558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Serpentinization reactions produce highly reduced waters that have hyperalkaline pH and that can have high concentrations of H2 and CH4. Putatively autotrophic methanogenic archaea have been identified in the subsurface waters of the Samail Ophiolite, Sultanate of Oman, though the strategies to overcome hyperalkaline pH and dissolved inorganic carbon limitation remain to be fully understood. Here, we recovered metagenome assembled genomes (MAGs) and applied a metapangenomic approach to three different Methanobacterium populations to assess habitat-specific functional gene distribution. A Type I population was identified in the fluids with neutral pH, while a Type II and "Mixed" population were identified in the most hyperalkaline fluids (pH 11.63). The core genome of all Methanobacterium populations highlighted potential DNA scavenging techniques to overcome phosphate or nitrogen limitation induced by environmental conditions. With particular emphasis on the Mixed and Type II population found in the most hyperalkaline fluids, the accessory genomes unique to each population reflected adaptation mechanisms suggesting lifestyles that minimize niche overlap. In addition to previously reported metabolic capability to utilize formate as an electron donor and generate intracellular CO2, the Type II population possessed genes relevant to defense against antimicrobials and assimilating potential osmoprotectants to provide cellular stability. The accessory genome of the Mixed population was enriched in genes for multiple glycosyltransferases suggesting reduced energetic costs by adhering to mineral surfaces or to other microorganisms, and fostering a non-motile lifestyle. These results highlight the niche differentiation of distinct Methanobacterium populations to circumvent the challenges of serpentinization impacted fluids through coexistence strategies, supporting our ability to understand controls on methanogenic lifestyles and adaptations within the serpentinizing subsurface fluids of the Samail Ophiolite.
Collapse
Affiliation(s)
- Patrick H. Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Eric S. Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
136
|
Gonçalves AL, Cunha PM, da Silva Lima A, Dos Santos JC, Segato F. Production of recombinant lytic polysaccharide monooxygenases and evaluation effect of its addition into Aspergillus fumigatus var. niveus cocktail for sugarcane bagasse saccharification. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140919. [PMID: 37164048 DOI: 10.1016/j.bbapap.2023.140919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
Lignocellulosic biomass is a promising alternative for producing biofuels, despite its recalcitrant nature. There are microorganisms in nature capable of efficiently degrade biomass, such as the filamentous fungi. Among them, Aspergillus fumigatus var. niveus (AFUMN) has a wide variety of carbohydrate-active enzymes (CAZymes), especially hydrolases, but a low number of oxidative enzymes in its genome. To confirm the enzymatic profile of this fungus, this study analyzed the secretome of AFUMN cultured in sugarcane bagasse as the sole carbon source. As expected, the secretome showed a predominance of hydrolytic enzymes compared to oxidative activity. However, it is known that hydrolytic enzymes act in synergy with oxidative proteins to efficiently degrade cellulose polymer, such as the Lytic Polysaccharide Monooxygenases (LPMOs). Thus, three LPMOs from the fungus Thermothelomyces thermophilus (TtLPMO9D, TtLPMO9H, and TtLPMO9O) were selected, heterologous expressed in Aspergillus nidulans, purified, and used to supplement the AFUMN secretome to evaluate their effect on the saccharification of sugarcane bagasse. The saccharification assay was carried out using different concentrations of AFUMN secretome supplemented with recombinant T. thermophilus LPMOs, as well as ascorbic acid as reducing agent for oxidative enzymes. Through a statistic design created by Design-Expert software, we were able to analyze a possible cooperative effect between these components. The results indicated that, in general, the addition of TtLPMO9D and ascorbic acid did not favor the conversion process in this study, while TtLPMO9O had a highly significant cooperative effect in bagasse saccharification compared to the control using only AFUMN secretome.
Collapse
Affiliation(s)
- Aline Larissa Gonçalves
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Paula Macedo Cunha
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Awana da Silva Lima
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Júlio César Dos Santos
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil
| | - Fernando Segato
- Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.
| |
Collapse
|
137
|
Ayodeji FD, Shava B, Iqbal HMN, Ashraf SS, Cui J, Franco M, Bilal M. Biocatalytic Versatilities and Biotechnological Prospects of Laccase for a Sustainable Industry. Catal Letters 2023; 153:1932-1956. [DOI: 10.1007/s10562-022-04134-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
138
|
Chang Y, Sun H, Liu S, He Y, Zhao S, Wang J, Wang T, Zhang J, Gao J, Yang Q, Li M, Zhao X. Identification of BBX gene family and its function in the regulation of microtuber formation in yam. BMC Genomics 2023; 24:354. [PMID: 37365511 DOI: 10.1186/s12864-023-09406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BBX proteins play important roles in all of the major light-regulated developmental processes. However, no systematic analysis of BBX gene family regarding the regulation of photoperiodic microtuber formation has been previously performed in yam. In this study, a systematic analysis on the BBX gene family was conducted in three yam species, with the results, indicating that this gene plays a role in regulating photoperiodic microtuber formation. These analyses included identification the BBX gene family in three yam species, their evolutionary relationships, conserved domains, motifs, gene structure, cis-acting elements, and expressional patterns. Based on these analyses, DoBBX2/DoCOL5 and DoBBX8/DoCOL8 showing the most opposite pattern of expression during microtuber formation were selected as candidate genes for further investigation. Gene expression analysis showed DoBBX2/DoCOL5 and DoBBX8/DoCOL8 were highest expressed in leaves and exhibited photoperiod responsive expression patterns. Besides, the overexpression of DoBBX2/DoCOL5 and DoBBX8/DoCOL8 in potato accelerated tuber formation under short-day (SD) conditions, whereas only the overexpression of DoBBX8/DoCOL8 enhanced the accelerating effect of dark conditions on tuber induction. Tuber number was increased in DoBBX8/DoCOL8 overexpressing plants under dark, as well as in DoBBX2/DoCOL5 overexpressing plants under SD. Overall, the data generated in this study may form the basis of future functional characterizations of BBX genes in yam, especially regarding their regulation of microtuber formation via the photoperiodic response pathway.
Collapse
Affiliation(s)
- Yingying Chang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Haoyuan Sun
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shiyu Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulong He
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shanshan Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Jiage Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tianle Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China
| | - Jiangli Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China
| | - Jin Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Xinxiang, 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Xinxiang, 453007, China
| | - Mingjun Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China.
| | - Xiting Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China.
| |
Collapse
|
139
|
Sweet T, Sindi S, Sistrom M. Going through phages: a computational approach to revealing the role of prophage in Staphylococcus aureus. Access Microbiol 2023; 5:acmi000424. [PMID: 37424556 PMCID: PMC10323782 DOI: 10.1099/acmi.0.000424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 03/28/2023] [Indexed: 07/11/2023] Open
Abstract
Prophages have important roles in virulence, antibiotic resistance, and genome evolution in Staphylococcus aureus . Rapid growth in the number of sequenced S. aureus genomes allows for an investigation of prophage sequences at an unprecedented scale. We developed a novel computational pipeline for phage discovery and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and PROKKA, genome annotation tools to detect and analyse prophage sequences in nearly 10 011 S . aureus genomes, discovering thousands of putative prophage sequences with genes encoding virulence factors and antibiotic resistance. To our knowledge, this is the first large-scale application of PhiSpy on a large-scale set of genomes (10 011 S . aureus ). Determining the presence of virulence and resistance encoding genes in prophage has implications for the potential transfer of these genes/functions to other bacteria via transduction and thus can provide insight into the evolution and spread of these genes/functions between bacterial strains. While the phage we have identified may be known, these phages were not necessarily known or characterized in S. aureus and the clustering and comparison we did for phage based on their gene content is novel. Moreover, the reporting of these genes with the S. aureus genomes is novel.
Collapse
Affiliation(s)
- Tyrome Sweet
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Suzanne Sindi
- Department of Applied Mathematics, University of California, Merced, California, USA
| | - Mark Sistrom
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| |
Collapse
|
140
|
Xu L, Liu A, Wang T, Wang Y, Li L, Wu P. Characterization and Coexpression Analysis of the TIFY Family Genes in Euryale ferox Related to Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:2323. [PMID: 37375948 DOI: 10.3390/plants12122323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
TIFYs are plant-specific transcription factors that contain the TIFY structural domain and play an important role in plant leaf growth and development. However, the role played by TIFY in E. ferox (Euryale ferox Salisb.) leaf development has not been investigated. In this study, 23 TIFY genes were identified in E. ferox. Phylogenetic analyses of the TIFY genes showed clustering into three groups (JAZ, ZIM, and PPD). The TIFY domain was shown to be conserved. JAZ was mainly expanded via wholegenome triplication (WGT) in E. ferox. Based on analyses of the TIFY genes in nine species, we found that JAZ has a closer relationship with PPD, in addition to appearing the most recently and expanding most rapidly, leading to the rapid expansion of TIFYs in Nymphaeaceae. In addition, their different evolution types were discovered. Different gene expressions showed the distinct and corresponsive expression patterns of the EfTIFYs in different stages of tissue and leaf development. Finally, The qPCR analysis revealed that the expression of EfTIFY7.2 and EfTIFY10.1 showed an upward trend and high expression throughout leaf development. Further co-expression analysis indicated that EfTIFY7.2 might be more important for the development of E. ferox leaves. This information will be valuable when exploring the molecular mechanisms of EfTIFYs in plants.
Collapse
Affiliation(s)
- Lanruoyan Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Ailian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Tianyu Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Yuhao Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Liangjun Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| | - Peng Wu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
141
|
Song H, Ding G, Zhao C, Li Y. Genome-Wide Identification of B-Box Gene Family and Expression Analysis Suggest Its Roles in Responses to Cercospora Leaf Spot in Sugar Beet ( Beta Vulgaris L.). Genes (Basel) 2023; 14:1248. [PMID: 37372426 DOI: 10.3390/genes14061248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The B-box (BBX) protein, which is a zinc-finger protein containing one or two B-box domains, plays a crucial role in the growth and development of plants. Plant B-box genes are generally involved in morphogenesis, the growth of floral organs, and various life activities in response to stress. In this study, the sugar beet B-box genes (hereafter referred to as BvBBXs) were identified by searching the homologous sequences of the Arabidopsis thaliana B-box gene family. The gene structure, protein physicochemical properties, and phylogenetic analysis of these genes were systematically analyzed. In this study, 17 B-box gene family members were identified from the sugar beet genome. A B-box domain can be found in all sugar beet BBX proteins. BvBBXs encode 135 to 517 amino acids with a theoretical isoelectric point of 4.12 to 6.70. Chromosome localization studies revealed that BvBBXs were dispersed across nine sugar beet chromosomes except chromosomes 5 and 7. The sugar beet BBX gene family was divided into five subfamilies using phylogenetic analysis. The gene architectures of subfamily members on the same evolutionary tree branch are quite similar. Light, hormonal, and stress-related cis-acting elements can be found in the promoter region of BvBBXs. The BvBBX gene family was differently expressed in sugar beet following Cercospora leaf spot infection, according to RT-qPCR data. It is shown that the BvBBX gene family may influence how the plant reacts to a pathogen infection.
Collapse
Affiliation(s)
- He Song
- College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Guangzhou Ding
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| | - Chunlei Zhao
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| | - Yanli Li
- Sugar Beet Engineering Research Center of Heilongjiang Province, Harbin 150080, China
| |
Collapse
|
142
|
Barkdull M, Moreau CS. Worker Reproduction and Caste Polymorphism Impact Genome Evolution and Social Genes Across the Ants. Genome Biol Evol 2023; 15:evad095. [PMID: 37243539 PMCID: PMC10287540 DOI: 10.1093/gbe/evad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Eusocial insects are characterized by several traits, including reproductive division of labor and caste polymorphisms, which likely modulate genome evolution. Concomitantly, evolution may act on specific genes and pathways underlying these novel, sociality-associated phenotypes. Reproductive division of labor should increase the magnitude of genetic drift and reduce the efficacy of selection by reducing effective population size. Caste polymorphism has been associated with relaxed selection and may facilitate directional selection on caste-specific genes. Here, we use comparative analyses of 22 ant genomes to test how reproductive division of labor and worker polymorphism influence positive selection and selection intensity across the genome. Our results demonstrate that worker reproductive capacity is associated with a reduction in the degree of relaxed selection but is not associated with any significant change to positive selection. We find decreases in positive selection in species with polymorphic workers, but no increase in the degree of relaxed selection. Finally, we explore evolutionary patterns in specific candidate genes associated with our focal traits in eusocial insects. Two oocyte patterning genes previously implicated in worker sterility evolve under intensified selection in species with reproductive workers. Behavioral caste genes generally experience relaxed selection associated with worker polymorphism, whereas vestigial and spalt, both associated with soldier development in Pheidole ants, experience intensified selection in worker polymorphic species. These findings expand our understanding of the genetic mechanisms underlying elaborations of sociality. The impacts of reproductive division of labor and caste polymorphisms on specific genes illuminate those genes' roles in generating complex eusocial phenotypes.
Collapse
Affiliation(s)
- Megan Barkdull
- Department of Ecology & Evolutionary Biology, Cornell University
| | - Corrie S Moreau
- Department of Ecology & Evolutionary Biology, Cornell University
- Department of Entomology, Cornell University
| |
Collapse
|
143
|
Chakravarty D, Sreenivasan S, Swint-Kruse L, Porter LL. Identification of a covert evolutionary pathway between two protein folds. Nat Commun 2023; 14:3177. [PMID: 37264049 PMCID: PMC10235069 DOI: 10.1038/s41467-023-38519-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/03/2023] [Indexed: 06/03/2023] Open
Abstract
Although homologous protein sequences are expected to adopt similar structures, some amino acid substitutions can interconvert α-helices and β-sheets. Such fold switching may have occurred over evolutionary history, but supporting evidence has been limited by the: (1) abundance and diversity of sequenced genes, (2) quantity of experimentally determined protein structures, and (3) assumptions underlying the statistical methods used to infer homology. Here, we overcome these barriers by applying multiple statistical methods to a family of ~600,000 bacterial response regulator proteins. We find that their homologous DNA-binding subunits assume divergent structures: helix-turn-helix versus α-helix + β-sheet (winged helix). Phylogenetic analyses, ancestral sequence reconstruction, and AlphaFold2 models indicate that amino acid substitutions facilitated a switch from helix-turn-helix into winged helix. This structural transformation likely expanded DNA-binding specificity. Our approach uncovers an evolutionary pathway between two protein folds and provides a methodology to identify secondary structure switching in other protein families.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Shwetha Sreenivasan
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Liskin Swint-Kruse
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
144
|
Sadaqat M, Umer B, Attia KA, Abdelkhalik AF, Azeem F, Javed MR, Fatima K, Zameer R, Nadeem M, Tanveer MH, Sun S, Ercisli S, Nawaz MA. Genome-wide identification and expression profiling of two-component system (TCS) genes in Brassica oleracea in response to shade stress. Front Genet 2023; 14:1142544. [PMID: 37323660 PMCID: PMC10267837 DOI: 10.3389/fgene.2023.1142544] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023] Open
Abstract
The Two-component system (TCS) consists of Histidine kinases (HKs), Phosphotransfers (HPs), and response regulator (RR) proteins. It has an important role in signal transduction to respond to a wide variety of abiotic stresses and hence in plant development. Brassica oleracea (cabbage) is a leafy vegetable, which is used for food and medicinal purposes. Although this system was identified in several plants, it had not been identified in Brassica oleracea yet. This genome-wide study identified 80 BoTCS genes consisting of 21 HKs, 8 HPs, 39 RRs, and 12 PRRs. This classification was done based on conserved domains and motif structure. Phylogenetic relationships of BoTCS genes with Arabidopsis thaliana, Oryza sativa, Glycine max, and Cicer arietinum showed conservation in TCS genes. Gene structure analysis revealed that each subfamily had conserved introns and exons. Both tandem and segmental duplication led to the expansion of this gene family. Almost all of the HPs and RRs were expanded through segmental duplication. Chromosomal analysis showed that BoTCS genes were dispersed across all nine chromosomes. The promoter regions of these genes were found to contain a variety of cis-regulatory elements. The 3D structure prediction of proteins also confirmed the conservation of structure within subfamilies. MicroRNAs (miRNAs) involved in the regulation of BoTCSs were also predicted and their regulatory roles were also evaluated. Moreover, BoTCSs were docked with abscisic acid to evaluate their binding. RNA-seq-based expression analysis and validation by qRT-PCR showed significant variation of expression for BoPHYs, BoERS1.1, BoERS2.1, BoERS2.2, BoRR10.2, and BoRR7.1 suggesting their importance in stress response. These genes showing unique expression can be further used in manipulating the plant's genome to make the plant more resistant the environmental stresses which will ultimately help in the increase of plant's yield. More specifically, these genes have altered expression in shade stress which clearly indicates their importance in biological functions. These findings are important for future functional characterization of TCS genes in generating stress-responsive cultivars.
Collapse
Affiliation(s)
- Muhammad Sadaqat
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Basit Umer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amr F. Abdelkhalik
- Biotechnology School, Nile University, Giza, Egypt
- Rice Biotechnology Lab, Rice Research and Training Center, Field Crops Research Institute, ARC, Kafrelshikh, Egypt
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Muhammad Rizwan Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Kinza Fatima
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Roshan Zameer
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Majid Nadeem
- Wheat Research Institute, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | | | - Sangmi Sun
- Department of Biotechnology, Chonnam National University, Yesosu Campus, Yesosu Si, Republic of Korea
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), Tomsk State University, Tomsk, Russia
- Center for Research in the Field of Materials and Technologies, Tomsk State University, Tomsk, Russia
| |
Collapse
|
145
|
Wang Q, Peng W, Rong J, Zhang M, Jia W, Lei X, Wang Y. Molecular analysis of the 14-3-3 genes in Panax ginseng and their responses to heat stress. PeerJ 2023; 11:e15331. [PMID: 37187526 PMCID: PMC10178371 DOI: 10.7717/peerj.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Background Panax Ginseng is a perennial and semi-shady herb with tremendous medicinal value. Due to its unique botanical characteristics, ginseng is vulnerable to various abiotic factors during its growth and development, especially in high temperatures. Proteins encoded by 14-3-3 genes form a highly conserved protein family that widely exists in eukaryotes. The 14-3-3 family regulates the vital movement of cells and plays an essential role in the response of plants to abiotic stresses, including high temperatures. Currently, there is no relevant research on the 14-3-3 genes of ginseng. Methods The identification of the ginseng 14-3-3 gene family was mainly based on ginseng genomic data and Hidden Markov Models (HMM). We used bioinformatics-related databases and tools to analyze the gene structure, physicochemical properties, cis-acting elements, gene ontology (GO), phylogenetic tree, interacting proteins, and transcription factor regulatory networks. We analyzed the transcriptome data of different ginseng tissues to clarify the expression pattern of the 14-3-3 gene family in ginseng. The expression level and modes of 14-3-3 genes under heat stress were analyzed by quantitative real-time PCR (qRT-PCR) technology to determine the genes in the 14-3-3 gene family responding to high-temperature stress. Results In this study, 42 14-3-3 genes were identified from the ginseng genome and renamed PgGF14-1 to PgGF14-42. Gene structure and evolutionary relationship research divided PgGF14s into epsilon (ε) and non-epsilon (non-ε) groups, mainly located in four evolutionary branches. The gene structure and motif remained highly consistent within a subgroup. The physicochemical properties and structure of the predicted PgGF14 proteins conformed to the essential characteristics of 14-3-3 proteins. RNA-seq results indicated that the detected PgGF14s existed in different organs and tissues but differed in abundance; their expression was higher in roots, stems, leaves, and fruits but lower in seeds. The analysis of GO, cis-acting elements, interacting proteins, and regulatory networks of transcription factors indicated that PgGF14s might participate in physiological processes, such as response to stress, signal transduction, material synthesis-metabolism, and cell development. The qRT-PCR results indicated PgGF14s had multiple expression patterns under high-temperature stress with different change trends in several treatment times, and 38 of them had an apparent response to high-temperature stress. Furthermore, PgGF14-5 was significantly upregulated, and PgGF14-4 was significantly downregulated in all treatment times. This research lays a foundation for further study on the function of 14-3-3 genes and provides theoretical guidance for investigating abiotic stresses in ginseng.
Collapse
Affiliation(s)
- Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyue Peng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Junbo Rong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Mengyang Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenhao Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
146
|
Laothanachareon T, Asin-Garcia E, Volkers RJM, Tamayo-Ramos JA, Martins Dos Santos VAP, Schaap PJ. Identification of Aspergillus niger Aquaporins Involved in Hydrogen Peroxide Signaling. J Fungi (Basel) 2023; 9:jof9040499. [PMID: 37108953 PMCID: PMC10144872 DOI: 10.3390/jof9040499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus niger is a robust microbial cell factory for organic acid production. However, the regulation of many industrially important pathways is still poorly understood. The regulation of the glucose oxidase (Gox) expression system, involved in the biosynthesis of gluconic acid, has recently been uncovered. The results of that study show hydrogen peroxide, a by-product of the extracellular conversion of glucose to gluconate, has a pivotal role as a signaling molecule in the induction of this system. In this study, the facilitated diffusion of hydrogen peroxide via aquaporin water channels (AQPs) was studied. AQPs are transmembrane proteins of the major intrinsic proteins (MIPs) superfamily. In addition to water and glycerol, they may also transport small solutes such as hydrogen peroxide. The genome sequence of A. niger N402 was screened for putative AQPs. Seven AQPs were found and could be classified into three main groups. One protein (AQPA) belonged to orthodox AQP, three (AQPB, AQPD, and AQPE) were grouped in aquaglyceroporins (AQGP), two (AQPC and AQPF) were in X-intrinsic proteins (XIPs), and the other (AQPG) could not be classified. Their ability to facilitate diffusion of hydrogen peroxide was identified using yeast phenotypic growth assays and by studying AQP gene knock-outs in A. niger. The X-intrinsic protein AQPF appears to play roles in facilitating hydrogen peroxide transport across the cellular membrane in both Saccharomyces cerevisiae and A. niger experiments.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani 12120, Thailand
| | - Enrique Asin-Garcia
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- Biomanufacturing and Digital Twins, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Rita J M Volkers
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Juan Antonio Tamayo-Ramos
- ITENE Research Center, Industrial Biotechnology Area, C/Albert Einstein 1, 46980 Paterna, Valencia, Spain
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
- UNLOCK Large Scale Infrastructure for Microbial Communities, Wageningen University & Research, Delft University of Technology, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
147
|
Hesketh-Best PJ, Bosco-Santos A, Garcia SL, O’Beirne MD, Werne JP, Gilhooly WP, Silveira CB. Viruses of sulfur oxidizing phototrophs encode genes for pigment, carbon, and sulfur metabolisms. COMMUNICATIONS EARTH & ENVIRONMENT 2023; 4:126. [PMID: 38665202 PMCID: PMC11041744 DOI: 10.1038/s43247-023-00796-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/05/2023] [Indexed: 04/28/2024]
Abstract
Viral infections modulate bacterial metabolism and ecology. Here, we investigated the hypothesis that viruses influence the ecology of purple and green sulfur bacteria in anoxic and sulfidic lakes, analogs of euxinic oceans in the geologic past. By screening metagenomes from lake sediments and water column, in addition to publicly-available genomes of cultured purple and green sulfur bacteria, we identified almost 300 high and medium-quality viral genomes. Viruses carrying the gene psbA, encoding the small subunit of photosystem II protein D1, were ubiquitous, suggesting viral interference with the light reactions of sulfur oxidizing autotrophs. Viruses predicted to infect these autotrophs also encoded auxiliary metabolic genes for reductive sulfur assimilation as cysteine, pigment production, and carbon fixation. These observations show that viruses have the genomic potential to modulate the production of metabolic markers of phototrophic sulfur bacteria that are used to identify photic zone euxinia in the geologic past.
Collapse
Affiliation(s)
| | - Alice Bosco-Santos
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Sofia L. Garcia
- Department of Biology, University of Miami, Coral Gables, FL USA
| | - Molly D. O’Beirne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - Josef P. Werne
- Department of Geology & Environmental Science, University of Pittsburgh, Pittsburgh, PA USA
| | - William P. Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN USA
| | | |
Collapse
|
148
|
Luo YM, Yang SD, Wen MY, Wang B, Liu JH, Li ST, Li YY, Cheng H, Zhao LL, Li SM, Jiang JJ. Insights into the mechanisms of triptolide nephrotoxicity through network pharmacology-based analysis and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1144583. [PMID: 36959927 PMCID: PMC10027700 DOI: 10.3389/fpls.2023.1144583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Triptolide (TPL) is a promising plant-derived compound for clinical therapy of multiple human diseases; however, its application was limited considering its toxicity. METHODS To explore the underlying molecular mechanism of TPL nephrotoxicity, a network pharmacology based approach was utilized to predict candidate targets related with TPL toxicity, followed by deep RNA-seq analysis to characterize the features of three transcriptional elements include protein coding genes (PCGs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) as well as their associations with nephrotoxicity in rats with TPL treatment. RESULTS & DISCUSSION Although the deeper mechanisms of TPL nephrotoxcity remain further exploration, our results suggested that c-Jun is a potential target of TPL and Per1 related circadian rhythm signaling is involved in TPL induced renal toxicity.
Collapse
Affiliation(s)
- Yue-Ming Luo
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shu-Dong Yang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Miao-Yu Wen
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Bing Wang
- Department of Nephrology, Shenzhen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Hui Liu
- Department of Nephrology, Shenzhen Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Si-Ting Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Yan Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hong Cheng
- Department of Geriatrics, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Li Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Graduate school of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Shun-Min Li
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jian-Jun Jiang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
149
|
Chen W, Wan H, Liu F, Du H, Zhang C, Fan W, Zhu A. Rapid evolution of T2/S-RNase genes in Fragaria linked to multiple transitions from self-incompatibility to self-compatibility. PLANT DIVERSITY 2023; 45:219-228. [PMID: 37069931 PMCID: PMC10105083 DOI: 10.1016/j.pld.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/23/2022] [Indexed: 06/18/2023]
Abstract
The T2/RNase gene family is widespread in eukaryotes, and particular members of this family play critical roles in the gametophytic self-incompatibility (GSI) system in plants. Wild diploid strawberry (Fragaria) species have diversified their sexual systems via self-incompatible and self-compatible traits, yet how these traits evolved in Fragaria remains elusive. By integrating the published and de novo assembled genomes and the newly generated RNA-seq data, members of the RNase T2 gene family were systematically identified in six Fragaria species, including three self-incompatible species (Fragaria nipponica, Fragaria nubicola, and Fragaria viridis) and three self-compatible species (Fragaria nilgerrensis, Fragaria vesca, and Fragaria iinumae). In total, 115 RNase T2 genes were identified in the six Fragaria genomes and can be classified into three classes (I-III) according to phylogenetic analysis. The identified RNase T2 genes could be divided into 22 homologous gene sets according to amino acid sequence similarity and phylogenetic and syntenic relationships. We found that extensive gene loss and pseudogenization coupled with small-scale duplications mainly accounted for variations in the RNase T2 gene numbers in Fragaria. Multiple copies of homologous genes were mainly generated from tandem and segmental duplication events. Furthermore, we newly identified five S-RNase genes in three self-incompatible Fragaria genomes, including two in F. nipponica, two in F. viridis, and one in F. nubicola, which fit for typical features of a pistil determinant, including highly pistil-specific expression, highly polymorphic proteins and alkaline isoelectric point (pI), while no S-RNase genes were found in all three self-compatible Fragaria species. Surprisingly, these T2/S-RNase genes contain at least one large intron (>10 kb). This study revealed that the rapid evolution of T2/S-RNase genes within the Fragaria genus could be associated with its sexual mode, and repeated evolution of the self-compatible traits in Fragaria was convergent via losses of S-RNase.
Collapse
Affiliation(s)
- Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
150
|
Chakravarty D, Schafer JW, Porter LL. Distinguishing features of fold-switching proteins. Protein Sci 2023; 32:e4596. [PMID: 36782353 PMCID: PMC9951197 DOI: 10.1002/pro.4596] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Though many folded proteins assume one stable structure that performs one function, a small-but-increasing number remodel their secondary and tertiary structures and change their functions in response to cellular stimuli. These fold-switching proteins regulate biological processes and are associated with autoimmune dysfunction, severe acute respiratory syndrome coronavirus-2 infection, and more. Despite their biological importance, it is difficult to computationally predict fold switching. With the aim of advancing computational prediction and experimental characterization of fold switchers, this review discusses several features that distinguish fold-switching proteins from their single-fold and intrinsically disordered counterparts. First, the isolated structures of fold switchers are less stable and more heterogeneous than single folders but more stable and less heterogeneous than intrinsically disordered proteins (IDPs). Second, the sequences of single fold, fold switching, and intrinsically disordered proteins can evolve at distinct rates. Third, proteins from these three classes are best predicted using different computational techniques. Finally, late-breaking results suggest that single folders, fold switchers, and IDPs have distinct patterns of residue-residue coevolution. The review closes by discussing high-throughput and medium-throughput experimental approaches that might be used to identify new fold-switching proteins.
Collapse
Affiliation(s)
- Devlina Chakravarty
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMarylandUSA
| | - Joseph W. Schafer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMarylandUSA
| | - Lauren L. Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaMarylandUSA
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|