101
|
Gudo M. An evolutionary scenario for the origin of pentaradial echinoderms-implications from the hydraulic principles of form determination. Acta Biotheor 2005; 53:191-216. [PMID: 16329008 DOI: 10.1007/s10441-005-2528-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 12/04/2004] [Accepted: 01/19/2005] [Indexed: 10/25/2022]
Abstract
The early evolutionary history of echinoderms was reconstructed on the basis of structural-functional considerations and application of the quasi-engineering approach of 'Konstruktions-Morphologie'. According to the presented evolutionary scenario, a bilaterally symmetrical ancestor, such as an enteropneust-like organism, became gradually modified into a pentaradial echinoderm by passing through an intermediate pterobranch-like stage. The arms of a pentaradial echinoderm are identified as hydraulic outgrowths from the central coelomic cavity of the bilateral ancestor which developed due to a shortening of the body in length but widening in the diameter. The resulting pentaradial symmetry is a consequence of mechanical laws that dictate minimal contact surface areas among hydraulic pneumatic entities. These developed in the coelomic cavity (metacoel) in the bilaterally symmetrical ancestor, when from the already U-shaped mesentery with the intestinal tract two additional U-shaped bows developed directly or subsequently. During the subsequent development tensile chords of the mesentery 'sewed' the gut with the body wall first in three and secondly in five 'seams'. During the direct development five 'seams' between tensile chords and body wall developed straightly. These internal tensile chords subdivide the body coelom into five hydraulic subsystems ('pneus'), which eventually arrange in a pentaradial pattern. The body could then enlarge only between the tensile chords, which means that five hydraulic bulges developed. These bulges initially supported the tentacles and finally each of them enclosed the tentacle until only the feather-like appendages of the tentacles projected over the surface. The tentacles with their feathers were transformed into the ambulacral system, and the bulges become the arms. These morphological transformations were accompanied and partly determined by specific histological modifications, such as the development of mutable connective tissues and skeletal elements that fused to ossicles and provided shape stabilization in form of a calcareous skeleton in the body wall. The organism resulted was an ancestral echinoderm ('Ur-Echinoderm') with an enlarged metacoel, stabilized by hydraulic pressure working against a capsule of mutable connective tissue, skeletal elements and longitudinal muscles. In regard to these reconstructions, the body structure of echinoderms can be understood as a hydraulic skeletal capsule.
Collapse
Affiliation(s)
- Michael Gudo
- Morphisto-Evolutions-forschung und Anwendung GmbH, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
| |
Collapse
|
102
|
Rychel AL, Smith SE, Shimamoto HT, Swalla BJ. Evolution and development of the chordates: collagen and pharyngeal cartilage. Mol Biol Evol 2005; 23:541-9. [PMID: 16280542 DOI: 10.1093/molbev/msj055] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chordates evolved a unique body plan within deuterostomes and are considered to share five morphological characters, a muscular postanal tail, a notochord, a dorsal neural tube, an endostyle, and pharyngeal gill slits. The phylum Chordata typically includes three subphyla, Cephalochordata, Vertebrata, and Tunicata, the last showing a chordate body plan only as a larva. Hemichordates, in contrast, have pharyngeal gill slits, an endostyle, and a postanal tail but appear to lack a notochord and dorsal neural tube. Because hemichordates are the sister group of echinoderms, the morphological features shared with the chordates must have been present in the deuterostome ancestor. No extant echinoderms share any of the chordate features, so presumably they have lost these structures evolutionarily. We review the development of chordate characters in hemichordates and present new data characterizing the pharyngeal gill slits and their cartilaginous gill bars. We show that hemichordate gill bars contain collagen and proteoglycans but are acellular. Hemichordates and cephalochordates, or lancelets, show strong similarities in their gill bars, suggesting that an acellular cartilage may have preceded cellular cartilage in deuterostomes. Our evidence suggests that the deuterostome ancestor was a benthic worm with gill slits and acellular gill cartilages.
Collapse
Affiliation(s)
- Amanda L Rychel
- Center for Developmental Biology and Biology Department, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
103
|
|
104
|
Glenn Northcutt R. The new head hypothesis revisited. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:274-97. [PMID: 16003768 DOI: 10.1002/jez.b.21063] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 1983, a new theory, the New Head Hypothesis, was generated within the context of the Tunicate Hypothesis of deuterostome evolution. The New Head Hypothesis comprised four claims: (1) neural crest, neurogenic placodes, and muscularized hypomere are unique to vertebrates, (2) the structures derived from these tissues allowed a shift from filter feeding to active predation, (3) the rostral head of vertebrates is a neomorphic unit, and (4) neural crest and neurogenic placodes evolved from the epidermal nerve plexus of ancestral deuterostomes. These claims are re-examined within the context of evolutionary developmental biology. The first may or may not be valid, depending on whether protochordates have these tissues in rudimentary form. Regarding the second, clearly, the elaboration of these tissues in vertebrates is correlated with a shift from filter feeding to active predation. The third claim is clarified, i.e., that the elaboration of the alar portion of the rostral brain and the development of olfactory organs and their associated connective tissues represent a neomorphic unit, which appears to be valid. The fourth is rejected. When the origin of neural crest and neurogenic placodes is examined within the context of developmental biology, it appears they evolved due to the rearrangement of germ layers in the blastulae of the deuterostomes that gave rise to chordates. Deuterostome evolution and the origin of vertebrates are also re-examined in the context of new data from developmental biology and taxonomy. The Tunicate Hypothesis is rejected, and a new version of the Dipleurula Hypothesis is presented.
Collapse
Affiliation(s)
- R Glenn Northcutt
- Neurobiology Unit, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92093, USA.
| |
Collapse
|
105
|
Schlosser G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:347-99. [PMID: 16003766 DOI: 10.1002/jez.b.21055] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ectodermal placodes comprise the adenohypophyseal, olfactory, lens, profundal, trigeminal, otic, lateral line, and epibranchial placodes. The first part of this review presents a brief overview of placode development. Placodes give rise to a variety of cell types and contribute to many sensory organs and ganglia of the vertebrate head. While different placodes differ with respect to location and derivative cell types, all appear to originate from a common panplacodal primordium, induced at the anterior neural plate border by a combination of mesodermal and neural signals and defined by the expression of Six1, Six4, and Eya genes. Evidence from mouse and zebrafish mutants suggests that these genes promote generic placodal properties such as cell proliferation, cell shape changes, and specification of neurons. The common developmental origin of placodes suggests that all placodes may have evolved in several steps from a common precursor. The second part of this review summarizes our current knowledge of placode evolution. Although placodes (like neural crest cells) have been proposed to be evolutionary novelties of vertebrates, recent studies in ascidians and amphioxus have proposed that some placodes originated earlier in the chordate lineage. However, while the origin of several cellular and molecular components of placodes (e.g., regionalized expression domains of transcription factors and some neuronal or neurosecretory cell types) clearly predates the origin of vertebrates, there is presently little evidence that these components are integrated into placodes in protochordates. A scenario is presented according to which all placodes evolved from an adenohypophyseal-olfactory protoplacode, which may have originated in the vertebrate ancestor from the anlage of a rostral neurosecretory organ (surviving as Hatschek's pit in present-day amphioxus).
Collapse
|
106
|
Fitzpatrick DA, Creevey CJ, McInerney JO. Genome phylogenies indicate a meaningful alpha-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol Biol Evol 2005; 23:74-85. [PMID: 16151187 DOI: 10.1093/molbev/msj009] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Placement of the mitochondrial branch on the tree of life has been problematic. Sparse sampling, the uncertainty of how lateral gene transfer might overwrite phylogenetic signals, and the uncertainty of phylogenetic inference have all contributed to the issue. Here we address this issue using a supertree approach and completed genomic sequences. We first determine that a sensible alpha-proteobacterial phylogenetic tree exists and that it can confidently be inferred using orthologous genes. We show that congruence across these orthologous gene trees is significantly better than might be expected by random chance. There is some evidence of horizontal gene transfer within the alpha-proteobacteria, but it appears to be restricted to a minority of genes ( approximately 23%) most of whom ( approximately 74%) can be categorized as operational. This means that placement of the mitochondrion should not be excessively hampered by interspecies gene transfer. We then show that there is a consistently strong signal for placement of the mitochondrion on this tree and that this placement is relatively insensitive to methodological approach or data set. A concatenated alignment was created consisting of 15 mitochondrion-encoded proteins that are unlikely to have undergone any lateral gene transfer in the timeline under consideration. This alignment infers that the sister group of the mitochondria, for the taxa that have been sampled, is the order Rickettsiales.
Collapse
Affiliation(s)
- David A Fitzpatrick
- Department of Biology, National University of Ireland, Maynooth, County Kildare, Ireland
| | | | | |
Collapse
|
107
|
Abstract
Comparison of the predicted protein sets encoded by the complete genomes of two vertebrates (human and pufferfish), the urochordate Ciona intestinalis, three nonchordate animals, and two fungi were used to reconstruct a set of gene families present in the common ancestor of chordates. These ancestral families were much more likely to be lost in Ciona than in either vertebrate. In addition, of 256 duplicate gene pairs that arose by duplication prior to the most recent common ancestor of vertebrates and insects, one of the duplicate genes was four times as likely to be lost in Ciona as in the vertebrates. These results show that the genome of Ciona is not representative of the ancestral chordate genome with respect to gene content but rather shows derived features that may reflect adaptation of the specific ecological niche of urochordates.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | |
Collapse
|
108
|
Murray S, Flø Jørgensen M, Ho SYW, Patterson DJ, Jermiin LS. Improving the analysis of dinoflagellate phylogeny based on rDNA. Protist 2005; 156:269-86. [PMID: 16325541 DOI: 10.1016/j.protis.2005.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Phylogenetic studies of dinoflagellates are often conducted using rDNA sequences. In analyses to date, the monophyly of some of the major lineages of dinoflagellates remain to be demonstrated. There are several reasons for this uncertainty, one of which may be the use of models of evolution that may not closely fit the data. We constructed and examined alignments of SSU and partial LSU rRNA along with a concatenated alignment of the two molecules. The alignments showed several characteristics that may confound phylogeny reconstruction: paired helix (stem) regions that contain non-independently evolving sites, high levels of compositional heterogeneity among some of the sequences, high levels of incompatibility (homoplasy), and rate heterogeneity among sites. Taking into account these confounding factors, we analysed the data and found that the Gonyaulacales, a well-supported clade, may be the most recently diverged order. Other supported orders were, in the analysis based on SSU, the Suessiales and the Dinophysiales; however, the Gymnodiniales and Prorocentrales appeared to be polyphyletic. The Peridiniales without Heterocapsa species appeared as a monophyletic group in the analysis based on LSU; however, the support was low. The concatenated alignment did not provide a better phylogenetic resolution than the single gene alignments.
Collapse
Affiliation(s)
- Shauna Murray
- The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | | | | | | | | |
Collapse
|
109
|
Abstract
The phylogenetic relationships among deuterostome animals have been debated for many years, and a diversity of hypotheses have been proposed based on both morphological and molecular data. Here we have assembled sequences of 217 nuclear-encoded proteins to address specific questions concerning their relationships and times of origin. We recovered significant support for urochordates as the closest relative of vertebrates with an analysis of 59 proteins (17,400 amino acids) and suggest that the basal position of urochordates found in previous molecular studies may have been the result of long-branch attraction biases. Our results also support Ambulacraria, the pairing of hemichordates with echinoderms (nine proteins; 2,382 amino acids), and Cyclostomata, the pairing of lampreys with hagfish (25 proteins; 6,895 amino acids). In addition, 325 shared proteins (102,110 amino acids) were obtained from the complete genomes of six vertebrates and a urochordate for phylogenetic analysis and divergence time estimation. An evolutionary timescale was estimated using a local (Bayesian) molecular clock method. We found that most major lineages of deuterostomes arose prior to the Cambrian Explosion of fossils (approximately 520 MYA) and that several lineages had originated before periods of global glaciation in the Precambrian.
Collapse
Affiliation(s)
- Jaime E Blair
- NASA Astrobiology Institute and Department of Biology, The Pennsylvania State University, University Park, USA.
| | | |
Collapse
|
110
|
Luan YX, Mallatt JM, Xie RD, Yang YM, Yin WY. The phylogenetic positions of three Basal-hexapod groups (protura, diplura, and collembola) based on ribosomal RNA gene sequences. Mol Biol Evol 2005; 22:1579-92. [PMID: 15845456 DOI: 10.1093/molbev/msi148] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study combined complete 18S with partial 28S ribosomal RNA gene sequences ( approximately 2,000 nt in total) to investigate the relations of basal hexapods. Ten species of Protura, 12 of Diplura, and 10 of Collembola (representing all subgroups of these three clades) were sequenced, along with 5 true insects and 8 other arthropods, which served as out-groups. Trees were constructed with maximum parsimony, maximum likelihood, Bayesian analysis, and minimum-evolution analysis of LogDet-transformed distances. All methods yielded strong support for a clade of Protura plus Diplura, here named Nonoculata, and for monophyly of the Diplura. Parametric-bootstrapping analysis showed our data to be inconsistent with previous hypotheses (P < 0.01) that joined Protura with Collembola (Ellipura), that said Diplura are sister to true insects or are diphyletic, and that said Collembola are not hexapods. That is, our data are consistent with hexapod monophyly and Collembola grouped weakly with "Protura + Diplura" under most analytical conditions. As a caveat to the above conclusions, the sequences showed nonstationarity of nucleotide frequencies across taxa, so the CG-rich sequences of the diplurans and proturans may have grouped together artifactually; however, the fact that the LogDet method supported this group lessens this possibility. Within the basal hexapod groups, where nucleotide frequencies were stationary, traditional taxonomic subgroups generally were recovered: i.e., within Protura, the Eosentomata and Acerentomata (but Sinentomata was not monophyletic); within Collembola, the Arthropleona, Poduromorpha, and Entomobryomorpha (but Symphypleona was polyphyletic); and in Diplura, the most complete data set (> 2,100 nt) showed monophyly of Campodeoidea and of Japygoidea, and most methods united Projapygoidea with Japygoidea.
Collapse
Affiliation(s)
- Yun-Xia Luan
- Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | | | | | | | | |
Collapse
|
111
|
Turon X, López-Legentil S. Ascidian molecular phylogeny inferred from mtDNA data with emphasis on the Aplousobranchiata. Mol Phylogenet Evol 2005; 33:309-20. [PMID: 15336666 DOI: 10.1016/j.ympev.2004.06.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 06/08/2004] [Indexed: 11/17/2022]
Abstract
We explored the usefulness of mtDNA data in assessing phylogenetic relationships within the Ascidiacea. Although ascidians are a crucial group in studies of deuterostome evolution and the origin of chordates, little molecular work has been done to ascertain the evolutionary relationships within the class, and in the studies performed to date the key group Aplousobranchiata has not been adequately represented. We present a phylogenetic analysis based on mitochondrial cytochrome c oxidase subunit I (COI) sequences of 37 ascidian species, mainly Aplousobranchiata (26 species). Our data retrieve the main groups of ascidians, although Phlebobranchiata appeared paraphyletic in some analyses. Aplousobranch ascidians consistently appeared as a derived group, suggesting that their simple branchial structure is not a pleisiomorphic feature. Relationships between the main groups of ascidians were not conclusively determined, the sister group of Aplousobranchiata was the Stolidobranchiata or the Phlebobranchiata, depending on the analysis. Therefore, our data could not confirm an Enterogona clade (Aplousobranchiata+Phlebobranchiata). All of the tree topologies confirmed previous ideas, based on morphological and biochemical characters, suggesting that Cionidae and Diazonidae are members of the clade Aplousobranchiata, with Cionidae occupying a basal position within them in our analyses. Within the Aplousobranchiata, we found some stable clades that provide new data on the evolutionary relationships within this large group of ascidians, and that may prompt a re-evaluation of some morphological characters.
Collapse
Affiliation(s)
- Xavier Turon
- Department of Animal Biology (Invertebrates), Faculty of Biology, University of Barcelona, Diagonal Ave., 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
112
|
Philippe H, Lartillot N, Brinkmann H. Multigene analyses of bilaterian animals corroborate the monophyly of Ecdysozoa, Lophotrochozoa, and Protostomia. Mol Biol Evol 2005; 22:1246-53. [PMID: 15703236 DOI: 10.1093/molbev/msi111] [Citation(s) in RCA: 354] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Almost a decade ago, a new phylogeny of bilaterian animals was inferred from small-subunit ribosomal RNA (rRNA) that claimed the monophyly of two major groups of protostome animals: Ecdysozoa (e.g., arthropods, nematodes, onychophorans, and tardigrades) and Lophotrochozoa (e.g., annelids, molluscs, platyhelminths, brachiopods, and rotifers). However, it received little additional support. In fact, several multigene analyses strongly argued against this new phylogeny. These latter studies were based on a large amount of sequence data and therefore showed an apparently strong statistical support. Yet, they covered only a few taxa (those for which complete genomes were available), making systematic artifacts of tree reconstruction more probable. Here we expand this sparse taxonomic sampling and analyze a large data set (146 genes, 35,371 positions) from a diverse sample of animals (35 species). Our study demonstrates that the incongruences observed between rRNA and multigene analyses were indeed due to long-branch attraction artifacts, illustrating the enormous impact of systematic biases on phylogenomic studies. A refined analysis of our data set excluding the most biased genes provides strong support in favor of the new animal phylogeny and in addition suggests that urochordates are more closely related to vertebrates than are cephalochordates. These findings have important implications for the interpretation of morphological and genomic data.
Collapse
Affiliation(s)
- Hervé Philippe
- Canadian Institute for Advanced Research and Département de Biochimie, Université de Montréal, Montréal, Québec, Canada.
| | | | | |
Collapse
|
113
|
Passamaneck YJ, Schander C, Halanych KM. Investigation of molluscan phylogeny using large-subunit and small-subunit nuclear rRNA sequences. Mol Phylogenet Evol 2005; 32:25-38. [PMID: 15186794 DOI: 10.1016/j.ympev.2003.12.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 12/12/2003] [Indexed: 11/23/2022]
Abstract
The Mollusca represent one of the most morphologically diverse animal phyla, prompting a variety of hypotheses on relationships between the major lineages within the phylum based upon morphological, developmental, and paleontological data. Analyses of small-ribosomal RNA (SSU rRNA) gene sequence have provided limited resolution of higher-level relationships within the Mollusca. Recent analyses suggest large-subunit (LSU) rRNA gene sequences are useful in resolving deep-level metazoan relationships, particularly when combined with SSU sequence. To this end, LSU (approximately 3.5 kb in length) and SSU (approximately 2 kb) sequences were collected for 33 taxa representing the major lineages within the Mollusca to improve resolution of intraphyletic relationships. Although the LSU and combined LSU+SSU datasets appear to hold potential for resolving branching order within the recognized molluscan classes, low bootstrap support was found for relationships between the major lineages within the Mollusca. LSU+SSU sequences also showed significant levels of rate heterogeneity between molluscan lineages. The Polyplacophora, Gastropoda, and Cephalopoda were each recovered as monophyletic clades with the LSU+SSU dataset. While the Bivalvia were not recovered as monophyletic clade in analyses of the SSU, LSU, or LSU+SSU, the Shimodaira-Hasegawa test showed that likelihood scores for these results did not differ significantly from topologies where the Bivalvia were monophyletic. Analyses of LSU sequences strongly contradict the widely accepted Diasoma hypotheses that bivalves and scaphopods are closely related to one another. The data are consistent with recent morphological and SSU analyses suggesting scaphopods are more closely related to gastropods and cephalopods than to bivalves. The dataset also presents the first published DNA sequences from a neomeniomorph aplacophoran, a group considered critical to our understanding of the origin and early radiation of the Mollusca.
Collapse
Affiliation(s)
- Yale J Passamaneck
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | | | | |
Collapse
|
114
|
Abstract
A comprehensive review of literature on all 15 genera constituting the phylum Hemichordata resulted in a morphological matrix of 105 characters. The echinoderms, tunicates, cephalochordates, and vertebrates were included in the analysis, and the cnidarians, polychaetes, and sipunculids were employed as outgroup taxa. The consensus tree supported the traditional view of a monophyletic Hemichordata, Echinodermata, Ambulacraria, and Chordata. The enteropneust families Spengelidae and Ptychoderidae were each monophyletic and sister-taxa, but there was no resolution among the family Harrimaniidae. A detailed sensitivity analysis provided (i) tree lengths of competing evolutionary hypothesis and (ii) a test of monophyly of groups under a variety of evolutionary models. It is argued that the ancestral deuterostome was a benthic vermiform organism with a terminal mouth and anus, well-developed circular and longitudinal muscles, a simple nerve plexus with little sign of regionalization, a pharynx with gill slits and collagenous gill bars, a cluster of vacuolated cells with myofilaments, produced iodotyrosine, and displayed direct development. The pterobranchs have lost many of these features as a consequence of evolving a small body size and living in tubes, but these features exist in present-day enteropneusts, suggesting that they are a plausible model for the proximate ancestor of deuterostomes.
Collapse
|
115
|
Abstract
The deuterostomes are a monophyletic group of multicellular animals that include the Chordata, a phylum that exhibits a unique body plan within the metazoans. Deuterostomes classically contained three phyla, Echinodermata, Hemichordata, and Chordata. Protochordata describes two invertebrate chordate subphyla, the Tunicata (Urochordata) and the Cephalochordata. Tunicate species are key to understanding chordate origins, as they have tadpole larvae with a chordate body plan. However, molecular phylogenies show only weak support for the Tunicata as the sister-group to the rest of the chordates, suggesting that they are highly divergent from the Cephalochordata and Vertebrata. We believe that members of the Tunicata exhibit a unique adult body plan and should be considered a separate phylum rather than a subphylum of Chordata. The molecular phylogeny of the deuterostomes is reviewed and discussed in the context of likely morphological evolutionary scenarios and the possibility is raised that the ancestor of the Tunicata was colonial. In this scenario, the colonial tadpole larva would more resemble an ancestral chordate than the solitary tadpole larva. In contrast, the true chordates (vertebrates and cephalochordates) would have evolved from filter-feeding benthic worms with cartilaginous gill slits, similar to extant enteropneust hemichordates.
Collapse
|
116
|
Shimeld SM, Holland ND. Amphioxus molecular biology: insights into vertebrate evolution and developmental mechanisms. CAN J ZOOL 2005. [DOI: 10.1139/z04-155] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cephalochordate amphioxus is the best available proxy for the last common invertebrate ancestor of the vertebrates. During the last decade, the developmental genetics of amphioxus have been extensively examined for insights into the evolutionary origin and early evolution of the vertebrates. Comparisons between expression domains of homologous genes in amphioxus and vertebrates have strengthened proposed homologies between specific body parts. Molecular genetic studies have also highlighted parallels in the developmental mechanisms of amphioxus and vertebrates. In both groups, a similar nested pattern of Hox gene expression is involved in rostrocaudal patterning of the neural tube, and homologous genes also appear to be involved in dorsoventral neural patterning. Studies of amphioxus molecular biology have also hinted that the protochordate ancestor of the vertebrates included cell populations that modified their developmental genetic pathways during early vertebrate evolution to yield definitive neural crest and neurogenic placodes. We also discuss how the application of expressed sequence tag and gene-mapping approaches to amphioxus have combined with developmental studies to advance our understanding of chordate genome evolution. We conclude by considering the potential offered by the sequencing of the amphioxus genome, which was completed in late 2004.
Collapse
|
117
|
Affiliation(s)
- Kenneth M. Halanych
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849;
| |
Collapse
|
118
|
Yokobori SI, Oshima T, Wada H. Complete nucleotide sequence of the mitochondrial genome of Doliolum nationalis with implications for evolution of urochordates. Mol Phylogenet Evol 2004; 34:273-83. [PMID: 15619441 DOI: 10.1016/j.ympev.2004.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Revised: 09/28/2004] [Accepted: 10/01/2004] [Indexed: 10/26/2022]
Abstract
The evolutionary history of the diverse lifestyles adopted by urochordates has attracted intense interest because it may effect the evolutionary history of vertebrates. Here, we report the complete mitochondrial (mt) DNA sequence of the pelagic thaliacean doliolid Doliolum nationalis. The doliolid mt genome shares the unusual tRNAs of trnM(uau) and trnG(ucu) with other ascidians, such as Halocynthia and Ciona. On the other hand, the gene order of the doliolid mt genome is significantly different from that of any ascidian species or vertebrate reported to date. Phylogenetic analyses of the amino acid sequences of 12 protein-coding genes strongly support the sister-grouping of doliolids and the Phlebobranch ascidian Ciona, with the Stolidobranch ascidian alocynthia as the outgroup, thereby providing strong support for the paraphyly of ascidians, as has been suggested by 18S rDNA studies. Given the paraphyletic nature of ascidians, it seems likely that the common ancestor of ascidians and thaliaceans was sessile, as are the present-day ascidians, and that the thaliaceans subsequently evolved a pelagic lifestyle.
Collapse
Affiliation(s)
- Shin-ichi Yokobori
- Department of Molecular Biology, School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan.
| | | | | |
Collapse
|
119
|
Mallatt JM, Garey JR, Shultz JW. Ecdysozoan phylogeny and Bayesian inference: first use of nearly complete 28S and 18S rRNA gene sequences to classify the arthropods and their kin. Mol Phylogenet Evol 2004; 31:178-91. [PMID: 15019618 DOI: 10.1016/j.ympev.2003.07.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 07/18/2003] [Indexed: 10/27/2022]
Abstract
Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S+18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-transformed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of established taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by nematomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods-hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)-formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and 'Chelicerata+Myriapoda' (a clade that we name 'Paradoxopoda'). Pycnogonids (sea spiders) were either chelicerates or part of the 'chelicerate+myriapod' clade, but not basal arthropods. Certain clades derived from morphological taxonomy, such as Mandibulata, Atelocerata, Schizoramia, Maxillopoda and Cycloneuralia, are inconsistent with these rRNA data. The 28S gene contained more signal than the 18S gene, and contributed to the improved phylogenetic resolution. Our findings are similar to those obtained from mitochondrial and nuclear (e.g., elongation factor, RNA polymerase, Hox) protein-encoding genes, and should revive interest in using rRNA genes to study arthropod and ecdysozoan relationships.
Collapse
Affiliation(s)
- Jon M Mallatt
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | | | |
Collapse
|
120
|
Winchell CJ, Martin AP, Mallatt J. Phylogeny of elasmobranchs based on LSU and SSU ribosomal RNA genes. Mol Phylogenet Evol 2004; 31:214-24. [PMID: 15019621 DOI: 10.1016/j.ympev.2003.07.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Revised: 07/28/2003] [Indexed: 11/29/2022]
Abstract
The dominant view of the phylogeny of living elasmobranchs, based on morphological characters, is that batoids (skates and rays) are derived sharks, joined with saw sharks, and angel sharks in the clade Hypnosqualea [S. Shirai, Squalean Phylogeny: A New Framework of 'Squaloid' Sharks and Related Taxa, Hokkaido University Press, Sapporo, 1992]. By contrast, a recent molecular-phylogenetic study based on mitochondrial genes for 12S and 16S rRNA and tRNA valine [C.J. Douady et al., Mol. Phylogenet. Evol., 26 (2003) 215-221] supported the older view that batoids and sharks are separate lineages. Here, we tested these two different views using combined, nuclear large-subunit and small-subunit rRNA gene sequences ( approximately 5.3kb) from 22 elasmobranchs, two chimeras, and two bony fishes. We used maximum likelihood, maximum parsimony, minimum evolution, and Bayesian inference for tree reconstruction, and found the large-subunit rRNA gene to contain far more signal than the small-subunit gene for resolving this mostly Mesozoic radiation. Our findings matched those of in separating batoids from sharks and in statistically rejecting Hypnosqualea. The angel shark (Squatina) was the sister group to squaliforms (dogfish sharks), and our findings are consistent with the idea that "orbitostylic" sharks form a monophyletic group (squaliforms+the hexanchiform Chlamydoselachus+Squatina+Pristiophorus). In the galeomorph sharks, however, lamniforms grouped with orectolobiforms, opposing the widely accepted 'lamniform+carcharhiniform' grouping. A tree based on the mitochondrial gene for cytochrome b also supported a separation of sharks and batoids, in contrast to Hypnosqualea. Among elasmobranchs, variation in the evolutionary rates of the nuclear rRNA genes was higher than that of cytochrome b genes, mainly due to the relatively rapid evolution of rRNA in some carcharhiniforms. In conclusion, several different molecular studies now refute the Hypnosqualea hypothesis of elasmobranch interrelationships.
Collapse
Affiliation(s)
- Christopher J Winchell
- School of Biological Sciences, Washington State University, Box 644236, Pullman, WA 99164-4236, USA
| | | | | |
Collapse
|
121
|
Shu DG, Morris SC, Han J, Zhang ZF, Liu JN. Ancestral echinoderms from the Chengjiang deposits of China. Nature 2004; 430:422-8. [PMID: 15269760 DOI: 10.1038/nature02648] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 05/14/2004] [Indexed: 11/09/2022]
Abstract
Deuterostomes are a remarkably diverse super-phylum, including not only the chordates (to which we belong) but groups as disparate as the echinoderms and the hemichordates. The phylogeny of deuterostomes is now achieving some degree of stability, especially on account of new molecular data, but this leaves as conjectural the appearance of extinct intermediate forms that would throw light on the sequence of evolutionary events leading to the extant groups. Such data can be supplied from the fossil record, notably those deposits with exceptional soft-part preservation. Excavations near Kunming in southwestern China have revealed a variety of remarkable early deuterostomes, including the vetulicolians and yunnanozoans. Here we describe a new group, the vetulocystids. They appear to have similarities not only to the vetulicolians but also to the homalozoans, a bizarre group of primitive echinoderms whose phylogenetic position has been highly controversial.
Collapse
Affiliation(s)
- D-G Shu
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | | | | | | | | |
Collapse
|
122
|
Poustka AJ, Kühn A, Radosavljevic V, Wellenreuther R, Lehrach H, Panopoulou G. On the origin of the chordate central nervous system: expression of onecut in the sea urchin embryo. Evol Dev 2004; 6:227-36. [PMID: 15230963 DOI: 10.1111/j.1525-142x.2004.04028.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We identified a transcription factor of the onecut class in the sea urchin Strongylocentrotus purpuratus that represents an ortholog of the mammalian gene HNF6, the founding member of the onecut class of proteins. The isolated sea urchin gene, named SpOnecut, encodes a protein of 483 amino acids with one cut domain and a homeodomain. Phylogenetic analysis clearly places the sea urchin gene into this family, most closely related to the ascidian onecut gene HNF-6. Nevertheless, phylogenetic analysis reveals a difficult phylogeny indicating that certain members of the family evolve more rapidly than others and also that the cut domain and homeodomain evolve at a different pace. In fly, worm, ascidian, and teleost fish, the onecut genes isolated so far are exclusively expressed in cells of the central nervous system (CNS), whereas in mammals the two copies of the gene have acquired additional functions in liver and pancreas development. In the sea urchin embryo, expression is first detected in the emerging ciliary band at the late blastula stage. During the gastrula stage, expression is limited to the ciliary band. In the early pluteus stage, SpOnecut is expressed at the apical organ and the elongating arms but continues most prominently in the ciliary band. This is the first gene known that exclusively marks the ciliary band and therein the apical organ in a pluteus larva, whereas chordate orthologs execute essential functions in dorsal CNS development. The significance of this finding for the hypothesis that the ciliary bands and apical organs of the hypothetical "dipleurula"-like chordate ancestor and the chordate/vertebrate CNS are of common origin is discussed.
Collapse
Affiliation(s)
- Albert J Poustka
- Max Planck Institute for Molecular Genetics, Department of Vertebrate Genomics, Evolution and Development Group, Ihnestrasse 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
123
|
Gissi C, Iannelli F, Pesole G. Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians. J Mol Evol 2004; 58:376-89. [PMID: 15114417 DOI: 10.1007/s00239-003-2559-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 10/23/2003] [Indexed: 11/25/2022]
Abstract
The complete mitochondrial genome (mtDNA) of the model organism Ciona intestinalis (Urochordata, Ascidiacea) has been amplified by long-PCR using specific primers designed on putative mitochondrial transcripts identified from publicly available mitochondrial-like expressed sequence tags. The C. intestinalis mtDNA encodes 39 genes: 2 rRNAs, 13 subunits of the respiratory complexes, including ATPase subunit 8 ( atp8), and 24 tRNAs, including 2 tRNA-Met with anticodons 5'-UAU-3'and 5'-CAU-3', respectively. All genes are transcribed from the same strand. This gene content seems to be a common feature of ascidian mtDNAs, as we have verified the presence of a previously undetected atp8 and of two trnM genes in the two other sequenced ascidian mtDNAs. Extensive gene rearrangement has been found in C. intestinalis with respect not only to the common Vertebrata/Cephalochordata/Hemichordata gene organization but also to other ascidian mtDNAs, including the cogeneric Ciona savignyi. Other features such as the absence of long noncoding regions, the shortness of rRNA genes, the low GC content (21.4%), and the absence of asymmetric base distribution between the two strands suggest that this genome is more similar to those of some protostomes than to deuterostomes.
Collapse
Affiliation(s)
- Carmela Gissi
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
124
|
Peterson KJ. Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. Mol Phylogenet Evol 2004; 31:1208-15. [PMID: 15120410 DOI: 10.1016/j.ympev.2003.10.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 09/25/2003] [Indexed: 11/19/2022]
Abstract
Because of their importance for proper development of the bilaterian embryo, Hox genes have taken center stage for investigations into the evolution of bilaterian metazoans. Taxonomic surveys of major protostome taxa have shown that Hox genes are also excellent phylogenetic markers, as specific Hox genes are restricted to one of the two great protostome clades, the Lophotrochozoa or the Ecdysozoa, and thus support the phylogenetic relationships as originally deduced by 18S rDNA studies. Deuterostomes are the third major group of bilaterians and consist of three major phyla, the echinoderms, the hemichordates, and the chordates. Most morphological studies have supported Hemichordata+Chordata, whereas molecular studies support Echinodermata+Hemichordata, a clade known as Ambulacraria. To test these competing hypotheses, complete or near complete cDNAs of eight Hox genes and four Parahox genes were isolated from the enteropneust hemichordate Ptychodera flava. Only one copy of each Hox gene was isolated suggesting that the Hox genes of P. flava are arranged in a single cluster. Of particular importance is the isolation of three posterior or Abd-B Hox genes; these genes are only shared with echinoderms, and thus support the monophyly of Ambulacraria.
Collapse
Affiliation(s)
- Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
125
|
Abstract
The neural crest is a craniate synapomorphy and a bona fide evolutionary novelty. Recently, researchers considering intriguingly similar patterns of gene expression, cell behaviors, and embryogenetic processes in noncraniate deuterostomes have suggested that cephalochordates, urochordates, and echinoderms or their ancestors might have possessed cells that were precursors to the neural crest or its constituent cells. To emphasize the caution with which similarities at genetic, cellular, or embryological levels should be interpreted as substantiations for cell, germ layer, or tissue homologies, we present and evaluate additional tantalizing evidence that could be considered as documenting neural crest precursors in precraniates. Furthermore, we propose an evolutionary context--latent homologue--within which these data should be interpreted.
Collapse
Affiliation(s)
- Jon R Stone
- Biology Department, Dalhousie University, Life Sciences Building, Coburg Road, Halifax, Nova Scotia B3H 4J1, Canada.
| | | |
Collapse
|
126
|
Abstract
This study investigates whether the recently described Cambrian fossil Haikouella (and the very similar Yunnanozoon) throws light on the longstanding problem of the origin of craniates. In the first rigorous cladistic analysis of the relations of this animal, we took 40 anatomical characters from Haikouella and other taxa (hemichordates, tunicates, cephalochordates, conodont craniates and other craniates, plus protostomes as the outgroup) and subjected these characters to parsimony analysis. The characters included several previously unrecognized traits of Haikouella, such as upper lips resembling those of larval lampreys, the thick nature of the branchial bars, a mandibular branchial artery but no mandibular branchial bar, muscle fibers defining the myomeres, a dark fibrous sheath that defines the notochord, conclusive evidence for paired eyes, and a large hindbrain and diencephalon in the same positions as in the craniate brain. The cladistic analysis produced this tree: (protostomes, hemichordates (tunicates, (cephalochordates, (Haikouella, (conodonts + other craniates))))), with the "Haikouella + craniate" clade supported by bootstrap values that ranged from 81-96%, depending on how the analysis was structured. Thus, Haikouella is concluded to be the sister group of the craniates. Alternate hypotheses that unite Haikouella with hemichordates or cephalochordates, or consider it a basal deuterostome, received little or no support. Although it is the sister group of craniates, Haikouella is skull-less and lacks an ear, but it does have neural-crest derivatives in its branchial bars. Its craniate characters occur mostly in the head and pharynx; its widely spaced, robust branchial bars indicate it ventilated with branchiomeric muscles, not cilia. Despite its craniate mode of ventilation, Haikouella was not a predator but a suspension feeder, as shown by its cephalochordate-like endostyle, and tentacles forming a screen across the mouth. Haikouella was compared to pre-craniates predicted by recent models of craniate evolution and was found to fit these predictions closely. Specifically, it fits Northcutt and Gans' prediction that the change from ciliary to muscular ventilation preceded the change from suspension feeding to predatory feeding; it fits Butler's claim that vision was the first craniate sense to start elaborating; it is consistent with the ideas of Donoghue and others about the ancestor of conodont craniates; and, most strikingly, it resembles Mallatt's prediction of the external appearance of the ancestral craniate head. By contrast, Haikouella does not fit the widespread belief that ancestral craniates resembled hagfishes, because it has no special hagfish characters. Overall, Haikouella agrees so closely with recent predictions about pre-craniates that we conclude that the difficult problem of craniate origins is nearly solved.
Collapse
Affiliation(s)
- Jon Mallatt
- School of Biological Sciences, Washington State University, Pullman, Washington 99164-4236, USA.
| | | |
Collapse
|
127
|
Affiliation(s)
- Nicholas D Holland
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0202, USA.
| |
Collapse
|
128
|
Blackstone NW, Jasker BD. Phylogenetic considerations of clonality, coloniality, and mode of germline development in animals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 297:35-47. [PMID: 12955842 DOI: 10.1002/jez.b.16] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The hypothesis that individuality is a derived trait in animals (Buss, '87, The Evolution of Individuality, Princeton, NJ: Princeton University Press; Michod, '99, Darwinian Dynamics, Princeton, NJ: Princeton University Press) can be further tested by a "tree-based" analysis utilizing a comparative methodology and recent phylogenies. We conducted a maximum parsimony analysis in which we mapped character states for clonality, coloniality, and mode of germline development onto four recent phylogenetic hypotheses (Peterson and Eernisse, 2001, Evol Dev 3:170-205). Clonality appears to be a shared primitive character for metazoans. Coloniality, on the other hand, is a derived trait found in relatively few phyla. The germline appears to have been derived at or near the origin of the first bilaterians. The stem-lineage metazoan thus appears to have been a clonal, acolonial organism that exhibited somatic embryogenesis. The stem-lineage bilaterian also was likely clonal and acolonial. Nevertheless, this lineage likely exhibited preformation, i.e., its germline was determined during embryonic development. In addition to supporting the hypothesis that the germline is a derived feature in animals, this analysis is relevant to current debates concerning the nature of the latest common ancestor of the bilaterians.
Collapse
Affiliation(s)
- Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| | | |
Collapse
|
129
|
Kauffman JS, Zinovyeva A, Yagi K, Makabe KW, Raff RA. Neural expression of the Huntington's disease gene as a chordate evolutionary novelty. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2003; 297:57-64. [PMID: 12955844 DOI: 10.1002/jez.b.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Huntington's disease is a progressive neuro-degenerative disorder in humans, which is scharacterized by onset of dementia, muscular ataxia, and death. Huntington's disease is caused by the expansion of the polyglutamine (polyQ) tract in the N-terminus of the HD protein (Huntingtin). CAG expansion is a dominant gain of function mutation that affects striated neurons in the brain (Cattaneo, 2003, News Physiol Sci 18:34). The evolutionary origins of the vertebrate Hd gene are not well understood. In order to address the evolutionary history of the Hd gene, we have cloned and characterized the expression of the Hd gene in two invertebrate deuterostomes, an echinoderm and an ascidian, and have examined the expression patterns in a phylogenetic context. Echinoderms are basal deuterostomes and ascidians are basal chordates; both are useful for understanding the origins of and evolutionary trends in genes important in vertebrates such as the Huntigton's disease gene. Expression of Hd RNA is detected at all stages of development in both the echinoderm and ascidian studied. In the echinoderm Heliocidaris erythrogramma, Hd is expressed in coelomic mesodermal tissue derivatives, but not in the central nervous system. In the ascidian Halocynthia roretzi expression is located in both mesoderm and nervous tissue. We suggest that the primitive deuterostome expression pattern is not neural. Thus, neural expression of the Hd gene in deuterostomes may be a novel feature of the chordate lineage, and the original role(s) of HD in deuterostomes may have been non-neural.
Collapse
Affiliation(s)
- Jeffrey S Kauffman
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | | | | | |
Collapse
|
130
|
Abstract
Evolution is of interest not only to developmental biology but also to genetics and genomics. We are witnessing a new era in which evolution, development, genetics and genomics are merging to form a new discipline, a good example of which is the study of the origin and evolution of the chordates. Recent studies on the formation of the notochord and the dorsal neural tube in the increasingly famous Ciona intestinalis tadpole larva, and the availability of its draft genome, show how the combination of comparative molecular development and evolutionary genomics might help us to better understand our chordate ancestor.
Collapse
Affiliation(s)
- Nori Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
131
|
Shu D, Morris SC, Zhang ZF, Liu JN, Han J, Chen L, Zhang XL, Yasui K, Li Y. A new species of yunnanozoan with implications for deuterostome evolution. Science 2003; 299:1380-4. [PMID: 12610301 DOI: 10.1126/science.1079846] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Yunnanozoans are a distinctive clade of Lower Cambrian metazoans. Although widely accepted as deuterostomes, their exact placement within this superphylum is controversial. Here we describe a new species of Haikouella (H. jianshanensis) from the Chengjiang Lagerstätte (Yunnan, China) with exceptional preservation of a number of features. These include external gills, which suggest that the origin of the pharyngeal clefts was independent of the gills. The diagnostic branchial arches of chordates may, therefore, be composite structures. No evidence was found for the chordate-like structures that have been described in other yunnanozoans. We propose that yunnanozoans are stem-group deuterostomes, allied to the vetulicolians.
Collapse
Affiliation(s)
- Degan Shu
- Early Life Institute and Department of Geology, Northwest University, Xi'an 710069, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Takacs CM, Moy VN, Peterson KJ. Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evol Dev 2002; 4:405-17. [PMID: 12492141 DOI: 10.1046/j.1525-142x.2002.02029.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent phylogenetic investigations have confirmed that hemichordates and echinoderms are sister taxa. However, hemichordates share several cardinal characterstics with chordates and are thus an important taxon for testing hypotheses of homology between key chordate characters and their putative hemichordate antecedents. The chordate dorsal nervous system (DNS) and endostyle are intriguing characters because both hemichordate larval and adult structures have been hypothesized as homologues. This study attempts to test these purported homologies through examination of the expression pattem of a Ptychodera flava NK2 gene, PfNK2.1, because this gene is expressed both in the DNS and endostyle/thyroid in a wide range of chordate taxa. We found that PfNK2.1 is expressed in both neuronal and pharyngeal structures, but its expression pattem is broken up into distinct embryonic and juvenile phases. During embryogenesis, PfNK2.1 is expressed in the apical ectoderm, with transcripts later detected in presumable neuronal structures, including the apical organ and ciliated feeding band. In the developing juvenile we detected PfNK2.1 signal throughout the pharynx, including the stomochord, and later in the hindgut. We conclude that the similar utilization of NK2.1 in apical organ development and chordate DNS is probably due to a more general role for NK2.1 in neurogenesis and that hemichordates do not possess a homologue of the chordate DNS. In addition, we conclude that P. flava most likely does not possess a true endostyle; rather during the evolution of the endostyle NK2.1 was recruited from its more general role in pharynx development.
Collapse
Affiliation(s)
- Carter M Takacs
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | | | | |
Collapse
|
133
|
Mallatt J, Winchell CJ. Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 2002; 19:289-301. [PMID: 11861888 DOI: 10.1093/oxfordjournals.molbev.a004082] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the small-subunit ribosomal RNA (SSU rRNA) gene is widely used in the molecular systematics, few large-subunit (LSU) rRNA gene sequences are known from protostome animals, and the value of the LSU gene for invertebrate systematics has not been explored. The goal of this study is to test whether combined LSU and SSU rRNA gene sequences support the division of protostomes into Ecdysozoa (molting forms) and Lophotrochozoa, as was proposed by Aguinaldo et al. (1997) (Nature 387:489) based on SSU rRNA sequences alone. Nearly complete LSU gene sequences were obtained, and combined LSU + SSU sequences were assembled, for 15 distantly related protostome taxa plus five deuterostome outgroups. When the aligned LSU + SSU sequences were analyzed by tree-building methods (minimum evolution analysis of LogDet-transformed distances, maximum likelihood, and maximum parsimony) and by spectral analysis of LogDet distances, both Ecdysozoa and Lophotrochozoa were indeed strongly supported (e.g., bootstrap values >90%), with higher support than from the SSU sequences alone. Furthermore, with the LogDet-based methods, the LSU + SSU sequences resolved some accepted subgroups within Ecdysozoa and Lophotrochozoa (e.g., the polychaete sequence grouped with the echiuran, and the annelid sequences grouped with the mollusc and lophophorates)-subgroups that SSU-based studies do not reveal. Also, the mollusc sequence grouped with the sequences from lophophorates (brachiopod and phoronid). Like SSU sequences, our LSU + SSU sequences contradict older hypotheses that grouped annelids with arthropods as Articulata, that said flatworms and nematodes were basal bilateralians, and considered lophophorates, nemerteans, and chaetognaths to be deuterostomes. The position of chaetognaths within protostomes remains uncertain: our chaetognath sequence associated with that of an onychophoran, but this was unstable and probably artifactual. Finally, the benefits of combining LSU with SSU sequences for phylogenetic analyses are discussed: LSU adds signal, it can be used at lower taxonomic levels, and its core region is easy to align across distant taxa-but its base frequencies tend to be nonstationary across such taxa. We conclude that molecular systematists should use combined LSU + SSU rRNA genes rather than SSU alone.
Collapse
Affiliation(s)
- Jon Mallatt
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| | | |
Collapse
|