101
|
Pelican KM, Spindler RE, Pukazhenthi BS, Wildt DE, Ottinger MA, Howard J. Progestin exposure before gonadotropin stimulation improves embryo development after in vitro fertilization in the domestic cat. Biol Reprod 2010; 83:558-67. [PMID: 20463355 DOI: 10.1095/biolreprod.109.083360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study investigated the influence of progestin priming and ovarian quiescence on response to exogenous gonadotropin stimulation in the cat. Because a subpopulation of cats routinely ovulated spontaneously, there also was the opportunity to examine the ovary's reaction to the added impact of endogenously secreted progestagen. Queens were given 1) equine chorionic gonadotropin (eCG) plus human chorionic gonadotropin (hCG) only (control; n = 9 cats), 2) GnRH antagonist (antide) injections followed by eCG and hCG (n = 9), and 3) a progestin implant (levonorgestrel) followed by eCG and hCG (n = 9). Laparoscopy was used to assess ovarian activity and aspirate follicular oocytes that were graded on the basis of morphology. In five cats per treatment, half of the high-quality oocytes were assessed for glucose, pyruvate, and lactate metabolism as well as nuclear maturation. Remaining oocytes were inseminated in vitro, cultured, and examined at 72 h after insemination for cleavage. In the remaining four cats per treatment, all oocytes were inseminated in vitro and assessed at 72, 120, and 168 h after insemination for embryo developmental stage. Cats pretreated with progestin had more follicles and produced more embryos per donor (including at the combined morula/blastocyst stage) than controls or females treated with GnRH antagonist (P < 0.05). There were no differences among groups (P > 0.05) in oocyte carbohydrate metabolism, nuclear maturation metrics, or fertilization success, although there was a tendency toward improvements in all three (P < 0.2) in progestin-treated females. Interestingly, cats that spontaneously ovulated within 60 days of treatment onset also produced more embryos per cat than induced-ovulation counterparts (P < 0.05). Results indicate that prior exposure to exogenous progestin (via implant) or endogenous progestagen (via spontaneous ovulation) improves ovarian responsiveness to gonadotropins in the cat through a mechanism that is independent of the induction of ovarian quiescence.
Collapse
Affiliation(s)
- Katharine M Pelican
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
102
|
Chrenek P, Grossmann R, Sirotkin AV. The cAMP analogue, dbcAMP affects release of steroid hormones by cultured rabbit ovarian cells and their response to FSH, IGF-I and ghrelin. Eur J Pharmacol 2010; 640:202-5. [PMID: 20417631 DOI: 10.1016/j.ejphar.2010.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 04/01/2010] [Accepted: 04/12/2010] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to examine possible involvement of cAMP-dependent intracellular mechanisms in control of ovarian cell steroidogenesis and its response to hormonal regulators. For this purpose, we examined the influence of administration of dbcAMP, a cAMP analogue (50 microg/animal) in vivo, on release of progesterone, testosterone and estradiol by isolated ovarian fragments, as well their response to hormonal regulators of ovarian steroidogenesis-FSH, IGF-I and ghrelin (all added at doses of 100 ng/ml). It was observed, that administration of dbcAMP resulted reduction in progesterone and testosterone, but not of estradiol release by isolated ovarian fragments. In ovarian tissue isolated from control animals, additions of hormones were able to reduce release of progesterone (FSH, IGF-I and ghrelin) and increase release of testosterone (ghrelin) but did not change estradiol output. Previous administration of dbcAMP modified action of exogenous hormones: it inverted inhibitory action of FSH, IGF-I and ghrelin on progesterone release to stimulatory action and induced stimulatory action of IGF-I on testosterone release and stimulatory effect of FSH on estradiol output. The present observations confirm involvement of peptide hormones FSH, IGF-I and ghrelin in the control of rabbit ovarian steroid hormones release and demonstrate the involvement of cAMP-dependent intracellular mechanisms in down-regulation of rabbit ovarian steroidogenesis and in modification, but not in mediating effect of FSH, IGF-I and ghrelin on ovarian steroid hormones release.
Collapse
Affiliation(s)
- Peter Chrenek
- Institute of Animal Genetics and Reproduction, Animal Production Research Centre Nitra, 951 41 Luzianky near Nitra, Slovak Republic.
| | | | | |
Collapse
|
103
|
Wada T, Hori S, Sugiyama M, Fujisawa E, Nakano T, Tsuneki H, Nagira K, Saito S, Sasaoka T. Progesterone inhibits glucose uptake by affecting diverse steps of insulin signaling in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 2010; 298:E881-8. [PMID: 20071559 DOI: 10.1152/ajpendo.00649.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maternal insulin resistance is essential for efficient provision of glucose to the fetus. Although elevation of placental hormones is known to relate to the development of insulin resistance, the precise underlying mechanism of maternal insulin resistance is unknown. Therefore, we examined the molecular mechanisms of progesterone causing insulin resistance in 3T3-L1 adipocytes. Progesterone at 10(-4) M, but not 10(-5) M, reduced the amount of IRS-1. As a result, insulin-induced phosphorylation of IRS-1, the association of IRS-1 with p85alpha, and subsequent phosphorylation of Akt1 and -2 was decreased moderately by 10(-4) M progesterone. Subsequently, insulin-induced translocation of GLUT4 to the plasma membrane evaluated by immunostaining on the plasma membrane sheet by confocal laser microscope was also decreased by 10(-4) M progesterone. In contrast, 2-[(3)H]deoxyglucose (2DG) uptake was markedly inhibited by both 10(-5) and 10(-4) M progesterone in a dose-dependent manner. Surprisingly, 2DG uptake elicited by adenovirus-mediated expression of constitutive-active mutant of PI 3-kinase (myr-p110) and Akt (myr-Akt) was suppressed by progesterone. Interestingly, insulin-induced tyrosine phosphorylation of Cbl and activation of TC10 were inhibited by progesterone at 10(-5) M. These results indicate that progesterone is implicated in insulin resistance during pregnancy by inhibiting the PI 3-kinase pathway at the step of 1) IRS-1 expression and 2) distal to Akt and 3) by suppressing the PI 3-kinase-independent pathway of TC10 activation by affecting Cbl phosphorylation.
Collapse
Affiliation(s)
- Tsutomu Wada
- Dept. of Clinical Pharmacology, Univ. of Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
The effect of ovarian steroids on oxytocin-stimulated secretion and synthesis of prostaglandins in bovine myometrial cells. Prostaglandins Other Lipid Mediat 2009; 90:69-75. [DOI: 10.1016/j.prostaglandins.2009.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 08/22/2009] [Accepted: 08/26/2009] [Indexed: 11/20/2022]
|
105
|
Sriraman V, Sinha M, Richards JS. Progesterone receptor-induced gene expression in primary mouse granulosa cell cultures. Biol Reprod 2009; 82:402-12. [PMID: 19726735 DOI: 10.1095/biolreprod.109.077610] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The progesterone receptor (PGR) is induced by luteinizing hormone (LH) in granulosa cells of preovulatory follicles, and the PGR-A isoform is essential for ovulation based on the phenotypes of Pgr isoform-specific knockout mice. Although several genes regulated by PGR-A in vivo have been identified, whether these genes are primary targets of PGR-A or if their expression also depends on other signaling molecules that are induced by the LH surge has not been resolved. Therefore, to identify genes that are either induced or repressed by PGR in the absence of LH-mediated signaling cascades, we infected primary cultures of mouse granulosa cells with either PGR-A or PGR-B adenoviral vectors without or with R-5020 as a PGR ligand. Total RNA was extracted from infected cells at 16 h and analyzed by Affymetrix Mouse 430 2.0 microarrays. PGR-A in the presence or absence of ligand significantly induced approximately 50 genes 2-fold or more (local pooled error test at P <or= 0.01). Fewer and different genes were induced by PGR-B in the absence of ligand. Edn1, Apoa1, and Cited1 were primarily regulated by PGR-A as verified by additional RT-PCR analyses, suppression by the PGR antagonist RU486, and the lack of induction by protein kinase A, protein kinase C, or epidermal growth factor (EGF)-like factors pathways. PGR regulation of these genes was confirmed further by gene expression analyses in hormonally primed Pgr mutant mouse ovaries. Because Edn1, Apoa1, and Cited1 are known to regulate angiogenesis, PGR may affect the neovascularization of follicles that is initiated with ovulation.
Collapse
|
106
|
Ewen K, Baker M, Wilhelm D, Aitken RJ, Koopman P. Global survey of protein expression during gonadal sex determination in mice. Mol Cell Proteomics 2009; 8:2624-41. [PMID: 19617587 DOI: 10.1074/mcp.m900108-mcp200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of an embryo as male or female depends on differentiation of the gonads as either testes or ovaries. A number of genes are known to be important for gonadal differentiation, but our understanding of the regulatory networks underpinning sex determination remains fragmentary. To advance our understanding of sexual development beyond the transcriptome level, we performed the first global survey of the mouse gonad proteome at the time of sex determination by using two-dimensional nanoflow LC-MS/MS. The resulting data set contains a total of 1037 gene products (154 non-redundant and 883 redundant proteins) identified from 620 peptides. Functional classification and biological network construction suggested that the identified proteins primarily serve in RNA post-transcriptional modification and trafficking, protein synthesis and folding, and post-translational modification. The data set contains potential novel regulators of gonad development and sex determination not revealed previously by transcriptomics and proteomics studies and more than 60 proteins with potential links to human disorders of sexual development.
Collapse
Affiliation(s)
- Katherine Ewen
- Division of Molecular Genetics and Development, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
107
|
|
108
|
Friberg PA, Larsson DJ, Billig H. Dominant Role of Nuclear Progesterone Receptor in the Control of Rat Periovulatory Granulosa Cell Apoptosis1. Biol Reprod 2009; 80:1160-7. [DOI: 10.1095/biolreprod.108.073932] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
109
|
Abstract
It is now clearly established that steroids can be synthesized de novo by the vertebrate brain. Such steroids are called neurosteroids. To understand neurosteroid action in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. In the middle 1990s, the Purkinje cell, an important cerebellar neuron, was identified as a major site for neurosteroid formation in vertebrates. This discovery has allowed deeper insights into neuronal neurosteroidogenesis and biological actions of neurosteroids have become clear by the studies using the Purkinje cell as an excellent cellular model, which is known to play an important role in memory and learning processes. From the past 10 years of research on mammals, we now know that the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions that may be mediated by neurotrophic factors contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. The aim of this review is to summarize the current knowledge regarding the biosynthesis and biological actions of neurosteroids in the Purkinje cell during development.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, and Center for Medical Life Science of Waseda University, 2–2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan
| |
Collapse
|
110
|
Sirotkin AV, Ovcharenko D, Benčo A, Mlynček M. Protein kinases controlling PCNA and p53 expression in human ovarian cells. Funct Integr Genomics 2008; 9:185-95. [DOI: 10.1007/s10142-008-0102-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/25/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
|
111
|
Progesterone receptor membrane component 1 (PGRMC1) gene expression in corpus luteum during the estrous cycle in cows. Reprod Biol 2008; 8:291-7. [DOI: 10.1016/s1642-431x(12)60019-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
112
|
Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2008; 15:119-38. [PMID: 18936037 DOI: 10.1093/humupd/dmn044] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The steroid hormone progesterone is indispensable for mammalian procreation by controlling key female reproductive events that range from ovulation to implantation, maintenance of pregnancy and breast development. In addition to activating the progesterone receptors (PRs)-B and -A, members of the superfamily of ligand-dependent transcription factors, progesterone also elicits a variety of rapid signalling events independently of transcriptional or genomic regulation. This review covers our current knowledge on the mechanisms and relevance of non-genomic progesterone signalling in female reproduction. METHODS PubMed was searched up to August 2008 for papers on progesterone actions in ovary/breast/endometrium/myometrium/brain, focusing primarily on non-genomic signalling mechanisms. RESULTS Convergence and intertwining of rapid non-genomic events and the slower transcriptional actions critically determine the functional response to progesterone in the female reproductive system in a cell-type- and environment-specific manner. Several putative progesterone-binding moieties have been implicated in rapid signalling events, including the 'classical' PR and its variants, progesterone receptor membrane component 1, and the novel family of membrane progestin receptors. Progesterone and its metabolites have also been implicated in the allosteric regulation of several unrelated receptors, such as gamma-aminobutyric acid type A, oxytocin and sigma(1) receptors. CONCLUSIONS Identification of the mechanisms and receptors that relay rapid progesterone signalling is an area of research fraught with difficulties and controversy. More in-depth characterization of the putative receptors is required before the non-genomic progesterone pathway in normal and pathological reproductive function can be targeted for pharmacological intervention.
Collapse
|
113
|
Saqui-Salces M, Neri-Gómez T, Gamboa-Dominguez A, Ruiz-Palacios G, Camacho-Arroyo I. Estrogen and progesterone receptor isoforms expression in the stomach of Mongolian gerbils. World J Gastroenterol 2008; 14:5701-6. [PMID: 18837087 PMCID: PMC2748205 DOI: 10.3748/wjg.14.5701] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: We studied the estrogen receptor (ER) and progesterone receptor (PR) isoforms expression in gastric antrum and corpus of female gerbils and their regulation by estradiol (E2) and progesterone (P4).
METHODS: Ovariectomized adult female gerbils were subcutaneously treated with E2, and E2 + P4. Uteri and stomachs were removed, the latter were cut along the greater curvature, and antrum and corpus were excised. Proteins were immunoblotted using antibodies that recognize ER-alpha, ER-beta, and PR-A and PR-B receptor isoforms. Tissues from rats treated in the same way were used as controls.
RESULTS: Specific bands were detected for ER-alpha (68 KDa), and PR isoforms (85 and 120 KDa for PR-A and PR-B isoforms, respectively) in uteri, gastric antrum and corpus. We could not detect ER-beta isoform. PR isoforms were not regulated by E2 or P4 in uterus and gastric tissues of gerbils. ER-alpha isoform content was significantly down-regulated by E2 in the corpus, but not affected by hormones in uterus and gastric antrum.
CONCLUSION: The presence of ER-alpha and PR isoforms in gerbils stomach suggests that E2 and P4 actions in this organ are in part mediated by their nuclear receptors.
Collapse
|
114
|
Mansouri MR, Schuster J, Badhai J, Stattin EL, Lösel R, Wehling M, Carlsson B, Hovatta O, Karlström PO, Golovleva I, Toniolo D, Bione S, Peluso J, Dahl N. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum Mol Genet 2008; 17:3776-83. [PMID: 18782852 DOI: 10.1093/hmg/ddn274] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Premature ovarian failure (POF) is characterized by hypergonadotropic hypogonadism and amenorrhea before the age of 40. The condition has a heterogeneous background but genetic factors are demonstrated by the occurrence of familial cases. We identified a mother and daughter with POF both of whom carry an X;autosome translocation [t(X;11)(q24;q13)]. RNA expression studies of genes flanking the X-chromosome breakpoint revealed that both patients have reduced expression levels of the gene Progesterone Receptor Membrane Component-1 (PGRMC1). Mutation screening of 67 females with idiopathic POF identified a third patient with a missense mutation (H165R) located in the cytochrome b5 domain of PGRMC1. PGRMC1 mediates the anti-apoptotic action of progesterone in ovarian cells and it acts as a positive regulator of several cytochrome P450 (CYP)-catalyzed reactions. The CYPs are critical for intracellular sterol metabolism, including biosynthesis of steroid hormones. We show that the H165R mutation associated with POF abolishes the binding of cytochrome P450 7A1 (CYP7A1) to PGRMC1. In addition, the missense mutation attenuates PGRMC1's ability to mediate the anti-apoptotic action of progesterone in ovarian cells. These findings suggest that mutant or reduced levels of PGMRC1 may cause POF through impaired activation of the microsomal cytochrome P450 and increased apoptosis of ovarian cells.
Collapse
|
115
|
Hossein MS, Jeong YW, Kim S, Kim JJ, Park SW, Jeong CS, Hyun SH, Hwang WS. Protocol for the Recovery of In Vivo Matured Canine Oocytes Based on Once Daily Measurement of Serum Progesterone. CLONING AND STEM CELLS 2008; 10:403-8. [DOI: 10.1089/clo.2008.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Yeon Woo Jeong
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Sue Kim
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Jeong Joo Kim
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | - Sun Woo Park
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| | | | - Sang Hwan Hyun
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
- Laboratory of Veterinary Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk, Republic of Korea
| | - Woo Suk Hwang
- Sooam Biotech Research Foundation, Seoul, Republic of Korea
| |
Collapse
|
116
|
Zhang L, Kanda Y, Roberts DJ, Ecker JL, Losel R, Wehling M, Peluso JJ, Pru JK. Expression of progesterone receptor membrane component 1 and its partner serpine 1 mRNA binding protein in uterine and placental tissues of the mouse and human. Mol Cell Endocrinol 2008; 287:81-9. [PMID: 18440126 DOI: 10.1016/j.mce.2008.02.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 02/07/2008] [Accepted: 02/12/2008] [Indexed: 01/28/2023]
Abstract
Although activation of the nuclear progesterone (P(4)) receptor (PGR) is required for uterine function, some of the actions of P(4) are mediated through a PGR-independent mechanism. The receptors that account for the PGR-independent actions have not been identified with certainty. The purpose of this study was to assess the expression, localization and hormonal regulation of two novel P(4) receptor candidates, P(4) receptor membrane component (PGRMC) 1 and PGRMC2, as well as the PGRMC1 partner Serpine 1 mRNA binding protein (SERBP1). Unlike Pgrmc1 and Serbp1, which remained unchanged throughout the estrous cycle, Pgrmc2 was highly up-regulated during proestrus and metestrus. Immunohistochemical analyses suggest that PGRMC1 and SERBP1 promote differentiation, since the expression of these proteins increased in endometrial cells undergoing steroid-depended terminal differentiation. Progesterone rather than estrogen appears to be primarily responsible for up-regulating the expression of PGRMCs. PGRMC1 and SERBP1 also showed overlapping patterns of expression in the human placenta and associated membranes with the most abundant expression in smooth muscle of the placental vasculature, villous capillaries and the syncytiotrophoblast. Based on these findings, it is proposed that PGRMC1:SERBP1 protein complex functions in events important to early pregnancy including cellular differentiation, modulation of apoptosis and steroidogenesis. These studies provide a platform from which to build a clearer understanding of P(4) actions in the female reproductive tract and placental tissues that are mediated by non-classical mechanisms.
Collapse
Affiliation(s)
- Ling Zhang
- Vincent Center for Reproductive Biology, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Tsutsui K. Neurosteroids in the Purkinje cell: biosynthesis, mode of action and functional significance. Mol Neurobiol 2008; 37:116-25. [PMID: 18521763 DOI: 10.1007/s12035-008-8024-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 04/25/2008] [Indexed: 02/03/2023]
Abstract
Neurosteroids are synthesized de novo from cholesterol in the brain. To understand neurosteroid action in the brain, data on the regio- and temporal-specific synthesis of neurosteroids are needed. Recently the Purkinje cell, an important cerebellar neuron, has been identified as a major site for neurosteroid formation in vertebrates. This is the first demonstration of de novo neuronal neurosteroidogenesis in the brain. Since this discovery, organizing actions of neurosteroids are becoming clear by the studies using the Purkinje cell as an excellent cellular model. In mammals, the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such organizing actions that may be mediated by neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. This review summarizes the advances made in our understanding of the biosynthesis, mode of action and functional significance of neurosteroids in the Purkinje cell.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
118
|
Romero-Sánchez M, Peiper SC, Evans B, Wang Z, Catasús L, Ribe A, Prat J, Giri JG. Expression profile of heptahelical putative membrane progesterone receptors in epithelial ovarian tumors. Hum Pathol 2008; 39:1026-33. [PMID: 18479732 DOI: 10.1016/j.humpath.2007.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/08/2007] [Accepted: 11/13/2007] [Indexed: 02/01/2023]
Abstract
A novel class of putative progestin binding proteins has been recently identified as potential mediators of rapid nongenomic hormone actions. The proteins designated membrane progestin receptor (mPR) alpha, beta, and gamma were initially discovered in fish and shown to have a role in oocyte maturation. The predicted multiple membrane spanning domain structure of the mPRs resembles that of heptahelical G-protein-coupled receptors. Phylogenetic analysis indicated that the mPRs belong to the large progestin and adiponectin Q receptor (PAQR) gene family. Based on the reported expression of the 3 mPRs in hormone-responsive tissues of the female reproductive tract and on the role of steroid hormones in cancer, we investigated the expression of these novel progestin receptors in epithelial tumors of the ovary. The transcript levels of the 3 human mPR/PAQRs were assessed by semiquantitative reverse transcriptase polymerase chain reaction in 28 ovarian samples, including normal tissues, cystadenomas, borderline tumors, and common types of ovarian carcinomas. Two of the 3 transcripts for the mPR/PAQRs proteins appeared differentially expressed in the tumors examined. Expression of mPR alpha and beta was demonstrated in ovarian tumors at both messenger RNA and protein level, and their expression appeared to be independent of the expression of the classic nuclear progestin receptors. Expression of mPR gamma (PAQR V) was elevated in endometrioid and clear cell carcinomas, 2 related neoplastic counterparts of hormonally responsive tissues, suggesting a potential role of the mPR/PAQRs in the pathogenesis of epithelial ovarian tumors.
Collapse
|
119
|
Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE, Morgan TE, Pike CJ, Mack WJ, Stanczyk FZ, Nilsen J. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008; 29:313-39. [PMID: 18374402 PMCID: PMC2398769 DOI: 10.1016/j.yfrne.2008.02.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/08/2008] [Indexed: 12/13/2022]
Abstract
Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRbeta and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging.
Collapse
Affiliation(s)
- Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Expression, localization and possible actions of 25-Dx, a membraneassociated putative progesterone-binding protein, in the developing Purkinje cell of the cerebellum: A new insight into the biosynthesis, metabolism and multiple actions of progesterone as a neurosteroid. THE CEREBELLUM 2008; 7:18-25. [DOI: 10.1007/s12311-008-0007-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
121
|
Guennoun R, Meffre D, Labombarda F, Gonzalez SL, Gonzalez Deniselle MC, Stein DG, De Nicola AF, Schumacher M. The membrane-associated progesterone-binding protein 25-Dx: Expression, cellular localization and up-regulation after brain and spinal cord injuries. ACTA ACUST UNITED AC 2008; 57:493-505. [PMID: 17618691 DOI: 10.1016/j.brainresrev.2007.05.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/14/2007] [Accepted: 05/15/2007] [Indexed: 01/06/2023]
Abstract
Progesterone has neuroprotective effects in the injured and diseased spinal cord and after traumatic brain injury (TBI). In addition to intracellular progesterone receptors (PR), membrane-binding sites of progesterone may be involved in neuroprotection. A first putative membrane receptor of progesterone, distinct from the classical intracellular PR isoforms, with a single membrane-spanning domain, has been cloned from porcine liver. Homologous proteins were cloned in rats (25-Dx), mice (PGRMC1) and humans (Hpr.6). We will refer to this progesterone-binding protein as 25-Dx. The distribution and regulation of 25-Dx in the nervous system may provide some clues to its functions. In spinal cord, 25-Dx is localized in cell membranes of dorsal horn neurons and ependymal cells lining the central canal. A role of 25-Dx in mediating the protective effects of progesterone in the spinal cord is supported by the observation that its mRNA and protein are up-regulated by progesterone in dorsal horn of the injured spinal cord. In contrast, the classical intracellular PRs were down-regulated under these conditions. In brain, 25-Dx is particularly abundant in the hypothalamic area, circumventricular organs, ependymal cells of the ventricular walls, and the meninges. Interestingly, it is co-expressed with vasopressin in neurons of the paraventricular, supraoptic and retrochiasmatic nuclei. In response to TBI, 25-Dx expression is up-regulated in neurons and induced in astrocytes. The expression of 25-Dx in structures involved in cerebrospinal fluid production and osmoregulation, and its up-regulation after brain damage, point to a potentially important role of this progesterone-binding protein in the maintenance of water homeostasis after TBI. Our observations suggest that progesterone's actions may involve different signaling mechanisms depending on the pathophysiological context, and that 25-Dx may be involved in the neuroprotective effect of progesterone in the injured brain and spinal cord.
Collapse
Affiliation(s)
- R Guennoun
- Inserm UMR788 and University Paris 11, Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Peluso JJ, Romak J, Liu X. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations. Endocrinology 2008; 149:534-43. [PMID: 17991724 PMCID: PMC2219306 DOI: 10.1210/en.2007-1050] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | | | | |
Collapse
|
123
|
Haydon LJ, Juengel JL, Thomson BP, Eckery DC. Expression of mRNAs encoding oestrogen receptor (ER) α and ERβ, androgen receptor and progesterone receptor during gonadal and follicular development in the marsupial brushtail possum (Trichosurus vulpecula). Reprod Fertil Dev 2008; 20:335-49. [DOI: 10.1071/rd07177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 12/09/2007] [Indexed: 11/23/2022] Open
Abstract
The objective of the present study was to determine which ovarian cells express mRNAs for oestrogen (ERα and ERβ), androgen (AR) and progesterone (PR) receptors during ovarian and follicular development in the brushtail possum. Expression of ERα and/or ERβ mRNA was observed from birth, initially in cells of the blastema, then in the medullary cords from Day 20. ERα was expressed in the oocytes and granulosa cells of secondary and antral follicles. Preovulatory follicles did not express ERα mRNA, although their oocytes were not examined for any gene. ERβ mRNA was observed in oocytes at all follicular stages examined, but was not consistently observed in granulosa or theca cells. Expression of AR mRNA before Day 40 was very faint; thereafter, expression was observed in the medullary cords, peaking between Days 60 and 120. Oocytes, granulosa cells and theca of secondary and antral, but not preovulatory, follicles expressed AR mRNA. PR mRNA was expressed throughout the gonad by Day 20. Granulosa cells of some secondary and antral follicles and theca of antral follicles expressed PR mRNA. Thus, the expression of mRNAs encoding steroidogenic receptors in a time- and cell-specific manner supports a role for steroids in the process of ovarian follicular formation and growth.
Collapse
|
124
|
Simhan HN, Chiao JP, Mattison DR, Caritis SN. Human decidual cell Toll-like receptor signaling in response to endotoxin: the effect of progestins. Am J Obstet Gynecol 2008; 198:119.e1-4. [PMID: 17936235 DOI: 10.1016/j.ajog.2007.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 04/09/2007] [Accepted: 06/16/2007] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether progesterone, 17-alpha-hydroxyprogesterone, and 17-alpha hydroxyprogesterone caproate modulate the Toll-like receptor (TLR) pathway in the response of decidua to lipopolysaccharide. STUDY DESIGN Cultured human decidual cells were incubated under control conditions, lipopolysaccharide alone, or pretreatment with each of the 3 progestins. Relative expression of 113 genes in the TLR pathway was determined by microarray. RESULTS We failed to demonstrate a suppression of TLR gene pathway expression in human decidual cells in response to lipopolysaccharide when the cells are pretreated with progestins. Pretreatment with each progestin before lipopolysaccharide resulted in a relative increase in the expression of the proapoptotic molecule, CASP8. There were no differences among the progestins. CONCLUSION Our data do not support suppression of TLR pathways as a mechanism for the benefit of 17-alpha hydroxyprogesterone caproate. Increased CASP8 gene expression raises the possibility that progestins "prime" the decidual cell to respond with a NFkappaB-mediated inflammatory response.
Collapse
Affiliation(s)
- Hyagriv N Simhan
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
125
|
Harris SE, Adriaens I, Leese HJ, Gosden RG, Picton HM. Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro. Reproduction 2007; 134:415-24. [PMID: 17709560 DOI: 10.1530/rep-07-0061] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Metabolic markers are potentially valuable for assessment of follicle development in vitro. Carbohydrate metabolism of murine preantral follicles grown to maturity over 13 days in vitro has been measured, and metabolism of resulting oocyte-cumulus complexes (OCCs) and denuded oocytes has been compared with in vivo ovulated control counterparts. Spent follicle culture media were analysed for glucose, lactate and pyruvate concentrations. During follicle in vitro growth, glycolysis accounted for a rise from approximately 24 to 60% of all glucose consumed. Ovulation induction caused a significant increase in glucose uptake and lactate production by in vitro-grown follicles to 71.7+/-1.2 and 96.6+/-4.8 nmoles/day respectively. OCCs grown in vitro had significantly higher rates of glucose consumption and lactate and pyruvate production (110.1+/- 3.5, 191.8+/- 8.9 and 31.7+/- 1.7 pmoles/h respectively) than in vivo ovulated controls (67.4+/- 8.1, 113.9+/- 17.1 and 20.2+/- 4.0 pmoles/h respectively), but a reduced capacity for pyruvate consumption (1.13+/- 0.06 vs 1.49+/- 0.06 pmoles/h by in vivo ovulated oocytes). Metabolism of OCCs was affected by the quality of the original follicle. In vitro-grown oocytes had a reduced cytoplasmic volume when compared with controls (168.3+/- 2.0 vs 199.0+/- 3.2 proportionately respectively) but a similar rate of metabolism per unit volume. Meiotic status influenced metabolism of both OCCs and denuded oocytes. In conclusion, glucose consumption and lactate production by cultured follicles increased in tandem with developmental progression and were stimulated prior to ovulation. Additionally, the metabolic profiles of in vitro produced OCCs and the oocytes within them are affected by long-term exposure to the culture environment.
Collapse
Affiliation(s)
- Sarah E Harris
- Reproduction and Early Development Research Group, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
126
|
Hou X, Arvisais EW, Jiang C, Chen DB, Roy SK, Pate JL, Hansen TR, Rueda BR, Davis JS. Prostaglandin F2alpha stimulates the expression and secretion of transforming growth factor B1 via induction of the early growth response 1 gene (EGR1) in the bovine corpus luteum. Mol Endocrinol 2007; 22:403-14. [PMID: 17916653 DOI: 10.1210/me.2007-0272] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In most mammals, prostaglandin F2alpha (PGF2alpha) is believed to be a trigger that induces the regression of the corpus luteum (CL), whereby progesterone synthesis is inhibited, the luteal structure involutes, and the reproductive cycle resumes. Studies have shown that the early growth response 1 (EGR1) protein can induce the expression of proapoptotic proteins, suggesting that EGR1 may play a role in luteal regression. Our hypothesis is that EGR1 mediates the actions of PGF2alpha by inducing the expression of TGF beta1 (TGFB1), a key tissue remodeling protein. The levels of EGR1 mRNA and protein were up-regulated in the bovine CL during PGF2alpha-induced luteolysis in vivo and in PGF2alpha-treated luteal cells in vitro. Using chemical and genetic approaches, the RAF/MAPK kinase (MEK) 1/ERK pathway was identified as a proximal signaling event required for the induction of EGR1 in PGF2alpha-treated cells. Treatment with PGF2alpha increased the expression of TGFB1 mRNA and protein as well as the binding of EGR1 protein to TGFB1 promoter in bovine luteal cells. The effect of PGF2alpha on TGFB1 expression was mimicked by a protein kinase C (PKC)/RAF/MEK1/ERK activator or adenoviral-mediated expression of EGR1. The stimulatory effect of PGF2alpha on TGFB1 mRNA and TGFB1 protein secretion was inhibited by blockade of MEK1/ERK signaling and by adenoviral-mediated expression of NAB2, an EGR1 binding protein that inhibits EGR1 transcriptional activity. Treatment of luteal cells with TGFB1 reduced progesterone secretion, implicating TGFB1 in luteal regression. These studies demonstrate that PGF2alpha stimulates the expression of EGR1 and TGFB1 in the CL. We suggest that EGR1 plays a role in the expression of genes whose cognate proteins coordinate luteal regression.
Collapse
Affiliation(s)
- Xiaoying Hou
- Department of Veterans Affairs Medical Center, 983255 Nebraska Medical Center, Omaha, NE 68198-3255, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Schumacher M, Guennoun R, Stein DG, De Nicola AF. Progesterone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacol Ther 2007; 116:77-106. [PMID: 17659348 DOI: 10.1016/j.pharmthera.2007.06.001] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 06/01/2007] [Indexed: 11/24/2022]
Abstract
Progesterone and its metabolites promote the viability of neurons in the brain and spinal cord. Their neuroprotective effects have been documented in different lesion models, including traumatic brain injury (TBI), experimentally induced ischemia, spinal cord lesions and a genetic model of motoneuron disease. Progesterone plays an important role in developmental myelination and in myelin repair, and the aging nervous system appears to remain sensitive to some of progesterone's beneficial effects. Thus, the hormone may promote neuroregeneration by several different actions by reducing inflammation, swelling and apoptosis, thereby increasing the survival of neurons, and by promoting the formation of new myelin sheaths. Recognition of the important pleiotropic effects of progesterone opens novel perspectives for the treatment of brain lesions and diseases of the nervous system. Over the last decade, there have been a growing number of studies showing that exogenous administration of progesterone or some of its metabolites can be successfully used to treat traumatic brain and spinal cord injury, as well as ischemic stroke. Progesterone can also be synthesized by neurons and by glial cells within the nervous system. This finding opens the way for a promising therapeutic strategy, the use of pharmacological agents, such as ligands of the translocator protein (18 kDa) (TSPO; the former peripheral benzodiazepine receptor or PBR), to locally increase the synthesis of steroids with neuroprotective and neuroregenerative properties. A concept is emerging that progesterone may exert different actions and use different signaling mechanisms in normal and injured neural tissue.
Collapse
|
128
|
Schumacher M, Guennoun R, Ghoumari A, Massaad C, Robert F, El-Etr M, Akwa Y, Rajkowski K, Baulieu EE. Novel perspectives for progesterone in hormone replacement therapy, with special reference to the nervous system. Endocr Rev 2007; 28:387-439. [PMID: 17431228 DOI: 10.1210/er.2006-0050] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.
Collapse
Affiliation(s)
- Michael Schumacher
- INSERM UMR 788, 80, rue du Général Leclerc, 94276 Kremlin-Bicêtre, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Mesiano S, Welsh TN. Steroid hormone control of myometrial contractility and parturition. Semin Cell Dev Biol 2007; 18:321-31. [PMID: 17613262 DOI: 10.1016/j.semcdb.2007.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 05/03/2007] [Indexed: 01/04/2023]
Abstract
The precise temporal control of uterine contractility is essential for the success of pregnancy. For most of pregnancy, progesterone acting through genomic and non-genomic mechanisms promotes myometrial relaxation. At parturition the relaxatory actions of progesterone are nullified and the combined stimulatory actions of estrogens and other factors such as myometrial distention and immune/inflammatory cytokines, transform the myometrium to a highly contractile and excitable state leading to labor and delivery. This review addresses current understanding of how progesterone and estrogens affect the contractility of the pregnancy myometrium and how their actions are coordinated and controlled as part of the parturition cascade.
Collapse
Affiliation(s)
- Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106-5034, United States.
| | | |
Collapse
|
130
|
Peluso JJ, Liu X, Romak J. Progesterone maintains basal intracellular adenosine triphosphate levels and viability of spontaneously immortalized granulosa cells by promoting an interaction between 14-3-3sigma and ATP synthase beta/precursor through a protein kinase G-dependent mechanism. Endocrinology 2007; 148:2037-44. [PMID: 17303654 DOI: 10.1210/en.2006-1603] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present studies were designed to 1) describe changes in both the mitochondrial membrane potential and ATP content of spontaneously immortalized granulosa cells as they undergo apoptosis, 2) identify some of the downstream events that are activated by progesterone (P4), and 3) relate these downstream events to changes in mitochondrial function and apoptotic cell death. These studies revealed that in response to serum deprivation, the mitochondrial membrane potential initially hyperpolarizes and ATP content increases. That this increase in ATP is required for apoptosis was demonstrated by the finding that oligomycin inhibited the increase in ATP and apoptosis. Piridoxalphosphate-6-azopeyl-2'-4'-disulfonic acid, an inhibitor of purinergic receptors, which are activated by ATP, also inhibited apoptosis due to serum withdrawal. This study provides additional support for ATP's causative role in apoptosis. Moreover, 8-Br-cGMP, a protein kinase G (PKG) activator, mimicked P4's action, whereas a PKG antagonist, DT-3, attenuated P4's suppressive effect on ATP and apoptosis. Finally, DT-3 treatment was shown to attenuate P4-regulated phosphorylation of 14-3-3sigma and its binding partner, ATP synthasebeta/precursor and the amount of ATP synthasebeta/precursor that bound to 14-3-3sigma. Based on these data, it is proposed that P4 prevents apoptosis in part by activating PKG, which in turn maintains the interaction between ATP synthasebeta/precursor and 14-3-3sigma. In the absence of P4-induced PKG activity, we further propose that some ATP synthasebeta precursor dissociates from 14-3-3sigma, resulting in its activation and incorporation into the ATP synthase complex, which ultimately results in an increase in ATP and apoptosis.
Collapse
Affiliation(s)
- John J Peluso
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06030-1230, USA.
| | | | | |
Collapse
|
131
|
Murtha AP, Feng L, Yonish B, Leppert PC, Schomberg DW. Progesterone protects fetal chorion and maternal decidua cells from calcium-induced death. Am J Obstet Gynecol 2007; 196:257.e1-5. [PMID: 17346545 DOI: 10.1016/j.ajog.2007.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The purpose of this study was to determine whether progesterone exerts a protective effect in chorion and decidua cells when exposed to calcimycin. STUDY DESIGN Fetal membrane samples were collected from term elective repeat cesarean deliveries and chorion and decidua cells that are separated and cultured. Cells were pretreated with progesterone and exposed to calcimycin. Cell viability was determined, and percent cell viability was calculated. RESULTS Exposure to calcimycin resulted in a reduction of cell viability in both chorion and decidua cells in a dose-dependent fashion. In chorion and decidua cells, progesterone pretreatment followed by calcimycin increased cell viability compared with calcimycin treatment alone (chorion, 67%, vs controls, 24%; P < .001; decidua, 58%, vs controls, 35%; P < .001). The progesterone receptor antagonist, RTI 6413-49a, blocked the protective effect of progesterone in both chorion and decidua cells. CONCLUSION These preliminary results suggest that progesterone may provide a protective effect in fetal membrane cells and that this effect may be mediated through the progesterone receptor.
Collapse
Affiliation(s)
- Amy P Murtha
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
132
|
Kurusu S, Sakaguchi S, Kawaminami M. Regulation of luteal prostaglandin F(2 alpha) production and its relevance to cell death: an in vitro study using rat dispersed luteal cells. Prostaglandins Other Lipid Mediat 2006; 83:250-6. [PMID: 17499744 DOI: 10.1016/j.prostaglandins.2006.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 12/13/2006] [Accepted: 12/20/2006] [Indexed: 11/29/2022]
Abstract
We investigated the mechanism by which rat luteal cells produce prostaglandin F(2 alpha) (PGF(2 alpha)) and its relevance to cell death in vitro. Treatment with progesterone (P4) of dispersed luteal cells prepared from rats on day 9 of pseudopregnancy caused dose-dependent inhibition of PGF(2 alpha) secretion. Cytokines, tumor necrosis factor alpha (TNFalpha) or interferon gamma (IFN gamma) alone had no or modest regulatory effects. Arachidonyl trifluoromethyl ketone (AACOCF(3)), a specific group IVA phospholipase A(2) inhibitor, depressed both basal and cytokine-regulated PGF(2 alpha) production. A combination of TNFalpha and IFN gamma stimulated PGF(2 alpha) synthesis and cytotoxicity (both, P<0.05). Agonistic anti-Fas antibody challenge caused a significant cytotoxic effect but without affecting PGF(2 alpha) production. The present data suggest that P4 inhibits and TNFalpha and IFN gamma cooperatively stimulate PGF(2 alpha) release by rat luteal cells. They also suggest that luteal cell death induced by TNFalpha/IFN gamma and Fas stimulation seems to occur via distinct signaling pathways involving PGF(2 alpha) production.
Collapse
Affiliation(s)
- Shiro Kurusu
- Laboratory of Physiology, Kitasato University School of Veterinary Medicine and Animal Sciences, Towada, Aomori 034-8628, Japan.
| | | | | |
Collapse
|
133
|
Krietsch T, Fernandes MS, Kero J, Lösel R, Heyens M, Lam EWF, Huhtaniemi I, Brosens JJ, Gellersen B. Human Homologs of the Putative G Protein-Coupled Membrane Progestin Receptors (mPRα, β, and γ) Localize to the Endoplasmic Reticulum and Are Not Activated by Progesterone. Mol Endocrinol 2006; 20:3146-64. [PMID: 16959873 DOI: 10.1210/me.2006-0129] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AbstractThe steroid hormone progesterone exerts pleiotrophic functions in many cell types. Although progesterone controls transcriptional activation through binding to its nuclear receptors, it also initiates rapid nongenomic signaling events. Recently, three putative membrane progestin receptors (mPRα, β, and γ) with structural similarity to G protein-coupled receptors have been identified. These mPR isoforms are expressed in a tissue-specific manner and belong to the larger, highly conserved family of progestin and adiponectin receptors found in plants, eubacteria, and eukaryotes. The fish mPRα has been reported to mediate progesterone-dependent MAPK activation and inhibition of cAMP production through coupling to an inhibitory G protein. To functionally characterize the human homologs, we established human embryonic kidney 293 and MDA-MB-231 cell lines that stably express human mPRα, β, or γ. For comparison, we also established cell lines expressing the mPRα cloned from the spotted seatrout (Cynoscion nebulosus) and Japanese pufferfish (Takifugu rubripes). Surprisingly, we found no evidence that human or fish mPRs regulate cAMP production or MAPK (ERK1/2 or p38) activation upon progesterone stimulation. Furthermore, the mPRs did not couple to a highly promiscuous G protein subunit, Gαq5i, in transfection studies or provoke Ca2+ mobilization in response to progesterone. Finally, we demonstrate that transfected mPRs, as well as endogenous human mPRα, localize to the endoplasmic reticulum, and that their expression does not lead to increased progestin binding either in membrane preparations or in intact cells. Our results therefore do not support the concept that mPRs are plasma membrane receptors involved in transducing nongenomic progesterone actions.
Collapse
Affiliation(s)
- Tom Krietsch
- Endokrinologikum Hamburg, Falkenried 88, 20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Engmann L, Losel R, Wehling M, Peluso JJ. Progesterone regulation of human granulosa/luteal cell viability by an RU486-independent mechanism. J Clin Endocrinol Metab 2006; 91:4962-8. [PMID: 16984987 DOI: 10.1210/jc.2006-1128] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Progesterone (P4) inhibits human granulosa/luteal cell apoptosis by an unknown mechanism. OBJECTIVE Our objective was to assess the role of the nuclear P4 receptor (PGR) and PGR membrane component 1 (PGRMC1) in mediating P4's antiapoptotic action in human granulosa/luteal cells. DESIGN, SETTING, AND PATIENTS In vitro laboratory studies were designed in which human granulosa/luteal cells were harvested from in vitro fertilization patients from 2004-2006. MAIN OUTCOME MEASURE Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling assays and DNA staining. Protein expression was observed by Western blot and immunocytochemistry. RESULTS PGR was detected in 20% of the human granulosa/luteal cells, and 25 and 50 microM RU486 induced at least 70% of the cells to undergo apoptosis. Five micromolar RU486 neither induced apoptosis nor attenuated the antiapoptotic action of 1 microM P4. PGRMC1 and its binding partner, plasminogen activator inhibitor RNA-binding protein-1 (PAIRBP1), were detected in human granulosa/luteal cells. Antibodies to either PGRMC1 or PAIRBP1 completely attenuated P4's action. CONCLUSIONS PGR does not exclusively mediate P4's action because 1) 5 microM RU486 should have been able to override the antiapoptotic action of 1 microM P4 because RU486 binds to the PGR at a greater affinity than P4; 2) 25 and 50 microM RU486 induce three to four times more cells to undergo apoptosis than express PGR; 3) P4 must be continuously present to prevent apoptosis, which implies a rapid, possibly membrane-initiated mechanism of action; and 4) expression and blocking antibody studies suggest that PGRMC1 and PAIRBP1 account in part for P4's action in human granulosa/luteal cells.
Collapse
Affiliation(s)
- Lawrence Engmann
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | |
Collapse
|