101
|
DNA and factor VII-activating protease protect against the cytotoxicity of histones. Blood Adv 2017; 1:2491-2502. [PMID: 29296900 DOI: 10.1182/bloodadvances.2017010959] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/23/2017] [Indexed: 11/20/2022] Open
Abstract
Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize histones are present in plasma. Importantly, factor VII-activating protease (FSAP) is activated upon contact with histones and subsequently proteolyzes histones. We aimed to determine the effect of FSAP on the cytotoxicity of both histones and nucleosomes. Indeed, FSAP protected against histone-induced cytotoxicity of cultured cells in vitro. Upon incubation of serum with histones, endogenous FSAP was activated and degraded histones, which also prevented cytotoxicity. Notably, histones as part of nucleosome complexes were not cytotoxic, whereas DNA digestion restored cytotoxicity. Histones in nucleosomes were inefficiently cleaved by FSAP, which resulted in limited cleavage of histone H3 and removal of the N-terminal tail. The specific isolation of either circulating nucleosomes or free histones from sera of Escherichia coli challenged baboons or patients with meningococcal sepsis revealed that histone H3 was present in the form of nucleosomes, whereas free histone H3 was not detected. All samples showed signs of FSAP activation. Markedly, we observed that all histone H3 in nucleosomes from the patients with sepsis, and most histone H3 from the baboons, was N-terminally truncated, giving rise to a similarly sized protein fragment as through cleavage by FSAP. Taken together, our results suggest that DNA and FSAP jointly limit histone cytotoxicity and that free histone H3 does not circulate in appreciable concentrations in sepsis.
Collapse
|
102
|
Kalbitz M, Amann EM, Bosch B, Palmer A, Schultze A, Pressmar J, Weber B, Wepler M, Gebhard F, Schrezenmeier H, Brenner R, Huber-Lang M. Experimental blunt chest trauma-induced myocardial inflammation and alteration of gap-junction protein connexin 43. PLoS One 2017; 12:e0187270. [PMID: 29121655 PMCID: PMC5679619 DOI: 10.1371/journal.pone.0187270] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/17/2017] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Severe blunt chest trauma in humans is associated with high mortality rates. Whereas lung tissue damage and lung inflammation after blunt chest trauma have extensively been investigated, the traumatic and posttraumatic effects on the heart remain poorly understood. Therefore, the purpose of this study was to define cardiac injury patterns in an experimental blunt chest trauma model in rats. METHODS Experimental blunt chest trauma was induced by a blast wave in rats, with subsequent analysis of its effects on the heart. The animals were subjected either to a sham or trauma procedure. Systemic markers for cardiac injury were determined after 24 h and 5 days. Postmortem analysis of heart tissue addressed structural injury and inflammation 24 h and 5 days after trauma. RESULTS Plasma levels of extracellular histones were elevated 24 h and 5 days after blunt chest trauma compared to sham-treated animals. In the heart, up-regulation of interleukin-1β 24 h after trauma and increased myeloperoxidase activity 24 h and 5 days after trauma were accompanied by reduced complement C5a receptor-1 expression 24 h after trauma. Histological analysis revealed extravasation of erythrocytes and immunohistochemical analysis alteration of the pattern of the gap-junction protein connexin 43. Furthermore, a slight reduction of α-actinin and desmin expression in cardiac tissue was found after trauma together with a minor increase in sarcoplasmatic/endoplasmatic reticlulum calcium-ATPase (SERCA) expression. CONCLUSIONS The clinically highly relevant rat model of blast wave-induced blunt chest trauma is associated with cardiac inflammation and structural alterations in cardiac tissue.
Collapse
Affiliation(s)
- Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
- * E-mail:
| | - Elisa Maria Amann
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Belinda Bosch
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Annette Palmer
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Anke Schultze
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| | - Jochen Pressmar
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Birte Weber
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Martin Wepler
- Institute of Anaesthesiological Pathophysiology and Process Engineering, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Rolf Brenner
- Division of Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University of Ulm, Ulm, Germany
| |
Collapse
|
103
|
García-Giménez JL, Romá-Mateo C, Carbonell N, Palacios L, Peiró-Chova L, García-López E, García-Simón M, Lahuerta R, Gimenez-Garzó C, Berenguer-Pascual E, Mora MI, Valero ML, Alpízar A, Corrales FJ, Blanquer J, Pallardó FV. A new mass spectrometry-based method for the quantification of histones in plasma from septic shock patients. Sci Rep 2017; 7:10643. [PMID: 28878320 PMCID: PMC5587716 DOI: 10.1038/s41598-017-10830-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/16/2017] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to develop a novel method to detect circulating histones H3 and H2B in plasma based on multiple reaction monitoring targeted mass spectrometry and a multiple reaction monitoring approach (MRM-MS) for its clinical application in critical bacteriaemic septic shock patients. Plasma samples from 17 septic shock patients with confirmed bacteraemia and 10 healthy controls were analysed by an MRM-MS method, which specifically detects presence of histones H3 and H2B. By an internal standard, it was possible to quantify the concentration of circulating histones in plasma, which were significantly higher in patients, and thus confirmed their potential as biomarkers for diagnosing septic shock. After comparing surviving patients and non-survivors, a correlation was found between higher levels of circulating histones and unfavourable outcome. Indeed, histone H3 proved a more efficient and sensitive biomarker for septic shock prognosis. In conclusion, these findings suggest the accuracy of the MRM-MS technique and stable isotope labelled peptides to detect and quantify circulating plasma histones H2B and H3. This method may be used for early septic shock diagnoses and for the prognosis of fatal outcomes.
Collapse
Affiliation(s)
- J L García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Epigenetics Research Platform, CIBERER/UV, Valencia, Spain.
| | - C Romá-Mateo
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Epigenetics Research Platform, CIBERER/UV, Valencia, Spain
- Faculty of Biomedical and Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - N Carbonell
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, Valencia, Spain
| | - L Palacios
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, Valencia, Spain
| | - L Peiró-Chova
- INCLIVA Biomedical Research Institute, Valencia, Spain
- INCLIVA Biobank, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - E García-López
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - M García-Simón
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, Valencia, Spain
| | - R Lahuerta
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, Valencia, Spain
| | - C Gimenez-Garzó
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - E Berenguer-Pascual
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Epigenetics Research Platform, CIBERER/UV, Valencia, Spain
| | - M I Mora
- Department of Hepatology, Proteomics laboratory, CIMA, University of Navarra; Ciberhed; Idisna; PRB2, ProteoRed-ISCIII, Pamplona, Spain
| | - M L Valero
- Central Service for Experimental Research (SCSIE), University of Valencia, Burjassot, Spain
| | - A Alpízar
- Proteomics Unit, Centro Nacional de Biotecnología (CSIC); PRB2, ProteoRed-ISCIII, Madrid, Spain
| | - F J Corrales
- Proteomics Unit, Centro Nacional de Biotecnología (CSIC); PRB2, ProteoRed-ISCIII, Madrid, Spain
| | - J Blanquer
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia, Valencia, Spain
| | - F V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Epigenetics Research Platform, CIBERER/UV, Valencia, Spain.
| |
Collapse
|
104
|
Liu YC, Yu MM, Shou ST, Chai YF. Sepsis-Induced Cardiomyopathy: Mechanisms and Treatments. Front Immunol 2017; 8:1021. [PMID: 28970829 PMCID: PMC5609588 DOI: 10.3389/fimmu.2017.01021] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a lethal syndrome with a high incidence and a weighty economy burden. The pathophysiology of sepsis includes inflammation, immune dysfunction, and dysfunction of coagulation, while sepsis-induced cardiomyopathy (SIC), defined as a global but reversible dysfunction of both sides of the heart induced by sepsis, plays a significant role in all of the aspects above in the pathogenesis of sepsis. The complex pathogenesis of SIC involves a combination of dysregulation of inflammatory mediators, mitochondrial dysfunction, oxidative stress, disorder of calcium regulation, autonomic nervous system dysregulation, and endothelial dysfunction. The treatments for SIC include the signal pathway intervention, Chinese traditional medicine, and other specific therapy. Here, we reviewed the latest literatures on the mechanisms and treatments of SIC and hope to provide further insights to researchers and create a new road for the therapy of sepsis.
Collapse
Affiliation(s)
- Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Mu-Ming Yu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
105
|
Liu T, Huang W, Szatmary P, Abrams ST, Alhamdi Y, Lin Z, Greenhalf W, Wang G, Sutton R, Toh CH. Accuracy of circulating histones in predicting persistent organ failure and mortality in patients with acute pancreatitis. Br J Surg 2017; 104:1215-1225. [PMID: 28436602 PMCID: PMC7938821 DOI: 10.1002/bjs.10538] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/10/2016] [Accepted: 02/14/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Early prediction of acute pancreatitis severity remains a challenge. Circulating levels of histones are raised early in mouse models and correlate with disease severity. It was hypothesized that circulating histones predict persistent organ failure in patients with acute pancreatitis. METHODS Consecutive patients with acute pancreatitis fulfilling inclusion criteria admitted to Royal Liverpool University Hospital were enrolled prospectively between June 2010 and March 2014. Blood samples were obtained within 48 h of abdominal pain onset and relevant clinical data during the hospital stay were collected. Healthy volunteers were enrolled as controls. The primary endpoint was occurrence of persistent organ failure. The predictive values of circulating histones, clinical scores and other biomarkers were determined. RESULTS Among 236 patients with acute pancreatitis, there were 156 (66·1 per cent), 57 (24·2 per cent) and 23 (9·7 per cent) with mild, moderate and severe disease respectively, according to the revised Atlanta classification. Forty-seven healthy volunteers were included. The area under the receiver operating characteristic (ROC) curve (AUC) for circulating histones in predicting persistent organ failure and mortality was 0·92 (95 per cent c.i. 0·85 to 0·99) and 0·96 (0·92 to 1·00) respectively; histones were at least as accurate as clinical scores or biochemical markers. For infected pancreatic necrosis and/or sepsis, the AUC was 0·78 (0·62 to 0·94). Histones did not predict or correlate with local pancreatic complications, but correlated negatively with leucocyte cell viability (r = -0·511, P = 0·001). CONCLUSION Quantitative assessment of circulating histones in plasma within 48 h of abdominal pain onset can predict persistent organ failure and mortality in patients with acute pancreatitis. Early death of immune cells may contribute to raised circulating histone levels in acute pancreatitis.
Collapse
Affiliation(s)
- T Liu
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - W Huang
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - P Szatmary
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - S T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Y Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Z Lin
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - W Greenhalf
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - G Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - R Sutton
- National Institute for Health Research (NIHR) Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Liverpool, UK
| | - C H Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Roald Dahl Haemostasis and Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
106
|
Iba T, Sasaki T, Ohshima K, Sato K, Nagaoka I, Thachil J. The Comparison of the Protective Effects of α- and β-Antithrombin against Vascular Endothelial Cell Damage Induced by Histone in Vitro. TH OPEN 2017; 1:e3-e10. [PMID: 31249909 PMCID: PMC6524836 DOI: 10.1055/s-0037-1603926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antithrombin is a promising option for the treatment of sepsis, and vascular endothelium is an important target for this fatal condition. Here, we aimed to evaluate the protective effects of different glycoforms of antithrombin on histone-induced endothelial cell damage and explore the responsible mechanisms in an experimental model in vitro. Endothelial cells were treated in vitro using histone H4 to induce cellular damage. Various doses of either α- or β-antithrombin were used as treatment interventions, and both cell viability and the levels of lactate dehydrogenase (LDH) in the medium were assessed. Endothelial cell damage was also assessed using microscopic examination and immunofluorescent staining with anti-syndecan-4 and anti-antithrombin antibodies. As a result, both glycoforms of antithrombin significantly improved cell viability when administered at a physiological dose (150 μg/mL). Cellular injury as evaluated using the LDH level was significantly suppressed by β-antithrombin at a supranormal dose (600 μg/mL). Microscopic observation suggested that β-antithrombin suppressed the endothelial cell damage more efficiently than α-antithrombin. β-Antithrombin suppressed the intensity of syndecan-4 staining which became evident after treatment with histone H4, more prominently than α-antithrombin. The distribution of antithrombin was identical to that of syndecan-4. In conclusion, both α- and β-antithrombin can protect vascular endothelial cells from histone H4-induced damage, although the effect was stronger for β-antithrombin. The responsible mechanisms might involve the binding of antithrombin to the glycocalyx on the endothelial surface. These results provide a theoretical basis for the application of antithrombin to the prevention and treatment of sepsis-related endothelial damage.
Collapse
Affiliation(s)
- Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tetsuya Sasaki
- Nihon Pharmaceutical Co. Ltd., Research Laboratory, Narita, Japan
| | | | - Koichi Sato
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, United Kingdom
| |
Collapse
|
107
|
Buschmann K, Chaban R, Emrich AL, Youssef M, Kornberger A, Beiras-Fernandez A, Vahl CF. Septic cardiomyopathy: evidence for a reduced force-generating capacity of human atrial myocardium in acute infective endocarditis. Innov Surg Sci 2017; 2:81-87. [PMID: 31579740 PMCID: PMC6753999 DOI: 10.1515/iss-2016-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background This study analyzes the myocardial force-generating capacity in infective endocarditis (IE) using an experimental model of isolated human atrial myocardium. In vivo, it is difficult to decide whether or not alterations in myocardial contractile behavior are due to secondary effects associated with infection such as an altered heart rate, alterations of preload and afterload resulting from valvular defects, and altered humoral processes. Our in vitro model using isolated human myocardium, in contrast, guarantees exactly defined experimental conditions with respect to preload, afterload, and contraction frequency, thus not only preventing confounding by in vivo determinants of contractility but also excluding effects of other factors associated with sepsis, hemodynamics, humoral influences, temperature, and medical treatment. Methods We analyzed right atrial trabeculae (diameter 0.3–0.5 mm, initial length 5 mm) from 32 patients undergoing aortic and/or mitral valve replacement for acute valve incompetence caused by IE and 65 controls receiving aortic and/or mitral valve replacement for nonendocarditic valve incompetence. Isometric force amplitudes and passive resting force values measured at optimal length in the two groups were compared using Student’s t-test. Results There were no significant differences between the groups in terms of the passive resting force. The isometric force amplitude in the endocarditis group, however, was significantly lower than in the nonendocarditis group (p=0.001). In the endocarditis group, the calculated active force, defined as the isometric force amplitude minus the resting force, was significantly lower (p<0.0001) and the resting force/active force ratio was significantly higher (p<0.0001). Using linear regression to describe the function between resting force and active force, we identified a significant difference in slope (p<0.0001), with lower values found in the endocarditis group. Conclusion Our data suggest that the force-generating capacity of atrial myocardium is significantly reduced in patients with IE. In these patients, an elevated resting force is required to achieve a given force amplitude. It remains unclear, however, whether this is due to calcium desensitization of the contractile apparatus, presence of myocardial edema, fibrotic remodeling, disruption of contractile units, or other mechanisms.
Collapse
Affiliation(s)
- Katja Buschmann
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ryan Chaban
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Lena Emrich
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marwan Youssef
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angela Kornberger
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andres Beiras-Fernandez
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Friedrich Vahl
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
108
|
Chen S, Fan B. Myricetin protects cardiomyocytes from LPS-induced injury. Herz 2017; 43:265-274. [PMID: 28357449 DOI: 10.1007/s00059-017-4556-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/24/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy is a well-known cause of mortality. Recent evidence has highlighted the important role of myricetin in anti-inflammation and anti-oxidative stress. However, little is known about its effect on endotoxin-induced cardiomyopathy. We examined the effect of myricetin on lipopolysaccharide (LPS)-induced cardiomyocyte injury and the underlying mechanisms in vitro. METHODS mRNA expression of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha was examined via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression levels of NF-κB/p65, IκB, IL-1beta, IL-6, and TNF-alpha were assesses via Western blotting. Immunofluorescence (IF) was used to determine the nuclear translocation of p65. Commercial kits were employed to detect the level of oxidative markers and to quantify NF-κB/p65 both in the cytoplasm and the nucleus. Finally, terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was performed to evaluate the apoptosis of H9c2 cardiomyocytes. RESULTS The results showed that myricetin blunted the overexpression of IL-1beta, IL-6, and TNF-alpha markedly by inhibiting the NF-κB/P65 signaling pathway. Furthermore, myricetin treatment led to the downregulation of reactive oxygen species (ROS) accompanied by increased expression of superoxide dismutase and glutathione peroxidase. TUNEL-positive nuclei were rarely detected following myricetin treatment. CONCLUSION Our findings suggest that myricetin is a valuable protective agent against endotoxin-induced early inflammatory responses in H9c2 cardiomyocytes, which involves regulation of ROS and the IκB/NF-κb signaling pathway.
Collapse
Affiliation(s)
- S Chen
- School of Pharmacy, Hubei University of Science and Technology, 437100, Hubei Xianning, China
| | - B Fan
- School of Pharmacy, Hubei University of Science and Technology, 437100, Hubei Xianning, China.
| |
Collapse
|
109
|
Fattahi F, Grailer JJ, Lu H, Dick RS, Parlett M, Zetoune FS, Nuñez G, Ward PA. Selective Biological Responses of Phagocytes and Lungs to Purified Histones. J Innate Immun 2017; 9:300-317. [PMID: 28171866 DOI: 10.1159/000452951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1β was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- University of Michigan Medical School, Department of Pathology, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Toh CH, Alhamdi Y, Abrams ST. Current Pathological and Laboratory Considerations in the Diagnosis of Disseminated Intravascular Coagulation. Ann Lab Med 2017; 36:505-12. [PMID: 27578502 PMCID: PMC5011102 DOI: 10.3343/alm.2016.36.6.505] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/21/2016] [Accepted: 07/22/2016] [Indexed: 01/06/2023] Open
Abstract
Systemically sustained thrombin generation in vivo is the hallmark of disseminated intravascular coagulation (DIC). Typically, this is in response to a progressing disease state that is associated with significant cellular injury. The etiology could be infectious or noninfectious, with the main pathophysiological mechanisms involving cross-activation among coagulation, innate immunity, and inflammatory responses. This leads to consumption of both pro- and anticoagulant factors as well as endothelial dysfunction and disrupted homeostasis at the blood vessel wall interface. In addition to the release of tissue plasminogen activator (tPA) and soluble thrombomodulin (sTM) following cellular activation and damage, respectively, there is the release of damage-associated molecular patterns (DAMPs) such as extracellular histones and cell-free DNA. Extracellular histones are increasingly recognized as significantly pathogenic in critical illnesses through direct cell toxicity, the promotion of thrombin generation, and the induction of neutrophil extracellular trap (NET) formation. Clinically, high circulating levels of histones and histone–DNA complexes are associated with multiorgan failure, DIC, and adverse patient outcomes. Their measurements as well as that of other DAMPs and molecular markers of thrombin generation are not yet applicable in the routine diagnostic laboratory. To provide a practical diagnostic tool for acute DIC, a composite scoring system using rapidly available coagulation tests is recommended by the International Society on Thrombosis and Haemostasis. Its usefulness and limitations are discussed alongside the advances and unanswered questions in DIC pathogenesis.
Collapse
Affiliation(s)
- Cheng Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, United Kingdom.
| | - Yasir Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Simon T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
111
|
Mechanisms of Chromatin Remodeling and Repurposing During Extracellular Translocation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 106:113-137. [DOI: 10.1016/bs.apcsb.2016.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
112
|
Li X, Gou C, Yao L, Lei Z, Gu T, Ren F, Wen T. Patients with HBV-related acute-on-chronic liver failure have increased concentrations of extracellular histones aggravating cellular damage and systemic inflammation. J Viral Hepat 2017; 24:59-67. [PMID: 27660136 DOI: 10.1111/jvh.12612] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022]
Abstract
Acute-on-chronic liver failure (ACLF) is the most common type of liver failure and associated with grave consequences. Systemic inflammation has been linked to its pathogenesis and outcome, but the identifiable triggers are absent. Recently, extracellular histones, especially H4, have been recognized as important mediators of cell damage in various inflammatory conditions. This study aimed to investigate whether extracellular histones have clinical implications in patients with hepatitis B virus (HBV)-related ACLF. One hundred and twelve patients with HBV-related ACLF, 90 patients with chronic hepatitis B, 88 patients with HBV-related liver cirrhosis and 40 healthy volunteers were entered into this study. Plasma histone H4 levels, cytokine profile and clinical data were obtained. Besides, patient's sera were incubated overnight with human L02 hepatocytes or monocytic U937 cells in the presence or absence of antihistone H4 antibody, and cellular damage and cytokine production were evaluated. We found that plasma histone H4 levels were greatly increased in patients with ACLF as compared with chronic hepatitis B, liver cirrhosis and healthy control subjects and were significantly associated with disease severity, systemic inflammation and outcome. Notably, ACLF patients' sera incubation decreased cultured L02 cell integrity and induced profound cytokine production in the supernatant of U937 cells. Antihistone H4 antibody treatment abrogated these adverse effects, thus confirming a cause-effect relationship between extracellular histones and organ injury/dysfunction. The data support the hypothesis that the increased extracellular histone levels in ACLF patients may aggravate disease severity by inducing cellular injury and systemic inflammation. Histone-targeted therapies may have potentially interventional value in clinical practice.
Collapse
Affiliation(s)
- X Li
- Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - C Gou
- Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - L Yao
- Department of Forth Cadre, Chinese PLA Army General Hospital, Beijing, China
| | - Z Lei
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - T Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, Hebei Province, China
| | - F Ren
- Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - T Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
113
|
Fattahi F, Ward PA. Complement and sepsis-induced heart dysfunction. Mol Immunol 2016; 84:57-64. [PMID: 27931779 DOI: 10.1016/j.molimm.2016.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/18/2016] [Indexed: 01/09/2023]
Abstract
It is well known that cardiac dysfunction develops during sepsis in both humans and in rodents (rats, mice). These defects appear to be reversible, since after "recovery" from sepsis, cardiac dysfunction disappears and the heart returns to its function that was present before the onset of sepsis. Our studies, using in vivo and in vitro models, have demonstrated that C5a and its receptors (C5aR1 and C5aR2) play key roles in cardiac dysfunction developing during sepsis. Use of a neutralizing antibody to C5a largely attenuates cardiac dysfunction and other adverse events developing during sepsis. The molecular basis for cardiac dysfunctions is linked to generation of C5a and its interaction with C5a receptors present on surfaces of cardiomyocytes (CMs). It is established that C5a interactions with C5a receptors leads to significant reductions involving faulty contractility and relaxation in CMs. In addition, C5a interactions with C5a receptors on CMs results in reductions in Na+/K+-ATPase in CMs. This ATPase is essential for intact action potentials in CMs. The enzymatic activity and protein for this ATPase were strikingly reduced in CMs during sepsis by unknown mechanisms. In addition, C5a interactions with C5aRs also caused reductions in CM homeostatic proteins that regulate cytosolic [Ca2+]i in CMs: sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and Na+/Ca2+ exchanger (NCX). In the absence of C5a receptors, defects in SERCA2 and NCX in CMs after sepsis are strikingly attenuated. These observations suggest new strategies to protect the heart from dysfunction developing during sepsis.
Collapse
Affiliation(s)
- Fatemeh Fattahi
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Peter A Ward
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
114
|
Circulating Histone Concentrations Differentially Affect the Predominance of Left or Right Ventricular Dysfunction in Critical Illness. Crit Care Med 2016; 44:e278-88. [PMID: 26588828 DOI: 10.1097/ccm.0000000000001413] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Cardiac complications are common in critical illness and associated with grave consequences. In this setting, elevated circulating histone levels have been linked to cardiac injury and dysfunction in experimental models and patients with sepsis. The mechanisms underlying histone-induced cardiotoxicity and the functional consequences on left ventricle and right ventricle remain unclear. This study aims to examine dose-dependent effects of circulating histones on left ventricle and right ventricle function at clinically relevant concentrations. DESIGN Prospective laboratory study with in vitro and in vivo investigations. SETTING University research laboratory. SUBJECTS Twelve-week old male C57BL/6N mice. INTERVENTIONS Cultured cardiomyocytes were incubated with clinically relevant histone concentrations, and a histone infusion mouse model was also used with hemodynamic changes characterized by echocardiography and left ventricle/right ventricle catheter-derived variables. Circulating histones and cardiac troponin levels were obtained from serial blood samples. MEASUREMENTS AND MAIN RESULTS IV histone infusion caused time-dependent cardiac troponin elevation to indicate cardiac injury. At moderate sublethal histone doses (30 mg/kg), left ventricular contractile dysfunction was the prominent abnormality with reduced ejection fraction and prolonged relaxation time. At high doses (≥ 60 mg/kg), pulmonary vascular obstruction induced right ventricular pressure increase and dilatation, but left ventricular end-diastolic volume improved because of reduced blood return from the lungs. Mechanistically, histones induced profound calcium influx and overload in cultured cardiomyocytes with dose-dependent detrimental effects on intracellular calcium transient amplitude, contractility, and rhythm, suggesting that histones directly affect cardiomyocyte function adversely. However, increasing histone-induced neutrophil congestion, neutrophil extracellular trap formation, and thrombosis in the pulmonary microvasculature culminated in right ventricular dysfunction. Antihistone antibody treatment abrogated histone cardiotoxicity. CONCLUSIONS Circulating histones significantly compromise left ventricular and right ventricular function through different mechanisms that are dependent on histone concentrations. This provides a translational basis to explain and target the spectral manifestations of cardiac dysfunction in critical illness.
Collapse
|
115
|
Miao J, Frazier T, Huang L, Zhang X, Zhao B. Identification and Characterization of Switchgrass Histone H3 and CENH3 Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:979. [PMID: 27462323 PMCID: PMC4940616 DOI: 10.3389/fpls.2016.00979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Switchgrass is one of the most promising energy crops and only recently has been employed for biofuel production. The draft genome of switchgrass was recently released; however, relatively few switchgrass genes have been functionally characterized. CENH3, the major histone protein found in centromeres, along with canonical H3 and other histones, plays an important role in maintaining genome stability and integrity. Despite their importance, the histone H3 genes of switchgrass have remained largely uninvestigated. In this study, we identified 17 putative switchgrass histone H3 genes in silico. Of these genes, 15 showed strong homology to histone H3 genes including six H3.1 genes, three H3.3 genes, four H3.3-like genes and two H3.1-like genes. The remaining two genes were found to be homologous to CENH3. RNA-seq data derived from lowland cultivar Alamo and upland cultivar Dacotah allowed us to identify SNPs in the histone H3 genes and compare their differential gene expression. Interestingly, we also found that overexpression of switchgrass histone H3 and CENH3 genes in N. benthamiana could trigger cell death of the transformed plant cells. Localization and deletion analyses of the histone H3 and CENH3 genes revealed that nuclear localization of the N-terminal tail is essential and sufficient for triggering the cell death phenotype. Our results deliver insight into the mechanisms underlying the histone-triggered cell death phenotype and provide a foundation for further studying the variations of the histone H3 and CENH3 genes in switchgrass.
Collapse
Affiliation(s)
- Jiamin Miao
- Department of Horticulture, Virginia TechBlacksburg, VA, USA
- Department of Grassland Science, Sichuan Agricultural UniversityYa'an, China
| | - Taylor Frazier
- Department of Horticulture, Virginia TechBlacksburg, VA, USA
| | - Linkai Huang
- Department of Grassland Science, Sichuan Agricultural UniversityYa'an, China
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural UniversityYa'an, China
| | - Bingyu Zhao
- Department of Horticulture, Virginia TechBlacksburg, VA, USA
| |
Collapse
|
116
|
Nußbaum BL, McCook O, Hartmann C, Matallo J, Wepler M, Antonucci E, Kalbitz M, Huber-Lang M, Georgieff M, Calzia E, Radermacher P, Hafner S. Left ventricular function during porcine-resuscitated septic shock with pre-existing atherosclerosis. Intensive Care Med Exp 2016; 4:14. [PMID: 27271248 PMCID: PMC4894859 DOI: 10.1186/s40635-016-0089-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Background Reversible, depressed cardiac function is frequently encountered during septic shock and commonly called septic cardiomyopathy. Previous studies demonstrated reduced ejection fraction and left ventricular dilatation in both humans and animal models. However, the majority of the studies in humans excluded pre-existing cardiac disease and animal studies were performed on healthy specimen and/or without vasopressor support during sepsis. In order to more closely mimic the actual patients’ conditions on intensive care units and to assess the influence of both cardiac comorbidity and vasopressor support on septic cardiomyopathy, we evaluated the left ventricular function in a porcine model of resuscitated septic shock with pre-existing atherosclerosis. Methods Hypercholesterolaemic, atherosclerotic pigs due to homozygous low-density lipoprotein receptor mutation and high-fat diet were anaesthetised and surgically instrumented. Faecal peritonitis was induced by inoculation of autologous faeces into the peritoneal cavity in n = 8 animals; n = 5 pigs underwent sham procedure. Sepsis resuscitation included administration of fluids and noradrenaline. Left ventricular function was analysed via pressure-conductance catheters before, 12 and 24 h after the induction of sepsis. Results The main findings were impaired ventricular dilatation (no significant change in the left ventricular end-diastolic volume) and unchanged ejection fraction in septic pigs with pre-existing atherosclerosis. The relaxation time constant τ decreased while dp/dtmax increased. Cardiac nitrotyrosine formation increased while expression of the endogenous hydrogen sulphide (H2S)-producing enzyme cystathionine γ-lyase (CSE) decreased. Conclusions The data of the present study are in conflict with previously published data from healthy animal models, most likely as a result of ongoing resuscitation including noradrenaline treatment or intrinsic pathophysiologic processes of the pre-existing atherosclerosis. Moreover, increased nitrotyrosine formation and decreased expression of CSE suggest the implication of augmented oxidative/nitrosative stress and/or reduced bioavailability of nitric oxide as well as diminished endogenous H2S release in the pathophysiology of septic cardiomyopathy. Electronic supplementary material The online version of this article (doi:10.1186/s40635-016-0089-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benedikt L Nußbaum
- Klinik für Anästhesiologie, Universitätsklinik Ulm, Ulm, Germany. .,Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany.
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Clair Hartmann
- Klinik für Anästhesiologie, Universitätsklinik Ulm, Ulm, Germany.,Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - José Matallo
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Martin Wepler
- Klinik für Anästhesiologie, Universitätsklinik Ulm, Ulm, Germany.,Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Elena Antonucci
- Department of Surgical Sciences and Integrated Diagnostics, IRCCS San Martino IST, University of Genova, Genova, Italy
| | - Miriam Kalbitz
- Klinik für Unfall-, Hand-, Plastische- und Wiederherstellungschirurgie, Universitätsklinik Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Klinik für Unfall-, Hand-, Plastische- und Wiederherstellungschirurgie, Universitätsklinik Ulm, Ulm, Germany
| | | | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| | - Sebastian Hafner
- Klinik für Anästhesiologie, Universitätsklinik Ulm, Ulm, Germany.,Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinik Ulm, Helmholtzstraße 8/1, 89081, Ulm, Germany
| |
Collapse
|
117
|
Abstract
Disseminated intravascular coagulation (DIC) is an acquired syndrome characterized by widespread intravascular activation of coagulation that can be caused by infectious insults (such as sepsis) and non-infectious insults (such as trauma). The main pathophysiological mechanisms of DIC are inflammatory cytokine-initiated activation of tissue factor-dependent coagulation, insufficient control of anticoagulant pathways and plasminogen activator inhibitor 1-mediated suppression of fibrinolysis. Together, these changes give rise to endothelial dysfunction and microvascular thrombosis, which can cause organ dysfunction and seriously affect patient prognosis. Recent observations have pointed to an important role for extracellular DNA and DNA-binding proteins, such as histones, in the pathogenesis of DIC. The International Society on Thrombosis and Haemostasis (ISTH) established a DIC diagnostic scoring system consisting of global haemostatic test parameters. This scoring system has now been well validated in diverse clinical settings. The theoretical cornerstone of DIC management is the specific and vigorous treatment of the underlying conditions, and DIC should be simultaneously managed to improve patient outcomes. The ISTH guidance for the treatment of DIC recommends treatment strategies that are based on current evidence. In this Primer, we provide an updated overview of the pathophysiology, diagnosis and management of DIC and discuss the future directions of basic and clinical research in this field.
Collapse
|
118
|
Sims CR, Nguyen TC, Mayeux PR. Could Biomarkers Direct Therapy for the Septic Patient? J Pharmacol Exp Ther 2016; 357:228-39. [PMID: 26857961 PMCID: PMC4851319 DOI: 10.1124/jpet.115.230797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/05/2016] [Indexed: 01/25/2023] Open
Abstract
Sepsis is a serious medical condition caused by a severe systemic inflammatory response to a bacterial, fungal, or viral infection that most commonly affects neonates and the elderly. Advances in understanding the pathophysiology of sepsis have resulted in guidelines for care that have helped reduce the risk of dying from sepsis for both children and older adults. Still, over the past three decades, a large number of clinical trials have been undertaken to evaluate pharmacological agents for sepsis. Unfortunately, all of these trials have failed, with the use of some agents even shown to be harmful. One key issue in these trials was the heterogeneity of the patient population that participated. What has emerged is the need to target therapeutic interventions to the specific patient's underlying pathophysiological processes, rather than looking for a universal therapy that would be effective in a "typical" septic patient, who does not exist. This review supports the concept that identification of the right biomarkers that can direct therapy and provide timely feedback on its effectiveness will enable critical care physicians to decrease mortality of patients with sepsis and improve the quality of life of survivors.
Collapse
Affiliation(s)
- Clark R Sims
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Trung C Nguyen
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| | - Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas (C.R.S., P.R.M.); and Department of Pediatrics, Section of Critical Care Medicine, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas (T.C.N.)
| |
Collapse
|
119
|
Yehya N, Thomas NJ, Margulies SS. Circulating nucleosomes are associated with mortality in pediatric acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1177-84. [PMID: 27130528 DOI: 10.1152/ajplung.00067.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022] Open
Abstract
Mechanisms underlying pediatric acute respiratory distress syndrome (PARDS) are poorly understood. The recent implication of circulating nucleosomes as pathogenic in sepsis and trauma-associated ARDS in adults led us to investigate the significance of nucleosomes in PARDS. We conducted a prospective, observational study on children with PARDS at the Children's Hospital of Philadelphia between July 2014 and September 2015. Plasma was collected within 48 h of PARDS onset and nucleosomes quantified by enzyme-linked immunosorbent assay. Samples from 76 children with PARDS (11 deaths, 14%) were collected early [median 15 (IQR 7, 21) h] after PARDS onset. Nucleosome levels were higher in nonsurvivors [0.59 AU (IQR 0.46, 0.84)] relative to survivors [0.21 AU (IQR 0.08, 0.33), rank sum P < 0.001]. Nucleosome levels were not associated with either Berlin (P = 0.845) or PALICC (P = 0.886) oxygenation categories, nor with etiology of PARDS (P = 0.527). Nucleosomes were correlated with increasing numbers of nonpulmonary organ failures (P = 0.009 for trend), and were higher in patients whose PaO2 /FiO2 worsened (P = 0.012) over the first 72 h of PARDS. In regression analysis, nucleosome levels were independently associated with mortality after adjusting for either age, severity of illness score, number of nonpulmonary organ failures, vasopressor score, or PaO2 /FiO2 (all P < 0.05). In conclusion, plasma nucleosome levels in early PARDS were associated with increased mortality, correlated with number of nonpulmonary organ failures, and preceded worsening oxygenation. The potential utility of this biomarker for prognostication, risk stratification, and mechanistic insight should be investigated further.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia;
| | - Neal J Thomas
- Department of Pediatrics and Public Health Science, Division of Pediatric Critical Care Medicine, Penn State Hershey Children's Hospital, Hershey
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
120
|
Alhamdi Y, Toh CH. The role of extracellular histones in haematological disorders. Br J Haematol 2016; 173:805-11. [PMID: 27062156 DOI: 10.1111/bjh.14077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022]
Abstract
Over the past decades, chromosomal alterations have been extensively investigated for their pathophysiological relevance in haematological malignancies. In particular, epigenetic modifications of intra-nuclear histones are now known as key regulators of healthy cell cycles that have also evolved into novel therapeutic targets for certain blood cancers. Thus, for most haematologists, histones are DNA-chained proteins that are buried deep within chromatin. However, the plot has deepened with recent revelations on the function of histones when unchained and released extracellularly upon cell death or from activated neutrophils as part of neutrophil extracellular traps (NETs). Extracellular histones and NETs are increasingly recognized for profound cytotoxicity and pro-coagulant effects. This article highlights the importance of recognizing this new paradigm of extracellular histones as a key player in host defence through its damage-associated molecular patterns, which could translate into novel diagnostic and therapeutic biomarkers in various haematological and critical disorders.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
121
|
Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care 2016; 4:22. [PMID: 27011791 PMCID: PMC4804632 DOI: 10.1186/s40560-016-0148-1] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/04/2016] [Indexed: 12/29/2022] Open
Abstract
Sepsis is aggravated by an inappropriate immune response to invading microorganisms, which occasionally leads to multiple organ failure. Several lines of evidence suggest that the ventricular myocardium is depressed during sepsis with features of diastolic dysfunction. Potential candidates responsible for septic cardiomyopathy include pathogen-associated molecular patterns (PAMPs), cytokines, and nitric oxide. Extracellular histones and high-mobility group box 1 that function as endogenous damage-associated molecular patterns (DAMPs) also contribute to the myocardial dysfunction associated with sepsis. If untreated, persistent shock causes cellular injury and the liberation of further DAMPs. Like PAMPs, DAMPs have the potential to activate inflammation, creating a vicious circle. Early infection control with adequate antibiotic care is important during septic shock to decrease PAMPs arising from invasive microorganisms. Early aggressive fluid resuscitation as well as the administration of vasopressors and inotropes is also important to reduce DAMPs generated by damaged cells although excessive volume loading, and prolonged administration of catecholamines might be harmful. This review delineates some features of septic myocardial dysfunction, assesses its most common underlying mechanisms, and briefly outlines current therapeutic strategies and potential future approaches.
Collapse
Affiliation(s)
- Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
| | - Takashi Ito
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan ; Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mayumi Nakahara
- Department of Anesthesiology and Critical Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keiji Yamaguchi
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
| | - Tomotsugu Yasuda
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520 Japan
| |
Collapse
|
122
|
Abstract
Antibiotics and fluids have been standard treatment for sepsis since World War II. Many molecular mediators of septic shock have since been identified. In models of sepsis, blocking these mediators improved organ injury and decreased mortality. Clinical trials, however, have failed. The absence of new therapies has been vexing to clinicians, clinical researchers, basic scientists, and the pharmaceutical industry. This article examines the evolution of sepsis therapy and theorizes about why so many well-reasoned therapies have not worked in human trials. We review new molecular targets for sepsis and examine trial designs that might lead to successful treatments for sepsis.
Collapse
Affiliation(s)
- Eric J Seeley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California San Francisco, 400 Parnassus Avenue, 5th Floor ACC, San Francisco, CA 94143, USA.
| | - Gordon R Bernard
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
123
|
Affiliation(s)
- Yasir Alhamdi
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Simon T Abrams
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Steven Lane
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Guozheng Wang
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Cheng-Hock Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
124
|
Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, Tamaki K. Circulating Extracellular Histones Are Clinically Relevant Mediators of Multiple Organ Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:829-43. [PMID: 26878212 DOI: 10.1016/j.ajpath.2015.11.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/18/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Extracellular histones are a damage-associated molecular pattern (DAMP) involved in the pathogenesis of various diseases. The mechanisms of histone-mediated injury in certain organs have been extensively studied, but an understanding of the pathophysiological role of histone-mediated injury in multiple organ injury remains elusive. To elucidate this role, we systemically subjected C57BL/6 mice to various doses of histones and performed a chronological evaluation of the morphological and functional changes in the lungs, liver, and kidneys. Notably, histone administration ultimately led to death after a dose-dependent aggravation of multiple organ injury. In chronological studies, pulmonary and hepatic injuries occurred within 15 minutes, whereas renal injuries presented at a later phase, suggesting that susceptibility to extracellular histones varies among organs. Histones bound to pulmonary and hepatic endothelial cells immediately after administration, leading to endothelial damage, which could be ameliorated by pretreatment with heparin. Furthermore, release of another DAMP, high-mobility group protein box 1, followed the histone-induced tissue damage, and an antibody against the molecule ameliorated hepatic and renal failure in a late phase. These findings indicate that extracellular histones induce multiple organ injury in two progressive stages-direct injury to endothelial cells and the subsequent release of other DAMPs-and that combination therapies against extracellular histones and high-mobility group protein box 1 may be a promising strategy for treating multiple organ injury.
Collapse
Affiliation(s)
- Chihiro Kawai
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Kotani
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Masashi Miyao
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tokiko Ishida
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Leila Jemail
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hitoshi Abiru
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keiji Tamaki
- Department of Forensic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
125
|
Abstract
Sepsis-induced myocardial dysfunction is a common complication in septic patients and is associated with increased mortality. In the clinical setting, it was once believed that myocardial dysfunction was not a major pathological process in the septic patients, at least in part, due to the unavailability of suitable clinical markers to assess intrinsic myocardial function during sepsis. Although sepsis-induced myocardial dysfunction has been studied in clinical and basic research for more than 30 years, its pathophysiology is not completely understood, and no specific therapies for this disorder exist. The purpose of this review is to summarize our current knowledge of sepsis-induced myocardial dysfunction with a special focus on pathogenesis and clinical characteristics.
Collapse
Affiliation(s)
- Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People’s Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong 510632 China
| |
Collapse
|
126
|
Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care 2015; 3:48. [PMID: 26566443 PMCID: PMC4642671 DOI: 10.1186/s40560-015-0112-5] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/05/2015] [Indexed: 12/13/2022] Open
Abstract
Sepsis-induced cardiomyopathy is a reversible myocardial dysfunction that typically resolves in 7–10 days. It is characterized by left ventricular dilatation and depressed ejection fraction. However, many uncertainties exist regarding the mechanisms, characteristics, and treatments of this condition. Therefore, this review attempts to summarize our current knowledge of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ryota Sato
- Department of Emergency and Critical Care Medicine, Urasoe General Hospital, 4-16-1, Iso, Urasoe, Okinawa Japan
| | - Michitaka Nasu
- Department of Emergency and Critical Care Medicine, Urasoe General Hospital, 4-16-1, Iso, Urasoe, Okinawa Japan
| |
Collapse
|
127
|
Sepsis and ARDS: The Dark Side of Histones. Mediators Inflamm 2015; 2015:205054. [PMID: 26609197 PMCID: PMC4644547 DOI: 10.1155/2015/205054] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/01/2015] [Indexed: 12/13/2022] Open
Abstract
Despite advances in management over the last several decades, sepsis and acute respiratory distress syndrome (ARDS) still remain major clinical challenges and the leading causes of death for patients in intensive care units (ICUs) due to insufficient understanding of the pathophysiological mechanisms of these diseases. However, recent studies have shown that histones, also known as chromatin-basic structure proteins, could be released into the extracellular space during severe stress and physical challenges to the body (e.g., sepsis and ARDS). Due to their cytotoxic and proinflammatory effects, extracellular histones can lead to excessive and overwhelming cell damage and death, thus contributing to the pathogenesis of both sepsis and ARDS. In addition, antihistone-based treatments (e.g., neutralizing antibodies, activated protein C, and heparin) have shown protective effects and have significantly improved the outcomes of mice suffering from sepsis and ARDS. Here, we review researches related to the pathological role of histone in context of sepsis and ARDS and evaluate the potential value of histones as biomarkers and therapeutic targets of these diseases.
Collapse
|
128
|
The Future Is Back; Back to the Future!*. Crit Care Med 2015; 43:2253-4. [DOI: 10.1097/ccm.0000000000001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|