101
|
Ling B, Piatak M, Rogers L, Johnson AM, Russell-Lodrigue K, Hazuda DJ, Lifson JD, Veazey RS. Effects of treatment with suppressive combination antiretroviral drug therapy and the histone deacetylase inhibitor suberoylanilide hydroxamic acid; (SAHA) on SIV-infected Chinese rhesus macaques. PLoS One 2014; 9:e102795. [PMID: 25033210 PMCID: PMC4102539 DOI: 10.1371/journal.pone.0102795] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/23/2014] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Viral reservoirs-persistent residual virus despite combination antiretroviral therapy (cART)-remain an obstacle to cure of HIV-1 infection. Difficulty studying reservoirs in patients underscores the need for animal models that mimics HIV infected humans on cART. We studied SIV-infected Chinese-origin rhesus macaques (Ch-RM) treated with intensive combination antiretroviral therapy (cART) and 3 weeks of treatment with the histone deacetyalse inhibitor, suberoylanilide hydroxamic acid (SAHA). METHODS SIVmac251 infected Ch-RM received reverse transcriptase inhibitors PMPA and FTC and integrase inhibitor L-870812 beginning 7 weeks post infection. Integrase inhibitor L-900564 and boosted protease inhibitor treatment with Darunavir and Ritonavir were added later. cART was continued for 45 weeks, with daily SAHA administered for the last 3 weeks, followed by euthanasia/necropsy. Plasma viral RNA and cell/tissue-associated SIV gag RNA and DNA were quantified by qRT-PCR/qPCR, with flow cytometry monitoring changes in immune cell populations. RESULTS Upon cART initiation, plasma viremia declined, remaining <30 SIV RNA copy Eq/ml during cART, with occasional blips. Decreased viral replication was associated with decreased immune activation and partial restoration of intestinal CD4+ T cells. SAHA was well tolerated but did not result in demonstrable treatment-associated changes in plasma or cell associated viral parameters. CONCLUSIONS The ability to achieve and sustain virological suppression makes cART-suppressed, SIV-infected Ch-RM a potentially useful model to evaluate interventions targeting residual virus. However, despite intensive cART over one year, persistent viral DNA and RNA remained in tissues of all three animals. While well tolerated, three weeks of SAHA treatment did not demonstrably impact viral RNA levels in plasma or tissues; perhaps reflecting dosing, sampling and assay limitations.
Collapse
Affiliation(s)
- Binhua Ling
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Linda Rogers
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ann-Marie Johnson
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Kasi Russell-Lodrigue
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Daria J. Hazuda
- Merck Research Laboratories, West Point, Pennsylvania, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Ronald S. Veazey
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| |
Collapse
|
102
|
Delille CA, Pruett ST, Marconi VC, Lennox JL, Armstrong WS, Arrendale RF, Sheth AN, Easley KA, Acosta EP, Vunnava A, Ofotokun I. Effect of protein binding on unbound atazanavir and darunavir cerebrospinal fluid concentrations. J Clin Pharmacol 2014; 54:1063-71. [PMID: 24691856 DOI: 10.1002/jcph.298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/26/2014] [Indexed: 11/11/2022]
Abstract
HIV-1 protease inhibitors (PIs) exhibit different protein binding affinities and achieve variable plasma and tissue concentrations. Degree of plasma protein binding may impact central nervous system penetration. This cross-sectional study assessed cerebrospinal fluid (CSF) unbound PI concentrations, HIV-1 RNA, and neopterin levels in subjects receiving either ritonavir-boosted darunavir (DRV), 95% plasma protein bound, or atazanavir (ATV), 86% bound. Unbound PI trough concentrations were measured using rapid equilibrium dialysis and liquid chromatography/tandem mass spectrometry. Plasma and CSF HIV-1 RNA and neopterin were measured by Ampliprep/COBAS® Taqman® 2.0 assay (Roche) and enzyme-linked immunosorbent assay (ALPCO), respectively. CSF/plasma unbound drug concentration ratio was higher for ATV, 0.09 [95% confidence interval (CI) 0.06-0.12] than DRV, 0.04 (95%CI 0.03-0.06). Unbound CSF concentrations were lower than protein adjusted wild-type inhibitory concentration-50 (IC50 ) in all ATV and 1 DRV-treated subjects (P < 0.001). CSF HIV-1 RNA was detected in 2/15 ATV and 4/15 DRV subjects (P = 0.65). CSF neopterin levels were low and similar between arms. ATV relative to DRV had higher CSF/plasma unbound drug ratio. Low CSF HIV-1 RNA and neopterin suggest that both regimens resulted in CSF virologic suppression and controlled inflammation.
Collapse
Affiliation(s)
- Cecile A Delille
- Division of Infectious, Diseases Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Lau CY, Maldarelli F, Eckelman WC, Neumann RD. Rational development of radiopharmaceuticals for HIV-1. Nucl Med Biol 2014; 41:299-308. [PMID: 24607432 PMCID: PMC3954989 DOI: 10.1016/j.nucmedbio.2014.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/18/2013] [Accepted: 01/10/2014] [Indexed: 12/29/2022]
Abstract
The global battle against HIV-1 would benefit from a sensitive and specific radiopharmaceutical to localize HIV-infected cells. Ideally, this probe would be able to identify latently infected host cells containing replication competent HIV sequences. Clinical and research applications would include assessment of reservoirs, informing clinical management by facilitating assessment of burden of infection in different compartments, monitoring disease progression and monitoring response to therapy. A "rational" development approach could facilitate efficient identification of an appropriate targeted radiopharmaceutical. Rational development starts with understanding characteristics of the disease that can be effectively targeted and then engineering radiopharmaceuticals to hone in on an appropriate target, which in the case of HIV-1 (HIV) might be an HIV-specific product on or in the host cell, a differentially expressed gene product, an integrated DNA sequence specific enzymatic activity, part of the inflammatory response, or a combination of these. This is different from the current approach that starts with a radiopharmaceutical for a target associated with a disease, mostly from autopsy studies, without a strong rationale for the potential to impact patient care. At present, no targeted therapies are available for HIV latency, although a number of approaches are under study. Here we discuss requirements for a radiopharmaceutical useful in strategies targeting persistently infected cells. The radiopharmaceutical for HIV should be developed based on HIV biology, studied in an animal model and then in humans, and ultimately used in clinical and research settings.
Collapse
|
104
|
Mbonye U, Karn J. Transcriptional control of HIV latency: cellular signaling pathways, epigenetics, happenstance and the hope for a cure. Virology 2014; 454-455:328-39. [PMID: 24565118 DOI: 10.1016/j.virol.2014.02.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 01/23/2014] [Accepted: 02/07/2014] [Indexed: 02/06/2023]
Abstract
Replication-competent latent HIV-1 proviruses that persist in the genomes of a very small subset of resting memory T cells in infected individuals under life-long antiretroviral therapy present a major barrier towards viral eradication. Multiple molecular mechanisms are required to repress the viral trans-activating factor Tat and disrupt the regulatory Tat feedback circuit leading to the establishment of the latent viral reservoir. In particular, latency is due to a combination of transcriptional silencing of proviruses via host epigenetic mechanisms and restrictions on the expression of P-TEFb, an essential co-factor for Tat. Induction of latent proviruses in the presence of antiretroviral therapy is expected to enable clearance of latently infected cells by viral cytopathic effects and host antiviral immune responses. An in-depth comprehensive understanding of the molecular control of HIV-1 transcription should inform the development of optimal combinatorial reactivation strategies that are intended to purge the latent viral reservoir.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, United States.
| |
Collapse
|
105
|
Denton PW, Long JM, Wietgrefe SW, Sykes C, Spagnuolo RA, Snyder OD, Perkey K, Archin NM, Choudhary SK, Yang K, Hudgens MG, Pastan I, Haase AT, Kashuba AD, Berger EA, Margolis DM, Garcia JV. Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog 2014; 10:e1003872. [PMID: 24415939 PMCID: PMC3887103 DOI: 10.1371/journal.ppat.1003872] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/22/2013] [Indexed: 11/18/2022] Open
Abstract
Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA(+) cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.
Collapse
Affiliation(s)
- Paul W. Denton
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Julie M. Long
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Stephen W. Wietgrefe
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Craig Sykes
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Rae Ann Spagnuolo
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Olivia D. Snyder
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Katherine Perkey
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nancie M. Archin
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Shailesh K. Choudhary
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Kuo Yang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Michael G. Hudgens
- Department of Biostatistics, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ira Pastan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ashley T. Haase
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Angela D. Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Edward A. Berger
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David M. Margolis
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
106
|
High-multiplicity HIV-1 infection and neutralizing antibody evasion mediated by the macrophage-T cell virological synapse. J Virol 2013; 88:2025-34. [PMID: 24307588 DOI: 10.1128/jvi.03245-13] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophage infection is considered to play an important role in HIV-1 pathogenesis and persistence. Using a primary cell-based coculture model, we show that monocyte-derived macrophages (MDM) efficiently transmit a high-multiplicity HIV-1 infection to autologous CD4(+) T cells through a viral envelope glycoprotein (Env) receptor- and actin-dependent virological synapse (VS), facilitated by interactions between ICAM-1 and LFA-1. Virological synapse (VS)-mediated transmission by MDM results in high levels of T cell HIV-1 integration and is 1 to 2 orders of magnitude more efficient than cell-free infection. This mode of cell-to-cell transmission is broadly susceptible to the activity of CD4 binding site (CD4bs) and glycan or glycopeptide epitope-specific broadly neutralizing monoclonal antibodies (bNMAbs) but shows resistance to bNMAbs targeting the Env gp41 subunit membrane-proximal external region (MPER). These data define for the first time the structure and function of the macrophage-to-T cell VS and have important implications for bNMAb activity in HIV-1 prophylaxis and therapy. IMPORTANCE The ability of HIV-1 to move directly between contacting immune cells allows efficient viral dissemination with the potential to evade antibody attack. Here, we show that HIV-1 spreads from infected macrophages to T cells via a structure called a virological synapse that maintains extended contact between the two cell types, allowing transfer of multiple infectious events to the T cell. This process allows the virus to avoid neutralization by a class of antibody targeting the gp41 subunit of the envelope glycoproteins. These results have implications for viral spread in vivo and the specificities of neutralizing antibody elicited by antibody-based vaccines.
Collapse
|
107
|
Funderburg NT, Jiang Y, Debanne SM, Storer N, Labbato D, Clagett B, Robinson J, Lederman MM, McComsey GA. Rosuvastatin treatment reduces markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. Clin Infect Dis 2013; 58:588-95. [PMID: 24253250 DOI: 10.1093/cid/cit748] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Statins, or 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, have anti-inflammatory effects that are independent of their lipid-lowering properties. Despite suppressive antiretroviral therapy (ART), elevated levels of immune activation and inflammation often persist. METHODS The Stopping Atherosclerosis and Treating Unhealthy Bone With Rosuvastatin in HIV (SATURN-HIV) trial is a randomized, double-blind, placebo-controlled study, designed to investigate the effects of rosuvastatin (10 mg/daily) on markers of cardiovascular disease risk in ART-treated human immunodeficiency virus (HIV)-infected subjects. A preplanned analysis was to assess changes in markers of immune activation at week 24. Subjects with low-density lipoprotein cholesterol <130 mg/dL and heightened immune activation (%CD8(+)CD38(+)HLA-DR(+) ≥19%, or plasma high-sensitivity C-reactive protein ≥2 mg/L) were randomized to receive rosuvastatin or placebo. We measured plasma (soluble CD14 and CD163) and cellular markers of monocyte activation (proportions of monocyte subsets and tissue factor expression) and T-cell activation (expression of CD38, HLA-DR, and PD1). RESULTS After 24 weeks of rosuvastatin, we found significant decreases in plasma levels of soluble CD14 (-13.4% vs 1.2%, P = .002) and in proportions of tissue factor-positive patrolling (CD14(Dim)CD16(+)) monocytes (-38.8% vs -11.9%, P = .04) in rosuvastatin-treated vs placebo-treated subjects. These findings were independent of the lipid-lowering effect and the use of protease inhibitors. Rosuvastatin did not lead to any changes in levels of T-cell activation. CONCLUSIONS Rosuvastatin treatment effectively lowered markers of monocyte activation in HIV-infected subjects on antiretroviral therapy. CLINICAL TRIALS REGISTRATION NCT01218802.
Collapse
|
108
|
Zhang J, Crumpacker C. Eradication of HIV and Cure of AIDS, Now and How? Front Immunol 2013; 4:337. [PMID: 24151495 PMCID: PMC3799464 DOI: 10.3389/fimmu.2013.00337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022] Open
Abstract
Recent studies have highlighted the importance of eradication of human immunodeficiency virus (HIV) and cure of acquired immunodeficiency syndrome (AIDS). However, a pivotal point that the patient immunity controls HIV reactivation after highly active anti-retroviral therapy [HAART or combination anti-retroviral therapy (cART)] remains less well addressed. In spite of the fact that both innate and adaptive immunities are indispensable and numerous cells participate in the anti-HIV immunity, memory CD4 T-cells are indisputably the key cells organizing all immune actions against HIV while being the targets of HIV. Here we present a view and multidisciplinary approaches to HIV/AIDS eradication and cure. We aim at memory CD4 T-cells, utilizing the stem cell properties of these cells to reprogram an anti-HIV memory repertoire to eliminate the viral reservoir, toward achieving an AIDS-free world.
Collapse
Affiliation(s)
- Jielin Zhang
- Department of Medicine, Beth Israel Deaconess Medical Center , Boston, MA , USA
| | | |
Collapse
|
109
|
Lederman MM, Funderburg NT, Sekaly RP, Klatt NR, Hunt PW. Residual immune dysregulation syndrome in treated HIV infection. Adv Immunol 2013; 119:51-83. [PMID: 23886064 DOI: 10.1016/b978-0-12-407707-2.00002-3] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antiretroviral therapy has revolutionized the course of HIV infection, improving immune function and decreasing dramatically the mortality and morbidity due to the opportunistic complications of the disease. Nonetheless, even with sustained suppression of HIV replication, many HIV-infected persons experience a syndrome characterized by increased T cell activation and evidence of heightened inflammation and coagulation. This residual immune dysregulation syndrome or RIDS is more common in persons who fail to increase circulating CD4+ T cells to normal levels and in several epidemiologic studies it has been associated with increased morbidity and mortality. These morbid and fatal events are not the typical opportunistic infections and malignancies seen in the early AIDS era but rather comprise a spectrum of cardiovascular events, liver disease, metabolic disorders, kidney disease, bone disease, and a spectrum of malignant complications distinguishable from the opportunistic malignancies that characterized the earlier days of the AIDS epidemic. While immune activation, inflammation, and coagulopathy are characteristic of untreated HIV infection and improve with drug-induced control of HIV replication, the drivers of RIDS in treated HIV infection are incompletely understood. And while inflammation, immune activation, and coagulopathy are more common in treated persons who fail to restore circulating CD4+ T cells, it is not entirely clear how these two phenomena are linked.
Collapse
Affiliation(s)
- Michael M Lederman
- Division of Infectious Diseases and Center for AIDS Research, Case Western Reserve University and University Hospitals/Case Medical Center, Cleveland, Ohio, USA.
| | | | | | | | | |
Collapse
|
110
|
|
111
|
Siccardi M, Rajoli RKR, Curley P, Olagunju A, Moss D, Owen A. Physiologically based pharmacokinetic models for the optimization of antiretroviral therapy: recent progress and future perspective. Future Virol 2013. [DOI: 10.2217/fvl.13.67] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Anti-HIV therapy is characterized by the chronic administration of antiretrovirals (ARVs), and consequently, several problems can arise during the management of HIV-positive patients. ARV disposition can be simulated by combining system data describing a population of patients and in vitro drug data through physiologically based pharmacokinetic (PBPK) models, which mathematically describe absorption, distribution, metabolism and elimination. PBPK modeling can find application in the investigation of clinically relevant scenarios, while providing the opportunity for a better understanding of the mechanisms regulating drug distribution. In this review, we have analyzed the most recent applications of PBPK models for ARVs and highlighted some of the most interesting areas of use, such as drug–drug interaction, pharmacogenetics, factors regulating absorption and tissue penetration, as well as therapy optimization in special populations. The application of the PBPK modeling approach might not be limited to the investigation of hypothetical clinical issues, but could be used to inform future prospective clinical trials.
Collapse
Affiliation(s)
- Marco Siccardi
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rajith Kumar Reddy Rajoli
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Adeniyi Olagunju
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Darren Moss
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrew Owen
- Molecular & Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|