101
|
Bermudez M, Nguyen TN, Omieczynski C, Wolber G. Strategies for the discovery of biased GPCR ligands. Drug Discov Today 2019; 24:1031-1037. [PMID: 30831262 DOI: 10.1016/j.drudis.2019.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/13/2019] [Accepted: 02/25/2019] [Indexed: 02/07/2023]
Abstract
G-protein-coupled receptors (GPCRs) represent important drug targets with complex pharmacological characteristics. Biased signaling represents one important dimension, describing ligand-dependent shifts of naturally imprinted signaling profiles. Because biased GPCR modulators provide potential therapeutic benefits including higher efficiencies and reduced adverse effects, the identification of such ligands as drug candidates is highly desirable. This review aims to provide an overview of the challenges and strategies in the discovery of biased ligands. We show different approaches for biased ligand discovery in the example of G-protein-biased opioid analgesics and discuss possibilities to design biased ligands by targeting extracellular receptor regions.
Collapse
Affiliation(s)
- Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany.
| | - Trung Ngoc Nguyen
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Christian Omieczynski
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| |
Collapse
|
102
|
Lin SY, Kuo YH, Tien YW, Ke YY, Chang WT, Chang HF, Ou LC, Law PY, Xi JH, Tao PL, Loh HH, Chao YS, Shih C, Chen CT, Yeh SH, Ueng SH. The in vivo antinociceptive and μ-opioid receptor activating effects of the combination of N-phenyl-2',4'-dimethyl-4,5'-bi-1,3-thiazol-2-amines and naloxone. Eur J Med Chem 2019; 167:312-323. [PMID: 30776693 DOI: 10.1016/j.ejmech.2019.01.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/17/2019] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Morphine is widely used for the treatment of severe pain. This analgesic effect is mediated principally by the activation of μ-opioid receptors (MOR). However, prolonged activation of MOR also results in tolerance, dependence, addiction, constipation, nausea, sedation, and respiratory depression. To address this problem, we sought alternative ways to activate MOR - either by use of novel ligands, or via a novel activation mechanism. To this end, a series of compounds were screened using a sensitive CHO-K1/MOR/Gα15 cell-based FLIPR® calcium high-throughput screening (HTS) assay, and the bithiazole compound 5a was identified as being able activate MOR in combination with naloxone. Structural modifications of 5a resulted in the discovery of lead compound 5j, which could effectively activate MOR in combination with the MOR antagonist naloxone or naltrexone. In vivo, naloxone in combination with 100 mg/kg of compound 5j elicited antinociception in a mouse tail-flick model with an ED50 of 17.5 ± 4 mg/kg. These results strongly suggest that the mechanism by which the 5j/naloxone combination activates MOR is worthy of further study, as its discovery has the potential to yield an entirely novel class of analgesics.
Collapse
Affiliation(s)
- Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Yu-Hsien Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Ya-Wen Tien
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Wan-Ting Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN, 55455, USA
| | - Jing-Hua Xi
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN, 55455, USA
| | - Pao-Luh Tao
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan, ROC
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN, 55455, USA
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC; The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC.
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County, 35053, Taiwan, ROC; School of Pharmacy, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
103
|
Garcia C, Maurel-Ribes A, Nauze M, N'Guyen D, Martinez LO, Payrastre B, Sénard JM, Galés C, Pons V. Deciphering biased inverse agonism of cangrelor and ticagrelor at P2Y 12 receptor. Cell Mol Life Sci 2019; 76:561-576. [PMID: 30406277 PMCID: PMC11105710 DOI: 10.1007/s00018-018-2960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
P2Y12 receptor (P2Y12-R) is one of the major targets for drug inhibiting platelet aggregation in the treatment/prevention of arterial thrombosis. However, the clinical use of P2Y12-R antagonists faces some limitations, such as a delayed onset of action (clopidogrel) or adverse effect profile (ticagrelor, cangrelor), justifying the development of a new generation of P2Y12-R antagonists with a better clinical benefit-risk balance. Although the recent concept of biased agonism offers the possibility to alleviate undesirable adverse effects while preserving therapeutic outcomes, it has never been explored at P2Y12-R. For the first time, using highly sensitive BRET2-based probes, we accurately delineated biased ligand efficacy at P2Y12-R in living HEK293T cells on G protein activation and downstream effectors. We demonstrated that P2Y12-R displayed constitutive Gi/o-dependent signaling that is impaired by the R122C mutation, previously associated with a bleeding disorder. More importantly, we reported the biased inverse agonist efficacy of cangrelor and ticagrelor that could underlie their clinical efficacy. Our study points out that constitutive P2Y12-R signaling is a normal feature of the receptor that might be essential for platelets to respond faster to a vessel injury. From a therapeutic standpoint, our data suggest that the beneficial advantages of antiplatelet drugs might be more related to inverse agonism at P2Y12-R than to antagonism of ADP-mediated signaling. In the future, deciphering P2Y12-R constitutive activity should allow the discovery of more selective biased P2Y12-R blockers demonstrating therapeutic advantages over classical antiplatelet drugs by improving therapeutic outcomes and concomitantly relieving undesirable adverse effects.
Collapse
Affiliation(s)
- Cédric Garcia
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, 31000, Toulouse, France
| | - Agnès Maurel-Ribes
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, 31000, Toulouse, France
| | - Michel Nauze
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Du N'Guyen
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Laurent O Martinez
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Bernard Payrastre
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, 31000, Toulouse, France
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Jean-Michel Sénard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
- Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, 31000, Toulouse, France
| | - Céline Galés
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Véronique Pons
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France.
| |
Collapse
|
104
|
Abstract
BACKGROUND Opioids are the oldest and most potent drugs for the treatment of severe pain but they are burdened by detrimental side effects, such as respiratory depression, addiction potential, sedation, nausea and constipation. Their clinical application is undisputed in the treatment of acute (e.g. perioperative) and cancer pain but their long-term use in chronic pain has met increasing criticism and has contributed to the current "opioid crisis". OBJECTIVES This article reviews the pharmacological principles and new research strategies aiming at novel opioids with reduced side effects. The basic mechanisms underlying pain and opioid analgesia and other effects of opioids are outlined. To illustrate the clinical situation and medical problems, the plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic and side effects are discussed. CONCLUSION The epidemic of opioid misuse has shown that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be more intensively considered in the context of drug development and that novel analgesics with less addictive potential are urgently needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and the selective activation of peripheral opioid receptors.
Collapse
Affiliation(s)
- C Stein
- Klinik für Anästhesiologie und operative Intensivmedizin, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| |
Collapse
|
105
|
Qin Y, Ni L, Shi J, Zhu Z, Shi S, Lam AL, Magiera J, Sekar S, Kuo A, Smith MT, Li T. Synthesis and Biological Evaluation of Fentanyl Analogues Modified at Phenyl Groups with Alkyls. ACS Chem Neurosci 2019; 10:201-208. [PMID: 30179508 DOI: 10.1021/acschemneuro.8b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A series of fentanyl analogues modified at the phenyl group of the phenethyl with alkyl and/or hydroxyl and alkoxy, and the phenyl group in the anilido moiety replaced with benzyl or substituted benzyl, were synthesized. The in vitro opioid receptor functional activity of these compounds was evaluated by assessment of their ability to modulate forskolin-stimulated cAMP accumulation and by their ability to induce β-arrestin2 recruitment. Compound 12 is a potent μ-opioid (MOP) receptor agonist, a potent κ-opioid (KOP) receptor antagonist with weak β-arrestin2 recruitment activity. Compounds 10 and 11 are potent MOP receptor agonists with weak δ-opioid (DOP) receptor antagonist activity and moderate KOP receptor antagonist activity as well as weak β-arrestin2 recruitment activity at the MOP receptor. These compounds are promising leads for discovery of potent opioid analgesics with reduced side effects relative to clinically available strong opioid analgesics.
Collapse
Affiliation(s)
- Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Luofan Ni
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jiawei Shi
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Zhiying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Saijian Shi
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Ai-leen Lam
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Julia Magiera
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Sunderajhan Sekar
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T. Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
106
|
GPCR structure and function relationship: identification of a biased apelin receptor mutant. Biochem J 2018; 475:3813-3826. [PMID: 30409826 DOI: 10.1042/bcj20180740] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
Biased ligands of G protein-coupled receptors (GPCRs) may have improved therapeutic benefits and safety profiles. However, the molecular mechanism of GPCR biased signaling remains largely unknown. Using apelin receptor (APJ) as a model, we systematically investigated the potential effects of amino acid residues around the orthosteric binding site on biased signaling. We discovered that a single residue mutation I109A (I1093.32) in the transmembrane domain 3 (TM3) located in the deep ligand-binding pocket was sufficient to convert a balanced APJ into a G protein signaling biased receptor. APJ I109A mutant receptor retained full capabilities in ligand binding and G protein activation, but was defective in GRK recruitment, β-arrestin recruitment, and downstream receptor-mediated ERK activation. Based on molecular dynamics simulations, we proposed a molecular mechanism for biased signaling of I109A mutant receptor. We postulate that due to the extra space created by I109A mutation, the phenyl group of the last residue (Phe-13) of apelin rotates down and initiates a cascade of conformational changes in TM3. Phe-13 formed a new cluster of hydrophobic interactions with the sidechains of residues in TM3, including F1103.33 and M1133.36, which stabilizes the mutant receptor in a conformation favoring biased signaling. Interruption of these stabilizing interactions by double mutation F110A/I109A or M113A/I109A largely restored the β-arrestin-mediated signaling. Taken together, we describe herein the discovery of a biased APJ mutant receptor and provide detailed molecular insights into APJ signaling selectivity, facilitating the discovery of novel therapeutics targeting APJ.
Collapse
|
107
|
Machelska H, Celik MÖ. Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 2018; 9:1388. [PMID: 30555325 PMCID: PMC6282113 DOI: 10.3389/fphar.2018.01388] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
108
|
Austin Zamarripa C, Edwards SR, Qureshi HN, Yi JN, Blough BE, Freeman KB. The G-protein biased mu-opioid agonist, TRV130, produces reinforcing and antinociceptive effects that are comparable to oxycodone in rats. Drug Alcohol Depend 2018; 192:158-162. [PMID: 30261403 PMCID: PMC6223023 DOI: 10.1016/j.drugalcdep.2018.08.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 11/18/2022]
Abstract
Mu-opioid agonists (e.g., oxycodone) are highly effective therapeutics for pain. However, they also produce reinforcing effects that increase their likelihood of abuse. Recent strategies in drug development have focused on opioids with biased receptor-signaling profiles that favor activation of specific intracellular pathways over others with the aim of increasing therapeutic selectivity. TRV130, a mu agonist biased towards G-protein signaling, produces antinociceptive effects comparable to the mu agonist, morphine, but exhibits reduced side effects. However, in terms of abuse potential, we know of no published preclinical data investigating the effects of TRV130 as a reinforcer. In the present study, we assessed the relative reinforcing effects of TRV130 and oxycodone, a commonly-prescribed mu agonist, in rats self-administering the drugs under a progressive-ratio (PR) schedule of reinforcement. In addition, we assessed the relative potency and efficacy of TRV130 and oxycodone in rats in a test of thermal antinociception (Hot Plate). For self-administration, male Sprague-Dawley rats (n = 7) self-administered intravenous infusions of TRV130 or oxycodone (0.01-0.32 mg/kg/inj) under a PR schedule of reinforcement. For the Hot-Plate test, male rats (n = 7) received subcutaneous injections of TRV130 (0.1-3.2 mg/kg/inj) or oxycodone (0.1-5.6 mg/kg/inj), and nociceptive response latencies were measured. TRV130 and oxycodone were equi-potent and equi-effective in self-administration and thermal antinociception. This study demonstrates that TRV130 produces reinforcing and antinociceptive effects that are quantitatively similar to oxycodone, and that a biased-signaling profile does not necessarily reduce abuse potential.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Analgesics, Opioid/pharmacology
- Analgesics, Opioid/therapeutic use
- Animals
- Conditioning, Operant/drug effects
- Conditioning, Operant/physiology
- Dose-Response Relationship, Drug
- GTP-Binding Proteins/pharmacology
- GTP-Binding Proteins/therapeutic use
- Male
- Morphine/pharmacology
- Morphine/therapeutic use
- Oxycodone/pharmacology
- Oxycodone/therapeutic use
- Pain/drug therapy
- Pain/psychology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Reinforcement, Psychology
- Spiro Compounds/therapeutic use
- Thiophenes/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- C Austin Zamarripa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| | - Shelley R Edwards
- Department of Psychology and Neuroscience, Millsaps College, Jackson, MS, 39210, USA
| | - Hina N Qureshi
- Department of Psychology and Neuroscience, Millsaps College, Jackson, MS, 39210, USA
| | - John N Yi
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Bruce E Blough
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, 27709, USA
| | - Kevin B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| |
Collapse
|
109
|
Calo G, Lambert DG. Nociceptin/orphanin FQ receptor ligands and translational challenges: focus on cebranopadol as an innovative analgesic. Br J Anaesth 2018; 121:1105-1114. [PMID: 30336855 PMCID: PMC6208290 DOI: 10.1016/j.bja.2018.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
Opioids are characterised as classical (mu, delta, and kappa) along with the non-classical nociceptin/orphanin FQ (N/OFQ) receptor or NOP. Targeting NOP has therapeutic indications in control of the cardiovascular and respiratory systems and micturition, and a profile as an antidepressant. For all of these indications, there are translational human data. Opioids such as morphine and fentanyl (activating the mu receptor) are the mainstay of pain treatment in the perioperative period, despite a challenging side-effect profile. Opioids in general have poor efficacy in neuropathic pain. Moreover, longer term use is associated with tolerance. There is good evidence interactions between opioid receptors, and receptor co-activation can reduce side-effects without compromising analgesia; this is particularly true for mu and NOP co-activation. Recent pharmaceutical development has produced a mixed opioid/NOP agonist, cebranopadol. This new chemical entity is effective in animal models of nociceptive and neuropathic pain with greater efficacy in the latter. In animal models, there is little evidence for respiratory depression, and tolerance (compared with morphine) only develops after long treatment periods. There is now early phase clinical development in diabetic neuropathy, cancer pain, and low back pain where cebranopadol displays significant efficacy. In 1996, N/OFQ was formally identified with an innovative analgesic profile. Approximately 20 yr later, cebranopadol as a clinical ligand is advancing through the human trials process.
Collapse
Affiliation(s)
- G Calo
- Section of Pharmacology, Department of Medical Sciences, National Institute of Neurosciences, University of Ferrara, Ferrara, Italy.
| | - D G Lambert
- Department of Cardiovascular Sciences, University of Leicester, Anaesthesia, Critical Care and Pain Management, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
110
|
Araldi D, Ferrari LF, Levine JD. Mu-opioid Receptor (MOR) Biased Agonists Induce Biphasic Dose-dependent Hyperalgesia and Analgesia, and Hyperalgesic Priming in the Rat. Neuroscience 2018; 394:60-71. [PMID: 30342200 DOI: 10.1016/j.neuroscience.2018.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023]
Abstract
Stimulation of the mu-opioid receptor (MOR) on nociceptors with fentanyl can produce hyperalgesia (opioid-induced hyperalgesia, OIH) and hyperalgesic priming, a model of transition to chronic pain. We investigated if local and systemic administration of biased MOR agonists (PZM21 and TRV130 [oliceridine]), which preferentially activate G-protein over β-arrestin translocation, and have been reported to minimize some opioid side effects, also produces OIH and priming. Injected intradermally (100 ng), both biased agonists induced mechanical hyperalgesia and, when injected at the same site, 5 days later, prostaglandin E2 (PGE2) produced prolonged hyperalgesia (priming). OIH and priming were both prevented by intrathecal treatment with an oligodeoxynucleotide (ODN) antisense (AS) for MOR mRNA. Agents that reverse Type I (the protein translation inhibitor cordycepin) and Type II (combination of Src and mitogen-activated protein kinase [MAPK] inhibitors) priming, or their combination, did not reverse priming induced by local administration of PZM21 or TRV130. While systemic PZM21 at higher doses (1 and 10 mg/kg) induced analgesia, lower doses (0.001, 0.01, 0.1, and 0.3 mg/kg) induced hyperalgesia; all doses induced priming. Hyperalgesia, analgesia and priming induced by systemic administration of PZM21 were also prevented by MOR AS-ODN. And, priming induced by systemic PZM21 was also not reversed by intradermal cordycepin or the combination of Src and MAPK inhibitors. Thus, maintenance of priming induced by biased MOR agonists, in the peripheral terminal of nociceptors, has a novel mechanism.
Collapse
Affiliation(s)
- Dionéia Araldi
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Luiz F Ferrari
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Jon D Levine
- Departments of Medicine and Oral Surgery, and Division of Neuroscience, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
111
|
Ali A, Arif AW, Bhan C, Kumar D, Malik MB, Sayyed Z, Akhtar KH, Ahmad MQ. Managing Chronic Pain in the Elderly: An Overview of the Recent Therapeutic Advancements. Cureus 2018; 10:e3293. [PMID: 30443463 PMCID: PMC6235641 DOI: 10.7759/cureus.3293] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A majority of the elderly suffer from chronic pain that significantly alters their daily activities and imposes an enormous burden on health care. Multiple comorbidities and the risk of polypharmacy in the elderly make it a challenge to determine the appropriate drug, dosage, and maintenance of therapy. Opioids are the most commonly used agents for this purpose in the elderly. The aim of this article is to discuss both the current well-established therapies used for managing chronic pain in the elderly and also the emerging newer therapies.
Collapse
Affiliation(s)
- Asad Ali
- Medicine, CMH Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | | | - Chandur Bhan
- Internal Medicine, Chandka Medical College Hospital, Larkana, PAK
| | - Deepak Kumar
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Zohaib Sayyed
- Pediatrics, Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Bahawalpur, PAK
| | | | | |
Collapse
|
112
|
Abstract
INTRODUCTION Opioids are the oldest and most potent drugs for the treatment of severe pain, but they are burdened by detrimental side effects such as respiratory depression, addiction, sedation, nausea, and constipation. Their clinical application is undisputed in acute (e.g. perioperative) and cancer pain, but their long-term use in chronic pain has met increasing scrutiny and has contributed to the current 'opioid crisis.' AREAS COVERED This article reviews pharmacological principles and research strategies aiming at novel opioids with reduced side effects. Basic mechanisms underlying pain, opioid analgesia, and other opioid actions are outlined. To illustrate the clinical situation and medical needs, plasticity of opioid receptors, intracellular signaling pathways, endogenous and exogenous opioid receptor ligands, central and peripheral sites of analgesic, and side effects are discussed. EXPERT OPINION The epidemic of opioid misuse has taught us that there is a lack of fundamental knowledge about the characteristics and management of chronic pain, that conflicts of interest and validity of models must be considered in the context of drug development, and that novel analgesics with less abuse liability are badly needed. Currently, the most promising perspectives appear to be augmenting endogenous opioid actions and selectively targeting pathological conformations of peripheral opioid receptors.
Collapse
Affiliation(s)
- Christoph Stein
- a Department of Anesthesiology and Intensive Care Medicine Campus Benjamin Franklin , Charité Universitätsmedizin , Berlin , Germany
| |
Collapse
|
113
|
Ding H, Kiguchi N, Yasuda D, Daga PR, Polgar WE, Lu JJ, Czoty PW, Kishioka S, Zaveri NT, Ko MC. A bifunctional nociceptin and mu opioid receptor agonist is analgesic without opioid side effects in nonhuman primates. Sci Transl Med 2018; 10:eaar3483. [PMID: 30158150 PMCID: PMC6295194 DOI: 10.1126/scitranslmed.aar3483] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/07/2018] [Accepted: 08/09/2018] [Indexed: 11/02/2022]
Abstract
Misuse of prescription opioids, opioid addiction, and overdose underscore the urgent need for developing addiction-free effective medications for treating severe pain. Mu opioid peptide (MOP) receptor agonists provide very effective pain relief. However, severe side effects limit their use in the clinical setting. Agonists of the nociceptin/orphanin FQ peptide (NOP) receptor have been shown to modulate the antinociceptive and reinforcing effects of MOP agonists. We report the discovery and development of a bifunctional NOP/MOP receptor agonist, AT-121, which has partial agonist activity at both NOP and MOP receptors. AT-121 suppressed oxycodone's reinforcing effects and exerted morphine-like analgesic effects in nonhuman primates. AT-121 treatment did not induce side effects commonly associated with opioids, such as respiratory depression, abuse potential, opioid-induced hyperalgesia, and physical dependence. Our results in nonhuman primates suggest that bifunctional NOP/MOP agonists with the appropriate balance of NOP and MOP agonist activity may provide a dual therapeutic action for safe and effective pain relief and treating prescription opioid abuse.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Norikazu Kiguchi
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | | | | | | | - James J Lu
- Astraea Therapeutics, Mountain View, CA 94043, USA
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Shiroh Kishioka
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | | | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
- W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
114
|
Kaye AD, Cornett EM, Patil SS, Gennuso SA, Colontonio MM, Latimer DR, Kaye AJ, Urman RD, Vadivelu N. New opioid receptor modulators and agonists. Best Pract Res Clin Anaesthesiol 2018; 32:125-136. [PMID: 30322454 DOI: 10.1016/j.bpa.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023]
Abstract
There has been significant research to develop an ideal synthetic opioid. Opioids with variable properties possessing efficacy and with reduced side effects have been synthesized when compared to previously used agents. An opioid modulator is a drug that can produce both agonistic and antagonistic effects by binding to different opioid receptors and therefore cannot be classified as one or the other alone. These compounds can differ in their structures while still possessing opioid-mediated actions. This review will discuss TRV130 receptor modulators and other novel opioid receptor modulators, including Mitragyna "Kratom," Ignavine, Salvinorin-A, DPI-289, UFP-505, LP1, SKF-10,047, Cebranopadol, Naltrexone-14-O-sulfate, and Naloxegol. In summary, the structural elucidation of opioid receptors, allosteric modulation of opioid receptors, new opioid modulators and agonists, the employment of optogenetics, optopharmacology, and next-generation sequencing of opioid receptor genes and related functionality should create exciting new avenues for research and therapeutic development to treat conditions including pain, opioid abuse, and addiction.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, LSU Health Sciences Center, Room 656, 1542 Tulane Ave., New Orleans, LA, 70112, USA.
| | - Elyse M Cornett
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Shilpa S Patil
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Sonja A Gennuso
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Matthew M Colontonio
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Dustin R Latimer
- Department of Anesthesiology, LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| | - Aaron J Kaye
- Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA.
| | - Nalini Vadivelu
- Department of Anesthesiology, Yale School of Medicine, 333 Cedar Street, TMP 3, PO Box 208051, New Haven, CT, 06520, USA.
| |
Collapse
|
115
|
Günther T, Dasgupta P, Mann A, Miess E, Kliewer A, Fritzwanker S, Steinborn R, Schulz S. Targeting multiple opioid receptors - improved analgesics with reduced side effects? Br J Pharmacol 2018; 175:2857-2868. [PMID: 28378462 PMCID: PMC6016677 DOI: 10.1111/bph.13809] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/15/2017] [Indexed: 01/12/2023] Open
Abstract
Classical opioid analgesics, including morphine, mediate all of their desired and undesired effects by specific activation of the μ-opioid receptor (μ receptor). The use of morphine for treating chronic pain, however, is limited by the development of constipation, respiratory depression, tolerance and dependence. Analgesic effects can also be mediated through other members of the opioid receptor family such as the κ-opioid receptor (κ receptor), δ-opioid receptor (δ receptor) and the nociceptin/orphanin FQ peptide receptor (NOP receptor). Currently, a new generation of opioid analgesics is being developed that can simultaneously bind with high affinity to multiple opioid receptors. With this new action profile, it is hoped that additional analgesic effects and fewer side effects can be achieved. Recent research is mainly focused on the development of bifunctional μ/NOP receptor agonists, which has already led to novel lead structures such as the spiroindole-based cebranopadol and a compound class with a piperidin-4-yl-1,3-dihydroindol-2-one backbone (SR16835/AT-202 and SR14150/AT-200). In addition, the ornivol BU08028 is an analogue of the clinically well-established buprenorphine. Moreover, the morphinan-based nalfurafine exerts its effect with a dominant κ receptor-component and is therefore utilized in the treatment of pruritus. The very potent dihydroetorphine is a true multi-receptor opioid ligand in that it binds to μ, κ and δ receptors. The main focus of this review is to assess the paradigm of opioid ligands targeting multiple receptors with a single chemical entity. We reflect on this rationale by discussing the biological actions of particular multi-opioid receptor ligands, but not on their medicinal chemistry and design. LINKED ARTICLES This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Pooja Dasgupta
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Anika Mann
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Elke Miess
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Andrea Kliewer
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Sebastian Fritzwanker
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Ralph Steinborn
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| | - Stefan Schulz
- Institute of Pharmacology and ToxicologyJena University Hospital, Friedrich‐Schiller‐UniversityJenaGermany
| |
Collapse
|
116
|
Camilleri M. Toward an effective peripheral visceral analgesic: responding to the national opioid crisis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G637-G646. [PMID: 29470146 PMCID: PMC6032061 DOI: 10.1152/ajpgi.00013.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This minireiew summarizes recent new developments in visceral analgesics. This promising field is important, as a new approach to address abdominal pain with peripheral visceral analgesics is considered a key approach to addressing the current opioid crisis. Some of the novel compounds address peripheral pain mechanisms through modulation of opioid receptors via biased ligands, nociceptin/orphanin FQ opioid peptide (NOP) receptor, or dual action on NOP and μ-opioid receptor, buprenorphine and morphiceptin analogs. Other compounds target nonopioid mechanisms, including cannabinoid (CB2), N-methyl-d-aspartate, calcitonin gene-related peptide, estrogen, and adenosine A2B receptors and transient receptor potential (TRP) channels (TRPV1, TRPV4, and TRPM8). Although current evidence is based predominantly on animal models of visceral pain, early human studies also support the evidence from the basic and animal research. This augurs well for the development of nonaddictive, visceral analgesics for treatment of chronic abdominal pain, an unmet clinical need.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research Center, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
117
|
Frontiers in Opioid Pharmacology. Anesthesiology 2018; 128:865-866. [DOI: 10.1097/aln.0000000000002193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
118
|
Hall DA, Giraldo J. A method for the quantification of biased signalling at constitutively active receptors. Br J Pharmacol 2018; 175:2046-2062. [PMID: 29498414 DOI: 10.1111/bph.14190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/15/2018] [Accepted: 02/20/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Biased agonism, the ability of an agonist to differentially activate one of several signal transduction pathways when acting at a given receptor, is an increasingly recognized phenomenon at many receptors. The Black and Leff operational model lacks a way to describe constitutive receptor activity and hence inverse agonism. Thus, it is impossible to analyse the biased signalling of inverse agonists using this model. In this theoretical work, we develop and illustrate methods for the analysis of biased inverse agonism. EXPERIMENTAL APPROACH Methods were derived for quantifying biased signalling in systems that demonstrate constitutive activity using the modified operational model proposed by Slack and Hall. The methods were illustrated using Monte Carlo simulations. KEY RESULTS The Monte Carlo simulations demonstrated that, with an appropriate experimental design, the model parameters are 'identifiable'. The method is consistent with methods based on the measurement of intrinsic relative activity (RAi ) (ΔΔlogR or ΔΔlog(τ/Ka )) proposed by Ehlert and Kenakin and their co-workers but has some advantages. In particular, it allows the quantification of ligand bias independently of 'system bias' removing the requirement to normalize to a standard ligand. CONCLUSIONS AND IMPLICATIONS In systems with constitutive activity, the Slack and Hall model provides methods for quantifying the absolute bias of agonists and inverse agonists. This provides an alternative to methods based on RAi and is complementary to the ΔΔlog(τ/Ka ) method of Kenakin et al. in systems where use of that method is inappropriate due to the presence of constitutive activity.
Collapse
Affiliation(s)
- David A Hall
- Fibrosis and Lung Injury DPU, GlaxoSmithKline, Stevenage, UK
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Bellaterra, Spain
| |
Collapse
|
119
|
Weïwer M, Xu Q, Gale JP, Lewis M, Campbell AJ, Schroeder FA, Van de Bittner GC, Walk M, Amaya A, Su P, D Ordevic L, Sacher JR, Skepner A, Fei D, Dennehy K, Nguyen S, Faloon PW, Perez J, Cottrell JR, Liu F, Palmer M, Pan JQ, Hooker JM, Zhang YL, Scolnick E, Wagner FF, Holson EB. Functionally Biased D2R Antagonists: Targeting the β-Arrestin Pathway to Improve Antipsychotic Treatment. ACS Chem Biol 2018; 13:1038-1047. [PMID: 29485852 DOI: 10.1021/acschembio.8b00168] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Schizophrenia is a severe neuropsychiatric disease that lacks completely effective and safe therapies. As a polygenic disorder, genetic studies have only started to shed light on its complex etiology. To date, the positive symptoms of schizophrenia are well-managed by antipsychotic drugs, which primarily target the dopamine D2 receptor (D2R). However, these antipsychotics are often accompanied by severe side effects, including motoric symptoms. At D2R, antipsychotic drugs antagonize both G-protein dependent (Gαi/o) signaling and G-protein independent (β-arrestin) signaling. However, the relevant contributions of the distinct D2R signaling pathways to antipsychotic efficacy and on-target side effects (motoric) are still incompletely understood. Recent evidence from mouse genetic and pharmacological studies point to β-arrestin signaling as the major driver of antipsychotic efficacy and suggest that a β-arrestin biased D2R antagonist could achieve an additional level of selectivity at D2R, increasing the therapeutic index of next generation antipsychotics. Here, we characterize BRD5814, a highly brain penetrant β-arrestin biased D2R antagonist. BRD5814 demonstrated good target engagement via PET imaging, achieving efficacy in an amphetamine-induced hyperlocomotion mouse model with strongly reduced motoric side effects in a rotarod performance test. This proof of concept study opens the possibility for the development of a new generation of pathway selective antipsychotics at D2R with reduced side effect profiles for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Michel Weïwer
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Qihong Xu
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jennifer P Gale
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Michael Lewis
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Frederick A Schroeder
- Department of Radiology, MGH , Athinoula A. Martinos Center for Biomedical Imaging , Charlestown , Massachusetts 02129 , United States
| | - Genevieve C Van de Bittner
- Department of Radiology, MGH , Athinoula A. Martinos Center for Biomedical Imaging , Charlestown , Massachusetts 02129 , United States
| | - Michelle Walk
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Aldo Amaya
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , University of Toronto , Toronto , Ontario M5T1R8 , Canada
| | - Luka D Ordevic
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Joshua R Sacher
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Adam Skepner
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - David Fei
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Kelly Dennehy
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Shannon Nguyen
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Patrick W Faloon
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jose Perez
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health , University of Toronto , Toronto , Ontario M5T1R8 , Canada
| | - Michelle Palmer
- Center for the Development of Therapeutics , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jen Q Pan
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Jacob M Hooker
- Department of Radiology, MGH , Athinoula A. Martinos Center for Biomedical Imaging , Charlestown , Massachusetts 02129 , United States
| | - Yan-Ling Zhang
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Edward Scolnick
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Florence F Wagner
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| | - Edward B Holson
- Stanley Center for Psychiatric Research , Broad Institute of MIT and Harvard , Cambridge , Massachusetts 02142 , United States
| |
Collapse
|
120
|
Wang W, Qiao Y, Li Z. New Insights into Modes of GPCR Activation. Trends Pharmacol Sci 2018; 39:367-386. [DOI: 10.1016/j.tips.2018.01.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
|
121
|
Michel MC, Charlton SJ. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol Pharmacol 2018; 93:259-265. [PMID: 29326242 DOI: 10.1124/mol.117.110890] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
A single receptor can activate multiple signaling pathways that have distinct or even opposite effects on cell function. Biased agonists stabilize receptor conformations preferentially stimulating one of these pathways, and therefore allow a more targeted modulation of cell function and treatment of disease. Dedicated development of biased agonists has led to promising drug candidates in clinical development, such as the G protein-biased µ opioid receptor agonist oliceridine. However, leveraging the theoretical potential of biased agonism for drug discovery faces several challenges. Some of these challenges are technical, such as techniques for quantitative analysis of bias and development of suitable screening assays; others are more fundamental, such as the need to robustly identify in a very early phase which cell type harbors the cellular target of the drug candidate, which signaling pathway leads to the desired therapeutic effect, and how these pathways may be modulated in the disease to be treated. We conclude that biased agonism has potential mainly in the treatment of conditions with a well-understood pathophysiology; in contrast, it may increase effort and commercial risk under circumstances where the pathophysiology has been less well defined, as is the case with many highly innovative treatments.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
122
|
Ok HG, Kim SY, Lee SJ, Kim TK, Huh BK, Kim KH. Can oliceridine (TRV130), an ideal novel µ receptor G protein pathway selective (µ-GPS) modulator, provide analgesia without opioid-related adverse reactions? Korean J Pain 2018; 31:73-79. [PMID: 29686804 PMCID: PMC5904350 DOI: 10.3344/kjp.2018.31.2.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 01/19/2023] Open
Abstract
All drugs have both favorable therapeutic and untoward adverse effects. Conventional opioid analgesics possess both analgesia and adverse reactions, such as nausea, vomiting, and respiratory depression. The opioid ligand binds to µ opioid receptor and non-selectively activates two intracellular signaling pathways: the G protein pathway induce analgesia, while the β-arrestin pathway is responsible for the opioid-related adverse reactions. An ideal opioid should activate the G protein pathway while deactivating the β-arrestin pathway. Oliceridine (TRV130) has a novel characteristic mechanism on the action of the µ receptor G protein pathway selective (µ-GPS) modulation. Even though adverse reactions (ADRs) are significantly attenuated, while the analgesic effect is augmented, the some residual ADRs persist. Consequently, a G protein biased µ opioid ligand, oliceridine, improves the therapeutic index owing to increased analgesia with decreased adverse events. This review article provides a brief history, mechanism of action, pharmacokinetics, pharmacodynamics, and ADRs of oliceridine.
Collapse
Affiliation(s)
- Hwoe Gyeong Ok
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Su Young Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Su Jung Lee
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Tae Kyun Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| | - Billy K Huh
- Department of Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Kyung Hoon Kim
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
123
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
124
|
Insights from molecular dynamics simulations to exploit new trends for the development of improved opioid drugs. Neurosci Lett 2018; 700:50-55. [PMID: 29466721 DOI: 10.1016/j.neulet.2018.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023]
Abstract
Having accidental deaths from opioid overdoses almost quadrupled over the past fifteen years, there is a strong need to develop new, non-addictive medications for chronic pain to stop one of the deadliest epidemics in American history. Given their potentially fewer on-target overdosing risks and other adverse effects compared to classical opioid drugs, attention has recently shifted to opioid allosteric modulators and G protein-biased opioid agonists as likely drug candidates to prevent and/or reverse opioid overdoses. Understanding how these molecules bind and activate their receptors at an atomistic level is key to developing them into effective new therapeutics, and molecular dynamics-based strategies are contributing tremendously to this understanding.
Collapse
|
125
|
Fossler MJ, Sadler BM, Farrell C, Burt DA, Pitsiu M, Skobieranda F, Soergel DG. Oliceridine (TRV130), a Novel G Protein-Biased Ligand at the μ-Opioid Receptor, Demonstrates a Predictable Relationship Between Plasma Concentrations and Pain Relief. I: Development of a Pharmacokinetic/Pharmacodynamic Model. J Clin Pharmacol 2018; 58:750-761. [PMID: 29412458 DOI: 10.1002/jcph.1076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/06/2017] [Indexed: 11/11/2022]
Abstract
Conventional opioids bind to μ-opioid receptors and activate 2 downstream signaling pathways: G-protein coupling, linked to analgesia, and β-arrestin recruitment, linked to opioid-related adverse effects and limiting efficacy. Oliceridine (TRV130) is a novel G protein-biased ligand at the μ-opioid receptor that differentially activates G-protein coupling while mitigating β-arrestin recruitment. Using data derived from both phase 1 studies in healthy volunteers as well as data from a phase 2 study examining the efficacy of oliceridine for the treatment of postbunionectomy pain, we have developed a population pharmacokinetic/pharmacodynamic model linking the pharmacokinetics of oliceridine to its effect on pain, as measured by the Numeric Pain Rating Scale score. Phase 1 data consisted of 145 subjects (88% male, 12% female), who received single doses of oliceridine ranging between 0.15 and 7 mg, as well as multiple doses ranging from 0.4 to 4.5 mg every 4-6 hours. Sixteen of these subjects were CYP2D6 poor metabolizers, who have lower oliceridine clearance than extensive metabolizers. Approximately 265 subjects (10% male, 90% female) came from the phase 2 study, in which they received active doses ranging from 0.5 to 4 mg every 3-4 hours. The final model was a 3-compartment model that included covariates of body weight, sex, and CYP2D6 status. The PD model was an indirect response model linked to plasma oliceridine concentrations and included the placebo pain response over the 48-hour treatment period. The EC50 for oliceridine on pain relief was estimated as 10.1 ng/mL (95%CI, 8.4-12.1 ng/mL). Model qualification showed that the model robustly reproduced the original data.
Collapse
|
126
|
Jones B, Bloom SR, Buenaventura T, Tomas A, Rutter GA. Control of insulin secretion by GLP-1. Peptides 2018; 100:75-84. [PMID: 29412835 DOI: 10.1016/j.peptides.2017.12.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/12/2022]
Abstract
Stimulation of insulin secretion by glucagon-like peptide-1 (GLP-1) and other gut-derived peptides is central to the incretin response to ingesting nutriments. Analogues of GLP-1, and inhibitors of its breakdown, have found widespread clinical use for the treatment of type 2 diabetes (T2D) and obesity. The release of these peptides underlies the improvements in glycaemic control and disease remission after bariatric surgery. Given therapeutically, GLP-1 analogues can lead to side effects including nausea, which limit dosage. Greater understanding of the interactions between the GLP-1 receptor (GLP-1R) and both the endogenous and artificial ligands therefore holds promise to provide more efficacious compounds. Here, we discuss recent findings concerning the signalling and trafficking of the GLP-1R in pancreatic beta cells. Leveraging "bias" at the receptor towards cAMP generation versus the recruitment of β-arrestins and extracellular signal-regulated kinases (ERK1/2) activation may allow the development of new analogues with significantly improved clinical efficacy. We describe how, unexpectedly, relatively low-affinity agonists, which prompt less receptor internalisation than the parent compound, provoke greater insulin secretion and consequent improvements in glycaemia.
Collapse
Affiliation(s)
- Ben Jones
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Stephen R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Teresa Buenaventura
- Section of Cell Biology and Functional Genomics & Imperial Consortium for Islet Biology and Diabetes, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics & Imperial Consortium for Islet Biology and Diabetes, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics & Imperial Consortium for Islet Biology and Diabetes, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
127
|
Schachtel B, Aspley S, Shephard A, Schachtel E, Lorton MB, Shea T. Onset of analgesia by a topically administered flurbiprofen lozenge: a randomised controlled trial using the double stopwatch method. Br J Pain 2018; 12:208-216. [PMID: 30349694 DOI: 10.1177/2049463718756152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background The double stopwatch (DSW) method for determining the onset of analgesic activity has been implemented extensively by investigators studying orally administered drugs. Objective The aim of this randomised, placebo-controlled trial was to use the DSW method to determine the time to onset of analgesia of a single dose of a topically administered non-steroidal anti-inflammatory drug, flurbiprofen 8.75 mg lozenge. Methods Adults with acute sore throat (n = 122) were examined to confirm the presence of tonsillopharyngitis (Tonsillo-Pharyngitis Assessment) and sore throat pain of at least moderate intensity (≥6 on a 0-10 Sore Throat Scale). Lozenges containing flurbiprofen 8.75 mg or inert ingredients (identically flavoured) were administered under double-blind conditions in the clinic while patients assessed pain and pain relief over 3 hours. Onset of analgesia was determined using the DSW method and reported as the Kaplan-Meier median time to meaningful relief. The median time to first perceived relief was also documented. Results About 78% of flurbiprofen-treated patients reported meaningful pain relief compared with 48% of placebo-treated patients (p < 0.01); median time to meaningful relief for flurbiprofen-treated patients was 43 minutes (placebo-treated patients were right-censored due to non-responsivity; p = 0.01). Median time to first perceived pain relief was 11 minutes for flurbiprofen-treated patients and 19 minutes for placebo-treated patients (p = 0.03). Flurbiprofen lozenge was well tolerated, with no serious adverse events occurring and no patient discontinuing due to an adverse event. Conclusion These results indicate that the DSW method can be successfully applied to the evaluation of the onset of action of a locally administered analgesic in patients with acute sore throat, demonstrating that the onset of action (time to meaningful pain relief) of flurbiprofen lozenge was <45 minutes.
Collapse
Affiliation(s)
- Bernard Schachtel
- Schachtel Research Company, Inc., Jupiter, FL, USA.,Yale School of Public Health, New Haven, CT, USA
| | - Sue Aspley
- Reckitt Benckiser Healthcare Ltd, Slough, UK
| | | | | | | | - Tim Shea
- Reckitt Benckiser, Parsippany, NJ, USA
| |
Collapse
|
128
|
Affiliation(s)
- Phil Skolnick
- Opiant Pharmaceuticals, Santa Monica, California 09401, USA
| |
Collapse
|
129
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
130
|
Abstract
Opioids are the most effective drugs for the treatment of severe pain, but they also cause addiction and overdose deaths, which have led to a worldwide opioid crisis. Therefore, the development of safer opioids is urgently needed. In this article, we provide a critical overview of emerging opioid-based strategies aimed at effective pain relief and improved side effect profiles. These approaches comprise biased agonism, the targeting of (i) opioid receptors in peripheral inflamed tissue (by reducing agonist access to the brain, the use of nanocarriers, or low pH-sensitive agonists); (ii) heteromers or multiple receptors (by monovalent, bivalent, and multifunctional ligands); (iii) receptor splice variants; and (iv) endogenous opioid peptides (by preventing their degradation or enhancing their production by gene transfer). Substantial advancements are underscored by pharmaceutical development of new opioids such as peripheral κ-receptor agonists, and by treatments augmenting the action of endogenous opioids, which have entered clinical trials. Additionally, there are several promising novel opioids comprehensively examined in preclinical studies, but also strategies such as biased agonism, which might require careful rethinking.
Collapse
Affiliation(s)
- Halina Machelska
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melih Ö Celik
- Department of Experimental Anesthesiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
131
|
Cheng JX, Cheng T, Li WH, Liu GX, Zhu WL, Tang Y. Computational insights into the G-protein-biased activation and inactivation mechanisms of the μ opioid receptor. Acta Pharmacol Sin 2018; 39:154-164. [PMID: 29188799 DOI: 10.1038/aps.2017.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022]
Abstract
The μ opioid receptor (OR), a member of the class A subfamily of G-protein coupled receptors (GPCRs), is a major target for the treatment of pain. G-protein biased μ-OR agonists promise to be developed as analgesics. Thus, TRV130, the first representative μ-OR ligand with G-protein bias, has entered into phase III clinical trials. To identify the detailed G-protein-biased activation and inactivation mechanisms of the μ-OR, we constructed five μ-OR systems that were in complexes with the G-protein-biased agonists TRV130 and BU72, the antagonists β-FNA and naltrexone, as well as the free receptor. We performed a series of conventional molecular dynamics simulations and analyses of G-protein-biased activation and inactivation mechanisms of μ-OR. Our results, together with previously reported mutation results, revealed the operating mode of the activation switch composed of residues W6.48 and Y7.43 (Ballesteros/Weinstein numbering), the activity of which was responsible for down- and up-regulation, respectively, of the β-arrestin signaling, which in turn affected G-protein-biased activation of μ-OR. TRV130 was found to stabilize W6.48 by interacting with Y7.43. In addition, we obtained useful information regarding μ-OR-biased activation, such as strong stabilization of W7.35 through a hydrophobic ring interaction in the TRV130 system. These findings may facilitate understanding of μ-OR biased activation and the design of new biased ligands for GPCRs.
Collapse
|
132
|
Noble F, Marie N. Management of Opioid Addiction With Opioid Substitution Treatments: Beyond Methadone and Buprenorphine. Front Psychiatry 2018; 9:742. [PMID: 30713510 PMCID: PMC6345716 DOI: 10.3389/fpsyt.2018.00742] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
With the opioid crisis in North America, opioid addiction has come in the spotlight and reveals the weakness of the current treatments. Two main opioid substitution therapies (OST) exist: buprenorphine and methadone. These two molecules are mu opioid receptor agonists but with different pharmacodynamic and pharmacokinetic properties. In this review, we will go through these properties and see how they could explain why these medications are recognized for their efficacy in treating opioid addiction but also if they could account for the side effects especially for a long-term use. From this critical analysis, we will try to delineate some guidelines for the design of future OST.
Collapse
Affiliation(s)
- Florence Noble
- CNRS ERL 3649, "Neuroplasticité et thérapies des addictions", Paris, France.,INSERM UMR-S 1124, Paris, France.,Centre Universitaire des Saints Pères, Université Paris Descartes, Paris, France
| | - Nicolas Marie
- CNRS ERL 3649, "Neuroplasticité et thérapies des addictions", Paris, France.,INSERM UMR-S 1124, Paris, France.,Centre Universitaire des Saints Pères, Université Paris Descartes, Paris, France
| |
Collapse
|
133
|
|
134
|
Li X, He W, Chen Y, Yang G, Wan H, Zhang L, Hu Q, Feng J, Zhang Z, He F, Bai C, Zhang L, You L, Tao W. Discovery of SHR9352: A Highly Potent G Protein-Biased μ-Opioid Receptor Agonist. ACS OMEGA 2017; 2:9261-9267. [PMID: 31457439 PMCID: PMC6645658 DOI: 10.1021/acsomega.7b01452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/18/2017] [Indexed: 06/10/2023]
Abstract
Recently, targeting the G protein-biased signaling has emerged as an attractive therapeutic strategy for treating severe acute pain with the potential to reduce the side effect of the traditional opioid drug. Herein, we describe the discovery of a highly potent G protein-biased μ-opioid receptor (MOR) agonist, SHR9352. This novel molecule exhibited excellent MOR activity and limited β-arrestin recruitment, as well as a high selectivity over κ-opioid receptor and δ-opioid receptor demonstrated robust in vivo efficacy and displayed favorable pharmacokinetic properties across species.
Collapse
Affiliation(s)
- Xin Li
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Wei He
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Yang Chen
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Guimei Yang
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Hong Wan
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Lei Zhang
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Qiyue Hu
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Jun Feng
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Zhigao Zhang
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Feng He
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Chang Bai
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| | - Lianshan Zhang
- Jiangsu
Hengrui Medicine Co., Ltd., Lianyungang, Jiangsu 222047, China
| | - Li You
- Department
of Anaesthesiology, Fudan University Shanghai
Cancer Center, 270 Dongan
Road, Shanghai 200032, China
| | - Weikang Tao
- Shanghai
Hengrui Pharmaceutical Co., Ltd., 279 Wenjing Road, Shanghai 200245, China
| |
Collapse
|
135
|
Imam MZ, Kuo A, Ghassabian S, Smith MT. Progress in understanding mechanisms of opioid-induced gastrointestinal adverse effects and respiratory depression. Neuropharmacology 2017; 131:238-255. [PMID: 29273520 DOI: 10.1016/j.neuropharm.2017.12.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Opioids evoke analgesia through activation of opioid receptors (predominantly the μ opioid receptor) in the central nervous system. Opioid receptors are abundant in multiple regions of the central nervous system and the peripheral nervous system including enteric neurons. Opioid-related adverse effects such as constipation, nausea, and vomiting pose challenges for compliance and continuation of the therapy for chronic pain management. In the post-operative setting opioid-induced depression of respiration can be fatal. These critical limitations warrant a better understanding of their underpinning cellular and molecular mechanisms to inform the design of novel opioid analgesic molecules that are devoid of these unwanted side-effects. Research efforts on opioid receptor signalling in the past decade suggest that differential signalling pathways and downstream molecules preferentially mediate distinct pharmacological effects. Additionally, interaction among opioid receptors and, between opioid receptor and non-opioid receptors to form signalling complexes shows that opioid-induced receptor signalling is potentially more complicated than previously thought. This complexity provides an opportunity to identify and probe relationships between selective signalling pathway specificity and in vivo production of opioid-related adverse effects. In this review, we focus on current knowledge of the mechanisms thought to transduce opioid-induced gastrointestinal adverse effects (constipation, nausea, vomiting) and respiratory depression.
Collapse
Affiliation(s)
- Mohammad Zafar Imam
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Sussan Ghassabian
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Pharmacy, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
136
|
Abstract
INTRODUCTION Substance use disorders are a group of chronic relapsing disorders of the brain, which have massive public health and societal impact. In some disorders (e.g., heroin/prescription opioid addictions) approved medications have a major long-term benefit. For other substances (e.g., cocaine, amphetamines and cannabis) there are no approved medications, and for alcohol there are approved treatments, which are not in wide usage. Approved treatments for tobacco use disorders are available, and novel medications are also under study. Areas covered: Medication-based approaches which are in advanced preclinical stages, or which have reached proof-of concept clinical laboratory studies, as well as clinical trials. Expert opinion: Current challenges involve optimizing translation between preclinical and clinical development, and between clinical laboratory studies to therapeutic clinical trials. Comorbidities including depression or anxiety are challenges for study design and analysis. Improved pharmacogenomics, biomarker and phenotyping approaches are areas of interest. Pharmacological mechanisms currently under investigation include modulation of glutamatergic, GABA, vasopressin and κ-receptor function, as well as inhibition of monoamine re-uptake. Other factors that affect potential market size for emerging medications include stigma, availability of treatment settings, adoption by clinicians, and the prevalence of persons with SUD who are not actively treatment-seeking.
Collapse
Affiliation(s)
- Eduardo R Butelman
- a Laboratory in the Biology of Addictive Diseases , The Rockefeller University , New York , NY , USA
| | - Mary Jeanne Kreek
- a Laboratory in the Biology of Addictive Diseases , The Rockefeller University , New York , NY , USA
| |
Collapse
|
137
|
Hauser AS, Attwood MM, Rask-Andersen M, Schiöth HB, Gloriam DE. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2017; 16:829-842. [PMID: 29075003 PMCID: PMC6882681 DOI: 10.1038/nrd.2017.178] [Citation(s) in RCA: 1808] [Impact Index Per Article: 226.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.
Collapse
Affiliation(s)
- Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Misty M Attwood
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, 751 05 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, University of Uppsala, 751 05 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, University of Uppsala, 751 05 Uppsala, Sweden
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
138
|
Akbarali HI, Dewey WL. The gut-brain interaction in opioid tolerance. Curr Opin Pharmacol 2017; 37:126-130. [PMID: 29145012 DOI: 10.1016/j.coph.2017.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/11/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022]
Abstract
The prevailing opioid crisis has necessitated the need to understand mechanisms leading to addiction and tolerance, the major contributors to overdose and death and to develop strategies for developing drugs for pain treatment that lack abuse liability and side-effects. Opioids are commonly used for treatment of pain and symptoms of inflammatory bowel disease. The significant effect of opioids in the gut, both acute and chronic, includes persistent constipation and paradoxically may also worsen pain symptoms. Recent work has suggested a significant role of the gastrointestinal microbiome in behavioral responses to opioids, including the development of tolerance to its pain-relieving effects. In this review, we present current concepts of gut-brain interaction in analgesic tolerance to opioids and suggest that peripheral mechanisms emanating from the gut can profoundly affect central control of opioid function.
Collapse
Affiliation(s)
- Hamid I Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay St., McGuire Hall 100, Richmond, VA 23298, USA.
| | - William L Dewey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay St., McGuire Hall 100, Richmond, VA 23298, USA
| |
Collapse
|
139
|
Burgueño J, Pujol M, Monroy X, Roche D, Varela MJ, Merlos M, Giraldo J. A Complementary Scale of Biased Agonism for Agonists with Differing Maximal Responses. Sci Rep 2017; 7:15389. [PMID: 29133887 PMCID: PMC5684405 DOI: 10.1038/s41598-017-15258-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022] Open
Abstract
Compelling data in the literature from the recent years leave no doubt about the pluridimensional nature of G protein-coupled receptor function and the fact that some ligands can couple with different efficacies to the multiple pathways that a receptor can signal through, a phenomenon most commonly known as functional selectivity or biased agonism. Nowadays, transduction coefficients (log(τ/KA)), based on the Black and Leff operational model of agonism, are widely used to calculate bias. Nevertheless, combining both affinity and efficacy in a single parameter can result in compounds showing a defined calculated bias of one pathway over other though displaying varying experimental bias preferences. In this paper, we present a novel scale (log(τ)), that attempts to give extra substance to different compound profiles in order to better classify compounds and quantify their bias. The efficacy-driven log(τ) scale is not proposed as an alternative to the affinity&efficacy-driven log(τ/KA) scale but as a complement in those situations where partial agonism is present. Both theoretical and practical approaches using μ-opioid receptor agonists are presented.
Collapse
Affiliation(s)
- Javier Burgueño
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Marta Pujol
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Xavier Monroy
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - David Roche
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.,Universitat Internacional de Catalunya, Faculty of Economics and Social Sciences, 08017, Barcelona, Spain
| | - Maria Jose Varela
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS). Universidad de Santiago de Compostela, La Coruña, Spain
| | - Manuel Merlos
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, Barcelona, Spain
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain. .,Network Biomedical Research Center on Mental Health (CIBERSAM), Madrid, Spain.
| |
Collapse
|
140
|
Milligan G. G protein-coupled receptors not currently in the spotlight: free fatty acid receptor 2 and GPR35. Br J Pharmacol 2017; 175:2543-2553. [PMID: 28940377 PMCID: PMC6003633 DOI: 10.1111/bph.14042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
It is widely appreciated that G protein‐coupled receptors have been the most successfully exploited class of targets for the development of small molecule medicines. Despite this, to date, less than 15% of the non‐olfactory G protein‐coupled receptors in the human genome are the targets of a clinically used medicine. In many cases, this is likely to reflect a lack of understanding of the basic underpinning biology of many G protein‐coupled receptors that are not currently in the spotlight, as well as a paucity of pharmacological tool compounds and appropriate animal models to test in vivo function of such G protein‐coupled receptors in both normal physiology and in the context of disease. ‘Open Innovation’ arrangements, in which pharmaceutical companies and public–private partnerships provide wider access to tool compounds identified from ligand screening programmes, alongside enhanced medicinal chemistry support to convert such screening ‘hits’ into useful ‘tool’ compounds will provide important routes to improved understanding. However, in parallel, novel approaches to define and fully appreciate the selectivity and mode of action of such tool compounds, as well as better understanding of potential species orthologue variability in the pharmacology and/or signalling profile of a wide range of currently poorly understood and understudied G protein‐coupled receptors, will be vital to fully exploit the therapeutic potential of this large target class. I consider these themes using as exemplars two G protein‐coupled receptors, free fatty acid receptor 2 and GPR35.
Collapse
Affiliation(s)
- Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
141
|
Knezevic NN, Yekkirala A, Yaksh TL. Basic/Translational Development of Forthcoming Opioid- and Nonopioid-Targeted Pain Therapeutics. Anesth Analg 2017; 125:1714-1732. [PMID: 29049116 PMCID: PMC5679134 DOI: 10.1213/ane.0000000000002442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids represent an efficacious therapeutic modality for some, but not all pain states. Singular reliance on opioid therapy for pain management has limitations, and abuse potential has deleterious consequences for patient and society. Our understanding of pain biology has yielded insights and opportunities for alternatives to conventional opioid agonists. The aim is to have efficacious therapies, with acceptable side effect profiles and minimal abuse potential, which is to say an absence of reinforcing activity in the absence of a pain state. The present work provides a nonexclusive overview of current drug targets and potential future directions of research and development. We discuss channel activators and blockers, including sodium channel blockers, potassium channel activators, and calcium channel blockers; glutamate receptor-targeted agents, including N-methyl-D-aspartate, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and metabotropic receptors. Furthermore, we discuss therapeutics targeted at γ-aminobutyric acid, α2-adrenergic, and opioid receptors. We also considered antagonists of angiotensin 2 and Toll receptors and agonists/antagonists of adenosine, purine receptors, and cannabinoids. Novel targets considered are those focusing on lipid mediators and anti-inflammatory cytokines. Of interest is development of novel targeting strategies, which produce long-term alterations in pain signaling, including viral transfection and toxins. We consider issues in the development of druggable molecules, including preclinical screening. While there are examples of successful translation, mechanistically promising preclinical candidates may unexpectedly fail during clinical trials because the preclinical models may not recapitulate the particular human pain condition being addressed. Molecular target characterization can diminish the disconnect between preclinical and humans' targets, which should assist in developing nonaddictive analgesics.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- From the *Department of Anesthesiology, Advocate Illinois Masonic Medical Center Chicago, Illinois; Departments of †Anesthesiology and ‡Surgery, University of Illinois, Chicago, Illinois; §Department of Neurobiology, Harvard Medical School, and Boston Children's Hospital, Boston, Massachusetts; ‖Blue Therapeutics, Harvard Innovation Launch Lab, Allston, Massachusetts; and Departments of ¶Anesthesiology and #Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
142
|
Spahn V, Del Vecchio G, Labuz D, Rodriguez-Gaztelumendi A, Massaly N, Temp J, Durmaz V, Sabri P, Reidelbach M, Machelska H, Weber M, Stein C. A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 2017; 355:966-969. [PMID: 28254944 DOI: 10.1126/science.aai8636] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022]
Abstract
Indiscriminate activation of opioid receptors provides pain relief but also severe central and intestinal side effects. We hypothesized that exploiting pathological (rather than physiological) conformation dynamics of opioid receptor-ligand interactions might yield ligands without adverse actions. By computer simulations at low pH, a hallmark of injured tissue, we designed an agonist that, because of its low acid dissociation constant, selectively activates peripheral μ-opioid receptors at the source of pain generation. Unlike the conventional opioid fentanyl, this agonist showed pH-sensitive binding, heterotrimeric guanine nucleotide-binding protein (G protein) subunit dissociation by fluorescence resonance energy transfer, and adenosine 3',5'-monophosphate inhibition in vitro. It produced injury-restricted analgesia in rats with different types of inflammatory pain without exhibiting respiratory depression, sedation, constipation, or addiction potential.
Collapse
Affiliation(s)
- V Spahn
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - G Del Vecchio
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - D Labuz
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - A Rodriguez-Gaztelumendi
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - N Massaly
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - J Temp
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - V Durmaz
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - P Sabri
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - M Reidelbach
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - H Machelska
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany
| | - M Weber
- Computational Molecular Design, Zuse-Institut Berlin, Takustrasse 7, Berlin, 14195, Germany
| | - C Stein
- Department of Anesthesiology and Critical Care Medicine, Charité-Universitätsmedizin Berlin Campus Benjamin Franklin, Freie Universität Berlin, Hindenburgdamm 30, Berlin 12203, Germany.
| |
Collapse
|
143
|
Src Kinase Inhibition Attenuates Morphine Tolerance without Affecting Reinforcement or Psychomotor Stimulation. Anesthesiology 2017; 127:878-889. [PMID: 28820778 DOI: 10.1097/aln.0000000000001834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prolonged opioid administration leads to tolerance characterized by reduced analgesic potency. Pain management is additionally compromised by the hedonic effects of opioids, the cause of their misuse. The multifunctional protein β-arrestin2 regulates the hedonic effects of morphine and participates in tolerance. These actions might reflect µ opioid receptor up-regulation through reduced endocytosis. β-Arrestin2 also recruits kinases to µ receptors. We explored the role of Src kinase in morphine analgesic tolerance, locomotor stimulation, and reinforcement in C57BL/6 mice. METHODS Analgesic (tail withdrawal latency; percentage of maximum possible effect, n = 8 to 16), locomotor (distance traveled, n = 7 to 8), and reinforcing (conditioned place preference, n = 7 to 8) effects of morphine were compared in wild-type, µ, µ, and β-arrestin2 mice. The influence of c-Src inhibitors dasatinib (n = 8) and PP2 (n = 12) was examined. RESULTS Analgesia in morphine-treated wild-type mice exhibited tolerance, declining by day 10 to a median of 62% maximum possible effect (interquartile range, 29 to 92%). Tolerance was absent from mice receiving dasatinib. Tolerance was enhanced in µ mice (34% maximum possible effect; interquartile range, 5 to 52% on day 5); dasatinib attenuated tolerance (100% maximum possible effect; interquartile range, 68 to 100%), as did PP2 (91% maximum possible effect; interquartile range, 78 to 100%). By contrast, c-Src inhibition affected neither morphine-evoked locomotor stimulation nor reinforcement. Remarkably, dasatinib not only attenuated tolerance but also reversed established tolerance in µ mice. CONCLUSIONS The ability of c-Src inhibitors to inhibit tolerance, thereby restoring analgesia, without altering the hedonic effect of morphine, makes c-Src inhibitors promising candidates as adjuncts to opioid analgesics.
Collapse
|
144
|
Singla N, Minkowitz HS, Soergel DG, Burt DA, Subach RA, Salamea MY, Fossler MJ, Skobieranda F. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel µ-receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty. J Pain Res 2017; 10:2413-2424. [PMID: 29062240 PMCID: PMC5638571 DOI: 10.2147/jpr.s137952] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background Oliceridine (TRV130), a novel μ-receptor G-protein pathway selective (μ-GPS) modulator, was designed to improve the therapeutic window of conventional opioids by activating G-protein signaling while causing low β-arrestin recruitment to the μ receptor. This randomized, double-blind, patient-controlled analgesia Phase IIb study was conducted to investigate the efficacy, safety, and tolerability of oliceridine compared with morphine and placebo in patients with moderate to severe pain following abdominoplasty (NCT02335294; oliceridine is an investigational agent not yet approved by the US Food and Drug Administration). Methods Patients were randomized to receive postoperative regimens of intravenous oliceridine (loading/patient-controlled demand doses [mg/mg]: 1.5/0.10 [regimen A]; 1.5/0.35 [regimen B]), morphine (4.0/1.0), or placebo with treatment initiated within 4 hours of surgery and continued as needed for 24 hours. Results Two hundred patients were treated (n=39, n=39, n=83, and n=39 in the oliceridine regimen A, oliceridine regimen B, morphine, and placebo groups, respectively). Patients were predominantly female (n=198 [99%]) and had a mean age of 38.2 years, weight of 71.2 kg, and baseline pain score of 7.7 (on 11-point numeric pain rating scale). Patients receiving the oliceridine regimens had reductions in average pain scores (model-based change in time-weighted average versus placebo over 24 hours) of 2.3 and 2.1 points, respectively (P=0.0001 and P=0.0005 versus placebo); patients receiving morphine had a similar reduction (2.1 points; P<0.0001 versus placebo). A lower prevalence of adverse events (AEs) related to nausea, vomiting, and respiratory function was observed with the oliceridine regimens than with morphine (P<0.05). Other AEs with oliceridine were generally dose-related and similar in nature to those observed with conventional opioids; no serious AEs were reported with oliceridine. Conclusion These results suggest that oliceridine may provide effective, rapid analgesia in patients with moderate to severe postoperative pain, with an acceptable safety/tolerability profile and potentially wider therapeutic window than morphine.
Collapse
|
145
|
Gan TJ. Poorly controlled postoperative pain: prevalence, consequences, and prevention. J Pain Res 2017; 10:2287-2298. [PMID: 29026331 PMCID: PMC5626380 DOI: 10.2147/jpr.s144066] [Citation(s) in RCA: 740] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review provides an overview of the clinical issue of poorly controlled postoperative pain and therapeutic approaches that may help to address this common unresolved health-care challenge. Postoperative pain is not adequately managed in greater than 80% of patients in the US, although rates vary depending on such factors as type of surgery performed, analgesic/anesthetic intervention used, and time elapsed after surgery. Poorly controlled acute postoperative pain is associated with increased morbidity, functional and quality-of-life impairment, delayed recovery time, prolonged duration of opioid use, and higher health-care costs. In addition, the presence and intensity of acute pain during or after surgery is predictive of the development of chronic pain. More effective analgesic/anesthetic measures in the perioperative period are needed to prevent the progression to persistent pain. Although clinical findings are inconsistent, some studies of local anesthetics and nonopioid analgesics have suggested potential benefits as preventive interventions. Conventional opioids remain the standard of care for the management of acute postoperative pain; however, the risk of opioid-related adverse events can limit optimal dosing for analgesia, leading to poorly controlled acute postoperative pain. Several new opioids have been developed that modulate μ-receptor activity by selectively engaging intracellular pathways associated with analgesia and not those associated with adverse events, creating a wider therapeutic window than unselective conventional opioids. In clinical studies, oliceridine (TRV130), a novel μ-receptor G-protein pathway-selective modulator, produced rapid postoperative analgesia with reduced prevalence of adverse events versus morphine.
Collapse
Affiliation(s)
- Tong J Gan
- Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
146
|
Kapoor A, Martinez-Rosell G, Provasi D, de Fabritiis G, Filizola M. Dynamic and Kinetic Elements of µ-Opioid Receptor Functional Selectivity. Sci Rep 2017; 7:11255. [PMID: 28900175 PMCID: PMC5595830 DOI: 10.1038/s41598-017-11483-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/24/2017] [Indexed: 02/07/2023] Open
Abstract
While the therapeutic effect of opioids analgesics is mainly attributed to µ-opioid receptor (MOR) activation leading to G protein signaling, their side effects have mostly been linked to β-arrestin signaling. To shed light on the dynamic and kinetic elements underlying MOR functional selectivity, we carried out close to half millisecond high-throughput molecular dynamics simulations of MOR bound to a classical opioid drug (morphine) or a potent G protein-biased agonist (TRV-130). Statistical analyses of Markov state models built using this large simulation dataset combined with information theory enabled, for the first time: a) Identification of four distinct metastable regions along the activation pathway, b) Kinetic evidence of a different dynamic behavior of the receptor bound to a classical or G protein-biased opioid agonist, c) Identification of kinetically distinct conformational states to be used for the rational design of functionally selective ligands that may eventually be developed into improved drugs; d) Characterization of multiple activation/deactivation pathways of MOR, and e) Suggestion from calculated transition timescales that MOR conformational changes are not the rate-limiting step in receptor activation.
Collapse
Affiliation(s)
- Abhijeet Kapoor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerard Martinez-Rosell
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, Barcelona, 08003, Spain
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gianni de Fabritiis
- Computational Biophysics Laboratory (GRIB-IMIM), Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), C Dr Aiguader 88, Barcelona, 08003, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
147
|
Abstract
Conventional opioids mediate analgesia as well as severe adverse effects via G-protein coupled opioid receptors (OR) in both inflamed (peripheral injured tissue) and healthy (brain, intestinal wall) environments. To exclude side effects, OR activation can be selectively achieved in damaged tissue by lowering the pKa of an opioid ligand to the acidic pH of inflammation. As a result, protonation of the ligand and consequent OR binding and activation of G-proteins is pH- and injury-specific. A novel compound (NFEPP) demonstrates the feasibility of this approach and displays blockade of pain transmission only at the peripheral site of injury, but with lack of central and gastrointestinal adverse effects. These findings suggest disease-specific receptor activation as a new strategy in drug design.
Collapse
Affiliation(s)
- Giovanna Del Vecchio
- Department of Anesthesiology
and Critical Care Medicine, Charité- Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Viola Spahn
- Department of Anesthesiology
and Critical Care Medicine, Charité- Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| | - Christoph Stein
- Department of Anesthesiology
and Critical Care Medicine, Charité- Campus Benjamin Franklin, Hindenburgdamm 30, Berlin 12203, Germany
| |
Collapse
|
148
|
GPCRs and EGFR – Cross-talk of membrane receptors in cancer. Bioorg Med Chem Lett 2017; 27:3611-3620. [PMID: 28705643 DOI: 10.1016/j.bmcl.2017.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|
149
|
Abstract
Cancer pain remains a significant clinical problem worldwide. Causes of cancer pain are multifactorial and complex and are likely to vary with an array of tumor-related and host-related factors and processes. Pathophysiology is poorly understood; however, new laboratory research points to cross-talk between cancer cells and host’s immune and neural systems as an important potential mechanism that may be broadly relevant to many cancer pain syndromes. Opioids remain the most effective pharmaceuticals used in the treatment of cancer pain. However, their role has been evolving due to emerging awareness of risks of chronic opioid therapy. Despite extensive research efforts, no new class of analgesics has been developed. However, many potential therapeutic targets that may lead to the establishment of new pharmaceuticals have been identified in recent years. It is also expected that the role of non-pharmacological modalities of treatment will grow in prominence. Specifically, neuromodulation, a rapidly expanding field, may play a major role in the treatment of neuropathic cancer pain provided that further technological progress permits the development of non-invasive and inexpensive neuromodulation techniques.
Collapse
Affiliation(s)
- Marcin Chwistek
- Department of Hematology and Medical Oncology, Fox Chase Cancer Center/Temple Health, Philadelphia, PA, USA
| |
Collapse
|
150
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|