101
|
Zhang C, Sherman MP, Prince LS, Bader D, Weitkamp JH, Slaughter JC, McElroy SJ. Paneth cell ablation in the presence of Klebsiella pneumoniae induces necrotizing enterocolitis (NEC)-like injury in the small intestine of immature mice. Dis Model Mech 2012; 5:522-32. [PMID: 22328592 PMCID: PMC3380715 DOI: 10.1242/dmm.009001] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants. During NEC pathogenesis, bacteria are able to penetrate innate immune defenses and invade the intestinal epithelial layer, causing subsequent inflammation and tissue necrosis. Normally, Paneth cells appear in the intestinal crypts during the first trimester of human pregnancy. Paneth cells constitute a major component of the innate immune system by producing multiple antimicrobial peptides and proinflammatory mediators. To better understand the possible role of Paneth cell disruption in NEC, we quantified the number of Paneth cells present in infants with NEC and found that they were significantly decreased compared with age-matched controls. We were able to model this loss in the intestine of postnatal day (P)14-P16 (immature) mice by treating them with the zinc chelator dithizone. Intestines from dithizone-treated animals retained approximately half the number of Paneth cells compared with controls. Furthermore, by combining dithizone treatment with exposure to Klebsiella pneumoniae, we were able to induce intestinal injury and inflammatory induction that resembles human NEC. Additionally, this novel Paneth cell ablation model produces NEC-like pathology that is consistent with other currently used animal models, but this technique is simpler to use, can be used in older animals that have been dam fed, and represents a novel line of investigation to study NEC pathogenesis and treatment.
Collapse
Affiliation(s)
- Chunxian Zhang
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Lack of intestinal epithelial atg7 affects paneth cell granule formation but does not compromise immune homeostasis in the gut. Clin Dev Immunol 2012; 2012:278059. [PMID: 22291845 PMCID: PMC3265132 DOI: 10.1155/2012/278059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/26/2011] [Accepted: 10/03/2011] [Indexed: 12/25/2022]
Abstract
Genetic polymorphisms of autophagy-related genes have been associated with an increased risk to develop inflammatory bowel disease (IBD). Autophagy is an elementary process participating in several cellular events such as cellular clearance and nonapoptotic programmed cell death. Furthermore, autophagy may be involved in intestinal immune homeostasis due to its participation in the digestion of intracellular pathogens and in antigen presentation. In the present study, the role of autophagy in the intestinal epithelial layer was investigated. The intestinal epithelium is essential to maintain gut homeostasis, and defects within this barrier have been associated with the pathogenesis of IBD. Therefore, mice with intestinal epithelial deletion of Atg7 were generated and investigated in different mouse models. Knockout mice showed reduced size of granules and decreased levels of lysozyme in Paneth cells. However, this was dispensable for gut immune homeostasis and had no effect on susceptibility in mouse models of experimentally induced colitis.
Collapse
|
103
|
Bevins CL, Salzman NH. The potter's wheel: the host's role in sculpting its microbiota. Cell Mol Life Sci 2011; 68:3675-85. [PMID: 21968920 PMCID: PMC3222938 DOI: 10.1007/s00018-011-0830-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/08/2023]
Abstract
Animals, ranging from basal metazoans to primates, are host to complex microbial ecosystems; engaged in a symbiotic relationship that is essential for host physiology and homeostasis. Epithelial surfaces vary in the composition of colonizing microbiota as one compares anatomic sites, developmental stages and species origin. Alterations of microbial composition likely contribute to susceptibility to several distinct diseases. The forces that shape the colonizing microbial composition are the focus of much current investigation, and it is evident that there are pressures exerted both by the host and the external environment to mold these ecosystems. The focus of this review is to discuss recent studies that demonstrate the critical importance of host factors in selecting for its microbiome. Greater insight into host-microbiome interactions will be essential for understanding homeostasis at mucosal surfaces, and developing useful interventions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Charles L. Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616 USA
| | - Nita H. Salzman
- Division of Gastroenterology, Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226 USA
| |
Collapse
|
104
|
Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci 2011; 68:3643-9. [PMID: 21984606 PMCID: PMC4592146 DOI: 10.1007/s00018-011-0827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022]
Abstract
The intestinal epithelium forms a highly active functional interface between the relatively sterile internal body surfaces and the enormously complex and diverse microbiota that are contained within the lumen. Genetic models that allow for manipulation of genes specifically in the intestinal epithelium have provided an avenue to understand the diverse set of pathways whereby intestinal epithelial cells (IECs) direct the immune state of the mucosa associated with homeostasis versus either productive or non-productive inflammation as occurs during enteropathogen invasion or inflammatory bowel disease (IBD), respectively. These pathways include the unfolded protein response (UPR) induced by stress in the endoplasmic reticulum (ER), autophagy, a self-cannibalistic pathway important for intracellular bacterial killing and proper Paneth cell function as well as the interrelated functions of NOD2/NF-κB signaling which also regulate autophagy induction. Multiple genes controlling these IEC pathways have been shown to be genetic risk factors for human IBD. This highlights the importance of these pathways not only for proper IEC function but also suggesting that IECs may be one of the cellular originators of organ-specific and systemic inflammation as in IBD.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Level 5, Box 157, Hills Road, Cambridge, CB2 0QQ UK
| | - Lukas Niederreiter
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Level 5, Box 157, Hills Road, Cambridge, CB2 0QQ UK
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115 USA
| |
Collapse
|
105
|
McElroy SJ, Weitkamp JH. Innate Immunity in the Small Intestine of the Preterm Infant. Neoreviews 2011; 12:e517-e526. [PMID: 22639551 DOI: 10.1542/neo.12-9-e517] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The gastrointestinal tract comprises the largest surface area of the human body. This area is constantly exposed to myriad antigens as well as the large number of bacteria that coexist in the intestinal lumen. To protect against this exposure and help distinguish "self " from "foreign," the intestinal tract has evolved a sophisticated barrier defense system that includes both innate and adaptive immune systems. However, infants who are born preterm do not have the benefit of an adequate immune response and, therefore, are more susceptible to bacterial injury, inflammation, and intestinal diseases such as necrotizing enterocolitis. In this review, we discuss the components of innate immunity that help to protect the small intestine as well as current knowledge about the role of these components in the pathophysiology of necrotizing enterocolitis.
Collapse
|
106
|
Hubbard VM, Cadwell K. Viruses, autophagy genes, and Crohn's disease. Viruses 2011; 3:1281-311. [PMID: 21994779 PMCID: PMC3185787 DOI: 10.3390/v3071281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 07/12/2011] [Accepted: 07/13/2011] [Indexed: 02/08/2023] Open
Abstract
The etiology of the intestinal disease Crohn's disease involves genetic factors as well as ill-defined environmental agents. Several genetic variants linked to this disease are associated with autophagy, a process that is critical for proper responses to viral infections. While a role for viruses in this disease remains speculative, accumulating evidence indicate that this possibility requires serious consideration. In this review, we will examine the three-way relationship between viruses, autophagy genes, and Crohn's disease and discuss how host-pathogen interactions can mediate complex inflammatory disorders.
Collapse
Affiliation(s)
| | - Ken Cadwell
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-212-263-8891; Fax: +1-212-263-5711
| |
Collapse
|
107
|
Ouellette AJ. Paneth cell α-defensins in enteric innate immunity. Cell Mol Life Sci 2011; 68:2215-29. [PMID: 21560070 PMCID: PMC4073591 DOI: 10.1007/s00018-011-0714-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/18/2022]
Abstract
Paneth cells at the base of small intestinal crypts of Lieberkühn secrete high levels of α-defensins in response to cholinergic and microbial stimuli. Paneth cell α-defensins are broad spectrum microbicides that function in the extracellular environment of the intestinal lumen, and they are responsible for the majority of secreted bactericidal peptide activity. Paneth cell α-defensins confer immunity to oral infection by Salmonella enterica serovar Typhimurium, and they are major determinants of the composition of the small intestinal microbiome. In addition to host defense molecules such as α-defensins, lysozyme, and Pla2g2a, Paneth cells also produce and release proinflammatory mediators as components of secretory granules. Disruption of Paneth cell homeostasis, with subsequent induction of endoplasmic reticulum stress, autophagy, or apoptosis, contributes to inflammation in diverse genetic and experimental mouse models.
Collapse
Affiliation(s)
- André Joseph Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine of the University of Southern California, USC/Norris Cancer Center, Los Angeles, CA 90089-9601, USA.
| |
Collapse
|
108
|
McGuckin MA, Lindén SK, Sutton P, Florin TH. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 2011. [PMID: 21407243 DOI: 10.1038/nrm] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The extracellular secreted mucus and the cell surface glycocalyx prevent infection by the vast numbers of microorganisms that live in the healthy gut. Mucin glycoproteins are the major component of these barriers. In this Review, we describe the components of the secreted and cell surface mucosal barriers and the evidence that they form an effective barricade against potential pathogens. However, successful enteric pathogens have evolved strategies to circumvent these barriers. We discuss the interactions between enteric pathogens and mucins, and the mechanisms that these pathogens use to disrupt and avoid mucosal barriers. In addition, we describe dynamic alterations in the mucin barrier that are driven by host innate and adaptive immune responses to infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Immunity, Infection and Inflammation Program, Mater Medical Research Institute and The University of Queensland School of Medicine, South Brisbane, Queensland 4101, Australia.
| | | | | | | |
Collapse
|
109
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
110
|
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
111
|
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011. [PMID: 21423246 DOI: 10.1038/nrmicro2546.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
112
|
|
113
|
Randall KJ, Turton J, Foster JR. Explant culture of gastrointestinal tissue: a review of methods and applications. Cell Biol Toxicol 2011; 27:267-84. [PMID: 21384137 DOI: 10.1007/s10565-011-9187-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 02/25/2011] [Indexed: 01/06/2023]
Abstract
The gastrointestinal (GI) tract is an important target organ for the toxicity of xenobiotics. The toxic effects of xenobiotics on this complex, heterogeneous structure have been difficult to model in vitro and have traditionally been assessed in vivo. The explant culture of GI tissue offers an alternative approach. Historically, the organotypic culture of the GI tract proved far more challenging than the culture of other tissues, and it was not until the late 1960s that Browning and Trier described the means by which intestinal tissues could be successfully cultured. This breakthrough provided a tool researchers could utilise, and adapt, to investigate topics such as the pathogenesis of inflammatory intestinal diseases, the effect of growth factors and cytokines on intestinal proliferation and differentiation, and the testing of novel xenobiotics for efficacy and safety. This review considers that intestinal explant culture shows much potential for the application of a relatively under-used procedure in future biomedical research. Furthermore, there appear to be many instances where the technique may provide experimental solutions where both cell culture and in vivo models have been unable to deliver conclusive and convincing findings.
Collapse
Affiliation(s)
- Kevin J Randall
- Safety Assessment UK, AstraZeneca, Alderley Park, Macclesfield, Cheshire, UK.
| | | | | |
Collapse
|
114
|
Salzman NH. Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 2011; 14:99-105. [PMID: 20971034 PMCID: PMC3029469 DOI: 10.1016/j.mib.2010.09.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 09/24/2010] [Accepted: 09/27/2010] [Indexed: 12/17/2022]
Abstract
An estimated 100 trillion microbes colonize human beings, with the majority of organisms residing in the intestines. This microbiota impacts host nutrition, protection, and gut development. Alterations in microbiota composition are associated with susceptibility to various infectious and inflammatory gut diseases. The mucosal surface is not a static barrier that simply prevents microbial invasion but a critical interface for microbiota-immune system interactions. Recent work suggests that dynamic interactions between microbes and the host immune system at the mucosal surface inform immune responses both locally and systemically. This review focuses on intestinal microbiota-immune interactions leading to intestinal homeostasis, and show that these interactions at the GI mucosal surface are critical for driving both protective and pathological immune responses systemically.
Collapse
Affiliation(s)
- Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA.
| |
Collapse
|