101
|
Reksodiputro MH, Hutauruk SM, Widodo DW, Fardizza F, Mutia D. Platelet-Rich Fibrin Enhances Surgical Wound Healing in Total Laryngectomy. Facial Plast Surg 2021; 37:325-332. [PMID: 33445196 DOI: 10.1055/s-0040-1717083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Autologous growth factor (AGF) is a cytokine that has gained medical research interest because it helps improve and accelerate the wound healing process. Platelet-rich fibrin (PRF) is the latest generation of platelet concentrate that can be obtained through a simple procedure known as AGF referencing. One of the most common complications of total laryngectomy (TL) is pharyngocutaneous fistula. To prevent this complication, health care providers must closely monitor the postoperative wound healing process.This study aimed to investigate the effectiveness of PRF application in enhancing wound healing after TL. A randomized controlled trial was conducted in the Department of Otorhinolaryngology - Head and Neck Surgery, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital Universitas Indonesia, Jakarta, Indonesia, from June 2019 to December 2019. We included 20 patients who underwent TL for laryngeal squamous cell carcinoma. They were divided into two groups (10 patients who received applied autologous PRF around the esophageal stoma during TL and another 10 patients as the control). These patients were observed for 2 weeks postoperatively. In the bivariate analysis performed using the chi-square test, the pain threshold and edema of postoperative wounds in the PRF-treated group demonstrated significant differences compared with those in the control group. PRF application in TL enhanced the postoperative wound healing process, especially with regard to edema and pain.
Collapse
Affiliation(s)
- Mirta H Reksodiputro
- Division of Facial Plastic Reconstructive, Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Syahrial M Hutauruk
- Division of Larynx Pharynx, Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Dini W Widodo
- Division of Facial Plastic Reconstructive, Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Fauziah Fardizza
- Division of Larynx Pharynx, Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Dita Mutia
- Department of Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
102
|
Augustine R, Hasan A, Dalvi YB, Rehman SRU, Varghese R, Unni RN, Yalcin HC, Alfkey R, Thomas S, Al Moustafa AE. Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111519. [DOI: 10.1016/j.msec.2020.111519] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022]
|
103
|
Bankoti K, Rameshbabu AP, Datta S, Goswami P, Roy M, Das D, Ghosh SK, Das AK, Mitra A, Pal S, Maulik D, Su B, Ghosh P, Basu B, Dhara S. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2020; 22:514-533. [PMID: 33289564 DOI: 10.1021/acs.biomac.0c01400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low strength and rapid biodegradability of acellular dermal matrix (ADM) restrict its wider clinical application as a rapid cell delivery platform in situ for management of burn wounds. Herein, the extracted ADM was modified by a dual cross-linking approach with ionic crosslinking using chitosan and covalent cross-linking using an iodine-modified 2,5-dihydro-2,5-dimethoxy-furan cross-linker, termed as CsADM-Cl. In addition, inherent growth factors and cytokines were found to be preserved in CsADM-Cl, irrespective of ionic/covalent crosslinking. CsADM-Cl demonstrated improvement in post crosslinking stiffness with a decreased biodegradation rate. This hybrid crosslinked hydrogel supported adhesion, proliferation, and migration of human foreskin-derived fibroblasts and keratinocytes. Also, the angiogenic potential of CsADM-Cl was manifested by chick chorioallantoic membrane assay. CsADM-Cl showed excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, CsADM-Cl treated full thickness burn wounds and demonstrated rapid healing marked with superior angiogenesis, well-defined dermal-epidermal junctions, mature basket weave collagen deposition, and development of more pronounced secondary appendages. Altogether, the bioactive CsADM-Cl hydrogel established significant clinical potential to support wound healing as an apt injectable antibacterial matrix to encounter unmet challenges concerning critical burn wounds.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Piyali Goswami
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipankar Das
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Analava Mitra
- Natural Products Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sagar Pal
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Dhrubajyoti Maulik
- Department of Surgery, Bankura Sammilani Medical College, Bankura 722102, India
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, U.K
| | - Paulomi Ghosh
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S C Mullick Road, Kolkata 700032, India
| | - Bikramajit Basu
- Materials Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
104
|
Matsliah L, Goder D, Giladi S, Zilberman M. In vitro characterization of novel multidrug-eluting soy protein wound dressings. J Biomater Appl 2020; 35:978-993. [PMID: 33269628 DOI: 10.1177/0885328220975178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymers derived from natural sources are of interest in the scientific and medical communities, especially soy protein which exhibits low immunogenicity and good mechanical properties, and supports cell proliferation. Soy protein is cost-effective compared to other natural polymers and is attractive also due to its non-animal origin and relatively long storage stability. In the current study, hybrid film structures were developed and studied as a novel wound dressing platform with controlled release of three bioactive agents. The dense top layer is designed to provide mechanical support, control the water vapor permeability and to elute the antibiotic drug cloxacillin and the analgesic drug bupivacaine to the wound site. The porous sub-layer is designed to absorb the wound exudates and release the hemostatic agent tranexamic acid for bleeding control. The results show that the formulation parameters, i.e. crosslinker and plasticizer concentrations, affected the mechanical properties of the wound dressings as well as relevant physical properties (water vapor transmission rate and swelling kinetics), but had almost no effect on the drug-release profiles. While the antibiotic drug and the analgesic drug were released within several hours, the hemostatic agent was released within several minutes, according to the well designed hybrid structure. In conclusion, our novel soy protein hybrid wound dressings are biocompatible, can deliver various drugs simultaneously in a controlled fashion for each drug individually, and can be adjusted to suit various types of wounds by altering their properties through formulation effects.
Collapse
Affiliation(s)
- Lior Matsliah
- Faculty of Engineering, Tel Aviv University Iby and Aladar Fleischman, Tel Aviv, Israel
| | - Daniella Goder
- Faculty of Engineering, Tel Aviv University Iby and Aladar Fleischman, Tel Aviv, Israel
| | - Shir Giladi
- Faculty of Engineering, Tel Aviv University Iby and Aladar Fleischman, Tel Aviv, Israel
| | - Meital Zilberman
- Faculty of Engineering, Tel Aviv University Iby and Aladar Fleischman, Tel Aviv, Israel
| |
Collapse
|
105
|
A. KS, P. D, G. D, J. N, G.S. H, S. AS, K. J, R. M. Super-hydrophobicity: Mechanism, fabrication and its application in medical implants to prevent biomaterial associated infections. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
106
|
Abstract
Enzymes are a class of protein that catalyze a wide range of chemical reactions, including the cleavage of specific peptide bonds. They are expressed in all cell types, play vital roles in tissue development and homeostasis, and in many diseases, such as cancer. Enzymatic activity is tightly controlled through the use of inactive pro-enzymes, endogenous inhibitors and spatial localization. Since the presence of specific enzymes is often correlated with biological processes, and these proteins can directly modify biomolecules, they are an ideal biological input for cell-responsive biomaterials. These materials include both natural and synthetic polymers, cross-linked hydrogels and self-assembled peptide nanostructures. Within these systems enzymatic activity has been used to induce biodegradation, release therapeutic agents and for disease diagnosis. As technological advancements increase our ability to quantify the expression and nanoscale organization of proteins in cells and tissues, as well as the synthesis of increasingly complex and well-defined biomaterials, enzyme-responsive biomaterials are poised to play vital roles in the future of biomedicine.
Collapse
Affiliation(s)
- E. Thomas Pashuck
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Science, Lehigh University Bethlehem Pennsylvania USA
| |
Collapse
|
107
|
Laurent A, Hirt-Burri N, Scaletta C, Michetti M, de Buys Roessingh AS, Raffoul W, Applegate LA. Holistic Approach of Swiss Fetal Progenitor Cell Banking: Optimizing Safe and Sustainable Substrates for Regenerative Medicine and Biotechnology. Front Bioeng Biotechnol 2020; 8:557758. [PMID: 33195124 PMCID: PMC7644790 DOI: 10.3389/fbioe.2020.557758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Safety, quality, and regulatory-driven iterative optimization of therapeutic cell source selection has constituted the core developmental bedrock for primary fetal progenitor cell (FPC) therapy in Switzerland throughout three decades. Customized Fetal Transplantation Programs were pragmatically devised as straightforward workflows for tissue procurement, traceability maximization, safety, consistency, and robustness of cultured progeny cellular materials. Whole-cell bioprocessing standardization has provided plethoric insights into the adequate conjugation of modern biotechnological advances with current restraining legislative, ethical, and regulatory frameworks. Pioneer translational advances in cutaneous and musculoskeletal regenerative medicine continuously demonstrate the therapeutic potential of FPCs. Extensive technical and clinical hindsight was gathered by managing pediatric burns and geriatric ulcers in Switzerland. Concomitant industrial transposition of dermal FPC banking, following good manufacturing practices, demonstrated the extensive potential of their therapeutic value. Furthermore, in extenso, exponential revalorization of Swiss FPC technology may be achieved via the renewal of integrative model frameworks. Consideration of both longitudinal and transversal aspects of simultaneous fetal tissue differential processing allows for a better understanding of the quasi-infinite expansion potential within multi-tiered primary FPC banking. Multiple fetal tissues (e.g., skin, cartilage, tendon, muscle, bone, lung) may be simultaneously harvested and processed for adherent cell cultures, establishing a unique model for sustainable therapeutic cellular material supply chains. Here, we integrated fundamental, preclinical, clinical, and industrial developments embodying the scientific advances supported by Swiss FPC banking and we focused on advances made to date for FPCs that may be derived from a single organ donation. A renewed model of single organ donation bioprocessing is proposed, achieving sustained standards and potential production of billions of affordable and efficient therapeutic doses. Thereby, the aim is to validate the core therapeutic value proposition, to increase awareness and use of standardized protocols for translational regenerative medicine, potentially impacting millions of patients suffering from cutaneous and musculoskeletal diseases. Alternative applications of FPC banking include biopharmaceutical therapeutic product manufacturing, thereby indirectly and synergistically enhancing the power of modern therapeutic armamentariums. It is hypothesized that a single qualifying fetal organ donation is sufficient to sustain decades of scientific, medical, and industrial developments, as technological optimization and standardization enable high efficiency.
Collapse
Affiliation(s)
- Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Tec-Pharma SA, Bercher, Switzerland
- LAM Biotechnologies SA, Épalinges, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Murielle Michetti
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
| | - Anthony S. de Buys Roessingh
- Children and Adolescent Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery Service, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, Épalinges, Switzerland
- Oxford Suzhou Center for Advanced Research, Science and Technology Co., Ltd., Oxford University, Suzhou, China
- Competence Center for Applied Biotechnology and Molecular Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
108
|
Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chem Rev 2020; 120:10547-10607. [PMID: 32407108 PMCID: PMC7564098 DOI: 10.1021/acs.chemrev.9b00789] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 02/08/2023]
Abstract
Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.
Collapse
Affiliation(s)
- Carlos Mota
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sandra Camarero-Espinosa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Paul Wieringa
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration,
MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| |
Collapse
|
109
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
110
|
Takahashi H, Watanabe R, Nishimura K, Moriwaki T. Release of Ceramide Molecules from Ceramide-Containing UV-curable Acrylic Adhesive Gel Sheet Affixed to Human Skin. J Oleo Sci 2020; 69:1307-1315. [PMID: 32908096 DOI: 10.5650/jos.ess20095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ceramide, an intercellular lipid of the stratum corneum, plays an essential role in making the skin barrier. One problem with the use of medical adhesive tape or sheets for skin is that their repeated attachment and detachment may cause some damage to the skin. An attempt has been made to eliminate this problem by mixing ceramide into the adhesive of sheets, and has delivered excellent clinical results. This study aimed to investigate whether ceramide is transferred from the adhesive with added ceramide to the skin. An adhesive sheet was prepared by adding synthetic ceramide (CER) to UV-curable acrylic adhesive gel. After affixing the adhesive sheet to human skin for a certain period, it was peeled off and cut perpendicular to the adhesive surface. Synchrotron micro-infrared spectroscopy of the sectioned samples showed that the ceramide concentration in the gel sheet decreases as the application time to human skin increases. This is thought to be due to the release of CER from the gel sheet.
Collapse
Affiliation(s)
- Hiroshi Takahashi
- Division of Pure and Applied Science, Faculty of Science and Technology, Gunma University
| | | | | | - Taro Moriwaki
- Japan Synchrotron Radiation Research Institute (JASRI/Spring-8)
| |
Collapse
|
111
|
Kheiri Mollaqasem V, Asefnejad A, Nourani MR, Goodarzi V, Kalaee MR. Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core‐shell nanofibers as bone tissue scaffold. J Appl Polym Sci 2020. [DOI: 10.1002/app.49797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vahid Kheiri Mollaqasem
- Department of Biomedical Engineering, South Tehran Branch Islamic Azad University Tehran Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Mohammad Reza Nourani
- Tissue Engineering Division, Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Vahabodin Goodarzi
- Tissue Engineering Division, Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Mohammad Reza Kalaee
- Department of Chemical and Polymer Engineering, South Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
112
|
Barroso A, Mestre H, Ascenso A, Simões S, Reis C. Nanomaterials in wound healing: From material sciences to wound healing applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Andreia Barroso
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Henrique Mestre
- Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Andreia Ascenso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Avenida Professor Gama Pinto Lisboa 1649‐003 Portugal
- IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences Universidade de Lisboa Campo Grande Lisboa 1649‐016 Portugal
| |
Collapse
|
113
|
Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater Sci Eng 2020; 6:5399-5430. [PMID: 33320556 DOI: 10.1021/acsbiomaterials.0c00528] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The morbidity, mortality, and burden of burn victims and patients with severe diabetic wounds are still high, which leads to an extensively growing demand for novel treatments with high clinical efficacy. Biomaterial-based wound treatment approaches have progressed over time from simple cotton wool dressings to advanced skin substitutes containing cells and growth factors; however, no wound care approach is yet completely satisfying. Bioactive glasses are materials with potential in many areas that exhibit unique features in biomedical applications. Today, bioactive glasses are not only amorphous solid structures that can be used as a substitute in hard tissue but also are promising materials for soft tissue regeneration and wound healing applications. Biologically active elements such as Ag, B, Ca, Ce, Co, Cu, Ga, Mg, Se, Sr, and Zn can be incorporated in glass networks; hence, the superiority of these multifunctional materials over current materials results from their ability to release multiple therapeutic ions in the wound environment, which target different stages of the wound healing process. Bioactive glasses and their dissolution products have high potency for inducing angiogenesis and exerting several biological impacts on cell functions, which are involved in wound healing and some other features that are valuable in wound healing applications, namely hemostatic and antibacterial properties. In this review, we focus on skin structure, the dynamic process of wound healing in injured skin, and existing wound care approaches. The basic concepts of bioactive glasses are reviewed to better understand the relationship between glass structure and its properties. We illustrate the active role of bioactive glasses in wound repair and regeneration. Finally, research studies that have used bioactive glasses in wound healing applications are summarized and the future trends in this field are elaborated.
Collapse
Affiliation(s)
- Tina Mehrabi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Abdorreza S Mesgar
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Zahra Mohammadi
- Biomaterials Laboratory, Division of Biomedical Engineering, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| |
Collapse
|
114
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
115
|
Advanced Hydrogels as Wound Dressings. Biomolecules 2020; 10:biom10081169. [PMID: 32796593 PMCID: PMC7464761 DOI: 10.3390/biom10081169] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Skin is the largest organ of the human body, protecting it against the external environment. Despite high self-regeneration potential, severe skin defects will not heal spontaneously and need to be covered by skin substitutes. Tremendous progress has been made in the field of skin tissue engineering, in recent years, to develop new skin substitutes. Among them, hydrogels are one of the candidates with most potential to mimic the native skin microenvironment, due to their porous and hydrated molecular structure. They can be applied as a permanent or temporary dressing for different wounds to support the regeneration and healing of the injured epidermis, dermis, or both. Based on the material used for their fabrication, hydrogels can be subdivided into two main groups—natural and synthetic. Moreover, hydrogels can be reinforced by incorporating nanoparticles to obtain “in situ” hybrid hydrogels, showing superior properties and tailored functionality. In addition, different sensors can be embedded in hydrogel wound dressings to provide real-time information about the wound environment. This review focuses on the most recent developments in the field of hydrogel-based skin substitutes for skin replacement. In particular, we discuss the synthesis, fabrication, and biomedical application of novel “smart” hydrogels.
Collapse
|
116
|
Kunjiappan S, Panneerselvam T, Govindaraj S, Parasuraman P, Baskararaj S, Sankaranarayanan M, Arunachalam S, Babkiewicz E, Jeyakumar A, Lakshmanan M. Design, In Silico Modelling, and Functionality Theory of Novel Folate Receptor Targeted Rutin Encapsulated Folic Acid Conjugated Keratin Nanoparticles for Effective Cancer Treatment. Anticancer Agents Med Chem 2020; 19:1966-1982. [PMID: 31267878 DOI: 10.2174/1871520619666190702145609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 04/17/2019] [Accepted: 05/03/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Site-specific and toxic-free drug delivery, is an interesting area of research. Nanoengineered drug delivery systems possess a remarkable potential for effective treatment of various types of cancers. METHODS In this study, novel Folic Acid (FA) conjugated keratin nanoparticles (NPs) were assembled with encapsulation and delivery of Rutin (Rt) into breast cancer cells through the overexpressed folate receptor. The biocompatible, Rt encapsulated FA conjugated keratin NPs (FA@Ker NPs) were successfully formulated by a modified precipitation technique. Their morphological shape and size, size distribution, stability, and physical nature were characterized and confirmed. The drug (Rt) encapsulation efficiency, loading capacity and release kinetics were also studied. RESULTS The observed results of molecular docking and density functionality theory of active drug (Rt) showed a strong interaction and non-covalent binding of the folate receptor and facilitation of endocytosis in breast cancer cells. Further, in vitro cytotoxic effect of FA@Ker NPs was screened against MCF-7 cancer cells, at 55.2 µg/mL of NPs and found to display 50% of cell death at 24h. Moreover, the NPs enhanced the uptake of Rt in MCF-7 cells, and the apoptotic effect of condensed nuclei and distorted membrane bodies was observed. Also, NPs entered into the mitochondria of MCF-7 cells and significantly increased the level of ROS which led to cell death. CONCLUSION The developed FA@Ker NPs might be a promising way to enhance anti-cancer activity without disturbing normal healthy cells.
Collapse
Affiliation(s)
- Selvaraj Kunjiappan
- Sir CV Raman-KS Krishnan International Research Center, Kalasalingam University, Krishnankoil-626126, India
| | - Theivendren Panneerselvam
- Department of Research and Development, Saraswathi Institute of Medical Sciences, NH-24, Anwarpur, Pilkhuwa, Hapur-245304, Uttar Pradesh, India
| | - Saravanan Govindaraj
- Department of Pharmaceutical Chemistry, MNR College of Pharmacy, Fasalwadi, Sangareddy-502294, Telangana, India
| | - Pavadai Parasuraman
- Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru-560054, Karnataka, India
| | - Suraj Baskararaj
- Sir CV Raman-KS Krishnan International Research Center, Kalasalingam University, Krishnankoil-626126, India
| | | | - Sankarganesh Arunachalam
- Sir CV Raman-KS Krishnan International Research Center, Kalasalingam University, Krishnankoil-626126, India
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology & Chemistry Research Center, 02-189-Warsaw, Poland
| | - Aarthi Jeyakumar
- Sir CV Raman-KS Krishnan International Research Center, Kalasalingam University, Krishnankoil-626126, India
| | - Muthulakshmi Lakshmanan
- Sir CV Raman-KS Krishnan International Research Center, Kalasalingam University, Krishnankoil-626126, India
| |
Collapse
|
117
|
Micro-Structured Patches for Dermal Regeneration Obtained via Electrophoretic Replica Deposition. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10145010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Artificial substrates supporting the healing of skin wounds require specific structural and chemical architectures that promote a recapitulation of the complexity of the native organ. Bottom-up fabrication technologies are emerging as effective strategies to fine tune biochemical, morphological, and structural features intended for regenerative applications. Here, we proposed an electrophoretic replica deposition (EPrD) approach to realize chitosan three-dimensional structures specifically designed to treat patients with serious cutaneous damages or losses. The EPrD process has been optimized to consistently obtain random porosity vs. hierarchical lattice structures, showing mechanical properties in the range of skin tissue (E = 0.2–20 MPa). The obtained patches were tested in vivo via a one-stage grafting procedure in a full thickness skin wound rat model. Chitosan patches showed no adverse reactions throughout the experimental period (14 days). Hair follicles and sebaceous glands were observed in histological sections, indicating the regeneration of a thin epidermal layer with more skin appendages. Immunohistochemistry results demonstrated that keratin 10 was mostly expressed in basal and suprabasal layers, like normal skin, in structures with random porosity and with smaller lattice structures. The obtained results show the potential of EPrD to innovate the design of artificial substrates in skin healing therapies.
Collapse
|
118
|
Zanchetta FC, Trinca RB, Gomes Silva JL, Breder JDSC, Cantarutti TA, Consonni SR, Moraes ÂM, Pereira de Araújo E, Saad MJA, Adams GG, Melo Lima MH. Effects of Electrospun Fibrous Membranes of PolyCaprolactone and Chitosan/Poly(Ethylene Oxide) on Mouse Acute Skin Lesions. Polymers (Basel) 2020; 12:E1580. [PMID: 32708645 PMCID: PMC7408160 DOI: 10.3390/polym12071580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023] Open
Abstract
Polycaprolactone (PCL) is a synthetic polymer with good mechanical properties that are useful to produce biomaterials of clinical application. It can be successfully combined with chitosan, which enhances the biomaterial properties through the modulation of molecular and cellular mechanisms. The objective of this study was to evaluate the effects of the use of electrospun fibrous membranes consisting of polycaprolactone (PCL) or polycaprolactone coated with chitosan and poly(ethylene oxide) (PCL+CHI/PEO) on mouse skin lesions. Sixty four Black-57 mice were divided into PCL and PCL+CHI/PEO groups. A 1 cm2 lesion was made on the animals' backs, and the membranes were sutured in place. The tissues were extracted on the 3rd, 7th, and 14th days after the lesion. The tissues were analyzed by histology with Hematoxylin and Eosin (H&E) and Sirius Red stains, morphometry, immunohistochemistry, and Western blot. On the 3rd, 6th, and 9th days after the lesion, the PCL+CHI/PEO group showed a higher wound-healing rate (WHR). On the 3 day, the PCL+CHI/PEO group showed a greater amount of inflammatory infiltrate, greater expression of proliferating cell nuclear antigen (PCNA), and smooth muscle actin (α-SMA) (p < 0.05) compared to the PCL group. On the 7th day after the lesion, the PCL+CHI/PEO group showed a greater amount of inflammatory infiltrate, expression of Tumor Necrosis Factor (TNF-α) and PCNA (p < 0.05). In addition, it showed a greater immunolabeling of Monocyte Chemoattractant Protein-1 (MCP-1) and deposition of collagen fibers compared to the PCL group. The PCL+CHI/PEO membrane modulated the increase in the inflammatory infiltrate, the expression of MCP-1, PCNA, and α-SMA in lesions of mice.
Collapse
Affiliation(s)
- Flávia Cristina Zanchetta
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Rafael Bergamo Trinca
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas CEP 13083852, Brazil; (R.B.T.); (Â.M.M.)
| | - Juliany Lino Gomes Silva
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Jéssica da Silva Cunha Breder
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Thiago Anselmo Cantarutti
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | - Sílvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas CEP 13083970, Brazil;
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocess, School of Chemical Engineering, University of Campinas, Campinas CEP 13083852, Brazil; (R.B.T.); (Â.M.M.)
| | - Eliana Pereira de Araújo
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| | | | - Gary G. Adams
- School of Health Sciences, Faculty of Medicine, The University of Nottingham, C Floor, South Block Link, Queen’s Medical Centre, Nottingham NG7 2HA, UK
| | - Maria Helena Melo Lima
- School of Nursing, University of Campinas, Campinas CEP 13083887, Brazil; (F.C.Z.); (J.L.G.S.); (J.d.S.C.B.); (T.A.C.); (E.P.d.A.)
| |
Collapse
|
119
|
Using Dehydrated Amniotic Membrane Skin Substitute in Facial Burns: Is There a Outcome Difference Between Adult and Pediatric Patients? J Craniofac Surg 2020; 31:e145-e147. [PMID: 31688265 DOI: 10.1097/scs.0000000000006077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Facial burns have significant physical and psychological effects on patients, and minimizing morbidity continues to be a challenge for reconstructive surgeons. Advancements have allowed the development of various skin substitutes. Among these, human dehydrated amniotic skin substitutes represent novel technology, yet their outcome has not been sufficiently studied to guide practice. The objective of our study is to compare the safety of amniotic membrane skin substitutes in the treatment of adult and pediatric facial burns. METHODS The authors performed a retrospective review of our institutional burn registry, with 90 burn patients meeting the inclusion criteria. Demographic and outcome measures included age, percentage of total body surface area (TBSA), Injury Severity Score (ISS), and complications (eg, pigmentation, hypertrophic scar, infection, and delayed healing). Paired sample t test and Chi-squared test were used, with significance defined as P < 0.05. RESULTS Seventy-seven adults and 13 pediatric patients with facial burns who had received dehydrated amniotic membrane skin substitutes were included in the analysis. The mean age was 40.8 years for adults and 5.6 years for children. Mean TBSA was similar, with 9.6% (1-57%) in adults and 6.0% (2-14%) in children. The mean ISS did not significantly differ between groups (4.0 versus 2.2, P = ns). Pediatric patients with facial burns treated with amniotic membranes had a higher incidence of dyspigmentation relative to adult patients (46.2% versus 9.1%, P ≤ 0.05). Remaining morbidities were not significantly different between adult and pediatric patients. All patients, irrespective of group, healed by the second post-operative week. CONCLUSION Dehydrated amniotic membrane skin substitutes are a safe alternative in the treatment of facial burns across all ages.
Collapse
|
120
|
Zhou X, Ning K, Ling B, Chen X, Cheng H, Lu B, Gao Z, Xu J. Multiple Injections of Autologous Adipose-Derived Stem Cells Accelerate the Burn Wound Healing Process and Promote Blood Vessel Regeneration in a Rat Model. Stem Cells Dev 2020; 28:1463-1472. [PMID: 31530229 DOI: 10.1089/scd.2019.0113] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based therapies have the potential to heal burn wounds, but thus far have had limited success in clinical practice. This study aimed to test and improve the therapeutic effects of adipose-derived stem cells (ASCs) on burn wound healing in a rat model. We also explored the role of ASCs in burn wound healing We first isolated the autologous ASCs of each Sprague-Dawley rat used in this experiment and expanded them in vitro. Then, a 2-cm2 burn wound was made on the dorsal skin of each rat using a specialized heating iron. The treated rats received either one or three injections of 2 × 106 green fluorescent protein-labeled autologous ASCs, and the control rats received injections of the same volume of phosphate-buffered saline. A digital camera was employed to capture images of the wound area. We explored the role of ASCs in burn wound healing by cell tracing, evaluation of blood vessel number, analysis of a rat cytokine array panel, and cell proliferation in vivo. Multiple injections of autologous ASCs accelerated the wound healing process more efficiently compared with that observed in the control treatment. A rat cytokine array test showed that transplanting ASCs led to significantly elevated expression of VEGF. Therefore, angiogenesis was significantly improved in ASC-treated rats, as more microvessels were observed in the wound skin of the experimental rats than in that of the control rats. Transplanted ASCs not only survived in the wound bed but also participated in the blood vessel regeneration process. ASCs also accelerated the wound healing process by increasing the rate of cell proliferation in the wound skin. Our data suggest that autologous ASCs transplantation accelerated the burn wound healing process and promoted blood vessel regeneration. ASCs could potentially be used in burn wound healing treatment.
Collapse
Affiliation(s)
- Xiaolong Zhou
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Bin Ling
- The Second People's Hospital of Yunnan Province, Kunming, China
| | - Xu Chen
- Eighth People's Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Hongbin Cheng
- Department of Cell Transplantation, General Hospital of Chinese People's Armed, Beijing, China
| | - Bing Lu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhengliang Gao
- Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
121
|
Montero A, Acosta S, Hernández R, Elvira C, Jorcano JL, Velasco D. Contraction of fibrin-derived matrices and its implications for in vitro human skin bioengineering. J Biomed Mater Res A 2020; 109:500-514. [PMID: 32506782 DOI: 10.1002/jbm.a.37033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022]
Abstract
It is well-known that fibroblasts play a fundamental role in the contraction of collagen and fibrin hydrogels when used in the production of in vitro bilayered skin substitutes. However, little is known about the contribution of other factors, such as the hydrogel matrix itself, on this contraction. In this work, we studied the contraction of plasma-derived fibrin hydrogels at different temperatures (4, 23, and 37°C) in an isotonic buffer (phosphate-buffered saline). These types of hydrogels presented a contraction of approximately 30% during the first 24 hr, following a similar kinetics irrespectively of the temperature. This kinetics continued in a slowed down manner to reach a plateau value of 40% contraction after 10-15 days. Contraction of commercial fibrinogen hydrogels was studied under similar conditions and the kinetics was completed after 8 hr, reaching values between 20 and 70% depending on the temperature. We attribute these substantial differences to a modulatory effect on the contraction due to plasma proteins which are initially embedded in, and progressively released from, the plasma-based hydrogels. The elastic modulus of hydrogels measured at a constant frequency decreased with increasing temperature in 7-day gels. Rheological measurements showed the absence of a strain-hardening behavior in the plasma-derived fibrin hydrogels. Finally, plasma-derived fibrin hydrogels with and without human primary fibroblast and keratinocytes were prepared in transwell inserts and their height measured over time. Both cellular and acellular gels showed a height reduction of 30% during the first 24 hr likely due to the above-mentioned intrinsic fibrin matrix contraction.
Collapse
Affiliation(s)
- Andrés Montero
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Sonia Acosta
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| | - Rebeca Hernández
- Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - Carlos Elvira
- Department of Applied Macromolecular Chemistry, Institute of Polymer Science and Technology, CSIC, Madrid, Spain
| | - José Luis Jorcano
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain.,Division of Epithelial Biomedicine, CIEMAT, Madrid, Spain
| | - Diego Velasco
- Department of Bioengineering and Aerospace Engineering, Universidad Carlos III de Madrid (UC3M), Madrid, Spain
| |
Collapse
|
122
|
Chawathe M, Asheghali D, Minko S, Jonnalagadda S, Sidorenko A. Adaptive Hybrid Molecular Brushes Composed of Chitosan, Polylactide, and Poly(N-vinyl pyrrolidone) for Support and Guiding Human Dermal Fibroblasts. ACS APPLIED BIO MATERIALS 2020; 3:4118-4127. [DOI: 10.1021/acsabm.0c00217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Manasi Chawathe
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Darya Asheghali
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, Georgia 30602, United States
| | - Sriramakamal Jonnalagadda
- Department of Pharmaceutical Sciences, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Sidorenko
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
123
|
Advances in the Research of Bioinks Based on Natural Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting. Polymers (Basel) 2020; 12:polym12061237. [PMID: 32485901 PMCID: PMC7362214 DOI: 10.3390/polym12061237] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/22/2022] Open
Abstract
The skin plays an important role in protecting the human body, and wound healing must be set in motion immediately following injury or trauma to restore the normal structure and function of skin. The extracellular matrix component of the skin mainly consists of collagen, glycosaminoglycan (GAG), elastin and hyaluronic acid (HA). Recently, natural collagen, polysaccharide and their derivatives such as collagen, gelatin, alginate, chitosan and pectin have been selected as the matrix materials of bioink to construct a functional artificial skin due to their biocompatible and biodegradable properties by 3D bioprinting, which is a revolutionary technology with the potential to transform both research and medical therapeutics. In this review, we outline the current skin bioprinting technologies and the bioink components for skin bioprinting. We also summarize the bioink products practiced in research recently and current challenges to guide future research to develop in a promising direction. While there are challenges regarding currently available skin bioprinting, addressing these issues will facilitate the rapid advancement of 3D skin bioprinting and its ability to mimic the native anatomy and physiology of skin and surrounding tissues in the future.
Collapse
|
124
|
Mamman HB, Jamil MMA, Ibrahim TNT, Wahab MHA, Sharif JM, Rahman NAA, Youseffi M, Javid F. Studying the Influence of Electroporation on HT29 Cell Line Interaction with Fibronectin and Collagen Protein Micro-Patterned Surface. JOURNAL OF PHYSICS: CONFERENCE SERIES 2020; 1529:052028. [DOI: 10.1088/1742-6596/1529/5/052028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Micro-contact printing (MCP) is a scheme that allows a substrate or surface to be functionalized freely with extracellular matrix (ECM) protein such as fibronectin and collagen, in a well-defined manner. MCP can be used to regulate cell adhesion geometry on a substrate and in controlling wound healing process by facilitating directed cell migration. In this study, human colon cancer cell line, HT29 were grown on a micro-contact printed pattern of fibronectin and collagen protein with repeat gratings of 25μm, 50μm, and 100μm wide, for 48 hours. The cells alignments to the patterned substrates were then computed, where 0° means 100% alignment to the pattern. This was done with the purpose of finding those pattern that stimulated the best degree of cell alignment. Best alignment and elongation were obtained on 50μm of the two ECM proteins. The quantitative analysis of the results revealed that HT29 cells aligned most readily to the 50μm width pattern with a mean angle of alignment of 5.0° ± 1.3 and 16.1° ± 4.6, respectively, on fibronectin and collagen pattern surfaces. Contrarily, the cells aligned poorly on the 25μm width pattern of fibronectin, collagen and the control substrates with a mean angle of 33.4° ± 8.4, 36.2° ± 8.9 and 54.5° ± 6.0, respectively. Furthermore, the 50μm stamp pattern was used to investigate the influence of pulse electric field (PEF) on the HT29 alignment to the patterned substrate. The result revealed that there was significant improvement (P < 0.05) in the cell alignment between the electrically treated and the untreated cells. The alignment angles of the electrically treated cells were 4.0° ± 1.2 and 11.2° ± 3.5, respectively, on the 50μm pattern surface of fibronectin and collagen. Therefore, the result of the study revealed that micro-contact printing technique together with pulse electric field could offer a potentially fast method of controlling directed cell migration for wound healing application.
Collapse
|
125
|
Sultana N, Chang HC, Jefferson S, Daniels DE. Application of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymers in potential biomedical engineering. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00485-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
126
|
Tissue Engineering and Regenerative Medicine in Craniofacial Reconstruction and Facial Aesthetics. J Craniofac Surg 2020; 31:15-27. [PMID: 31369496 DOI: 10.1097/scs.0000000000005840] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The craniofacial region is anatomically complex and is of critical functional and cosmetic importance, making reconstruction challenging. The limitations of current surgical options highlight the importance of developing new strategies to restore the form, function, and esthetics of missing or damaged soft tissue and skeletal tissue in the face and cranium. Regenerative medicine (RM) is an expanding field which combines the principles of tissue engineering (TE) and self-healing in the regeneration of cells, tissues, and organs, to restore their impaired function. RM offers many advantages over current treatments as tissue can be engineered for specific defects, using an unlimited supply of bioengineered resources, and does not require immunosuppression. In the craniofacial region, TE and RM are being increasingly used in preclinical and clinical studies to reconstruct bone, cartilage, soft tissue, nerves, and blood vessels. This review outlines the current progress that has been made toward the engineering of these tissues for craniofacial reconstruction and facial esthetics.
Collapse
|
127
|
Qiu Y, Wang Q, Chen Y, Xia S, Huang W, Wei Q. A Novel Multilayer Composite Membrane for Wound Healing in Mice Skin Defect Model. Polymers (Basel) 2020; 12:polym12030573. [PMID: 32143489 PMCID: PMC7182948 DOI: 10.3390/polym12030573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022] Open
Abstract
To develop a wound dressing material that conforms to the healing process, we prepared a multilayer composite (MC) membrane consisting of an antibacterial layer (ABL), a reinforcement layer (RFL), and a healing promotion layer (HPL). Biocompatible zein/ethyl cellulose (zein/EC) electrospun nanofibrous membranes with in situ loaded antibacterial photosensitizer protoporphyrin (PPIX) and healing promotion material vaccarin (Vac) were, respectively, chosen as the ABL on the surface and the HPL on the bottom, between which nonwoven incorporated bacterial cellulose (BC/PETN) as the HPL was intercalated to enhance the mechanical property. Photodynamic antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa was confirmed by the enlarged inhibition zones; meanwhile, satisfactory biocompatibility of the HPL was verified by scanning electronic microscopy (SEM) of L929 cells cultured on its surface. The potential effects on wound healing in a mice skin defect model of the MC membranes were also evaluated. The animal experiments demonstrated that the wound healing rate in the MC group was significantly increased compared with that in the control group (p < 0.05). Histopathological observation revealed an alleviated inflammatory response, accompanied with vascular proliferation in the MC group. The MC membranes significantly promoted wound healing by creating an antibacterial environment and promoting angiogenesis. Taken together, this MC membrane may act as a promising wound dressing for skin wound healing.
Collapse
Affiliation(s)
- Yuyu Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.Q.); (S.X.); (W.H.)
| | - Qingqing Wang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Q.W.); (Y.C.)
| | - Yajun Chen
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Q.W.); (Y.C.)
| | - Shufang Xia
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.Q.); (S.X.); (W.H.)
| | - Wei Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (Y.Q.); (S.X.); (W.H.)
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China; (Q.W.); (Y.C.)
- Correspondence:
| |
Collapse
|
128
|
Yang C, Luo L, Bai X, Shen K, Liu K, Wang J, Hu D. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys 2020; 681:108259. [DOI: 10.1016/j.abb.2020.108259] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 01/06/2023]
|
129
|
Op 't Veld RC, Walboomers XF, Jansen JA, Wagener FADTG. Design Considerations for Hydrogel Wound Dressings: Strategic and Molecular Advances. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:230-248. [PMID: 31928151 DOI: 10.1089/ten.teb.2019.0281] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wound dressings are traditionally used to protect a wound and to facilitate healing. Currently, their function is expanding. There is an urgent need for new smart products that not only act as a protective barrier but also actively support the wound healing process. Hydrogel dressings are an example of such innovative products and typically facilitate wound healing by providing a hospitable and moist environment in which cells can thrive, while the wound can still breathe and exudate can be drained. These dressings also tend to be less painful or have a soothing effect and allow for additional drug delivery. In this review, various strategic and molecular design considerations are discussed that are relevant for developing a hydrogel into a wound dressing product. These considerations vary from material choice to ease of use and determine the dressing's final properties, application potential, and benefits for the patient. The focus of this review lies on identifying and explaining key aspects of hydrogel wound dressings and their relevance in the different phases of wound repair. Molecular targets of wound healing are discussed that are relevant when tailoring hydrogels toward specific wound healing scenarios. In addition, the potential of hydrogels is reviewed as medicine advances from a repair-based wound healing approach toward a regenerative-based one. Hydrogels can play a key role in the transition toward personal wound care and facilitating regenerative medicine strategies by acting as a scaffold for (stem) cells and carrier/source of bioactive molecules and/or drugs. Impact statement Improved wound healing will lead to a better quality of life around the globe. It can be expected that this coincides with a reduction in health care spending, as the duration of treatment decreases. To achieve this, new and modern wound care products are desired that both facilitate healing and improve comfort and outcome for the patient. It is proposed that hydrogel wound dressings can play a pivotal role in improving wound care, and to that end, this review aims to summarize the various design considerations that can be made to optimize hydrogels for the purpose of a wound dressing.
Collapse
Affiliation(s)
- Roel C Op 't Veld
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.,Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - X Frank Walboomers
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - John A Jansen
- Department of Dentistry-Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| |
Collapse
|
130
|
Abstract
Wound healing is a complex physiological process that occurs in the human body involving the sequential activation of multiple cell types and signaling pathways in a coordinated manner. Chronic wounds and burns clearly decrease quality of life of the patients since they are associated with an increase in physical pain and socio-economical complications. Furthermore, incidence and prevalence of chronic wounds (unlike burns) have been increasing mainly due to population aging resulting in increased costs for national health systems. Thus, the development of new and more cost-effective technologies/therapies is not only of huge interest but also necessary to improve the long-term sustainability of national health systems. This review covers the current knowledge on recent technologies/therapies for skin regeneration, such as: wound dressings; skin substitutes; exogenous growth factor based therapy and systemic therapy; external tissue expanders; negative pressure; oxygen; shock wave, and photobiomodulation wound therapies. Associated benefits and risks as well as the clinical use and availability are all addressed for each therapy. Moreover, future trends in wound care including novel formulations using metallic nanoparticles and topical insulin are herein presented. These novel formulations have shown to be promising therapeutic options in the near future that may change the wound care paradigm.
Collapse
Affiliation(s)
- André Oliveira
- Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Simões
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Ascenso
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pinto Reis
- Faculty of Pharmacy, Research Institute for Medicines, iMed.ULisboa, Universidade de Lisboa, Lisboa, Portugal.,Faculty of Sciences, Biophysics and Biomedical Engineering, IBEB, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
131
|
Weng T, Wu P, Zhang W, Zheng Y, Li Q, Jin R, Chen H, You C, Guo S, Han C, Wang X. Regeneration of skin appendages and nerves: current status and further challenges. J Transl Med 2020; 18:53. [PMID: 32014004 PMCID: PMC6996190 DOI: 10.1186/s12967-020-02248-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue-engineered skin (TES), as an analogue of native skin, is promising for wound repair and regeneration. However, a major drawback of TES products is a lack of skin appendages and nerves to enhance skin healing, structural integrity and skin vitality. Skin appendages and nerves are important constituents for fully functional skin. To date, many studies have yielded remarkable results in the field of skin appendages reconstruction and nerve regeneration. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients’ quality of life. Current strategies to create skin appendages and sensory nerve regeneration are mainly based on different types of seeding cells, scaffold materials, bioactive factors and involved signaling pathways. This article provides a comprehensive overview of different strategies for, and advances in, skin appendages and sensory nerve regeneration, which is an important issue in the field of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tingting Weng
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Pan Wu
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Yurong Zheng
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou, 310022, China
| | - Qiong Li
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Ronghua Jin
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Haojiao Chen
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Chuangang You
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University, Hangzhou, 310009, China
| | - Chunmao Han
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
132
|
Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110716. [PMID: 32204028 DOI: 10.1016/j.msec.2020.110716] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/29/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Significant advances have been made in the field of tissue engineering (TE), especially in the synthesis of three-dimensional (3D) scaffolds for replacing damaged tissues and organs in laboratory conditions. However, the gaps in knowledge in exploiting these techniques in preclinical trials and beyond and, in particular, in practical scenarios (e.g., replacing real body organs) have not been discussed well in the existing literature. Furthermore, it is observed in the literature that while new techniques for the synthesis of 3D TE scaffold have been developed, some of the earlier techniques are still being used. This implies that the advantages offered by a more recent and advanced technique as compared to the earlier ones are not obvious, and these should be discussed in detail. For example, one needs to be aware of the reason, if any, behind the superiority of traditional electrospinning technique over recent advances in 3D printing technique for the production of 3D scaffolds given the popularity of the former over the latter, indicated by the number of publications in the respective areas. Keeping these points in mind, this review aims to demonstrate the ongoing trend in TE based on the scaffold fabrication techniques, focusing mostly, on the two most widely used techniques, namely, electrospinning and 3D printing, with a special emphasis on preclinical trials and beyond. In this context, the advantages, disadvantages, flexibilities and limitations of the relevant techniques (electrospinner and 3D printer) are discussed. The paper also critically analyzes the applicability, restrictions, and future demands of these techniques in TE including their applications in generating whole body organs. It is concluded that combining these knowledge gaps with the existing body of knowledge on the preparation of laboratory scale 3D scaffolds, would deliver a much better understanding in the future for scientists who are interested in these techniques.
Collapse
|
133
|
Sodium Valproate Improves Skin Flap Survival via Gamma-Aminobutyric Acid and Histone Deacetylase Inhibitory System. J Surg Res 2020; 246:519-526. [DOI: 10.1016/j.jss.2019.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/23/2019] [Accepted: 09/18/2019] [Indexed: 11/15/2022]
|
134
|
Goder D, Matsliah L, Giladi S, Reshef-Steinberger L, Zin I, Shaul A, Zilberman M. Mechanical, physical and biological characterization of soy protein films loaded with bupivacaine for wound healing applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1716226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Daniella Goder
- Department of Materials Science and Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Lior Matsliah
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Shir Giladi
- Department of Materials Science and Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Idan Zin
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Alon Shaul
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| | - Meital Zilberman
- Department of Materials Science and Engineering, Tel-Aviv University, Tel-Aviv, Israel
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
135
|
The Use of Dehydrated Human Amniotic/Chorionic Membrane Skin Substitute in the Treatment of Pediatric Facial Burn. J Craniofac Surg 2020; 30:2551-2554. [PMID: 31449203 DOI: 10.1097/scs.0000000000005826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Facial burns have lasting physical and psychological effects on pediatric patients. Proper management to minimize morbidities challenges reconstructive surgeons. New technologies allowed the development of skin substitutes such as amniotic and chorionic membranes, yet the use of these skin dressings and their impact on burn outcomes have not been sufficiently studied to guide practices. The objective of this study is to report on the outcomes of dehydrated amniotic membrane as a biologic skin dressing in pediatric facial burn injury compared to cadaveric allografts. METHODS Retrospective review of data collected from our institutional burn registry from 2012 to 2016. The study population included patients younger than 16 years with facial burns. Patients between 2012 and 2014 received cadaveric allografts, whereas during 2015 to 2016 patients received dehydrated human amniotic/chorionic membrane as standard treatment. Demographic characteristics and outcome measures were compared between the 2 groups. RESULTS Included 30 patients with a mean age of 3.7 years and with an average total body surface area burn of 6.8% (2%-27%). Mean injury severity scores did not significantly differ between both groups, 1.8 in amniotic group versus 2.3 in cadaveric skin group (P > 0.05). There were 4 complications (3 hypertrophic scars and 1 wound infection) in the cadaveric allografts group versus no complications in the amniotic membrane group (P < 0.05). CONCLUSION Dehydrated amniotic/chorionic membrane wound dressings are a safe alternative to cadaveric allografts in treating pediatric partial thickness facial burns.
Collapse
|
136
|
|
137
|
Sun ML, Zhao F, Chen XL, Zhang XY, Zhang YZ, Song XY, Sun CY, Yang J. Promotion of Wound Healing and Prevention of Frostbite Injury in Rat Skin by Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127. Mar Drugs 2020; 18:md18010048. [PMID: 31940773 PMCID: PMC7024241 DOI: 10.3390/md18010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
Many marine microorganisms synthesize exopolysaccharides (EPSs), and some of these EPSs have been reported to have potential in different fields. However, the pharmaceutical potentials of marine EPSs are rarely reported. The EPS secreted by the Artic marine bacterium Polaribacter sp. SM1127 has good antioxidant activity, outstanding moisture-retention ability, and considerable protective property on human dermal fibroblasts (HDFs) at low temperature. Here, the effects of SM1127 EPS on skin wound healing and frostbite injury prevention were studied. Scratch wound assay showed that SM1127 EPS could stimulate the migration of HDFs. In the full-thickness cutaneous wound experiment of Sprague-Dawley (SD) rats, SM1127 EPS increased the wound healing rate and stimulated tissue repair detected by macroscopic observation and histologic examination, showing the ability of SM1127 EPS to promote skin wound healing. In the skin frostbite experiment of SD rats, pretreatment of rat skin with SM1127 EPS increased the rate of frostbite wound healing and promoted the repair of the injured skin significantly, indicating the good effect of SM1127 EPS on frostbite injury prevention. These results suggest the promising potential of SM1127 EPS in the pharmaceutical area to promote skin wound healing and prevent frostbite injury.
Collapse
Affiliation(s)
- Mei-Ling Sun
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Fang Zhao
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266003, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Cai-Yun Sun
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
| | - Jie Yang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, China; (M.-L.S.); (F.Z.); (X.-L.C.); (X.-Y.Z.); (Y.-Z.Z.); (X.-Y.S.); (C.-Y.S.)
- Correspondence:
| |
Collapse
|
138
|
The Role of Adipose-Derived Stem Cells, Dermal Regenerative Templates, and Platelet-Rich Plasma in Tissue Engineering-Based Treatments of Chronic Skin Wounds. Stem Cells Int 2020; 2020:7056261. [PMID: 32399048 PMCID: PMC7199611 DOI: 10.1155/2020/7056261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.
Collapse
|
139
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
140
|
Zhang Z, Zhou S, Zhang Y, Wu D, Yang X. The dual delivery of growth factors and antimicrobial peptide by PLGA/GO composite biofilms to promote skin-wound healing. NEW J CHEM 2020. [DOI: 10.1039/c9nj05389a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Biodegradable biomaterials coated with active factors are effective medical devices to promote wound healing.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Shicheng Zhou
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Yanzhe Zhang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Dankai Wu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun
- P. R. China
| |
Collapse
|
141
|
The Use of Dehydrated Human Amniotic Membrane Versus Amniotic/Chorionic Membrane Allografts to Treat Partial Thickness Facial Burns. J Craniofac Surg 2020; 31:201-203. [DOI: 10.1097/scs.0000000000005834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
142
|
Arasteh S, Katebifar S, Shirazi R, Kazemnejad S. Differentiation of Menstrual Blood Stem Cells into Keratinocyte-Like Cells on Bilayer Nanofibrous Scaffold. Methods Mol Biol 2020; 2125:129-156. [PMID: 30187401 DOI: 10.1007/7651_2018_193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Skin tissue engineering is a high-throughput technology to heal the wounds. Already, considerable advances have been achieved using stem cells for wound healing applications. Menstrual blood stem cell (MenSC) is an available and accessible source of stem cells that have differentiation potential into a wide range of lineages like keratinocytes. Extracellular matrix like substratum plays an impressive role in skin regeneration as an attachment site for stem cells by transmitting the bioactive signals and provoking stem cells to differentiate into keratinocyte lineage. The biomimetic nanofibrous scaffold especially in bilayer format has been extensively utilized to develop skin equivalents. This chapter explains detailed protocols of keratinocyte differentiation of MenSCs on bilayer scaffold comprising amniotic membrane and fibroin nanofibers. The isolated MenSCs are seeded on the nanofibers and subsequently differentiated into keratinocyte lineage in co-culture with foreskin-derived keratinocytes. Immunofluorescence staining is used to evaluate the development of seeded MenSCs in bilayer scaffold into keratinocyte-like cells.
Collapse
Affiliation(s)
- Shaghayegh Arasteh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Sara Katebifar
- Biomedical Engineering Department, University of Connecticut, Hartford, CT, USA
| | - Reza Shirazi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
143
|
|
144
|
Munhoz DR, Bernardo MP, Malafatti JO, Moreira FK, Mattoso LH. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing. Int J Biol Macromol 2019; 141:504-510. [DOI: 10.1016/j.ijbiomac.2019.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
|
145
|
Shanmugapriya K, Kang HW. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110110. [PMID: 31546465 DOI: 10.1016/j.msec.2019.110110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 12/25/2022]
|
146
|
Moon KC, Chung HY, Han SK, Jeong SH, Dhong ES. Tissue-engineered dermis grafts using stromal vascular fraction cells on the nose: A retrospective case-control study. J Plast Reconstr Aesthet Surg 2019; 73:965-974. [PMID: 31902623 DOI: 10.1016/j.bjps.2019.11.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/29/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND In a previous study, our group demonstrated that cultured autologous fibroblast-seeded artificial dermis was superior to artificial dermis for covering defects after surgical excision of basal cell carcinoma (BCC) in terms of scar quality. However, utilizing cultured cells for clinical purposes requires Food and Drug Administration-approved facilities and techniques and a lengthy culture period. The purpose of this retrospective study was to compare the effects of tissue-engineered dermis containing stromal vascular fraction (SVF) cells with artificial dermis on scar quality after surgical excision of BCC on the nose. METHODS Between April 2010 and February 2018, patients who were treated with tissue-engineered or artificial dermis grafts and those with a follow-up period of greater than a year were included in this study. The Patient and Observer Scar Assessment Scales (POSAS) were compared between two groups according to the location of the graft, which was classified based on nasal subunits: the upper two-thirds zone; the lower one-third zone, except for the ala; and the alar zone. RESULTS A tissue-engineered dermis composed of SVF cells and an artificial dermis were applied to 30 and 47 patients, respectively. In upper two-thirds and lower one-third zones, except for the ala, no statistically significant differences were found in any parameters. In the alar zone, statistically significant differences were detected in 10 of 21 POSAS parameters. CONCLUSION To cover nasal defects, the tissue-engineered dermis graft may be superior to the artificial dermis graft regarding scar quality at the ala. However, there were no significant differences in other zones.
Collapse
Affiliation(s)
- Kyung-Chul Moon
- Department of Plastic Surgery, Korea University College of Medicine, 148 Guro-Dong, Guro-Ku, 152-703 Seoul, Republic of Korea
| | - Ha-Yoon Chung
- Department of Plastic Surgery, Korea University College of Medicine, 148 Guro-Dong, Guro-Ku, 152-703 Seoul, Republic of Korea
| | - Seung-Kyu Han
- Department of Plastic Surgery, Korea University College of Medicine, 148 Guro-Dong, Guro-Ku, 152-703 Seoul, Republic of Korea.
| | - Seong-Ho Jeong
- Department of Plastic Surgery, Korea University College of Medicine, 148 Guro-Dong, Guro-Ku, 152-703 Seoul, Republic of Korea
| | - Eun-Sang Dhong
- Department of Plastic Surgery, Korea University College of Medicine, 148 Guro-Dong, Guro-Ku, 152-703 Seoul, Republic of Korea
| |
Collapse
|
147
|
Zhang L, Yin H, Lei X, Lau JNY, Yuan M, Wang X, Zhang F, Zhou F, Qi S, Shu B, Wu J. A Systematic Review and Meta-Analysis of Clinical Effectiveness and Safety of Hydrogel Dressings in the Management of Skin Wounds. Front Bioeng Biotechnol 2019; 7:342. [PMID: 31824935 PMCID: PMC6881259 DOI: 10.3389/fbioe.2019.00342] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The purpose of this systematic review and meta-analysis is to assess the clinical effectiveness and safety of the medical hydrogel dressings used in skin wounds and therefore to weight the evidence for their clinical application. PubMed/Medline (1980–2019), Cochrane Library (1980–2019), ClinicalTrials.gov, Cochrane CENTRAL, Chinese Journal Full-text Database (CNKI, 1994–2019), and China Biomedy Medicine disc (CBM, 1978–2019), Chinese Scientific Journal Database (VIP, 1989–2019), and Wanfang Database (WFDATA, 1980–2019) were searched to identify relevant clinical trials and studies. Forty-three studies that assessed hydrogel vs. non-hydrogel dressings were identified. Compared to the latter, hydrogel dressings associated with a significantly shortened healing time of degree II burn (superficial and deep) wounds, diabetic foot ulcers, traumatic skin injuries, radioactive skin injuries, dog bites, and body surface ulcers. In addition, hydrogel dressing obviously increased the cure rate of diabetic foot ulcers, surgical wounds, dog bites, and body surface ulcers. Moreover, hydrogel dressing significantly relieved pain in degree II burn (superficial and deep) wounds, traumatic skin injuries, and laser treatment-induced wounds. However, no significant differences obtained between hydrogel and non-hydrogel dressings in the healing time of surgical wounds, the cure rate of inpatients' pressure ulcers, and phlebitis ulcers. This comprehensive systematic review and meta-analysis of the available evidence reveals that the application of hydrogel dressings advances the healing of various wound types and effectively alleviates the pain with no severe adverse reactions. These results strongly indicate that hydrogel products are effective and safe in wound management.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanxiao Yin
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xun Lei
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Johnson N Y Lau
- University of Hong Kong, Hong Kong Polytechnic University, Kowloon, China
| | - Mingzhou Yuan
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fangyingnan Zhang
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Zhou
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaohai Qi
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Shu
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Wu
- Department of Burns, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
148
|
Seyed Ahmadi SG, Farahpour MR, Hamishehkar H. Topical application ofCinnamon verumessential oil accelerates infected wound healing process by increasing tissue antioxidant capacity and keratin biosynthesis. Kaohsiung J Med Sci 2019; 35:686-694. [DOI: 10.1002/kjm2.12120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Seyed Gharani Seyed Ahmadi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia BranchIslamic Azad University Urmia Iran
| | - Mohammad R. Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia BranchIslamic Azad University Urmia Iran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
149
|
Nejaddehbashi F, Bayati V, Mashali L, Hashemitabar M, Abbaspour M, Moghimipour E, Orazizadeh M. Isolating human dermal fibroblasts using serial explant culture. Stem Cell Investig 2019; 6:23. [PMID: 31559310 DOI: 10.21037/sci.2019.08.05] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023]
Abstract
Background The purpose of this study was to introduce an applicable culture technique to isolate human dermal fibroblasts (HDFs); which could also contribute to research, clinical practices, as well as tissue engineering. Methods Samples from the human skin were dissected and cultured via serial explant technique. Subsequently, the isolated fibroblasts were assessed for their protein markers and genetic variations via immunofluorescence (IF) and karyotyping; respectively. Following the employment of this technique, a small piece of explant completely disappeared; while no dermis remained after 10 days. Results The quantity of HDFs harvested through this culture technique was reported at a normal level. The results of immunostaining also indicated that the isolated fibroblasts had expressed vimentin and fibronectin; whereas no cells had shown cytokeratin and epidermal marker. Moreover, karyotyping results for the fibroblasts isolated by the given technique revealed no chromosomal diversity after passage 20. Conclusions It was concluded that serial explant culture was an efficient technique for isolating HDFs from a small piece of skin in short-time periods; which could also preserve their normal morphology and molecular characteristics.
Collapse
Affiliation(s)
- Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Mashali
- Department of Otolaryngology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eskandar Moghimipour
- Nanotechnology Research center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
150
|
The pro-healing effects of medical grade honey supported by a pediatric case series. Complement Ther Med 2019; 45:14-18. [DOI: 10.1016/j.ctim.2019.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
|