101
|
Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: Current status. Colloids Surf B Biointerfaces 2016; 146:70-83. [PMID: 27259161 DOI: 10.1016/j.colsurfb.2016.05.046] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022]
Abstract
One fourth of the global mortalities is still caused by microbial infections largely due to the development of resistance against conventional antibiotics among pathogens, the resurgence of old infectious diseases and the emergence of hundreds of new infectious diseases. The lack of funds and resources for the discovery of new antibiotics necessitates the search for economic and effective alternative antimicrobial agents. Metal and metal oxide nanoparticles including silver and zinc oxide exhibit remarkable antimicrobial activities against pathogens and hence are one of the most propitious alternative antimicrobial agents. These engineered nanomaterials are approved by regulatory agencies such as USFDA and Korea's FITI, for use as antimicrobial agents, supplementary antimicrobials, food packaging, skin care products, oral hygiene, and for fortifying devices prone to microbial infections. Nevertheless, detailed studies, on molecular and biochemical mechanisms underlying their antimicrobial activity are missing. To take the full advantage of this emerging technology selective antimicrobial activity of these nanoparticles against pathogens should be studied. Optimization of these nanomaterials through functionalization to increase their efficacy and biocompatibility is also required. Urgent in vivo studies on the toxicity of nanomaterials at realistic doses are also needed before their clinical translation.
Collapse
|
102
|
Mishra A, Seth A, Maurya SK. Therapeutic significance and pharmacological activities of antidiarrheal medicinal plants mention in Ayurveda: A review. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:290-307. [PMID: 27366356 PMCID: PMC4927135 DOI: 10.5455/jice.20160426094553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
Diarrhea is a serious problem affecting 3-5 billion people per year around the world, especially children of below 5 years. 70% of the world population uses traditional and indigenous medicine for their primary health care. The facts of these indigenous remedies are passed verbally and sometimes as documents. Since ancient time, Ayurveda is the main system of healing in South East Asian countries. Indian literature from ayurvedic texts and other books claim the potency of several plants in the treatment of diarrhea. As the global prospective of ayurvedic medicine is increasing, interest regarding the scientific basis of their action is parallely increasing. Researchers are doing experiments to establish the relation between the claimed action and observed pharmacological activities. In the present article, an attempt was made to compile the scientific basis of medicinal plants used to cure diarrhea in Ayurveda. Literature was collected via electronic search (PubMed, ScienceDirect, Medline, and Google Scholar) from published articles that reports antidiarrheal activity of plants that were mentioned in Ayurveda classics. A total of 109 plant species belonging to 58 families were reported for their antidiarrheal activity. Several Indian medicinal plants have demonstrated promising antidiarrheal effects, but the studies on the antidiarrheal potentials of these plants are not taken beyond proof of concept stage. It is hoped that the article would stimulate future clinical studies because of the paucity of knowledge in this area.
Collapse
Affiliation(s)
- Ashish Mishra
- Department of Ayurvedic Pharmacy Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India
| | - Ankit Seth
- Department of Ayurvedic Pharmacy Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India
| | - Santosh Kumar Maurya
- Department of Ayurvedic Pharmacy Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India
| |
Collapse
|
103
|
Rabelo VW, Sampaio TF, Duarte LD, Lopes DHB, Abreu PA. Structure–activity relationship of a series of 1,2-dihydroquinoline analogues and binding mode with Vibrio cholerae dihydrofolate reductase. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1583-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
104
|
Rocha RDS, Sousa OVD, Vieira RHSDF. Multidrug-resistant Vibrio associated with an estuary affected by shrimp farming in Northeastern Brazil. MARINE POLLUTION BULLETIN 2016; 105:337-340. [PMID: 26876560 DOI: 10.1016/j.marpolbul.2016.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 01/17/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Bacteria of genus Vibrio with multidrug resistance in shrimp farm environment were recurrent. Thus, the aim of this study was to evaluate the antimicrobial resistance profile of 70 strains of Vibrio isolated from water and sediment of Acaraú estuary, Ceará, Brazil. In order to achieve this goal, disk diffusion technique was used with the following antimicrobial agents: ampicillin (Amp), aztreonam (Atm), cephalothin (Cef), cefotaxime (Ctx), ceftriaxone (Cro), ciprofloxacin (Cip), chloramphenicol (Clo), florfenicol (Flo), nitrofurantoin (Nit), gentamicin (Gen), oxytetracycline (Otc), tetracycline (Tet), streptomycin (Str), nalidixic acid (Nal), and sulfazotrim (Sut). All Vibrio strains were resistant to at least one antimicrobial agent, being verified as 17 multidrug-resistant profiles. All strains resistant to Otc and Tet were characterized to exhibit plasmidial resistance. Therefore, Vibrio strains from Acaraú estuary pose a risk to public health and aquatic culture.
Collapse
Affiliation(s)
- Rafael Dos Santos Rocha
- Marine Sciences Institute - Labomar, Federal University of Ceará, Ave. da Abolição 3207, Meireles, 60165-081, Fortaleza, Ceará, Brazil; Fisheries Engineering Department, Federal University of Ceará, Postgraduate Program of Fisheries Engineering, Ave. Mister Hull, s/n, Campus do Pici, Bloco 827, 60021-970, Fortaleza, Ceará, Brazil.
| | - Oscarina Viana de Sousa
- Marine Sciences Institute - Labomar, Federal University of Ceará, Ave. da Abolição 3207, Meireles, 60165-081, Fortaleza, Ceará, Brazil
| | - Regine Helena Silva Dos Fernandes Vieira
- Marine Sciences Institute - Labomar, Federal University of Ceará, Ave. da Abolição 3207, Meireles, 60165-081, Fortaleza, Ceará, Brazil; Fisheries Engineering Department, Federal University of Ceará, Postgraduate Program of Fisheries Engineering, Ave. Mister Hull, s/n, Campus do Pici, Bloco 827, 60021-970, Fortaleza, Ceará, Brazil
| |
Collapse
|
105
|
You KG, Bong CW, Lee CW. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:171. [PMID: 26884358 DOI: 10.1007/s10661-016-5163-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.
Collapse
Affiliation(s)
- K G You
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - C W Bong
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - C W Lee
- Laboratory of Microbial Ecology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
106
|
Moghaddam MM, Abolhassani F, Babavalian H, Mirnejad R, Azizi Barjini K, Amani J. Comparison of in vitro antibacterial activities of two cationic peptides CM15 and CM11 against five pathogenic bacteria: Pseudomonas aeruginosa, Staphylococcus aureus, Vibrio cholerae, Acinetobacter baumannii, and Escherichia coli. Probiotics Antimicrob Proteins 2016; 4:133-9. [PMID: 26781855 DOI: 10.1007/s12602-012-9098-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In recent years, the widespread use of antibiotics has caused many bacterial pathogens resistance to conventional antibiotics. Therefore, generation of new antibiotics to control and reduce the effects of these pathogens is urgently needed. Antimicrobial peptides and proteins are important members of the host defense system in eukaryotes. These peptides are potent, broad-spectrum antibiotics that demonstrate potential as novel and alternative therapeutic agents for the treatment of drug-resistant infections. Accordingly, we evaluated two hybrid peptides CM11 (WKLFKKILKVL-NH2) and CM15 (KWKLFKKIGAVLKVL-NH2) on five important pathogenic bacteria. These peptides are short cecropin-melittin hybrid peptides obtained through a sequence combination approach, which are highly effective to inhibit the growth of important pathogenic bacteria. The activity of these two cationic peptides (CM11 and CM15) in different concentrations (2-64 mg/L) was investigated against standard and clinical isolates of important hospital infection bacteria by measuring MIC, MBC, and bactericidal assay. These peptides demonstrated the same ranges of inhibitory values: The organisms in early 24 h were more susceptible to polycationic peptides (MIC: 8 mg/L and MBC 32 mg/L), but after 48 h the MIC and MBC remained constant for the CM11 peptide. Bactericidal assay showed that all bacteria strains did not have any growth in agar plates after 40 min. The result showed that these two peptides are more effective than other peptides.
Collapse
Affiliation(s)
- M Moosazadeh Moghaddam
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box: 19395-5487, Tehran, Iran.
| | - F Abolhassani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box: 19395-5487, Tehran, Iran.
| | - H Babavalian
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box: 19395-5487, Tehran, Iran.
| | - R Mirnejad
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - K Azizi Barjini
- Department of Molecular Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - J Amani
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Vanak Sq. Mollasadra St., P.O. Box: 19395-5487, Tehran, Iran.
| |
Collapse
|
107
|
Jain M, Kumar P, Goel AK. Emergence of Tetracycline Resistant Vibrio cholerae O1 Biotype El Tor Serotype Ogawa with Classical ctxB Gene from a Cholera Outbreak in Odisha, Eastern India. J Pathog 2016; 2016:1695410. [PMID: 26881083 PMCID: PMC4735907 DOI: 10.1155/2016/1695410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/14/2015] [Indexed: 11/17/2022] Open
Abstract
In September 2010, a cholera outbreak was reported from Odisha, Eastern India. V. cholerae isolated from the clinical samples were biochemically and serologically confirmed as serogroup O1, biotype El Tor, and serotype Ogawa. Multiplex PCR screening revealed the presence of various genes, namely, ompW, ctxB, zot, rfbO1, tcp, ace, hlyA, ompU, rtx, and toxR, in all of the isolates. The isolates were resistant to co-trimoxazole, nalidixic acid, polymyxin B, spectinomycin, streptomycin, sulfamethoxazole, tetracycline, trimethoprim, and vibriostatic agent 2,4-diamino-6,7-diisopropylpteridine (O/129). Minimum inhibitory concentration of tetracycline decreased in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP), suggesting the involvement of efflux pumps. PCR analysis confirmed the presence of class I integrons as well as SXT elements harbouring antibiotic resistance genes in all isolates. Sequencing revealed the presence of ctxB gene of classical biotype in all the isolates. The isolates harboured an RS1-CTX prophage array with El Tor type rstR and classical ctxB on the large chromosome. The study indicated that the V. cholerae El Tor variants are evolving in the area with better antibiotic resistance and virulence potential.
Collapse
Affiliation(s)
- M. Jain
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | - P. Kumar
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | - A. K. Goel
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
108
|
Garrido-Maestu A, Lozano-León A, Rodríguez-Souto RR, Vieites-Maneiro R, Chapela MJ, Cabado AG. Presence of pathogenic Vibrio species in fresh mussels harvested in the southern Rias of Galicia (NW Spain). Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
109
|
Rajalaxmi M, Beema Shafreen R, Iyer PM, Sahaya Vino R, Balamurugan K, Pandian SK. An in silico, in vitro and in vivo investigation of indole-3-carboxaldehyde identified from the seawater bacterium Marinomonas sp. as an anti-biofilm agent against Vibrio cholerae O1. BIOFOULING 2016; 32:1-12. [PMID: 26939983 DOI: 10.1080/08927014.2016.1154545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biofilm formation is a major contributing factor in the pathogenesis of Vibrio cholerae O1 (VCO1) and therefore preventing biofilm formation could be an effective alternative strategy for controlling cholera. The present study was designed to explore seawater bacteria as a source of anti-biofilm agents against VCO1. Indole-3-carboxaldehyde (I3C) was identified as an active principle component in Marinomonas sp., which efficiently inhibited biofilm formation by VCO1 without any selection pressure. Furthermore, I3C applications also resulted in considerable collapsing of preformed pellicles. Real-time PCR studies revealed the down-regulation of virulence gene expression by modulation of the quorum-sensing pathway and enhancement of protease production, which was further confirmed by phenotypic assays. Furthermore, I3C increased the survival rate of Caenorhabditis elegans when infected with VCO1 by significantly reducing in vivo biofilm formation, which was corroborated by a survivability assay. Thus, this study revealed, for the first time, the potential of I3C as an anti-biofilm agent against VCO1.
Collapse
Affiliation(s)
- Murugan Rajalaxmi
- a Department of Biotechnology Science Campus , Alagappa University , Karaikudi , India
| | | | - Prasanth M Iyer
- a Department of Biotechnology Science Campus , Alagappa University , Karaikudi , India
| | - Raja Sahaya Vino
- a Department of Biotechnology Science Campus , Alagappa University , Karaikudi , India
| | | | | |
Collapse
|
110
|
He Y, Tang Y, Sun F, Chen L. Detection and characterization of integrative and conjugative elements (ICEs)-positive Vibrio cholerae isolates from aquacultured shrimp and the environment in Shanghai, China. MARINE POLLUTION BULLETIN 2015; 101:526-532. [PMID: 26522159 DOI: 10.1016/j.marpolbul.2015.10.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 06/05/2023]
Abstract
Increasing industrialization and use of antimicrobial agents in aquaculture production, have led to heavy metals and multidrug resistant (MDR) pathogens becoming serious problems. These resistances are conferred in two ways: intrinsic and transfer via conjugation, or transformation by the major transmission mediators. Integrative and conjugative elements (ICEs) are one of the major mediators; however, few studies on ICEs of environmental origin have been reported in Asia. Herein, we determined the prevalence, antimicrobial susceptibility, heavy metal resistance and genotypes of 126 strains of Vibrio cholerae isolated from aquatic products and the environment in Shanghai, China. 92.3% of isolates were ICEs-positive from aquaculture water and 89.3% of isolates from shrimp showed MDR. Tracing the V. cholerae genotypes, showed no significant relevance of genotype among the antimicrobial resistance strains bearing the ICEs or not. Thus, in aquaculture, ICEs are not the major transmission mediators of resistance to antibiotics or heavy metals.
Collapse
Affiliation(s)
- Yu He
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| | - Yuyi Tang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Fengjiao Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), China Ministry of Agriculture, College of Food Science and Technology, Shanghai Ocean University, 999# Hu Cheng Huan Road, Shanghai 201306, China.
| |
Collapse
|
111
|
Conjugated Linoleic Acid Reduces Cholera Toxin Production In Vitro and In Vivo by Inhibiting Vibrio cholerae ToxT Activity. Antimicrob Agents Chemother 2015; 59:7471-6. [PMID: 26392502 DOI: 10.1128/aac.01029-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/13/2015] [Indexed: 11/20/2022] Open
Abstract
The severe diarrheal disease cholera is endemic in over 50 countries. Current therapies for cholera patients involve oral and/or intravenous rehydration, often combined with the use of antibiotics to shorten the duration and intensity of the disease. However, as antibiotic resistance increases, treatment options will become limited. Linoleic acid has been shown to be a potent negative effector of V. cholerae virulence that acts on the major virulence transcription regulator protein, ToxT, to inhibit virulence gene expression. ToxT activates transcription of the two major virulence factors required for disease, cholera toxin (CT) and toxin-coregulated pilus (TCP). A conjugated form of linoleic acid (CLA) is currently sold over the counter as a dietary supplement and is generally recognized as safe by the U.S. Food and Drug Administration. This study examined whether CLA could be used as a new therapy to reduce CT production, which, in turn, would decrease disease duration and intensity in cholera patients. CLA could be used in place of traditional antibiotics and would be very unlikely to generate resistance, as it affects only virulence factor production and not bacterial growth or survival.
Collapse
|
112
|
Non-O1/Non-O139 Vibrio cholerae Avian Isolate from France Cocarrying the bla(VIM-1) and bla(VIM-4) Genes. Antimicrob Agents Chemother 2015; 59:6594-6. [PMID: 26169421 DOI: 10.1128/aac.00400-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/28/2015] [Indexed: 11/20/2022] Open
Abstract
We describe here a non-O1/non-O139 Vibrio cholerae isolate producing both VIM-1 and VIM-4 carbapenemases. It was isolated from a yellow-legged gull in southern France. The blaVIM genes were part of a class 1 integron structure located in an IncA/C plasmid. This study emphasizes the presence of carbapenemase genes in wildlife microbiota.
Collapse
|
113
|
Paul Nandi S, Payne A, Mukhopadhy AK, Deka S, Saikia L. Anti-Vibrio and Antioxidant Properties of Two Weeds: Euphorbia serpens and Amaranthus viridis. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/rjmp.2015.170.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
114
|
Vishwakarma V, Sahoo SS, Das S, Ray S, Hardt WD, Suar M. Cholera toxin-B (ctxB) antigen expressing Salmonella Typhimurium polyvalent vaccine exerts protective immune response against Vibrio cholerae infection. Vaccine 2015; 33:1880-9. [PMID: 25701672 DOI: 10.1016/j.vaccine.2015.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/25/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
Abstract
Live attenuated vaccines are cost effective approach for preventing a broad range of infectious diseases, and thus are of great interest. However, immune-defects can predispose the patient to infections by the vaccine candidate itself. So far, few live vaccine candidates have been designed specifically for immune compromised individuals. Recently, we reported a new Salmonella Typhimurium Z234-vaccine strain (Periaswamy et al., PLoS ONE 2012;7:e45433), which was specifically attenuated in the NADPH-oxidase deficient host. In the present study, the Z234-vaccine strain was further engineered to express heterologous antigen (Vibrio cholerae toxin antigen subunit-B, i.e. CtxB) with the intention of creating a vector for simultaneous protection against Cholera and Salmonellosis. The primary aim of this study was to ensure the expression of CtxB antigen by the recombinant vaccine strain Z234-pMS101. The antigen CtxB was expressed through Z234 as a fusion protein with N-terminal signal sequence of Salmonella outer protein (SopE), an effector protein from Salmonella under the control of SopE promoter. The CtxB-expressing plasmid construct pMS101 (pM968-pSopE-ctxB) was found to be stable both in vitro and in vivo. In an oral mouse infection model, the vaccine strain Z234-pMS101 efficiently colonized the host gut. The extent of protection was confirmed after challenging the immunized hosts with live V. cholerae. Vaccinated mice showed reduced gut colonization by V. cholerae. Further assessment of immunological parameters supported the possibility of conferring effective immune response by Z234-pMS101 vaccine strain. Overall, the Z234-pMS101 vaccine strain showed potential as a promising polyvalent vaccine candidate to protect against S. Typhimurium and V. cholerae infection simultaneously.
Collapse
Affiliation(s)
- Vikalp Vishwakarma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Susmita Das
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Shilpa Ray
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
115
|
Zahid MSH, Awasthi SP, Hinenoya A, Yamasaki S. Anethole inhibits growth of recently emerged multidrug resistant toxigenic Vibrio cholerae O1 El Tor variant strains in vitro. J Vet Med Sci 2015; 77:535-40. [PMID: 25648987 PMCID: PMC4478732 DOI: 10.1292/jvms.14-0664] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To search natural compounds having inhibitory effect on bacterial growth is important,
particularly in view of growing multidrug resistant (MDR) strains of bacterial pathogens.
Like other bacterial pathogens, MDR Vibrio cholerae, the causative agent
of diarrheal disease cholera, is becoming a great concern. As an approach of searching new
antimicrobial agents, here, we show that anethole, a well-studied natural component of
sweet fennel and star anise seeds, could potentially inhibit the growth of MDR O1 El Tor
biotype, the ongoing 7th cholera pandemic variant strains of toxigenic V.
cholerae. The minimum inhibitory concentration (MIC) of anethole against
diverse O1 El Tor biotype strains is evaluated as 200
µg/ml. Moreover, the effect of anethole is
bactericidal and exerts rapid-killing action on V.
cholerae cells. This study is the first report which demonstrates
that anethole, purified from natural compound, is a potent inhibitor of growth of
toxigenic V. cholerae. Our data suggest that anethole could be a
potential antimicrobial drug candidate, particularly against MDR V.
cholerae mediated infections.
Collapse
Affiliation(s)
- M Shamim Hasan Zahid
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | | | | | | |
Collapse
|
116
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
117
|
Chatterjee A, Chakrabarti G. Dimethyl sulphoxide and Ca2+ stimulate assembly of Vibrio cholerae FtsZ. Biochimie 2014; 105:64-75. [DOI: 10.1016/j.biochi.2014.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
118
|
Marin MA, Fonseca EL, Andrade BN, Cabral AC, Vicente ACP. Worldwide occurrence of integrative conjugative element encoding multidrug resistance determinants in epidemic Vibrio cholerae O1. PLoS One 2014; 9:e108728. [PMID: 25265418 PMCID: PMC4181655 DOI: 10.1371/journal.pone.0108728] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
In the last decades, there has been an increase of cholera epidemics caused by multidrug resistant strains. Particularly, the integrative and conjugative element (ICE) seems to play a major role in the emergence of multidrug resistant Vibrio cholerae. This study fully characterized, by whole genome sequencing, new ICEs carried by multidrug resistant V. cholerae O1 strains from Nigeria (2010) (ICEVchNig1) and Nepal (1994) (ICEVchNep1). The gene content and gene order of these two ICEs are the same, and identical to ICEVchInd5, ICEVchBan5 and ICEVchHai1 previously identified in multidrug resistant V. cholerae O1. This ICE is characterized by dfrA1, sul2, strAB and floR antimicrobial resistance genes, and by unique gene content in HS4 and HS5 ICE regions. Screening for ICEs, in publicly available V. cholerae genomes, revealed the occurrence and widespread distribution of this ICE among V. cholerae O1. Metagenomic analysis found segments of this ICE in marine environments far from the direct influence of the cholera epidemic. Therefore, this study revealed the epidemiology of a spatio-temporal prevalent ICE in V. cholerae O1. Its occurrence and dispersion in V. cholerae O1 strains from different continents throughout more than two decades can be indicative of its role in the fitness of the current pandemic lineage.
Collapse
Affiliation(s)
- Michel A. Marin
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC) - Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- * E-mail:
| | - Erica L. Fonseca
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC) - Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Bruno N. Andrade
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC) - Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Adriana C. Cabral
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC) - Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ana Carolina P. Vicente
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute (IOC) - Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
119
|
Rapa RA, Islam A, Monahan LG, Mutreja A, Thomson N, Charles IG, Stokes HW, Labbate M. A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage. Environ Microbiol 2014; 17:1090-102. [PMID: 24889424 PMCID: PMC4405046 DOI: 10.1111/1462-2920.12512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V. cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V. cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V. cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains.
Collapse
Affiliation(s)
- Rita A Rapa
- ithree Institute, University of Technology, PO Box 123 Broadway, Sydney, NSW, 2007, Australia; Department of Medical and Molecular Biosciences, University of Technology, Sydney, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Computer based screening for novel inhibitors against Vibrio cholerae using NCI diversity set-II: an alternative approach by targeting transcriptional activator ToxT. Interdiscip Sci 2014; 6:108-17. [PMID: 25172449 DOI: 10.1007/s12539-012-0046-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/17/2012] [Accepted: 01/04/2013] [Indexed: 10/25/2022]
Abstract
Cholera is a severe diarrheal disease caused by Vibrio cholerae and remains as a major health risk in developing countries. The emergence and spread of multi-drug resistant V. cholerae strains during the past two decades is now a major problem in the treatment of cholera and have created the urgent need for the development of novel therapeutic agents. Targeting transcriptional factor is now a novel approach to tackle the development of multi-drug resistant strain. In the recent year virtual high throughput screening has emerged as a widely accepted powerful technology in the identification of novel and diverse lead. This study provides new insight to the search for new potent and selective inhibitors that still remains necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. The publications of high resolution X-ray structure of V. cholerae ToxT has open the way to the structure based virtual screening to identify new small molecular inhibitors which still remain necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. In this study we have performed structure based virtual screening approach using NCI diversity set-II to look for novel inhibitor of ToxT and proposed eight candidate compounds with high scoring function. Thus from complex scoring and binding ability it is elucidated that these compounds could be the promising inhibitors or could be developed as novel lead compounds for drug design against cholera.
Collapse
|
121
|
Yano Y, Hamano K, Satomi M, Tsutsui I, Ban M, Aue-umneoy D. Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
122
|
Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T, Kostiuk B, Provenzano D, Pukatzki S. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat Commun 2014; 5:3549. [PMID: 24686479 PMCID: PMC3988814 DOI: 10.1038/ncomms4549] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 03/05/2014] [Indexed: 01/03/2023] Open
Abstract
Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over 200 serogroups with differing pathogenic potential. Only strains that express the virulence factors cholera toxin (CT) and toxin-coregulated pilus (TCP) are capable of pandemic spread of cholera diarrhoea. Regardless, all V. cholerae strains sequenced to date harbour genes for the type VI secretion system (T6SS) that translocates effectors into neighbouring eukaryotic and prokaryotic cells. Here we report that the effectors encoded within these conserved gene clusters differ widely among V. cholerae strains, and that immunity proteins encoded immediately downstream from the effector genes protect their host from neighbouring bacteria producing corresponding effectors. As a consequence, strains with matching effector-immunity gene sets can coexist, while strains with different sets compete against each other. Thus, the V. cholerae T6SS contributes to the competitive behaviour of this species. Some strains of the pathogen Vibrio cholerae can kill each other by injecting effector proteins that are toxic in the absence of cognate ‘immunity’ proteins. Here, the authors show that strains with high pathogenic potential possess matching effector-immunity sets and can coexist.
Collapse
Affiliation(s)
- Daniel Unterweger
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Sarah T Miyata
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Verena Bachmann
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Teresa M Brooks
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Travis Mullins
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Benjamin Kostiuk
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| | - Daniele Provenzano
- 1] Department of Biological Sciences, University of Texas Brownsville, Brownsville, Texas 78520, USA [2] Department of Biomedical Sciences, University of Texas Brownsville, Brownsville, Texas 78520, USA
| | - Stefan Pukatzki
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada AB T6G 2S2
| |
Collapse
|
123
|
Vikram A, Ante VM, Bina XR, Zhu Q, Liu X, Bina JE. Cyclo(valine-valine) inhibits Vibrio cholerae virulence gene expression. MICROBIOLOGY-SGM 2014; 160:1054-1062. [PMID: 24644247 DOI: 10.1099/mic.0.077297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vibrio cholerae has been shown to produce a cyclic dipeptide, cyclo(phenylalanine-proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress V. cholerae virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in V. cholerae. The results revealed that cyclo(valine-valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator aphA. cVV-dependent repression of aphA was found to be independent of known aphA regulatory genes. The results demonstrated that V. cholerae was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment.
Collapse
Affiliation(s)
- Amit Vikram
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA 15219, USA
| | - Vanessa M Ante
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA 15219, USA
| | - X Renee Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA 15219, USA
| | - Qin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - James E Bina
- University of Pittsburgh School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA 15219, USA
| |
Collapse
|
124
|
Sergeev G, Roy S, Jarek M, Zapolskii V, Kaufmann DE, Nandy RK, Tegge W. High-throughput screening and whole genome sequencing identifies an antimicrobially active inhibitor of Vibrio cholerae. BMC Microbiol 2014; 14:49. [PMID: 24568688 PMCID: PMC3937525 DOI: 10.1186/1471-2180-14-49] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Pathogenic serotypes of Vibrio cholerae cause the life-threatening diarrheal disease cholera. The increasing development of bacterial resistances against the known antibiotics necessitates the search for new antimicrobial compounds and targets for this pathogen. Results A high-throughput screening assay with a Vibrio cholerae reporter strain constitutively expressing green fluorescent protein (GFP) was developed and applied in the investigation of the growth inhibitory effect of approximately 28,300 structurally diverse natural compounds and synthetic small molecules. Several compounds with activities in the low micromolar concentration range were identified. The most active structure, designated vz0825, displayed a minimal inhibitory concentration (MIC) of 1.6 μM and a minimal bactericidal concentration (MBC) of 3.2 μM against several strains of V. cholerae and was specific for this pathogen. Mutants with reduced sensitivity against vz0825 were generated and whole genome sequencing of 15 pooled mutants was carried out. Comparison with the genome of the wild type strain identified the gene VC_A0531 (GenBank: AE003853.1) as the major site of single nucleotide polymorphisms in the resistant mutants. VC_A0531 is located on the small chromosome of V. cholerae and encodes the osmosensitive K+-channel sensor histidine kinase (KdpD). Nucleotide exchange of the major mutation site in the wild type strain confirmed the sensitive phenotype. Conclusion The reporter strain MO10 pG13 was successfully used for the identification of new antibacterial compounds against V. cholerae. Generation of resistant mutants and whole genome sequencing was carried out to identify the histidine kinase KdpD as a novel antimicrobial target.
Collapse
Affiliation(s)
| | | | | | | | | | - Ranjan K Nandy
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, D-38124 Braunschweig, Germany.
| | | |
Collapse
|
125
|
Mukherjee M, Kakarla P, Kumar S, Gonzalez E, Floyd JT, Inupakutika M, Devireddy AR, Tirrell SR, Bruns M, He G, Lindquist IE, Sundararajan A, Schilkey FD, Mudge J, Varela MF. Comparative genome analysis of non-toxigenic non-O1 versus toxigenic O1 Vibrio cholerae.. ACTA ACUST UNITED AC 2014; 2:1-15. [PMID: 25722857 PMCID: PMC4338557 DOI: 10.7243/2052-7993-2-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenic strains of Vibrio cholerae are responsible for endemic and pandemic outbreaks of the disease cholera. The complete toxigenic mechanisms underlying virulence in Vibrio strains are poorly understood. The hypothesis of this work was that virulent versus non-virulent strains of V. cholerae harbor distinctive genomic elements that encode virulence. The purpose of this study was to elucidate genomic differences between the O1 serotypes and non-O1 V. cholerae PS15, a non-toxigenic strain, in order to identify novel genes potentially responsible for virulence. In this study, we compared the whole genome of the non-O1 PS15 strain to the whole genomes of toxigenic serotypes at the phylogenetic level, and found that the PS15 genome was distantly related to those of toxigenic V. cholerae. Thus we focused on a detailed gene comparison between PS15 and the distantly related O1 V. cholerae N16961. Based on sequence alignment we tentatively assigned chromosome numbers 1 and 2 to elements within the genome of non-O1 V. cholerae PS15. Further, we found that PS15 and O1 V. cholerae N16961 shared 98% identity and 766 genes, but of the genes present in N16961 that were missing in the non-O1 V. cholerae PS15 genome, 56 were predicted to encode not only for virulence-related genes (colonization, antimicrobial resistance, and regulation of persister cells) but also genes involved in the metabolic biosynthesis of lipids, nucleosides and sulfur compounds. Additionally, we found 113 genes unique to PS15 that were predicted to encode other properties related to virulence, disease, defense, membrane transport, and DNA metabolism. Here, we identified distinctive and novel genomic elements between O1 and non-O1 V. cholerae genomes as potential virulence factors and, thus, targets for future therapeutics. Modulation of such novel targets may eventually enhance eradication efforts of endemic and pandemic disease cholera in afflicted nations.
Collapse
Affiliation(s)
- Munmun Mukherjee
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Prathusha Kakarla
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India
| | - Esmeralda Gonzalez
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Jared T Floyd
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Madhuri Inupakutika
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Amith Reddy Devireddy
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Selena R Tirrell
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Merissa Bruns
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| | - Guixin He
- University of Massachusetts Lowell, Department of Clinical Laboratory and Nutritional Sciences, Lowell, MA 01854, USA
| | | | | | - Faye D Schilkey
- National Center for Genome Resources, Santa Fe, New Mexico, 87505, USA
| | - Joann Mudge
- National Center for Genome Resources, Santa Fe, New Mexico, 87505, USA
| | - Manuel F Varela
- Eastern New Mexico University, Department of Biology, Portales, New Mexico, 88130, USA
| |
Collapse
|
126
|
Comparative genomics study for identification of drug and vaccine targets in Vibrio cholerae: MurA ligase as a case study. Genomics 2013; 103:83-93. [PMID: 24368230 DOI: 10.1016/j.ygeno.2013.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/15/2022]
Abstract
A systematic workflow consisting of comparative genomics, metabolic pathways analysis and additional drug prioritization parameters identified 264 proteins of Vibrio cholerae which were predicted to be absent in Homo sapiens. Among these, 40 proteins were identified as essential proteins that could serve as potential drug and vaccine targets. Additional prioritization parameters characterized 11 proteins as vaccine candidates while druggability of each of the identified proteins as evaluated by the Drug Bank database which prioritized 16 proteins suitable for drug targets. As a case study, we built a homology model of one of the potential drug targets, MurA ligase, using MODELLER (9v12) software. The model has been further explored for in silico docking with inhibitors having druggability potential from the Drug Bank database. Results from this study could facilitate selecting V. cholerae proteins for drug design and vaccine production pipelines in future.
Collapse
|
127
|
Johnson CN. Fitness factors in vibrios: a mini-review. MICROBIAL ECOLOGY 2013; 65:826-851. [PMID: 23306394 DOI: 10.1007/s00248-012-0168-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/13/2012] [Indexed: 06/01/2023]
Abstract
Vibrios are Gram-negative curved bacilli that occur naturally in marine, estuarine, and freshwater systems. Some species include human and animal pathogens, and some vibrios are necessary for natural systems, including the carbon cycle and osmoregulation. Countless in vivo and in vitro studies have examined the interactions between vibrios and their environment, including molecules, cells, whole animals, and abiotic substrates. Many studies have characterized virulence factors, attachment factors, regulatory factors, and antimicrobial resistance factors, and most of these factors impact the organism's fitness regardless of its external environment. This review aims to identify common attributes among factors that increase fitness in various environments, regardless of whether the environment is an oyster, a rabbit, a flask of immortalized mammalian cells, or a planktonic chitin particle. This review aims to summarize findings published thus far to encapsulate some of the basic similarities among the many vibrio fitness factors and how they frame our understanding of vibrio ecology. Factors representing these similarities include hemolysins, capsular polysaccharides, flagella, proteases, attachment factors, type III secretion systems, chitin binding proteins, iron acquisition systems, and colonization factors.
Collapse
Affiliation(s)
- Crystal N Johnson
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
128
|
Dynamics analysis of a multi-strain cholera model with an imperfect vaccine. Bull Math Biol 2013; 75:1104-37. [PMID: 23636819 DOI: 10.1007/s11538-013-9845-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
A new two-strain model, for assessing the impact of basic control measures, treatment and dose-structured mass vaccination on cholera transmission dynamics in a population, is designed. The model has a globally-asymptotically stable disease-free equilibrium whenever its associated reproduction number is less than unity. The model has a unique, and locally-asymptotically stable, endemic equilibrium when the threshold quantity exceeds unity and another condition holds. Numerical simulations of the model show that, with the expected 50% minimum efficacy of the first vaccine dose, vaccinating 55% of the susceptible population with the first vaccine dose will be sufficient to effectively control the spread of cholera in the community. Such effective control can also be achieved if 50% of the first vaccine dose recipients take the second dose. It is shown that a control strategy that emphasizes the use of antibiotic treatment is more effective than one that emphasizes the use of basic (non-pharmaceutical) anti-cholera control measures only. Numerical simulations show that, while the universal strategy (involving all three control measures) gives the best outcome in minimizing cholera burden in the community, the combined basic anti-cholera control measures and treatment strategy also has very effective community-wide impact.
Collapse
|
129
|
Luo Y, Ye J, Jin D, Ding G, Zhang Z, Mei L, Octavia S, Lan R. Molecular analysis of non-O1/non-O139 Vibrio cholerae isolated from hospitalised patients in China. BMC Microbiol 2013; 13:52. [PMID: 23497008 PMCID: PMC3605376 DOI: 10.1186/1471-2180-13-52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/26/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cholera is still a significant public health issue in developing countries. The aetiological agent is Vibrio cholerae and only two serogroups, O1 and O139, are known to cause pandemic or epidemic cholera. In contrast, non-O1/non-O139 V. cholerae has only been reported to cause sporadic cholera-like illness and localised outbreaks. The aim of this study was to determine the genetic diversity of non-O1/non-O139 V. cholerae isolates from hospitalised diarrhoeal patients in Zhejiang Province, China. RESULTS In an active surveillance of enteric pathogens in hospitalised diarrhoeal patients, nine non-O1/non-O139 V. cholerae isolates were identified from 746 diarrhoeal stool samples at a rate of 1.2%. These isolates and an additional 31 isolates from sporadic cases and three outbreaks were analysed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). PFGE divided the isolates into 25 PFGE types while MLST divided them into 15 sequence types (STs). A single ST, ST80, was predominant which persisted over several years in different cities and caused two outbreaks in recent years. Antibiotic resistance varied with the majority of the isolates resistant to sulphamethoxazole/trimethoprim and nearly all isolates either resistant or intermediate to erythromycin and rifampicin. None of the isolates carried the cholera toxin genes or toxin co-regulated pilus genes but the majority carried a type III secretion system as the key virulence factor. CONCLUSIONS Non-O1/non-O139 V. cholerae is an important contributor to diarrhoeal infections in China. Resistance to commonly used antibiotics limits treatment options. Continuous surveillance of non-O1/non-O139 V. cholerae is important for control and prevention of diarrhoeal infections.
Collapse
Affiliation(s)
- Yun Luo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Alvarez-Ortega C, Olivares J, Martínez JL. RND multidrug efflux pumps: what are they good for? Front Microbiol 2013; 4:7. [PMID: 23386844 PMCID: PMC3564043 DOI: 10.3389/fmicb.2013.00007] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/07/2013] [Indexed: 01/27/2023] Open
Abstract
Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis.
Collapse
Affiliation(s)
- Carolina Alvarez-Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | | | | |
Collapse
|
131
|
LysR family activator-regulated major facilitator superfamily transporters are involved in Vibrio cholerae antimicrobial compound resistance and intestinal colonisation. Int J Antimicrob Agents 2013. [DOI: 10.1016/j.ijantimicag.2012.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
132
|
The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2012. [PMID: 23207804 DOI: 10.1016/j.drudis.2012.11.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).
Collapse
|
133
|
Serotyping, Antibiotic Susceptibility Pattern and Detection of hlyA Gene Among Cholera Patients in Iran. Jundishapur J Microbiol 2012. [DOI: 10.5812/jjm.4709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
134
|
Rajan S, Suganya H, Thirunalasundari T, Jeeva S. Antidiarrhoeal efficacy of Mangifera indica seed kernel on Swiss albino mice. ASIAN PAC J TROP MED 2012; 5:630-3. [DOI: 10.1016/s1995-7645(12)60129-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 05/15/2012] [Accepted: 07/15/2012] [Indexed: 10/28/2022] Open
|
135
|
Yu L, Zhou Y, Wang R, Lou J, Zhang L, Li J, Bi Z, Kan B. Multiple antibiotic resistance of Vibrio cholerae serogroup O139 in China from 1993 to 2009. PLoS One 2012; 7:e38633. [PMID: 22701685 PMCID: PMC3372494 DOI: 10.1371/journal.pone.0038633] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Regarded as an emerging diarrheal micropathogen, Vibrio cholerae serogroup O139 was first identified in 1992 and has become an important cause of cholera epidemics over the last two decades. O139 strains have been continually isolated since O139 cholera appeared in China in 1993, from sporadic cases and dispersed foodborne outbreaks, which are the common epidemic types of O139 cholera in China. Antibiotic resistance profiles of these epidemic strains are required for development of clinical treatments, epidemiological studies and disease control. In this study, a comprehensive investigation of the antibiotic resistance of V. cholerae O139 strains isolated in China from 1993 to 2009 was conducted. The initial O139 isolates were resistant to streptomycin, trimethoprim-sulfamethoxazole and polymyxin B only, while multidrug resistance increased suddenly and became common in strains isolated after 1998. Different resistance profiles were observed in the isolates from different years. In contrast, most V. cholerae O1 strains isolated in the same period were much less resistant to these antibiotics and no obvious multidrug resistance patterns were detected. Most of the non-toxigenic strains isolated from the environment and seafood were resistant to four antibiotics or fewer, although a few multidrug resistant strains were also identified. These toxigenic O139 strains exhibited a high prevalence of the class I integron and the SXT element, which were rare in the non-toxigenic strains. Molecular subtyping of O139 strains showed highly diverse pulsed-field gel electrophoresis patterns, which may correspond to the epidemic state of sporadic cases and small-scale outbreaks and complex resistance patterns. Severe multidrug resistance, even resistance transfers based on mobile antibiotic resistance elements, increases the probability of O139 cholera as a threat to public health. Therefore, continual epidemiological and antibiotic sensitivity surveillance should focus on the occurrence of multidrug resistance and frequent microbial population shifts in O139 strains.
Collapse
Affiliation(s)
- Li Yu
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yanyan Zhou
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jing Lou
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lijuan Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhenqiang Bi
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
- * E-mail: (ZB); (BK)
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control, Department of Diarrheal Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- * E-mail: (ZB); (BK)
| |
Collapse
|
136
|
Shakya G, Kim DW, Clemens JD, Malla S, Upadhyaya BP, Dumre SP, Shrestha SD, Adhikari S, Sharma S, Rijal N, Shrestha SK, Mason C, Kansakar P. Phenotypic and genetic characterization of Vibrio cholerae O1 clinical isolates collected through national antimicrobial resistance surveillance network in Nepal. World J Microbiol Biotechnol 2012; 28:2671-8. [PMID: 22806193 DOI: 10.1007/s11274-012-1077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/05/2012] [Indexed: 11/25/2022]
Abstract
Cholera occurs in sporadic cases and outbreaks in Nepal each year. Vibrio cholerae O1 (n = 522) isolated during 2007-2010 from diarrheal patients at 10 different hospital laboratories in Nepal were characterized. Biochemical and serologic identifications showed that all the isolates belonged to serogroup O1, El Tor biotype. Except 72 isolates of Inaba serotype isolated in the year 2007, all the remaining isolates were of Ogawa serotype. All isolates were resistant to nalidixic acid and furazolidone. Resistance to tetracycline, ciprofloxacin, erythromycin and co-trimoxazole were 21, 4, 16 and 90 % respectively. Seventy-seven of these isolates were selected for further characterization for ctxB gene and MLVA typing. Two different variants of classical type cholera toxin were observed. Ogawa strains from 2007 and 2010-Western Nepal outbreak harbored CTX-3 type cholera toxin, whereas Inaba serotypes in 2007 and the remaining Ogawa serotypes in 2008-2010 harbored CTX 3b-type toxin. MLVA analysis showed circulation of four different groups of altered V. cholerae O1 El Tor strains. Two different profiles were seen among 2007 Inaba (9, 3, 6, x, x) and Ogawa (10, 7, 6, x, x) isolates. The MLVA profile of 2008 and 2009 Ogawa isolates were similar to those of Inaba strains of 2007. Isolates from 2010 also showed three different MLVA profiles; profile 9, 3, 6, x, x in 3 isolates, 11, 7, 6, x, x among 2010 Western Nepal outbreak strains and profile 8, 3, 6, x, x among isolates from Butwal and Kathmandu.
Collapse
Affiliation(s)
- Geeta Shakya
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Skariyachan S, Mahajanakatti AB, Sharma N, Karanth S, Rao S, Rajeswari N. Structure based virtual screening of novel inhibitors against multidrug resistant superbugs. Bioinformation 2012; 8:420-5. [PMID: 22715312 PMCID: PMC3374372 DOI: 10.6026/97320630008420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 04/30/2012] [Indexed: 11/30/2022] Open
Abstract
Pathogenic microorganisms are persistently expressing resistance towards present generation antibiotics and are on the verge of joining the superbug family. Recent studies revealed that, notorious pathogens such as Salmonella typhi, Shigella dysenteriae and Vibrio cholerae have acquired multiple drug resistance and the treatment became a serious concern. This necessitates an alternative therapeutic solution. Present study investigates the utility of computer aided method to study the mechanism of receptor-ligand interactions and thereby inhibition of virulence factors (shiga toxin of Shigella dysenteriae, cholera toxin of Vibrio cholerae and hemolysin-E of Salmonella typhi) by novel phytoligands. The rational designs of improved therapeutics require the crystal structure for the drug targets. The structures of the virulent toxins were identified as probable drug targets. However, out of the three virulent factors, the structure for hemolysin-E is not yet available in its native form. Thus, we tried to model the structure by homology modeling using Modeller 9v9. After extensive literature survey, we selected 50 phytoligands based on their medicinal significance and drug likenesses. The receptor-ligands interactions between selected leads and toxins were studied by molecular docking using Auto Dock 4.0. We have identified two novel sesquiterpenes, Cadinane [(1S, 4S, 4aS, 6S, 8aS)- 4- Isopropyl- 1, 6- dimethyldecahydronaphthalene] and Cedrol [(8α)-Cedran-8-ol] against Shiga (binding energy -5.56 kcal/mol) and cholera toxins (binding energy -5.33 kcal/mol) respectively which have good inhibitory properties. Similarly, a natural Xanthophyll, Violaxanthin [3S, 3'S, 5R, 5'R, 6S, 6'S)-5, 5', 6, 6'-Tetrahydro-5, 6:5', 6'-diepoxy-β, β-carotene-3, 3'-diol] was identified as novel therapeutic lead for hemolysin-E (binding energy of -5.99 kcal/mol). This data provide an insight for populating the pool of novel inhibitors against various drug targets of superbugs when all current generation drugs seem to have failed.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
| | - Arpitha Badarinath Mahajanakatti
- R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
- Department of Bioinformatics, PES Institute of Technology, Bangalore, India
| | - Narasimha Sharma
- R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
- Infosys, Chennai, India
| | - Shraddha Karanth
- R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
- Department of Biotechnology Engineering, Lund University, SE-221 00 Lund, Sweden
| | - Shruthi Rao
- R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
- Department of Genetic Engineering, SRM University, Chennai, India
| | - Narayanappa Rajeswari
- R & D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bangalore, India
| |
Collapse
|
138
|
Sjölund-Karlsson M, Reimer A, Folster JP, Walker M, Dahourou GA, Batra DG, Martin I, Joyce K, Parsons MB, Boncy J, Whichard JM, Gilmour MW. Drug-resistance mechanisms in Vibrio cholerae O1 outbreak strain, Haiti, 2010. Emerg Infect Dis 2012; 17:2151-4. [PMID: 22099122 PMCID: PMC3310571 DOI: 10.3201/eid1711.110720] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To increase understanding of drug-resistant Vibrio cholerae, we studied selected molecular mechanisms of antimicrobial drug resistance in the 2010 Haiti V. cholerae outbreak strain. Most resistance resulted from acquired genes located on an integrating conjugative element showing high homology to an integrating conjugative element identified in a V. cholerae isolate from India.
Collapse
|
139
|
Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc Natl Acad Sci U S A 2012; 109:6602-7. [PMID: 22505737 DOI: 10.1073/pnas.1203333109] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mathematical models can provide key insights into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. We study the ex post reliability of predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. We consider the impact of different approaches to the modeling of spatial spread of Vibrio cholerae and mechanisms of cholera transmission, accounting for the dynamics of susceptible and infected individuals within different local human communities. To explain resurgences of the epidemic, we go on to include waning immunity and a mechanism explicitly accounting for rainfall as a driver of enhanced disease transmission. The formal comparative analysis is carried out via the Akaike information criterion (AIC) to measure the added information provided by each process modeled, discounting for the added parameters. A generalized model for Haitian epidemic cholera and the related uncertainty is thus proposed and applied to the year-long dataset of reported cases now available. The model allows us to draw predictions on longer-term epidemic cholera in Haiti from multiseason Monte Carlo runs, carried out up to January 2014 by using suitable rainfall fields forecasts. Lessons learned and open issues are discussed and placed in perspective. We conclude that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control.
Collapse
|
140
|
Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484-4495. [PMID: 22605991 PMCID: PMC3344227 DOI: 10.3390/ijms13044484] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.
Collapse
|
141
|
Rahmani F, Fooladi A, Marashi S, Nourani M. Drug resistance in Vibrio cholerae strains isolated from clinical specimens. Acta Microbiol Immunol Hung 2012; 59:77-84. [PMID: 22510289 DOI: 10.1556/amicr.59.2012.1.8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cholera is a serious epidemic and endemic disease caused by the Gram-negative bacterium Vibrio cholerae. SXT is an integrative conjugation element (ICE) that was isolated from a V. cholerae; it encodes resistance to the antibiotics chloramphenicol, streptomycin and sulfamethoxazole/trimethoprim. One hundred seven V. cholerae O1 strains were collected from cholera patients in Iran from 2005 to 2007 in order to study the presence of SXT constin and antibiotic resistance.The study examined 107 Vibrio cholerae strains isolated from cholera prevalent in some Iranian provinces. Bacterial isolation and identification were carried out according to standard bacteriological methods. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) to four antibiotics (chloramphenicol, streptomycin, sulfamethoxazole, and trimethoprim) were determined by broth microdilution method. PCR was employed to evaluate the presence of established antibiotic resistance genes and SXT constin using specific primer sets.The resistance of the clinical isolates to sulfamethoxazole, trimethoprime, chloramphenicol, and streptomycin was 97%, 99%, 99%, and 90%, respectively. The data obtained by PCR assay showed that the genes sulII, dfrA1, floR, strB, and sxt element were present in 95.3%, 95.3%, 81.3%, 95.3%, and 95.3% of the V. cholerae isolates.The Vibrio strains showed the typical multidrug-resistance phenotype of an SXT constin. They were resistant to sulfamethoxazole, trimethoprime, chloramphenicol, and streptomycin. The detected antibiotic resistance genes included dfrA for trimethoprim and floR, strB, sulII and int, respectively, for chloramphenicol, streptomycin, sulfamethoxazole, as well as the SXT element.
Collapse
Affiliation(s)
- Farideh Rahmani
- 1 Islamic Azad University Department of Microbiology, Zanjan Branch Zanjan Iran
| | - Abbas Fooladi
- 2 Baqiyatallah University of Medical Sciences Applied Microbiology Research Center Tehran Iran
| | - Seyed Marashi
- 3 Babol University of Medical Sciences Department of Microbiology and Immunology Babol Iran
| | - Mohammad Nourani
- 4 Baqiyatallah University of Medical Sciences Chemical Injury Research Center Tehran Iran
| |
Collapse
|
142
|
Villagra NA, Fuentes JA, Jofré MR, Hidalgo AA, García P, Mora GC. The carbon source influences the efflux pump-mediated antimicrobial resistance in clinically important Gram-negative bacteria. J Antimicrob Chemother 2012; 67:921-7. [PMID: 22258924 DOI: 10.1093/jac/dkr573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Multidrug efflux pumps are proteins known to play an important role in resistance in bacteria. These proteins are located in the inner membrane (IM), together with many other proteins, including inducible permeases that participate in the uptake of non-phosphotransferase system (PTS) carbohydrates (i.e. carbohydrates uptaken by mechanisms other than the PTS). However, lipid bilayer space in the IM is limited. Therefore, we examined whether the overexpression of unrelated IM proteins is able to interfere with the efflux-mediated resistance mechanism, consequently increasing the susceptibility towards different antimicrobial compounds. METHODS We cultured bacteria under different conditions that increase the synthesis of unrelated IM proteins, either by using a non-PTS carbohydrate as the sole carbon source or by artificially overexpressing IM proteins, prior to determining the resistance to different antimicrobial compounds by disc diffusion assays. RESULTS We observed that efflux-pump-mediated resistance is affected by the carbon source in all the strains tested, exhibiting increased susceptibility when a non-PTS carbohydrate was used as the sole carbon source. Moreover, when we artificially overexpressed an unrelated IM protein, we also observed decreased efflux-mediated resistance. CONCLUSIONS These results strongly suggest that overexpression of IM proteins, by using a non-PTS carbohydrate as the sole carbon source, or by artificially introducing a high number of copies of an unrelated IM protein, competes with the antibiotic efflux systems, thereby decreasing the efflux-mediated resistance to different antimicrobial compounds. This sort of competition arises because of the limited available space in the bacterial IM, or by an unknown mechanism.
Collapse
Affiliation(s)
- Nicolás A Villagra
- Laboratorio de Microbiología, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
143
|
|