101
|
Mulat M, Pandita A, Khan F. Medicinal Plant Compounds for Combating the Multi-drug Resistant Pathogenic Bacteria: A Review. Curr Pharm Biotechnol 2019; 20:183-196. [PMID: 30854956 DOI: 10.2174/1872210513666190308133429] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Globally, people utilize plants as the main source of remedy to heal various ailments. Medicinal plants have been utilized to treat ailments since the invention of modern scientific systems of medicine. The common remedy of infectious diseases mainly depends on the inhibition capacity of compounds or killing potential. The issue may give a clue for the development of a novel antimicrobial agent. METHODS Currently, microorganisms which are resistant towards antibiotics are probably a matter of serious concern for the overall well-being of health. At the moment, new therapeutic targets aside from the microorganism wall-based activities are in progress. For instance, the autoinducer molecules produced by the quorum sensing system are used to control antibiotic resistance and biofilm formation. RESULTS This therapeutic target is well-studied worldwide, however, the scientific data are not updated and only current studies started to gain insight into its perspective as a target to struggle against infectious diseases. Microbial resistance against antimicrobial compounds is a topic of serious concern in recent time. CONCLUSION Hence, this paper aims to confer a current overview of the novel compounds, quorum sensing, quorum quenching, biofilm formation in the development of antibiotic resistance and an update on their importance as a potential target for natural substances.
Collapse
Affiliation(s)
- Mulugeta Mulat
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida-201306, U.P, India.,Division of Microbiology, College of Natural Science, Wollo University, Dessie, Ethiopia
| | - Archana Pandita
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida-201306, U.P, India
| | - Fazlurrahman Khan
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida-201306, U.P, India.,Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
102
|
Ahmed AA, Salih FA. Quercus infectoria gall extracts reduce quorum sensing-controlled virulence factors production and biofilm formation in Pseudomonas aeruginosa recovered from burn wounds. Altern Ther Health Med 2019; 19:177. [PMID: 31319827 PMCID: PMC6639949 DOI: 10.1186/s12906-019-2594-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 07/04/2019] [Indexed: 01/05/2023]
Abstract
Background Quercus gall extracts’ ability to kill pathogens in vitro and even removal of chronic drug-resistant infections has been reported by several studies. The current investigation is focused on the action of extracts of Quercus infectoria gall in their sub-inhibitory concentrations on the corresponding bacterial behaviours instead of killing them. Methods The effect of gall extracts on the quorum sensing (QS) associated virulence of multiple drug resistant Pseudomonas aeruginosa recovered from burns wounds was studied. The influence of different extracts on the production of bacterial virulence and biofilm, and expression of the genes encoding quorum sensing and exotoxin A were investigated. Quorum sensing is a crucial regulator of virulence and biofilm development in Pseudomonas aeruginosa and other medical related microbes. Results Experiments to characterise and quantify Q. infectoria gall extracts impact on the quorum sensing networks of P.aeruginosa revealed that the expression of las, rhl, and exotoxin A (ETA) genes levels including the associated virulence were reduced by the extracts at their subinhibitory concentrations. Conclusions The obtained results indicated that extracts of Q. infectoria galls fight infections either by their inhibitory constituents, which vigorously eradicate cells or by disruption of the pathogens quorum sensing system through weakening the virulence and bacterial coordination.
Collapse
|
103
|
Slater RT, Frost LR, Jossi SE, Millard AD, Unnikrishnan M. Clostridioides difficile LuxS mediates inter-bacterial interactions within biofilms. Sci Rep 2019; 9:9903. [PMID: 31289293 PMCID: PMC6616478 DOI: 10.1038/s41598-019-46143-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
The anaerobic gut pathogen, Clostridioides difficile, forms adherent biofilms that may play an important role in recurrent C. difficile infections. The mechanisms underlying C. difficile community formation and inter-bacterial interactions are nevertheless poorly understood. C. difficile produces AI-2, a quorum sensing molecule that modulates biofilm formation across many bacterial species. We found that a strain defective in LuxS, the enzyme that mediates AI-2 production, is defective in biofilm development in vitro. Transcriptomic analyses of biofilms formed by wild type (WT) and luxS mutant (luxS) strains revealed a downregulation of prophage loci in the luxS mutant biofilms compared to the WT. Detection of phages and eDNA within biofilms may suggest that DNA release by phage-mediated cell lysis contributes to C. difficile biofilm formation. In order to understand if LuxS mediates C. difficile crosstalk with other gut species, C. difficile interactions with a common gut bacterium, Bacteroides fragilis, were studied. We demonstrate that C. difficile growth is significantly reduced when co-cultured with B. fragilis in mixed biofilms. Interestingly, the absence of C. difficile LuxS alleviates the B. fragilis-mediated growth inhibition. Dual species RNA-sequencing analyses from single and mixed biofilms revealed differential modulation of distinct metabolic pathways for C. difficile WT, luxS and B. fragilis upon co-culture, indicating that AI-2 may be involved in induction of selective metabolic responses in B. fragilis. Overall, our data suggest that C. difficile LuxS/AI-2 utilises different mechanisms to mediate formation of single and mixed species communities.
Collapse
Affiliation(s)
- Ross T Slater
- University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Lucy R Frost
- University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Sian E Jossi
- University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Andrew D Millard
- University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Meera Unnikrishnan
- University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom.
| |
Collapse
|
104
|
Morgan GL, Kretsch AM, Santa Maria KC, Weeks SJ, Li B. Specificity of Nonribosomal Peptide Synthetases in the Biosynthesis of the Pseudomonas virulence factor. Biochemistry 2019; 58:5249-5254. [PMID: 31243997 DOI: 10.1021/acs.biochem.9b00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Pseudomonas virulence factor (pvf) biosynthetic operon has been implicated in bacterial virulence and signaling. We identified 308 bacterial strains containing pvf homologues that likely produce signaling molecules with distinct structures and biological activities. Several homologues of the nonribosomal peptide synthetase (NRPS), PvfC, were biochemically characterized and shown to activate l-Val or l-Leu. The amino acid selectivity of PvfC and its homologues likely direct pvf signaling activity. We explored the natural diversity of the active site residues present in 92% of the adenylation domains of PvfC homologues and identified key residues for substrate selection and catalysis. Sequence similarity network (SSN) analysis revealed grouping of PvfC homologues that harbor the same active site residues and activate the same amino acids. Our work identified PvfC as a gatekeeper for the structure and bioactivity of the pvf-produced signaling molecules. The combination of active site residue identification and SSN analysis can improve the prediction of aliphatic amino acid substrates for NRPS adenylation domains.
Collapse
Affiliation(s)
- Gina L Morgan
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ashley M Kretsch
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Kevin C Santa Maria
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Savannah J Weeks
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Bo Li
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
105
|
Meroni G, Zamarian V, Prussiani C, Bronzo V, Lecchi C, Martino PA, Ceciliani F. The bovine acute phase protein α 1-acid glycoprotein (AGP) can disrupt Staphylococcus aureus biofilm. Vet Microbiol 2019; 235:93-100. [PMID: 31282384 DOI: 10.1016/j.vetmic.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus biofilm-related infections are of clinical concern due to the capability of bacterial colonies to adapt to a hostile environment. The present study investigated the capability of the acute phase protein alpha 1-acid glycoprotein (AGP) to a) disrupt already established S. aureus biofilm and b) interfere with the biofilm de novo production by using Microtiter Plate assay (MtP) on field strains isolated from infected quarters by assessing. The present study also investigated whether AGP could interfere with the expression of bacterial genes related to biofilm formation (icaA, icaD, icaB, and icaC) and adhesive virulence determinants (fnbA, fnbB, clfA, clfB, fib, ebps, eno) by quantitative real-time PCR (qPCR). The results provided the evidence that AGP could disrupt the biofilm structure only when it was already developed, but could not prevent the de novo biofilm formation. Moreover, AGP could interfere with the expression levels of genes involved in biofilm formation in a dose- and strain-dependent way, by upregulating, or downregulating, icaABC genes and fnbB, respectively. The results presented in this study provide new insights about the direct antibacterial activity of AGP in bovine milk. It remains to be demonstrated the molecular bases of AGP mechanism of action, in particular for what concerns the scarce capability to interact with the de novo formation of biofilm.
Collapse
Affiliation(s)
- Gabriele Meroni
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valentina Zamarian
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cristina Prussiani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valerio Bronzo
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Piera Anna Martino
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
106
|
Antunes J, Leão P, Vasconcelos V. Marine biofilms: diversity of communities and of chemical cues. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:287-305. [PMID: 30246474 DOI: 10.1111/1758-2229.12694] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
Surfaces immersed in seawater are rapidly colonized by various microorganisms, resulting in the formation of heterogenic marine biofilms. These communities are known to influence the settlement of algae spores and invertebrate larvae, triggering a succession of fouling events, with significant environmental and economic impacts. This review covers recent research regarding the differences in composition of biofilms isolated from different artificial surface types and the influence of environmental factors on their formation. One particular phenomenon - bacterial quorum sensing (QS) - allows bacteria to coordinate swarming, biofilm formation among other phenomena. Some other marine biofilm chemical cues are believed to modulate the settlement and the succession of macrofouling organisms, and they are also reviewed here. Finally, since the formation of a marine biofilm is considered to be an initial, QS-dependent step in the development of marine fouling events, QS inhibition is discussed on its potential as a tool for antibiofouling control in marine settings.
Collapse
Affiliation(s)
- Jorge Antunes
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Pedro Leão
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Av. General Norton de Matos, s/n 4450-208, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 4069-007, Porto, Portugal
| |
Collapse
|
107
|
Saleh MM, Sadeq RA, Latif HKA, Abbas HA, Askoura M. Zinc oxide nanoparticles inhibits quorum sensing and virulence in Pseudomonas aeruginosa. Afr Health Sci 2019; 19:2043-2055. [PMID: 31656488 PMCID: PMC6794539 DOI: 10.4314/ahs.v19i2.28] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Quorum sensing inhibitionis an advanced strategy that aims to interfere with bacterial cell-to-cell communication systems (quorum sensing), which regulate virulence factors production in Pseudomonas aeruginosa, in order to overcome the globalcrisis of antimicrobial resistance. Objectives Study the potential quorum sensing inhibitory effect of Zinc oxide (ZnO)nanoparticlesin Pseudomonas aeruginosa and the impact on production of virulence factors. Methods Quorum sensing inhibitory effect of ZnO was evaluated by assessing its ability to reducePseudomonas aeruginosa virulence factors production; rhamnolipids, pyocyanin, pyoverdin, hemolysins, elastase and proteases. Furthermore, qRT-PCR was performed to determine ZnO inhibitory effect onQS-regulatory geneslasI, lasR, rhlI, rhlR, pqsA and pqsR that control virulence factors secretion. Moreover, mice survival test was conducted to investigate the influence of ZnO on Pseudomonas aeruginosa-induced mortality in vivo. Results ZnO revealed a statistically significant reduction in the production of QS-controlled virulence factors rhamnolipids, pyocyanin, pyoverdin, hemolysins, elastase and proteases. Furthermore, ZnO exhibited a significant decrease in the relative expression of QS-regulatory geneslasI, lasR, rhlI, rhlR, pqsA and pqsR. Additionally, ZnO significantly reduced the pathogenesis of Pseudomonas aeruginosa in vivo Conclusion ZnO nanoparticles can be used as a quorum sensing inhibitor in Pseudomonas aeruginosa infections either as an adjuvant or alternative to conventional antimicrobials.
Collapse
Affiliation(s)
- Moustafa M Saleh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said 42515, Egypt
| | - Refa't A Sadeq
- Department of Microbiology and Immunology, Faculty of Medicine, Port Said University, Egypt
| | - Hemat K Abdel Latif
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
| | - Momen Askoura
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
108
|
Wang YM, Dong WL, Odah KA, Kong LC, Ma HX. Transcriptome Analysis Reveals AI-2 Relevant Genes of Multi-Drug Resistant Klebsiella pneumoniae in Response to Eugenol at Sub-MIC. Front Microbiol 2019; 10:1159. [PMID: 31191486 PMCID: PMC6547871 DOI: 10.3389/fmicb.2019.01159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Eugenol, the major active essential oil component of clove, was reported to possess QS (quorum sensing) inhibitory activity. A previous study found that eugenol could bind to quorum sensing receptors of Pseudomonas aeruginosa and down-regulate the expression of Streptococcus mutans virulence genes at sub-MIC (minimum inhibitory concentration) without affecting the bacterial growth. However, the alterations of QS signal molecules at transcription levels was not well understood. To better understand interactions of Klebsiella pneumoniae in response to eugenol and explore molecular regulations, transcriptome sequencing was performed. A total of 5779 differentially expressed genes (DEGs) enriched in a variety of biological processes and pathways were identified. The transcriptional data was validated by qPCR and the results showed that the expression profiles of 4 major genes involved in autoinducers-2 (AI-2) synthesis, including luxS, pfs, and lsrK were consistent with transcriptome analysis except for lsrR, a transcriptional repressor gene of lsr operon, which may repress the expression of following genes responsible for AI-2 signal transmission in vivo. In vitro AI-2 synthesis assay also revealed that eugenol could inhibit AI-2 generation. The results of our study offer insights into the mechanisms of QS inhibitory activity and K. pneumoniae AI-2 alterations after eugenol treatment.
Collapse
Affiliation(s)
- Yi-Ming Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wen-Long Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Kokou Ayefounin Odah
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hong-Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
109
|
Mane SG, Katagi KS, Bhasme P, Pattar S, Wei Q, Joshi SD. Design, synthesis, antibiofilm, quorum sensing inhibition, anticancer and docking studies of novel 2-(4-acridine-9-ylamino)isoindoline-1,3-dione. CHEMICAL DATA COLLECTIONS 2019; 20:100198. [DOI: 10.1016/j.cdc.2019.100198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
110
|
Pelling H, Nzakizwanayo J, Milo S, Denham EL, MacFarlane WM, Bock LJ, Sutton JM, Jones BV. Bacterial biofilm formation on indwelling urethral catheters. Lett Appl Microbiol 2019; 68:277-293. [PMID: 30811615 DOI: 10.1111/lam.13144] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 12/21/2022]
Abstract
Urethral catheters are the most commonly deployed medical devices and used to manage a wide range of conditions in both hospital and community care settings. The use of long-term catheterization, where the catheter remains in place for a period >28 days remains common, and the care of these patients is often undermined by the acquisition of infections and formation of biofilms on catheter surfaces. Particular problems arise from colonization with urease-producing species such as Proteus mirabilis, which form unusual crystalline biofilms that encrust catheter surfaces and block urine flow. Encrustation and blockage often lead to a range of serious clinical complications and emergency hospital referrals in long-term catheterized patients. Here we review current understanding of bacterial biofilm formation on urethral catheters, with a focus on crystalline biofilm formation by P. mirabilis, as well as approaches that may be used to control biofilm formation on these devices. SIGNIFICANCE AND IMPACT OF THE STUDY: Urinary catheters are the most commonly used medical devices in many healthcare systems, but their use predisposes to infection and provide ideal conditions for bacterial biofilm formation. Patients managed by long-term urethral catheterization are particularly vulnerable to biofilm-related infections, with crystalline biofilm formation by urease producing species frequently leading to catheter blockage and other serious clinical complications. This review considers current knowledge regarding biofilm formation on urethral catheters, and possible strategies for their control.
Collapse
Affiliation(s)
- H Pelling
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - J Nzakizwanayo
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - S Milo
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - E L Denham
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - W M MacFarlane
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - L J Bock
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - J M Sutton
- National Infections Service, Public Health England, Porton Down, Salisbury, UK
| | - B V Jones
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| |
Collapse
|
111
|
Pang M, Zhu M, Lei X, Xu P, Cheng B. Microbiome Imbalances: An Overlooked Potential Mechanism in Chronic Nonhealing Wounds. INT J LOW EXTR WOUND 2019; 18:31-41. [PMID: 30836811 DOI: 10.1177/1534734619832754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic nonhealing wounds are a severe burden to health care systems worldwide, causing millions of patients to have lengthy hospital stays, high health care costs, periods of unemployment, and reduced quality of life. Moreover, treating chronic nonhealing wounds effectively and reasonably in countries with limited medical resources can be extremely challenging. With many outstanding questions surrounding chronic nonhealing wounds, in this review, we offer changes to the microbiome as a potentially ignored mechanism important in the formation and treatment of chronic wounds. Our analysis helps bring a whole new understanding to wound formation and healing and provides a potential breakthrough in the treatment of chronic nonhealing wounds in the future.
Collapse
Affiliation(s)
- Mengru Pang
- The Graduate School of Southern Medical University, Guangzhou, China
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Meishu Zhu
- The Graduate School of Southern Medical University, Guangzhou, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoxuan Lei
- The Graduate School of Southern Medical University, Guangzhou, China
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Pengcheng Xu
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China
- General Hospital of Southern Theater Command, PLA, Guangzhou, China
- The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
112
|
Zhu Y, Zhang Y, Ma J, Dong W, Zhong X, Pan Z, Yao H. ICESsuHN105, a Novel Multiple Antibiotic Resistant ICE in Streptococcus suis Serotype 5 Strain HN105. Front Microbiol 2019; 10:274. [PMID: 30863372 PMCID: PMC6399138 DOI: 10.3389/fmicb.2019.00274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/01/2019] [Indexed: 01/17/2023] Open
Abstract
Streptococcussuis serotype 5, an emerging zoonosis bacterial pathogen, has been isolated from infections in both pigs and humans. In this study, we sequenced the first complete genome of a virulent, multidrug-resistant SS5 strain HN105. The strain HN105 displayed enhanced pathogenicity in zebrafish and BABL/c mouse infection models. Comparative genome analysis identified a novel 80K integrative conjugative element (ICE), ICESsuHN105, as required for the multidrug resistance phenotype. Six corresponding antibiotic resistance genes in this ICE were identified, namely tet (O), tet (M), erm (two copies), aph, and spc. Phylogenetic analysis classified the element as a homolog of the ICESa2603 family, containing the typical family backbone and insertion DNA. DNA hybrids mediated by natural transformation between HN105 and ZY05719 verified the antibiotic resistant genes of ICESsuHN105 that could be transferred successfully, while they were dispersedly inserted with a single gene in different genomic locations of ZY05719(HN105) transformants. To further identify the horizontal transfer of ICESsuHN105 as a whole mobile genetic element, a circular intermediate form of ICESsuHN105 was detected by PCR. However, the effective conjugation using serotype 2 S. suis as recipients was not observed in current assays in vitro. Further studies confirmed the presence of the complete lantibiotic locus encoded in ICESsuHN105 that effectively inhibits the growth of other streptococci. In summary, this study demonstrated the presence of antibiotic resistance genes in ICE that are able to transfer between different clinical isolates and adapt to a broader range of Streptococcus serotype or species.
Collapse
Affiliation(s)
- Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,OIE Reference Lab for Swine Streptococcosis, Nanjing, China.,Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
113
|
Peyraud R, Mbengue M, Barbacci A, Raffaele S. Intercellular cooperation in a fungal plant pathogen facilitates host colonization. Proc Natl Acad Sci U S A 2019; 116:3193-3201. [PMID: 30728304 PMCID: PMC6386666 DOI: 10.1073/pnas.1811267116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cooperation is associated with major transitions in evolution such as the emergence of multicellularity. It is central to the evolution of many complex traits in nature, including growth and virulence in pathogenic bacteria. Whether cells of multicellular parasites function cooperatively during infection remains, however, largely unknown. Here, we show that hyphal cells of the fungal pathogen Sclerotinia sclerotiorum reprogram toward division of labor to facilitate the colonization of host plants. Using global transcriptome sequencing, we reveal that gene expression patterns diverge markedly in cells at the center and apex of hyphae during Arabidopsis thaliana colonization compared with in vitro growth. We reconstructed a genome-scale metabolic model for S. sclerotiorum and used flux balance analysis to demonstrate metabolic heterogeneity supporting division of labor between hyphal cells. Accordingly, continuity between the central and apical compartments of invasive hyphae was required for optimal growth in planta Using a multicell model of fungal hyphae, we show that this cooperative functioning enhances fungal growth predominantly during host colonization. Our work identifies cooperation in fungal hyphae as a mechanism emerging at the multicellular level to support host colonization and virulence.
Collapse
Affiliation(s)
- Rémi Peyraud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de la Recherche Agronomique (INRA), CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France
| |
Collapse
|
114
|
Zhu Y, Dong W, Ma J, Zhang Y, Pan Z, Yao H. Utilization of the ComRS system for the rapid markerless deletion of chromosomal genes in Streptococcus suis. Future Microbiol 2019; 14:207-222. [DOI: 10.2217/fmb-2018-0279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a markerless gene deletion strategy in Streptococcus suis to solve the problem that several serotypes against electrotransformation of foreign DNA. Materials & methods: Bioinformatics retrieval was performed to identified ComRS systems functioning for natural transformation. A sacB-spc cassette with the upper and lower homologous fragments was amplification by fusion-PCR for spectinomycin-positive and sucrose-negative selection during gene deletion. Results & conclusion: Three phylogenetic clusters of ComR were identified to function for natural transformation by specific recognition to competence pheromone in S. suis. Thus, they were employed to establish gene deletion method. Its efficiency for genetic replacement was dependent on the length of homologs fragment and the concentration of donor DNA. This rapid gene-editing technique may greatly facilitate molecular studies on S. suis.
Collapse
Affiliation(s)
- Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Office International Des Epizooties (OIE) Reference Lab for Swine Streptococcosis, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
115
|
Lei ZY, Li J, Liu T, Shi XH, Fan DL. Autologous Vascularization: A Method to Enhance the Antibacterial Adhesion Properties of ePTFE. J Surg Res 2019; 236:352-358. [PMID: 30683458 DOI: 10.1016/j.jss.2018.11.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/14/2018] [Accepted: 11/26/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Expanded polytetrafluoroethylene (ePTFE), an ideal bioimplant material, is commonly used in surgical repair to treat soft tissue defects and deformities. However, the main disadvantage of ePTFE is that its distinctive porous ultrastructure is prone to bacterial adhesion that gives rise to infection and chronic inflammation, resulting in functional failure. Herein, a potentially promising approach to ePTFE autologous vascularization (AV-ePTFE) in vivo was established and developed to enhance the material's antibacterial properties. METHODS Hematoxylin and eosin (H&E) staining and visual observation were performed to validate the intensity of the inflammatory response and related histological changes in surgical wounds after AV-ePTFE implantation. In addition, the antibacterial activities of AV-ePTFE were assessed by an in vitro bacterial adhesion assay and scanning electron microscope observation. RESULTS The optimal time point of AV-ePTFE was 12 weeks after implantation. AV-ePTFE relieved inflammation based on an inflammation grading evaluation and expedited wound healing. Furthermore, AV-ePTFE effectively reduced the number of bacterial adhesions, inhibited bacterial biofilm formation, and prevented the occurrence of infection. CONCLUSIONS We conclude that autologous vascularization is an effective method to improve the antibacterial adhesion properties and biocompatibility of ePTFE after implantation and that it may have a significant effect on clinical application of future porous biomaterials.
Collapse
Affiliation(s)
- Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Jia Li
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Ting Liu
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Xiao-Hua Shi
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, ChongQing, People's Republic of China
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, The Second Affiliated Xinqiao Hospital of Army Medical University, ChongQing, People's Republic of China.
| |
Collapse
|
116
|
Could a chelant improve the effect of curcumin-mediated photodynamic antimicrobial chemotherapy against dental intact biofilms? Lasers Med Sci 2019; 34:1185-1192. [DOI: 10.1007/s10103-018-02708-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
|
117
|
Trottmann F, Franke J, Ishida K, García-Altares M, Hertweck C. A Pair of Bacterial Siderophores Releases and Traps an Intercellular Signal Molecule: An Unusual Case of Natural Nitrone Bioconjugation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - Jakob Franke
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - María García-Altares
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry; Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI); Beutenbergstrasse 11a 07745 Jena Germany
- Natural Product Chemistry, Faculty of Biological Sciences; Friedrich Schiller University Jena; 07743 Jena Germany
| |
Collapse
|
118
|
Trottmann F, Franke J, Ishida K, García-Altares M, Hertweck C. A Pair of Bacterial Siderophores Releases and Traps an Intercellular Signal Molecule: An Unusual Case of Natural Nitrone Bioconjugation. Angew Chem Int Ed Engl 2018; 58:200-204. [PMID: 30375753 DOI: 10.1002/anie.201811131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 01/10/2023]
Abstract
In microbial interactions bacteria employ diverse molecules with specific functions, such as sensing the environment, communication with other microbes or hosts, and conferring virulence. Insights into the molecular basis of bacterial communication are thus of high relevance for ecology and medicine. Targeted gene activation and in vitro studies revealed that the cell-to-cell signaling molecule and disease mediator IQS (aeruginaldehyde) of the human pathogen Pseudomonas aeruginosa and related bacteria derives from the siderophore pyochelin. Addition of IQS to bacterial cultures (Burkholderia thailandensis) showed that the signaling molecule is captured by a congener of another siderophore family, malleobactin, to form a nitrone conjugate (malleonitrone) that is active against the IQS-producer. This study uncovers complex communication processes with derailed siderophore functions, a novel nitrone bioconjugation, and a new type of antibiotic against Gram-negative bacteria.
Collapse
Affiliation(s)
- Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Jakob Franke
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Keishi Ishida
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - María García-Altares
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute, for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.,Natural Product Chemistry, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
119
|
Silvester E, Ivens A, Matthews KR. A gene expression comparison of Trypanosoma brucei and Trypanosoma congolense in the bloodstream of the mammalian host reveals species-specific adaptations to density-dependent development. PLoS Negl Trop Dis 2018; 12:e0006863. [PMID: 30307943 PMCID: PMC6199001 DOI: 10.1371/journal.pntd.0006863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/23/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022] Open
Abstract
In the bloodstream of mammalian hosts Trypanosoma brucei undergoes well-characterised density-dependent growth control and developmental adaptation for transmission. This involves the differentiation from proliferative, morphologically ‘slender’ forms to quiescent ‘stumpy’ forms that preferentially infect the tsetse fly vector. Another important livestock trypanosome, Trypanosoma congolense, also undergoes density-dependent cell-cycle arrest although this is not linked to obvious morphological transformation. Here we have compared the gene expression profile of T. brucei and T. congolense during the ascending phase of the parasitaemia and at peak parasitaemia in mice, analysing species and developmental differences between proliferating and cell-cycle arrested forms. Despite underlying conservation of their quorum sensing signalling pathway, each species exhibits distinct profiles of gene regulation when analysed by orthogroup and cell surface phylome profiling. This analysis of peak parasitaemia T. congolense provides the first molecular signatures of potential developmental competence, assisting life cycle developmental studies in these important livestock parasites. Furthermore, comparison with T. brucei identifies candidate molecules from each species that may be important for their survival in the mammalian host, transmission or distinct tropism in the tsetse vector. Animal African trypanosomiases are important diseases of livestock in sub-Saharan Africa. Two of the responsible parasite species are Trypanosoma brucei and Trypanosoma congolense, both being blood-borne parasites transmitted by tsetse flies. In T. brucei there is a well-characterised developmental event in the bloodstream that prepares the parasite for tsetse transmission—the generation of morphologically stumpy forms. In contrast, Trypanosoma congolense does not undergo the same obvious morphological event, but does respond to parasite density in the mammalian bloodstream by accumulating as a cell cycle arrested form. This prompted us to explore the adaptations of T. congolense in response to cell density in blood and to compare this with T. brucei. The datasets generated, and their analysis, represent a first detailed transcriptional profile for T. congolense and also a new high-resolution analysis of the developmental forms of T. brucei in a mammalian host. Critically, the analysis also carefully characterised the biological material used for RNA-seq analysis with respect to cell cycle status, morphology and the expression (in the case of T. brucei) of PAD1 –a molecular marker for stumpy forms. The manuscript highlights clear differences in the developmental adaptation of each parasite species, with T. congolense showing less extreme adaptation at peak parasitaemia than T. brucei. Nonetheless, several predicted surface protein families in T. congolense are strongly upregulated at high parasite density in the bloodstream, which may represent adaptations for their transmission or survival.
Collapse
Affiliation(s)
- Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alasdair Ivens
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Keith R. Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
120
|
Ilina P, Ma X, Sintim HO, Tammela P. Miniaturized whole-cell bacterial bioreporter assay for identification of quorum sensing interfering compounds. J Microbiol Methods 2018; 154:40-45. [PMID: 30300658 DOI: 10.1016/j.mimet.2018.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022]
Abstract
The continuing emergence and spread of antibiotic-resistant bacteria is worrisome and new strategies to curb bacterial infections are being sought. The interference of bacterial quorum sensing (QS) signaling has been suggested as a prospective antivirulence strategy. The AI-2 QS system is present in multiple bacterial species and has been shown to be correlated with pathogenicity. To facilitate the discovery of novel compounds interfering with AI-2 QS, we established a high-throughput setup of whole-cell bioreporter assay, which can be performed in either 96- or 384-well format. Agonistic or antagonistic activities of the test compounds against Escherichia coli LsrB-type AI-2 QS system are monitored by measuring the level of β-galactosidase expression. A control strain expressing β-galactosidase in quorum sensing-independent manner is included into the assay for false-positive detection.
Collapse
Affiliation(s)
- Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Xiaochu Ma
- Institute for Drug Discovery, Department of Chemistry, Purdue University Center for Cancer Research, Purdue University, United States
| | - Herman O Sintim
- Institute for Drug Discovery, Department of Chemistry, Purdue University Center for Cancer Research, Purdue University, United States
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
121
|
A Versatile Strategy for the Synthesis of 4,5-Dihydroxy-2,3-Pentanedione (DPD) and Related Compounds as Potential Modulators of Bacterial Quorum Sensing. Molecules 2018; 23:molecules23102545. [PMID: 30301207 PMCID: PMC6222300 DOI: 10.3390/molecules23102545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/08/2023] Open
Abstract
Resistance to antibiotics is an increasingly serious threat to global public health and its management translates to significant health care costs. The validation of new Gram-negative antibacterial targets as sources for potential new antibiotics remains a challenge for all the scientists working in this field. The interference with bacterial Quorum Sensing (QS) mechanisms represents a potentially interesting approach to control bacterial growth and pursue the next generation of antimicrobials. In this context, our research is focused on the discovery of novel compounds structurally related to (S)-4,5-dihydroxy-2,3-pentanedione, commonly known as (S)-DPD, a small signaling molecule able to modulate bacterial QS in both Gram-negative and Gram-positive bacteria. In this study, a practical and versatile synthesis of racemic DPD is presented. Compared to previously reported syntheses, the proposed strategy is short and robust: it requires only one purification step and avoids the use of expensive or hazardous starting materials as well as the use of specific equipment. It is therefore well suited to the synthesis of derivatives for pharmaceutical research, as demonstrated by four series of novel DPD-related compounds described herein.
Collapse
|
122
|
Barak-Gavish N, Frada MJ, Ku C, Lee PA, DiTullio GR, Malitsky S, Aharoni A, Green SJ, Rotkopf R, Kartvelishvily E, Sheyn U, Schatz D, Vardi A. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. SCIENCE ADVANCES 2018; 4:eaau5716. [PMID: 30397652 PMCID: PMC6200362 DOI: 10.1126/sciadv.aau5716] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/17/2018] [Indexed: 05/12/2023]
Abstract
Emiliania huxleyi is a bloom-forming microalga that affects the global sulfur cycle by producing large amounts of dimethylsulfoniopropionate (DMSP) and its volatile metabolic product dimethyl sulfide. Top-down regulation of E. huxleyi blooms has been attributed to viruses and grazers; however, the possible involvement of algicidal bacteria in bloom demise has remained elusive. We demonstrate that a Roseobacter strain, Sulfitobacter D7, that we isolated from a North Atlantic E. huxleyi bloom, exhibited algicidal effects against E. huxleyi upon coculturing. Both the alga and the bacterium were found to co-occur during a natural E. huxleyi bloom, therefore establishing this host-pathogen system as an attractive, ecologically relevant model for studying algal-bacterial interactions in the oceans. During interaction, Sulfitobacter D7 consumed and metabolized algal DMSP to produce high amounts of methanethiol, an alternative product of DMSP catabolism. We revealed a unique strain-specific response, in which E. huxleyi strains that exuded higher amounts of DMSP were more susceptible to Sulfitobacter D7 infection. Intriguingly, exogenous application of DMSP enhanced bacterial virulence and induced susceptibility in an algal strain typically resistant to the bacterial pathogen. This enhanced virulence was highly specific to DMSP compared to addition of propionate and glycerol which had no effect on bacterial virulence. We propose a novel function for DMSP, in addition to its central role in mutualistic interactions among marine organisms, as a mediator of bacterial virulence that may regulate E. huxleyi blooms.
Collapse
Affiliation(s)
- Noa Barak-Gavish
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Miguel José Frada
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 88103, Israel
- Department of Ecology, Evolution and Behavior, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter A. Lee
- Hollings Marine Laboratory, College of Charleston, Charleston, SC 29412, USA
| | - Giacomo R. DiTullio
- Hollings Marine Laboratory, College of Charleston, Charleston, SC 29412, USA
| | - Sergey Malitsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Stefan J. Green
- DNA Services Facility, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ron Rotkopf
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Kartvelishvily
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Sheyn
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
- Corresponding author.
| |
Collapse
|
123
|
Wu F, Bethke JH, Wang M, You L. Quantitative and synthetic biology approaches to combat bacterial pathogens. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 4:116-126. [PMID: 30263975 DOI: 10.1016/j.cobme.2017.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Antibiotic resistance is one of the biggest threats to public health. The rapid emergence of resistant bacterial pathogens endangers the efficacy of current antibiotics and has led to increasing mortality and economic burden. This crisis calls for more rapid and accurate diagnosis to detect and identify pathogens, as well as to characterize their response to antibiotics. Building on this foundation, treatment options also need to be improved to use current antibiotics more effectively and develop alternative strategies that complement the use of antibiotics. We here review recent developments in diagnosis and treatment of bacterial pathogens with a focus on quantitative biology and synthetic biology approaches.
Collapse
Affiliation(s)
- Feilun Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Jonathan H Bethke
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, USA
| | - Meidi Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, 27708, USA
| |
Collapse
|
124
|
Cusicanqui Méndez DA, Gutierres E, José Dionisio E, Afonso Rabelo Buzalaf M, Cardoso Oliveira R, Andrade Moreira Machado MA, Cruvinel T. Curcumin-mediated antimicrobial photodynamic therapy reduces the viability and vitality of infected dentin caries microcosms. Photodiagnosis Photodyn Ther 2018; 24:102-108. [PMID: 30240927 DOI: 10.1016/j.pdpdt.2018.09.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/26/2018] [Accepted: 09/17/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND To our knowledge, there is a lack of evidence on the effect of Antimicrobial Photodynamic Therapy (aPDT) by the application of curcumin against complex biofilms of dental caries lesions. This study aimed to evaluate the viability, vitality, and acid metabolism of infected dentin caries microcosms treated with curcumin-mediated aPDT. METHODS After microcosm biofilms growing anaerobically on bovine dentin disks immersed in McBain medium with 1% sucrose at 37 °C for 5 days, the biofilms were treated by the association of DMSO water solution or 600 μmol L-1 curcumin with 0, 37.5 or 75 J cm-2 blue LED (455 nm). Then, the colony-forming units (CFU) counts of total microorganisms, total streptococci, mutans streptococci, and total lactobacilli were determined by plating. The lactic acid concentration was analyzed by enzymatic spectrophotometry method, while the vitality of intact biofilms was evaluated by confocal laser scanning microscope (CLSM). Statistical analysis was performed by Kruskal Wallis and post-hoc Dunn's tests (P < 0.05). RESULTS Curcumin alone did not affect the viability of microorganisms and the vitality of intact biofilms. However, 75 J cm-2 LED alone decreased the total microorganisms and total lactobacilli counts. The combination of curcumin and LED reduced significantly the counts of all microorganism groups and the vitality of intact biofilms. Differences were not observed between the lactic acid concentrations of distinct groups. CONCLUSIONS Therefore, curcumin-mediated aPDT was effective in reducing the viability and the vitality of infected dentin caries microcosms, without interfering in their acidogenicity.
Collapse
Affiliation(s)
| | - Eliézer Gutierres
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil
| | - Evandro José Dionisio
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil
| | | | | | | | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Brazil.
| |
Collapse
|
125
|
Marathe K, Bundale S, Nashikkar N, Upadhyay A. Influence of Linoleic Acid on Quorum Sensing in Proteus mirabilis and Serratia marcescens. ACTA ACUST UNITED AC 2018. [DOI: 10.13005/bbra/2674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Quorum sensing (QS) is a bacterial cell density dependent mode of communication involved in regulation of virulence in pathogens including biofilm formation. Accordingly, curbing QS might prove to be an anti-virulence approach of controlling nosocomial infections caused by multi drug resistant bacteria. The report presented here documents the QS inhibitory properties of linoleic acid against Proteus mirabilis and Serratia marcescens known to cause nosocomial infections. Urease assay, prodigiosin assay, protease assay, biofilm formation assay and growth curve analysis were performed to investigate the effectiveness of linoleic acid in controlling virulence of P. mirabilis and S. marcescens. 2.5mM linoleic acid reduced the urease activity and biofilm formation to 42.11% and 11.11% respectively in P. mirabilis; and prodigiosin synthesis, protease activity and biofilm formation to 0%, 65.91% and 33.33% correspondingly in S. marcescens. Therefore, analysis of QS inhibitory behaviour of linoleic acid substantiates its use as a plausible drug for anti-virulence therapy without subjecting the bacteria to discerning force of antibiotics.
Collapse
Affiliation(s)
- Kirti Marathe
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| | - Sunita Bundale
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| | - Nandita Nashikkar
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| | - Avinash Upadhyay
- Hislop school of biotechnology, Hislop College, Temple Road, Civil Lines Nagpur, 440001, India
| |
Collapse
|
126
|
Mooney JA, Pridgen EM, Manasherob R, Suh G, Blackwell HE, Barron AE, Bollyky PL, Goodman SB, Amanatullah DF. Periprosthetic bacterial biofilm and quorum sensing. J Orthop Res 2018; 36:2331-2339. [PMID: 29663554 DOI: 10.1002/jor.24019] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) is a common complication after total joint arthroplasty leading to severe morbidity and mortality. With an aging population and increasing prevalence of total joint replacement procedures, the burden of PJI will be felt not only by individual patients, but in increased healthcare costs. Current treatment of PJI is inadequate resulting in incredibly high failure rates. This is believed to be largely mediated by the presence of bacterial biofilms. These polymicrobial bacterial colonies form within secreted extracellular matrices, adhering to the implant surface and local tissue. The biofilm architecture is believed to play a complex and critical role in a variety of bacterial processes including nutrient supplementation, metabolism, waste management, and antibiotic and immune resistance. The establishment of these biofilms relies heavily on the quorum sensing communication systems utilized by bacteria. Early stage research into disrupting bacterial communication by targeting quorum sensing show promise for future clinical applications. However, prevention of the biofilm formation via early forced induction of the biofilm forming process remains yet unexplored. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2331-2339, 2018.
Collapse
Affiliation(s)
- Jake A Mooney
- Stanford University, School of Medicine, Stanford, California
| | - Eric M Pridgen
- Department of Orthopaedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| | - Gina Suh
- Department of Medicine, Stanford School of Medicine, Stanford, California
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Annelise E Barron
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, California
| | - Paul L Bollyky
- Division of Infectious Diseases, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| | - Derek F Amanatullah
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Broadway Street, Redwood City, Stanford 94063, California
| |
Collapse
|
127
|
Fortier LC. Bacteriophages Contribute to Shaping Clostridioides (Clostridium) difficile Species. Front Microbiol 2018; 9:2033. [PMID: 30233520 PMCID: PMC6127314 DOI: 10.3389/fmicb.2018.02033] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages (phages) are bacterial viruses that parasitize bacteria. They are highly prevalent in nature, with an estimated 1031 viral particles in the whole biosphere, and they outnumber bacteria by at least 10-fold. Hence, phages represent important drivers of bacterial evolution, although our knowledge of the role played by phages in the mammalian gut is still embryonic. Several pathogens owe their virulence to the integrated phages (prophages) they harbor, which encode diverse virulence factors such as toxins. Clostridioides (Clostridium) difficile is an important opportunistic pathogen and several phages infecting this species have been described over the last decade. However, their exact contribution to the biology and virulence of this pathogen remains elusive. Current data have shown that C. difficile phages can alter virulence-associated phenotypes, in particular toxin production, by interfering with bacterial regulatory circuits through crosstalk with phage proteins for example. One phage has also been found to encode a complete binary toxin locus. Multiple regulatory genes have also been identified in phage genomes, suggesting that their impact on the host can be complex and often subtle. In this minireview, the current state of knowledge, major findings, and pending questions regarding C. difficile phages will be presented. In addition, with the apparent role played by phages in the success of fecal microbiota transplantation and the perspective of phage therapy for treatment of recurrent C. difficile infection, it has become even more crucial to understand what C. difficile phages do in the gut, how they impact their host, and how they influence the epidemiology and evolution of this clinically important pathogen.
Collapse
Affiliation(s)
- Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
128
|
Srinivasarao S, Nizalapur S, Yu TT, Wenholz DS, Trivedi P, Ghosh B, Rangan K, Kumar N, Gowri Chandra Sekhar K. Design, Synthesis and Biological Evaluation of Triazole-Containing 2-Phenylindole and Salicylic Acid as Quorum Sensing Inhibitors Against Pseudomonas aeruginosa. ChemistrySelect 2018. [DOI: 10.1002/slct.201801622] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Singireddi Srinivasarao
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Jawahar Nagar, Kapra Mandal; Hyderabad - 500078, Telangana India
| | | | - Tsz Tin Yu
- School of Chemistry; UNSW Sydney; NSW 2052, Australia
| | | | - Prakruti Trivedi
- Department of Pharmacy; Birla Institute of Technology and Science-Pilani; Hyderabad Campus, Jawahar Nagar, Kapra Mandal; Hyderabad-500 078, Telangana India
| | - Balaram Ghosh
- Department of Pharmacy; Birla Institute of Technology and Science-Pilani; Hyderabad Campus, Jawahar Nagar, Kapra Mandal; Hyderabad-500 078, Telangana India
| | - Krishnan Rangan
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Jawahar Nagar, Kapra Mandal; Hyderabad - 500078, Telangana India
| | - Naresh Kumar
- School of Chemistry; UNSW Sydney; NSW 2052, Australia
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Jawahar Nagar, Kapra Mandal; Hyderabad - 500078, Telangana India
| |
Collapse
|
129
|
Rezaie P, Pourhajibagher M, Chiniforush N, Hosseini N, Bahador A. The Effect of Quorum-Sensing and Efflux Pumps Interactions in Pseudomonas aeruginosa Against Photooxidative Stress. J Lasers Med Sci 2018; 9:161-167. [PMID: 30809326 DOI: 10.15171/jlms.2018.30] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resistant infections essentially cause mortality in a burn unit. Several bacteria contribute to burn infections; among these, Pseudomonas aeruginosa majorly contributes to these infections revealing significant drug resistance. Similar to other bacteria, P. aeruginosa reveals various mechanisms to attain highest pathogenicity and resistance; among these, efflux pumps and quorum sensing are crucial. Quorum sensing enables effective communication between bacteria and synchronizes their gene expression resulting in optimum effect of the secreted proteins; alternatively, efflux pumps increase the bacterial resistance by pumping out the antimicrobial factors as well as the QS signals and precursors. Of recent, increasing episodes of drug resistance led to new findings and approaches for killing pathogenic bacteria without inducing the drug-resistant species. Photodynamic therapy (PDT), considered as an adjuvant and innovative method for conventional antibiotic therapy, is a photochemical reaction that includes visible light, oxygen, and a photosensitizer (PS). In this therapy, after exposure to visible light, the PS generates reactive oxygen species (ROS) that are bacteriostatic or bactericidal. Furthermore, this oxidative stress can disrupt the coordination of gene expression and alter the bacterial behavior. Considering the fact that the adaption and several gene expression patterns of microorganisms within the biofilm make them notably resistant to the recent antimicrobial treatments, this study aimed to emphasize the relationship between the efflux pump and QS under oxidative stress and their role in P. aeruginosa's reaction to PDT.
Collapse
Affiliation(s)
- Parizad Rezaie
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry (LRCD), Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nava Hosseini
- Department of Microbiology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
130
|
Jha P, Panwar J, Jha PN. Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s42398-018-0011-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
131
|
Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 2018; 121:293-302. [PMID: 29857121 DOI: 10.1016/j.micpath.2018.05.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS) is a complex bacterial intercellular communication system. It is mediated by molecules called auto-inducers (AIs) and allows coordinated responses to a variety of environmental signals by inducing alterations in gene expression. Communication through QS can tremendously stimulate the pathogenicity and virulence via multiple mechanisms in pathogenic bacteria. The present review explores the major types of multitudinous QS systems known in Gram-positive and Gram-negative bacteria and their roles in bacterial pathogenesis and drug resistance. Because bacterial resistance to antibiotics is increasingly becoming a significant clinical challenge to human health; alternate strategies to combat drug resistance are warranted. Targeting bacterial pathogenicity by interruptions in QS using natural QS inhibitors and synthetic quorum-quenching analogs are being increasingly considered for development of next generation antimicrobials. The review highlights the recent advancements in discovery of promising new QS modulators and their efficiency in controlling infections caused by multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Faraz Ahmad
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering & Technology, Lucknow, 226021, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| |
Collapse
|
132
|
Qin X, Kräft T, Goycoolea FM. Chitosan encapsulation modulates the effect of trans-cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids Surf B Biointerfaces 2018; 169:453-461. [PMID: 29852434 DOI: 10.1016/j.colsurfb.2018.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaofei Qin
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | - Tabea Kräft
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany.
| |
Collapse
|
133
|
Culler HF, Couto SCF, Higa JS, Ruiz RM, Yang MJ, Bueris V, Franzolin MR, Sircili MP. Role of SdiA on Biofilm Formation by Atypical Enteropathogenic Escherichia coli. Genes (Basel) 2018; 9:genes9050253. [PMID: 29762495 PMCID: PMC5977193 DOI: 10.3390/genes9050253] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/19/2018] [Accepted: 02/21/2018] [Indexed: 01/11/2023] Open
Abstract
Atypical enteropathogenic Escherichia coli are capable to form biofilm on biotic and abiotic surfaces, regardless of the adherence pattern displayed. Several E. coli mechanisms are regulated by Quorum sensing (QS), including virulence factors and biofilm formation. Quorum sensing is a signaling system that confers bacteria with the ability to respond to chemical molecules known as autoinducers. Suppressor of division inhibitor (SdiA) is a QS receptor present in atypical enteropathogenic E.coli (aEPEC) that detects acyl homoserine lactone (AHL) type autoinducers. However, these bacteria do not encode an AHL synthase, but they are capable of sensing AHL molecules produced by other species, establishing an inter-species bacterial communication. In this study, we performed experiments to evaluate pellicle, ring-like structure and biofilm formation on wild type, sdiA mutants and complemented strains. We also evaluated the transcription of genes involved in different stages of biofilm formation, such as bcsA, csgA, csgD, fliC and fimA. The sdiA mutants were capable of forming thicker biofilm structures and showed increased motility when compared to wild type and complemented strains. Moreover, they also showed denser pellicles and ring-like structures. Quantitative real-time PCR (qRT-PCR) analysis demonstrated increased csgA, csgD and fliC transcription on mutant strains. Biofilm formation, as well as csgD, csgA and fimA transcription decreased on wild type strains by the addition of AHL. These results indicate that SdiA participates on the regulation of these phenotypes in aEPEC and that AHL addition enhances the repressor effect of this receptor on the transcription of biofilm and motility related genes.
Collapse
Affiliation(s)
- Hebert F Culler
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Samuel C F Couto
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Juliana S Higa
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Renato M Ruiz
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Min J Yang
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Vanessa Bueris
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Marcia R Franzolin
- Laboratory of Bacteriology, Butantan Institute, São Paulo 05503-900, Brazil.
| | - Marcelo P Sircili
- Laboratory of Genetics, Butantan Institute, São Paulo 05503-900, Brazil.
| |
Collapse
|
134
|
Bodelón G, Montes-García V, Pérez-Juste J, Pastoriza-Santos I. Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Front Cell Infect Microbiol 2018; 8:143. [PMID: 29868499 PMCID: PMC5958199 DOI: 10.3389/fcimb.2018.00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
Bacterial quorum sensing systems regulate the production of an ample variety of bioactive extracellular compounds that are involved in interspecies microbial interactions and in the interplay between the microbes and their hosts. The development of new approaches for enabling chemical detection of such cellular activities is important in order to gain new insight into their function and biological significance. In recent years, surface-enhanced Raman scattering (SERS) spectroscopy has emerged as an ultrasensitive analytical tool employing rationally designed plasmonic nanostructured substrates. This review highlights recent advances of SERS spectroscopy for label-free detection and imaging of quorum sensing-regulated processes in the human opportunistic pathogen Pseudomonas aeruginosa. We also briefly describe the challenges and limitations of the technique and conclude with a summary of future prospects for the field.
Collapse
Affiliation(s)
- Gustavo Bodelón
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Verónica Montes-García
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Jorge Pérez-Juste
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| | - Isabel Pastoriza-Santos
- Departamento de Química Física y Centro Singular de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, Vigo, Spain
| |
Collapse
|
135
|
Alves ES, Ferreira RBR, Antunes LCM. Extraction of Small Molecules from Fecal Samples and Testingof Their Activity on Microbial Physiology. Bio Protoc 2018; 8:e2808. [PMID: 34286025 DOI: 10.21769/bioprotoc.2808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/01/2018] [Accepted: 04/11/2018] [Indexed: 11/02/2022] Open
Abstract
The human body is colonized by vast communities of microbes, collectively known as microbiota, or microbiome. Although microbes colonize every surface of our bodies that is exposed to the external environment, the biggest collection of microbes colonizing humans and other mammals can be found in the gastrointestinal tract. Given the fact that the human gut is colonized by several hundred microbial species, our group hypothesized that the chemical diversity of this environment should be significant, and that many of the molecules present in that environment would have important signaling roles. Therefore, we devised a protocol to extract these molecules from human feces and test their signaling properties. Potentially bioactive extracts can be tested through addition to culture medium and analyses of bacterial growth and gene expression, among other properties. The protocol described herein provides an easy and rapid method for the extraction and testing of metabolites from fecal samples using Salmonella enterica as a model organism. This protocol can also be adapted to the extraction of small molecules from other matrices, such as cultured mammalian cells, tissues, body fluids, and axenic microbial cultures, and the resulting extracts can be tested against various microbial species.
Collapse
Affiliation(s)
- Eduardo S Alves
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana B R Ferreira
- Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Caetano M Antunes
- National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
136
|
Yu S, Zhu X, Zhou J, Cai Z. Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170702. [PMID: 29765621 PMCID: PMC5936886 DOI: 10.1098/rsos.170702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
Biofilms play an important role in the antibiotic resistance of encased bacteria, and biofilm formation is regulated by quorum sensing (QS). Inhibiting the QS system may, therefore, degrade the integrity of a biofilm and expose the bacterial pathogens within it to the deleterious effects of molecules such as antibiotics. Moreover, the use of QS inhibitors (QSIs) may provide a novel approach for treating bacterial infections of aquacultures. In the present study, the bacterium Proteus mirabilis was identified as a potential producer of QSIs. Varying concentrations (0.1-1.1%) of filtrates prepared from the culture of P. mirabilis inhibited biofilm formation by the pathogens Pseudomonas aeruginosa, Vibrio harveyi and Staphylococcus aureus by as much as 58.9%, 41.5% and 41.9%, respectively. These filtrates as well as the crude aqueous extracts prepared from them increased the sensitivities of pathogens to the inhibitory effects of kanamycin. The filtrates also showed pathogenicity attenuation potential in P. aeruginosa by decreasing the production of virulence factors. Moreover, the filtrates did not influence the planktonic growth of these pathogens. The results indicate that P. mirabilis may act as a non-specific (or broad-spectrum) inhibitor of biofilm formation that will help control infectious diseases that adversely affect the aquaculture industry.
Collapse
Affiliation(s)
- Shichen Yu
- Shenzhen Public Service Platforms of Marine Microbial Resource Screening and Exploitation, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, People's Republic of China
- School of Life Science, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoshan Zhu
- Shenzhen Public Service Platforms of Marine Microbial Resource Screening and Exploitation, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Jin Zhou
- Shenzhen Public Service Platforms of Marine Microbial Resource Screening and Exploitation, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, People's Republic of China
| | - Zhonghua Cai
- Shenzhen Public Service Platforms of Marine Microbial Resource Screening and Exploitation, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, People's Republic of China
| |
Collapse
|
137
|
Repression of VvpM Protease Expression by Quorum Sensing and the cAMP-cAMP Receptor Protein Complex in Vibrio vulnificus. J Bacteriol 2018; 200:JB.00526-17. [PMID: 29339417 DOI: 10.1128/jb.00526-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Septicemia-causing Vibrio vulnificus produces at least three exoproteases, VvpE, VvpS, and VvpM, all of which participate in interactions with human cells. Expression of VvpE and VvpS is induced in the stationary phase by multiple transcription factors, including sigma factor S, SmcR, and the cAMP-cAMP receptor protein (cAMP-CRP) complex. Distinct roles of VvpM, such as induction of apoptosis, lead us to hypothesize VvpM expression is different from that of the other exoproteases. Its transcription, which was found to be independent of sigma S, is induced at the early exponential phase and then becomes negligible upon entry into the stationary phase. SmcR and CRP were studied regarding the control of vvpM expression. Transcription of vvpM was repressed by SmcR and cAMP-CRP complex individually, which specifically bound to the regions -2 to +20 and +6 to +27, respectively, relative to the vvpM transcription initiation site. Derepression of vvpM gene expression was 10- to 40-fold greater in an smcR crp double mutant than in single-gene mutants. Therefore, these results show that the expression of V. vulnificus exoproteases is differentially regulated, and in this way, distinct proteases can engage in specific interactions with a host.IMPORTANCE An opportunistic human pathogen, Vibrio vulnificus produces multiple extracellular proteases that are involved in diverse interactions with a host. The total exoproteolytic activity is detected mainly in the supernatants of the high-cell-density cultures. However, some proteolytic activity derived from a metalloprotease, VvpM, was present in the supernatants of the low-cell-density cultures sampled at the early growth period. In this study, we present the regulatory mechanism for VvpM expression via repression by at least two transcription factors. This type of transcriptional regulation is the exact opposite of those for expression of the other V. vulnificus exoproteases. Differential regulation of each exoprotease's production then facilitates the pathogen's participation in the distinct interactions with a host.
Collapse
|
138
|
Omwenga EO, Hensel A, Shitandi A, Goycoolea FM. Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E.coli Top 10 biosensor. Colloids Surf B Biointerfaces 2018; 164:125-133. [PMID: 29413589 DOI: 10.1016/j.colsurfb.2018.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/26/2017] [Accepted: 01/15/2018] [Indexed: 11/16/2022]
Abstract
Phytochemicals have been found to be promising alternatives to conventional antibiotic therapies for the control of bacterial infections, as they may entail less selective pressure and hence reduce the development of resistance. This study involved examining the inhibition of biofilm formation and of quorum sensing (QS), and the cytotoxicity on mammalian cells of two flavonoids, quercetin and baicalein, in free form and associated into chitosan-based nanocapsules. This was done by use of a transformed E. coli Top 10 biosensor strain, while the cytotoxicity was evaluated on MDCK-C7 cells. In free form, application both flavonoids exhibited slight inhibitory activity on the QS response and biofilm formation, a scenario that was improved positively upon encapsulation with chitosan (Mw ∼115,000 g/mol and DA ∼42%). The association efficiency of 99% (quercetin) and 87% (baicalein) was determined, and each formulation had an average diameter of 190 ± 4 and 187 ± 2 nm, and zeta (ζ) potential of +48.1 ± 2.03 and +48.4 ± 3.46 mV, respectively. Both types of systems were stable against aggregation in M9 and MEM media. The in vitro release kinetics data of both flavonoids seemed to be similar with only ∼20% released over the first 5 h, or ∼10% over the first 4 h, respectively, with subsequent sudden release increase up to ∼40% in both cases. The free phytochemicals seemed to be cytotoxic to MDCK-C7 cells at higher doses, however, upon nanoencapsulation, a cytoprotective effect was evidenced. We have gained proof-of-principle of the advantages of encapsulation of two bioactive flavonoids.
Collapse
Affiliation(s)
- E O Omwenga
- Kisii University, School of Health Sciences, P.O. Box 408-40200, Kisii, Kenya; University of Münster, Institute of Plant Biotechnology and Biology, Nanobiotechnology Group, Schlossgarten 3, 48149, Münster, Germany
| | - A Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstraße 48, D-48149, Münster, Germany
| | - A Shitandi
- Kisii University, Faculty of Applied Sciences, P.O. Box 408, 40200, Kisii, Kenya
| | - F M Goycoolea
- University of Münster, Institute of Plant Biotechnology and Biology, Nanobiotechnology Group, Schlossgarten 3, 48149, Münster, Germany; School of Food Science and Nutrition, University of Leeds, Leeds, LS16 7PA, United Kingdom.
| |
Collapse
|
139
|
Sharma N, Bhatia S, Sodhi AS, Batra N. Oral microbiome and health. AIMS Microbiol 2018; 4:42-66. [PMID: 31294203 PMCID: PMC6605021 DOI: 10.3934/microbiol.2018.1.42] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/03/2018] [Indexed: 12/12/2022] Open
Abstract
The oral microbiome is diverse in its composition due to continuous contact of oral cavity with the external environment. Temperatures, diet, pH, feeding habits are important factors that contribute in the establishment of oral microbiome. Both culture dependent and culture independent approaches have been employed in the analysis of oral microbiome. Gene-based methods like PCR amplification techniques, random amplicon cloning, PCR-RELP, T-RELP, DGGE and DNA microarray analysis have been applied to increase oral microbiome related knowledge. Studies revealed that microbes from the phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Fusobacteria, Neisseria, TM7 predominately inhabits the oral cavity. Culture-independent molecular techniques revealed the presence of genera Megasphaera, Parvimonas and Desulfobulbus in periodontal disease. Bacteria, fungi and protozoa colonize themselves on various surfaces in oral cavity. Microbial biofilms are formed on the buccal mucosa, dorsum of the tongue, tooth surfaces and gingival sulcus. Various studies demonstrate relationship between unbalanced microflora and development of diseases like tooth caries, periodontal diseases, type 2 diabetes, circulatory system related diseases etc. Transcriptome-based remodelling of microbial metabolism in health and disease associated states has been well reported. Human diets and habitat can trigger virus activation and influence phage members of oral microbiome. As it is said, "Mouth, is the gateway to the total body wellness, thus oral microbiome influences overall health of an individual".
Collapse
Affiliation(s)
- Neetu Sharma
- Department of Microbiology, GGDSD College, Sector 32 C Chandigarh, India
| | - Sonu Bhatia
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| | | | - Navneet Batra
- Department of Biotechnology, GGDSD College, Sector 32 C Chandigarh, India
| |
Collapse
|
140
|
Turan NB, Engin GÖ. Quorum Quenching. FUNDAMENTALS OF QUORUM SENSING, ANALYTICAL METHODS AND APPLICATIONS IN MEMBRANE BIOREACTORS 2018. [DOI: 10.1016/bs.coac.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
141
|
Medicinal Application of Synthetic Biology. Synth Biol (Oxf) 2018. [DOI: 10.1007/978-981-10-8693-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
142
|
张 晓. The Dynamical Modeling Studies of the Quorum Sensing Mechanism in Bacteria. Biophysics (Nagoya-shi) 2018. [DOI: 10.12677/biphy.2018.62002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
143
|
|
144
|
Li S, Chen S, Fan J, Cao Z, Ouyang W, Tong N, Hu X, Hu J, Li P, Feng Z, Huang X, Li Y, Xie M, He R, Jian J, Wu B, Xu C, Wu W, Guo J, Lin J, Sun P. Anti-biofilm effect of novel thiazole acid analogs against Pseudomonas aeruginosa through IQS pathways. Eur J Med Chem 2017; 145:64-73. [PMID: 29324344 DOI: 10.1016/j.ejmech.2017.12.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022]
Abstract
IQS has been proven to be a new quorum sensing (QS) system against bacterial biofilm formation, which is activated in the common phosphate-limiting environment of infected tissues taking over the central las system. Up to now, numerous biofilm inhibitors which function by affecting traditional QS system have been reported. However, no compound has been reported to exert anti-biofilm activity through IQS system. Herein, various novel IQS derivatives were synthesized by the reaction of thiazole-4-carboxylic acid with different linear alcohols (R-OH) or amines (R-NH2). IQS derivatives with four carbon chain length of R group were found to present the best biofilm inhibition activity. Compound B-11 as the model molecule was observed to inhibit biofilm formation only under phosphate-limiting condition, and increase in B-11 concentration significantly reduced the expression of rhlA-gfp and pqsA-gfp, but lasB-gfp. Moreover, B-11 reduced production of virulence factors of rhamnolipid and pyocyanin under phosphate limitation. These observations indicated that the synthesized compounds possessed the anti-biofilm activity through IQS pathways rather than traditional QS pathways, which pave a path for future molecular design against bacterial biofilm formation.
Collapse
Affiliation(s)
- Shengrong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Siyu Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jilin Fan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhen Cao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Weihao Ouyang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Ning Tong
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xin Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jie Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Peishan Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zifeng Feng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xi Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yuying Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Mingshan Xie
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Ruikun He
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jingyi Jian
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Biyuan Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Chen Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Weijian Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jialiang Guo
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
145
|
Enomoto S, Chari A, Clayton AL, Dale C. Quorum Sensing Attenuates Virulence in Sodalis praecaptivus. Cell Host Microbe 2017; 21:629-636.e5. [PMID: 28494244 DOI: 10.1016/j.chom.2017.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Sodalis praecaptivus is a close relative and putative environmental progenitor of the widely distributed, insect-associated, Sodalis-allied symbionts. Here we show that mutant strains of S. praecaptivus that lack genetic components of a quorum-sensing (QS) apparatus have a rapid and potent killing phenotype following microinjection into an insect host. Transcriptomic and genetic analyses indicate that insect killing occurs as a consequence of virulence factors, including insecticidal toxins and enzymes that degrade the insect integument, which are normally repressed by QS at high infection densities. This method of regulation suggests that virulence factors are only utilized in early infection to initiate the insect-bacterial association. Once bacteria reach sufficient density in host tissues, the QS circuit represses expression of these harmful genes, facilitating a long-lasting and benign association. We discuss the implications of the functionality of this QS system in the context of establishment and evolution of mutualistic relationships involving these bacteria.
Collapse
Affiliation(s)
- Shinichiro Enomoto
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Abhishek Chari
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Adam Larsen Clayton
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
146
|
Abel Lopez-Buenfil J, Abrahan Ramirez-Pool J, Ruiz-Medrano R, Del Carmen Montes-Horcasitas M, Chavarin-Palacio C, Moya-Hinojosa J, Javier Trujillo-Arriaga F, Carmona RL, Xoconostle-Cazares B. Dynamics of Huanglongbing-associated Bacterium Candidatus Liberibacter asiaticus in Citrus aurantifolia Swingle (Mexican Lime). Pak J Biol Sci 2017; 20:113-123. [PMID: 29023002 DOI: 10.3923/pjbs.2017.113.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The bacterial disease citrus huanglongbing (HLB), associated with "Candidatus Liberibacter asiaticus" (C.Las) has severely impacted the citrus industry, causing a significant reduction in production and fruit quality. In the present study, it was monitored the C.Las population dynamics in symptomatic, HLB-positive Mexican lime trees (Citrus aurantifolia Swingle) in a tropical, citrus-producing area of Mexico. The objective of this study was to identify the dynamics of the population of huanglongbing-associated bacterium Candidatus Liberibacter asiaticus and its insect vector in Citrus aurantifolia Swingle (Mexican lime). MATERIALS AND METHODS Leaf samples were collected every 2 months over a period of 26 months for quantification of bacterial titers and young and mature leaves were collected in each season to determine preferential sites of bacterial accumulation. The proportion of living and dead bacterial cells could be determined through the use of quantitative real-time PCR in the presence of ethidium monoazide (EMA-qPCR). RESULTS It was observed a lower bacterial titer at high temperatures in the infected trees relative to titers in mild weather, despite a higher accumulation of the insect vector Diaphorina citri in these conditions. This study also revealed seasonal fluctuations in the titers of bacteria in mature leaves when compared to young leaves. No statistically significant correlation between any meteorological variable, C.Las concentration and D. citri population could be drawn. CONCLUSION Although, HLB management strategies have focused on vector control, host tree phenology may be important. The evaluation of citrus phenology, C.Las concentration, ACP population and environmental conditions provides insights into the cyclical, seasonal variations of both the HLB pathogen and its vector. These findings should help in the design of integrative HLB control strategies that take into account the accumulation of the pathogen and the presence of its vector.
Collapse
Affiliation(s)
- Jose Abel Lopez-Buenfil
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, C. P. 07360, Ciudad de México, Mexico
| | - Jose Abrahan Ramirez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, C. P. 07360, Ciudad de México, Mexico
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, C. P. 07360, Ciudad de México, Mexico
| | - Maria Del Carmen Montes-Horcasitas
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, C. P. 07360, Ciudad de México, Mexico
| | - Claudio Chavarin-Palacio
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Unidad Integral de Servicios, Diagnóstico y Constatación, Km 37.5, Carretera Federal México-Pachuca, Tecámac, C.P. 55740, Estado de México, Mexico
| | - Jesus Moya-Hinojosa
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Colonia San Manuel, Ciudad Universitaria, C.P. 72592 Puebla, México, Mexico
| | - Francisco Javier Trujillo-Arriaga
- Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Centro Nacional de Referencia Fitosanitaria, Unidad Integral de Servicios, Diagnóstico y Constatación, Km 37.5, Carretera Federal México-Pachuca, Tecámac, C.P. 55740, Estado de México, Mexico
| | - Rosalia Lira Carmona
- Hospital de Pediatría, Hospital General Siglo XXI del Instituto Mexicano del Seguro Social, Avenida Cuauhtémoc 330, Col. Doctores, C.P. 06720, Ciudad de México, Mexico
| | - Beatriz Xoconostle-Cazares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, C. P. 07360, Ciudad de México, Mexico
| |
Collapse
|
147
|
Comparative genome analysis of the vineyard weed endophyte Pseudomonas viridiflava CDRTc14 showing selective herbicidal activity. Sci Rep 2017; 7:17336. [PMID: 29229911 PMCID: PMC5725424 DOI: 10.1038/s41598-017-16495-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Microbes produce a variety of secondary metabolites to be explored for herbicidal activities. We investigated an endophyte Pseudomonas viridiflava CDRTc14, which impacted growth of its host Lepidium draba L., to better understand the possible genetic determinants for herbicidal and host-interaction traits. Inoculation tests with a variety of target plants revealed that CDRTc14 shows plant-specific effects ranging from beneficial to negative. Its herbicidal effect appeared to be dose-dependent and resembled phenotypically the germination arrest factor of Pseudomonas fluorescens WH6. CDRTc14 shares 183 genes with the herbicidal strain WH6 but the formylaminooxyvinylglycine (FVG) biosynthetic genes responsible for germination arrest of WH6 was not detected. CDRTc14 showed phosphate solubilizing ability, indole acetic acid and siderophores production in vitro and harbors genes for these functions. Moreover, genes for quorum sensing, hydrogen cyanide and ACC deaminase production were also found in this strain. Although, CDRTc14 is related to plant pathogens, we neither found a complete pathogenicity island in the genome, nor pathogenicity symptoms on susceptible plant species upon CDRTc14 inoculation. Comparison with other related genomes showed several unique genes involved in abiotic stress tolerance in CDRTc14 like genes responsible for heavy metal and herbicide resistance indicating recent adaptation to plant protection measures applied in vineyards.
Collapse
|
148
|
Quorum Sensing in Burkholderia pseudomallei and Other Burkholderia species. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
149
|
Leggett HC, Cornwallis CK, Buckling A, West SA. Growth rate, transmission mode and virulence in human pathogens. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0094. [PMID: 28289261 PMCID: PMC5352820 DOI: 10.1098/rstb.2016.0094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2016] [Indexed: 01/01/2023] Open
Abstract
The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Helen C Leggett
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK .,Department of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, UK
| | | | - Angus Buckling
- Department of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, UK
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| |
Collapse
|
150
|
Effect of methylene blue-mediated antimicrobial photodynamic therapy on dentin caries microcosms. Lasers Med Sci 2017; 33:479-487. [DOI: 10.1007/s10103-017-2379-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/26/2017] [Indexed: 01/10/2023]
|