101
|
Bali V, Panesar PS, Bera MB, Kennedy JF. Bacteriocins: Recent Trends and Potential Applications. Crit Rev Food Sci Nutr 2014; 56:817-34. [DOI: 10.1080/10408398.2012.729231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
102
|
Reister M, Hoffmeier K, Krezdorn N, Rotter B, Liang C, Rund S, Dandekar T, Sonnenborn U, Oelschlaeger TA. Complete genome sequence of the gram-negative probiotic Escherichia coli strain Nissle 1917. J Biotechnol 2014; 187:106-7. [PMID: 25093936 DOI: 10.1016/j.jbiotec.2014.07.442] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/24/2014] [Indexed: 11/29/2022]
Abstract
Escherichia coli strain Nissle 1917 (EcN) is the active principle of a probiotic preparation (trade name Mutaflor(®)) used for the treatment of patients with intestinal diseases such as ulcerative colitis and diarrhea. It has GRAS (generally recognized as save) status and has been shown to be a therapeutically effective drug (Sonnenborn and Schulze, 2009). The complete genomic DNA sequence will help in identifying genes and their products which are essential for the strains probiotic nature. Genbank/EMBL/DDBJ accession number: CP007799 (chromosome).
Collapse
Affiliation(s)
- Marten Reister
- GenXPro GmbH, Altenhoeferallee 3, 60438 Frankfurt/Main, Germany.
| | - Klaus Hoffmeier
- GenXPro GmbH, Altenhoeferallee 3, 60438 Frankfurt/Main, Germany.
| | - Nicolas Krezdorn
- GenXPro GmbH, Altenhoeferallee 3, 60438 Frankfurt/Main, Germany.
| | - Bjoern Rotter
- GenXPro GmbH, Altenhoeferallee 3, 60438 Frankfurt/Main, Germany.
| | - Chunguang Liang
- Bioinformatik, Biozentrum, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Stefan Rund
- Institut für Molekulare Infektionsbiologie, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080 Wuerzburg, Germany.
| | - Thomas Dandekar
- Bioinformatik, Biozentrum, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | - Ulrich Sonnenborn
- Department of Biological Research, Ardeypharm GmbH, Loerfeldstr. 20, 58313 Herdecke, Germany.
| | - Tobias A Oelschlaeger
- Institut für Molekulare Infektionsbiologie, University of Wuerzburg, Josef-Schneider-Str. 2/D15, 97080 Wuerzburg, Germany.
| |
Collapse
|
103
|
Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M, Ševčíková A, Woznicová V, Šmajs D. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol 2014; 14:109. [PMID: 24774171 PMCID: PMC4021369 DOI: 10.1186/1471-2180-14-109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background A set of 1181 E. coli strains of human fecal origin isolated in the South Moravia region of the Czech Republic was collected during the years 2007–2010. Altogether, 17 virulence determinants and 31 bacteriocin-encoding genes were tested in each of them. Results The occurrence of bacteriocin-encoding genes was found to be positively correlated with the occurrence of E. coli virulence factors. Based on the presence of virulence factors and their combinations, E. coli strains were classified as non-pathogenic E. coli (n = 399), diarrhea-associated E. coli (n = 179) and ExPEC strains (n = 603). Non-pathogenic and diarrhea-associated E. coli strains had a low frequency of bacteriocinogeny (32.6% and 36.9%, respectively). ExPEC strains encoding S-fimbriae (sfa), P-fimbriae (pap) and having genes for aerobactin biosynthesis (aer, iucC), α-hemolysis (α-hly) and cytotoxic necrosis factor (cnf1) were often bacteriocinogenic (73.8%), had a high prevalence of bacteriocin multi-producers and showed a higher frequency of genes encoding microcins H47, M, V, B17 and colicins E1, Ia and S4. Conclusions The occurrence of bacteriocin-encoding genes and ExPEC virulence determinants correlate positively in E. coli strains of human fecal origin. Bacteriocin synthesis appears to modulate the ability of E. coli strains to reside in the human intestine and/or the virulence of the corresponding strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, Brno 625 00, Czech Republic.
| |
Collapse
|
104
|
Role of F1C fimbriae, flagella, and secreted bacterial components in the inhibitory effect of probiotic Escherichia coli Nissle 1917 on atypical enteropathogenic E. coli infection. Infect Immun 2014; 82:1801-12. [PMID: 24549324 DOI: 10.1128/iai.01431-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probiotic E. coli strain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While both in vitro and in vivo studies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenic E. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenic E. coli (aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.
Collapse
|
105
|
Adediran J, Leatham-Jensen MP, Mokszycki ME, Frimodt-Møller J, Krogfelt KA, Kazmierczak K, Kenney LJ, Conway T, Cohen PS. An Escherichia coli Nissle 1917 missense mutant colonizes the streptomycin-treated mouse intestine better than the wild type but is not a better probiotic. Infect Immun 2014; 82:670-82. [PMID: 24478082 PMCID: PMC3911375 DOI: 10.1128/iai.01149-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023] Open
Abstract
Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our "restaurant" hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically.
Collapse
Affiliation(s)
- Jimmy Adediran
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Mary P. Leatham-Jensen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Matthew E. Mokszycki
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jakob Frimodt-Møller
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karen A. Krogfelt
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark
| | - Krystyna Kazmierczak
- Jesse Brown Veterans Administration Medical Center, Chicago, Illinois, USA
- Department of Microbiology, University of Illinois—Chicago, Chicago, Illinois, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Linda J. Kenney
- Jesse Brown Veterans Administration Medical Center, Chicago, Illinois, USA
- Department of Microbiology, University of Illinois—Chicago, Chicago, Illinois, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Tyrrell Conway
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, USA
| |
Collapse
|
106
|
Bosák J, Micenková L, Vrba M, Ševčíková A, Dědičová D, Garzetti D, Šmajs D. Unique activity spectrum of colicin FY: all 110 characterized Yersinia enterocolitica isolates were colicin FY susceptible. PLoS One 2013; 8:e81829. [PMID: 24339971 PMCID: PMC3858286 DOI: 10.1371/journal.pone.0081829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Colicin FY is a plasmid encoded toxin that recognizes a yersinia-specific outer membrane protein (YiuR) as a receptor molecule. We have previously shown that the activity spectrum of colicin FY comprises strains of the genus Yersinia. In this study, we analyzed the activity of colicin FY against 110 Yersinia enterocolitica isolates differing in geographical origin and source. All isolates were characterized through analysis of 16S rRNA genes, serotyping, biotyping, restriction profiling of genomic DNA, detection of virulence markers and susceptibility to antibiotics. This confirmed the broad variability of the collection, in which all 110 Y. enterocolitica isolates, representing 77 various strains, were inhibited by colicin FY. Although isolates showed variable levels of susceptibility to colicin FY, it was not associated with any strain characteristic. The universal susceptibility of Y. enterocolitica strains to colicin FY together with the absence of activity towards strains outside the Yersinia genus suggests potential therapeutic applications for colicin FY.
Collapse
Affiliation(s)
- Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Vrba
- Department of Clinical Microbiology, University Hospital Brno, Brno, Czech Republic
| | - Alena Ševčíková
- Department of Clinical Microbiology, University Hospital Brno, Brno, Czech Republic
| | - Daniela Dědičová
- National Reference Laboratory for Salmonella, The National Institute of Public Health, Prague, Czech Republic
| | - Debora Garzetti
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
107
|
Wu XB, Tian LH, Zou HJ, Wang CY, Yu ZQ, Tang CH, Zhao FK, Pan JY. Outer membrane protein OmpW of Escherichia coli is required for resistance to phagocytosis. Res Microbiol 2013; 164:848-55. [PMID: 23811183 DOI: 10.1016/j.resmic.2013.06.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/15/2013] [Indexed: 12/13/2022]
Abstract
Eight-stranded β-barrel outer membrane proteins can confer bacterial virulence via resistance to host innate defenses. This resistance function of OmpW, which was recently identified as an eight-stranded β-barrel protein, was investigated in this study. Our results demonstrated that upregulation of OmpW correlated with increased bacterial survival during phagocytosis. Bacterial mutants harboring a deletion of ompW exhibited a significantly increased phagocytosis rate. Both observations suggest that the OmpW protein protects bacteria against host phagocytosis. In addition, expression of ompW is regulated by iron, which implies that the resistance provided by OmpW may be an important factor in iron-related infectious diseases. Furthermore, OmpW has been identified as a protective antigen that protects mice against bacterial infection and is therefore a promising target for vaccine development against infectious diseases.
Collapse
Affiliation(s)
- Xian-Bin Wu
- School of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M. Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 2013; 3:a010074. [PMID: 23457295 DOI: 10.1101/cshperspect.a010074] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics are beneficial components of the microbiota that have been used for centuries because of the health benefits they confer to the host. Only recently, however, has the contribution of probiotics to modulation of immunological, respiratory, and gastrointestinal functions started to be fully appreciated and scientifically evaluated. Probiotics such as Escherichia coli Nissle 1917 and lactic acid bacteria are currently used to, or have been evaluated for use to, prevent or treat a range of intestinal maladies including inflammatory bowel disease, constipation, and colon cancer. Engineering these natural probiotics to produce immunomodulatory molecules may help to further increase the benefit to the host. In this article, we will discuss some of the mechanisms of action of probiotics as well as advances in the rational design of probiotics.
Collapse
Affiliation(s)
- Judith Behnsen
- Department of Microbiology and Molecular Genetics, Institute for Immunology, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
109
|
Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Catechol-based biomimetic functional materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013. [PMID: 23180685 DOI: 10.1002/adma.201202343] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Catechols are found in nature taking part in a remarkably broad scope of biochemical processes and functions. Though not exclusively, such versatility may be traced back to several properties uniquely found together in the o-dihydroxyaryl chemical function; namely, its ability to establish reversible equilibria at moderate redox potentials and pHs and to irreversibly cross-link through complex oxidation mechanisms; its excellent chelating properties, greatly exemplified by, but by no means exclusive, to the binding of Fe(3+); and the diverse modes of interaction of the vicinal hydroxyl groups with all kinds of surfaces of remarkably different chemical and physical nature. Thanks to this diversity, catechols can be found either as simple molecular systems, forming part of supramolacular structures, coordinated to different metal ions or as macromolecules mostly arising from polymerization mechanisms through covalent bonds. Such versatility has allowed catechols to participate in several natural processes and functions that range from the adhesive properties of marine organisms to the storage of some transition metal ions. As a result of such an astonishing range of functionalities, catechol-based systems have in recent years been subject to intense research, aimed at mimicking these natural systems in order to develop new functional materials and coatings. A comprehensive review of these studies is discussed in this paper.
Collapse
Affiliation(s)
- Josep Sedó
- Centro de Investigación en Nanociencia y Nanotecnología, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | | | |
Collapse
|
110
|
Comparative genomics of recent Shiga toxin-producing Escherichia coli O104:H4: short-term evolution of an emerging pathogen. mBio 2013; 4:e00452-12. [PMID: 23341549 PMCID: PMC3551546 DOI: 10.1128/mbio.00452-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli O104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identified E. coli serogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused by E. coli O104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associated E. coli O104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borne E. coli O104:H4 outbreaks. In the summer of 2011, a large outbreak of bloody diarrhea with a high rate of severe complications took place in Europe, caused by a previously rarely seen Escherichia coli strain of serogroup O104:H4. Identification of subsequent infections caused by E. coli O104:H4 raised questions about whether these new cases represented ongoing transmission of the outbreak strain. In this study, we sequenced the genomes of isolates from five recent cases and compared them with historical isolates. The analyses reveal that, in the very short term, evolution of the bacterial genome takes place in parts of the genome that are exchanged among bacteria, and these regions contain genes involved in adaptation to local environments. We show that these recent isolates are not derived from the outbreak strain but are very closely related and share many of the same disease-causing genes, emphasizing the concern that these bacteria may cause future severe outbreaks.
Collapse
|
111
|
Rund SA, Rohde H, Sonnenborn U, Oelschlaeger TA. Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7. Int J Med Microbiol 2013; 303:1-8. [DOI: 10.1016/j.ijmm.2012.11.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/21/2012] [Accepted: 11/25/2012] [Indexed: 01/10/2023] Open
|
112
|
Erni B. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS): an interface between energy and signal transduction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0185-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
113
|
Seo EJ, Weibel S, Wehkamp J, Oelschlaeger TA. Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. Int J Med Microbiol 2012; 302:276-87. [DOI: 10.1016/j.ijmm.2012.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/25/2012] [Accepted: 05/13/2012] [Indexed: 01/13/2023] Open
|
114
|
DePas WH, Chapman MR. Microbial manipulation of the amyloid fold. Res Microbiol 2012; 163:592-606. [PMID: 23108148 PMCID: PMC3532741 DOI: 10.1016/j.resmic.2012.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
Microbial biofilms are encased in a protein, DNA, and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold, and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review.
Collapse
Affiliation(s)
- William H. DePas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan LSA, 830 North University Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
115
|
Smajs D, Cejková D, Micenková L, Lima-Bittencourt CI, Chartone-Souza E, Smarda J, Nascimento AMA. Human Escherichia coli strains of different geographical and time source: bacteriocin types and their gene sequences are population-specific. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:459-466. [PMID: 23760833 DOI: 10.1111/j.1758-2229.2012.00365.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/31/2012] [Indexed: 06/02/2023]
Abstract
Bacteriocin production was tested in two sets of Escherichia coli strains: one isolated in 1978 from healthy children of rubber tree tappers and Indians in Amazonia, Brazil (n = 35), and the second one isolated in 2004 from healthy adult volunteers in the Moravia region, Czech Republic (n = 53). Although the occurrence of bacteriocin production was rather similar in both groups (54.3% and 43.4% respectively), the spectra of bacteriocin-encoding determinants in both groups were different. Altogether, 12 different bacteriocin-encoding determinants were found among the tested strains. The occurrence of colicin E1- and Y-genes was higher (P = 0.02 and P = 0.009 respectively) while the occurrence of microcin V gene was lower (P = 0.02) among Amazonian strains compared with Moravian strains. The colicin-encoding determinants of colicins Ia, M, Y and E1 were amplified from Amazonian and Moravian producer strains and sequenced, as were chromosomal 16S rRNA, gyrB and tonB genes. While sequence alignments of chromosomal loci revealed no clusters with respect to geographical origin of strains, the colicin-encoding genes were very similar among the strains of each origin but different between the two geographic groups.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
116
|
Zschüttig A, Zimmermann K, Blom J, Goesmann A, Pöhlmann C, Gunzer F. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS One 2012; 7:e33351. [PMID: 22479389 PMCID: PMC3316575 DOI: 10.1371/journal.pone.0033351] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10.
Collapse
Affiliation(s)
- Anke Zschüttig
- Institute of Medical Microbiology and Hygiene, TU Dresden, Dresden, Germany
| | | | - Jochen Blom
- CeBiTec, University of Bielefeld, Bielefeld, Germany
| | | | - Christoph Pöhlmann
- Abteilung für Labormedizin, Robert Bosch Krankenhaus, Stuttgart, Germany
| | - Florian Gunzer
- Institute of Medical Microbiology and Hygiene, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
117
|
Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception, TonB import, and cell membrane pore formation. J Bacteriol 2012; 194:1950-9. [PMID: 22343298 DOI: 10.1128/jb.05885-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A novel colicin type, designated colicin Fy, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin Fy was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin Fy activity gene (cfyA) and the colicin Fy immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin Fy was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin Fy-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin Fy receptor molecule. Introduction of the yiuR gene into the colicin Fy-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin Fy. In contrast, the colicin Fy-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin Fy only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins Fy and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin Fy and colicin Ib producers suggest a common evolutionary origin of the colicin Fy-YiuR and colicin Ib-Cir systems.
Collapse
|
118
|
Dextran sodium sulfate-induced inflammation alters the expression of proteins by intestinal Escherichia coli strains in a gnotobiotic mouse model. Appl Environ Microbiol 2011; 78:1513-22. [PMID: 22210207 DOI: 10.1128/aem.07340-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To identify Escherichia coli proteins involved in adaptation to intestinal inflammation, mice were monoassociated with the colitogenic E. coli strain UNC or with the probiotic E. coli strain Nissle. Intestinal inflammation was induced by treating the mice with 3.5% dextran sodium sulfate (DSS). Differentially expressed proteins in E. coli strains collected from cecal contents were identified by 2-dimensional difference gel electrophoresis. In both strains, acute inflammation led to the downregulation of pathways involved in carbohydrate breakdown and energy generation. Accordingly, DSS-treated mice had lower concentrations of bacterial fermentation products in their cecal contents than control mice. Differentially expressed proteins also included the Fe-S cluster repair protein NfuA, the tryptophanase TnaA, and the uncharacterized protein YggE. NfuA expression was 3-fold higher in E. coli strains from DSS-treated than from control mice. Reporter experiments confirmed the induction of nfuA in response to iron deprivation, mimicking Fe-S cluster destruction by inflammation. YggE expression, which has been reported to reduce the intracellular level of reactive oxygen species, was 4- to 8-fold higher in E. coli Nissle than in E. coli UNC. This was confirmed by in vitro reporter gene assays indicating that Nissle is better equipped to cope with oxidative stress than UNC. Nissle isolated from DSS-treated and control mice had TnaA levels 4- to 7-fold-higher than those of UNC. Levels of indole resulting from the TnaA reaction were higher in control animals associated with E. coli Nissle. Because of its anti-inflammatory effect, indole is hypothesized to be involved in the extension of the remission phase in ulcerative colitis described for E. coli Nissle.
Collapse
|
119
|
Smajs D, Bureš J, Smarda J, Chaloupková E, Květina J, Förstl M, Kohoutová D, Kuneš M, Rejchrt S, Lesná J, Kopáčová M. Experimental administration of the probiotic Escherichia coli strain Nissle 1917 results in decreased diversity of E. coli strains in pigs. Curr Microbiol 2011; 64:205-10. [PMID: 22116501 DOI: 10.1007/s00284-011-0051-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/20/2011] [Indexed: 12/24/2022]
Abstract
The strain Escherichia coli Nissle 1917 (EcN) is widely used as an efficient probiotic in therapy and prevention of human infectious diseases, especially of the intestinal system. Concurrently, small adult pigs are being used as experimental omnivore models to study human gastrointestinal functions. EcN bacteria were applied to 6 adult healthy female pigs in a 2-week trial. 6 Control animals remained untreated. Altogether, 164 and 149 bacterial strains were isolated from smear samples taken from gastrointestinal mucosa in the experimental and control group, respectively. Each individual E. coli strain was then tested for the presence of 29 bacteriocin-encoding determinants as well as for DNA markers of A, B1, B2 and D phylogenetic groups. A profound reduction of E. coli genetic variance (from 32 variants to 13 ones, P = 0.0006) was found in the experimental group, accompanied by a lower incidence of bacteriocin producers in the experimental group when compared to control (21.3 and 34.9%, respectively; P = 0.007) and by changes in the incidence of individual bacteriocin types. The experimental administration of EcN strain was not sufficient for stable colonization of porcine gut, but induced significant changes in the enterobacterial microbiota.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Identification of specific miRNAs targeting proteins of the apical junctional complex that simulate the probiotic effect of E. coli Nissle 1917 on T84 epithelial cells. Int J Biochem Cell Biol 2011; 44:341-9. [PMID: 22101077 DOI: 10.1016/j.biocel.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/31/2011] [Accepted: 11/05/2011] [Indexed: 12/17/2022]
Abstract
In the intestine, dysregulation of miRNA is associated with inflammation, disruption of the gastrointestinal barrier, and the onset of gastrointestinal disorders. This study identifies miRNAs involved in the maintenance of intercellular junctions and barrier integrity. For the functional identification of barrier affecting miRNAs, we took advantage of the barrier-enforcing effects of the probiotic bacterium Escherichia coli Nissle 1917 (EcN) which can be monitored by enhanced transepithelial resistance (TER). miRNA-profiling of T84 monolayers prior and after co-incubation with EcN revealed for the first time differentially regulated miRNAs (miR-203, miR-483-3p, miR-595) targeting tight junction (TJ) proteins. Using real-time PCR, Western blotting and specific miRNA mimics, we showed that these miRNAs are involved in the regulation of barrier function by modulating the expression of regulatory and structural components of tight junctional complexes. Furthermore, specific inhibitors directed at these miRNA abrogated the disturbance of tight junctions induced by enteropathogenic E. coli (EPEC). The half-maximal inhibitory concentration (IC(50)) was determined to 340 nM by monitoring inhibitor kinetics. In summary, we conclude that specific miRNAs effect regulatory as well as structural proteins of the junctional complex which in turn are involved in the barrier enhancing effect of EcN. Hence, we suggest that the application of miRNAs might be refined and further developed as a novel supportive strategy for the treatment of gastrointestinal disorders.
Collapse
|
121
|
Treatment of inflammatory bowel disease associated E. coli with ciprofloxacin and E. coli Nissle in the streptomycin-treated mouse intestine. PLoS One 2011; 6:e22823. [PMID: 21853049 PMCID: PMC3154256 DOI: 10.1371/journal.pone.0022823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/03/2011] [Indexed: 01/27/2023] Open
Abstract
Background E. coli belonging to the phylogenetic group B2 are linked to Inflammatory Bowel Disease (IBD). Studies have shown that antimicrobials have some effect in the treatment of IBD, and it has been demonstrated that E. coli Nissle has prophylactic abilities comparable to 5-aminosalicylic acid (5-ASA) therapy in ulcerative colitis. The objective of this study was to test if ciprofloxacin and/or E. coli Nissle could eradicate IBD associated E. coli in the streptomycin-treated mouse intestine. Results After successful colonization with the IBD associated E. coli strains in mice the introduction of E. coli Nissle did not result in eradication of either IBD associated strains or an E. coli from a healthy control, instead, co-colonization at high levels were obtained. Treatment of mice, precolonized with IBD associated E. coli, with ciprofloxacin for three days alone apparently resulted in effective eradication of tested E. coli. However, treatment of precolonized mice with a combination of ciprofloxacin for 3 days followed by E. coli Nissle surprisingly allowed one IBD associated E. coli to re-colonize the mouse intestine, but at a level 3 logs under E. coli Nissle. A prolonged treatment with ciprofloxacin for 7 days did not change this outcome. Conclusions In the mouse model E. coli Nissle can not be used alone to eradicate IBD associated E. coli; rather, 3 days of ciprofloxacin are apparently efficient in eradicating these strains, but surprisingly, after ciprofloxacin treatment (3 or 7 days), the introduction of E. coli Nissle may support re-colonization with IBD associated E. coli.
Collapse
|
122
|
O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 2011; 152:189-205. [PMID: 21742394 DOI: 10.1016/j.ijfoodmicro.2011.05.025] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 01/01/2023]
Abstract
The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance.
Collapse
Affiliation(s)
- Eileen F O'Shea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | | |
Collapse
|
123
|
McAllister TA, Beauchemin KA, Alazzeh AY, Baah J, Teather RM, Stanford K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas10047] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
McAllister, T. A., Beauchemin, K. A., Alazzeh, A. Y., Baah, J., Teather, R. M. and Stanford, K. 2011. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 91: 193–211. Direct-fed microbials (DFM) have been employed in ruminant production for over 30 yr. Originally, DFM were used primarily in young ruminants to accelerate establishment of the intestinal microflora involved in feed digestion and to promote gut health. Further advancements led to more sophisticated mixtures of DFM that are targeted at improving fiber digestion and preventing ruminal acidosis in mature cattle. Through these outcomes on fiber digestion/rumen health, second-generation DFM have also resulted in improvements in milk yield, growth and feed efficiency of cattle, but results have been inconsistent. More recently, there has been an emphasis on the development of DFM that exhibit activity in cattle against potentially zoonotic pathogens such as Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus. Regulatory requirements have limited the microbial species within DFM products to organisms that are generally recognized as safe, such as lactic acid-producing bacteria (e.g., Lactobacillus and Enterococcus spp.), fungi (e.g., Aspergillus oryzae), or yeast (e.g., Saccharomyces cerevisiae). Direct-fed microbials of rumen origin, involving lactate-utilizing species (e.g., Megasphaera elsdenii, Selenomonas ruminantium, Propionibacterium spp.) and plant cell wall-degrading isolates of Butyrivibrio fibrisolvens have also been explored, but have not been commercially used. Development of DFM that are efficacious over a wide range of ruminant production systems remains challenging because[0] comprehensive knowledge of microbial ecology is lacking. Few studies have employed molecular techniques to study in detail the interaction of DFM with native microbial communities or the ruminant host. Advancements in the metagenomics of microbial communities and the genomics of microbial–host interactions may enable DFM to be formulated to improve production and promote health, responses that are presently often achieved through the use of antimicrobials in cattle.
Collapse
Affiliation(s)
- T. A. McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - K. A. Beauchemin
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - A. Y. Alazzeh
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - J. Baah
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - R. M. Teather
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada T1J 4B1
| | - K. Stanford
- Alberta Agriculture and Rural Development, Lethbridge, Alberta, Canada T1J 4V6 (e-mail: )
| |
Collapse
|
124
|
Slawik S, Staufenbiel I, Schilke R, Nicksch S, Weinspach K, Stiesch M, Eberhard J. Probiotics affect the clinical inflammatory parameters of experimental gingivitis in humans. Eur J Clin Nutr 2011; 65:857-63. [DOI: 10.1038/ejcn.2011.45] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
125
|
Güttsches AK, Löseke S, Zähringer U, Sonnenborn U, Enders C, Gatermann S, Bufe A. Anti-inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells. Innate Immun 2011; 18:204-16. [PMID: 21382908 DOI: 10.1177/1753425910396251] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Escherichia coli Nissle 1917 (EcN) bears a defect in its LPS biosynthesis leading to truncated variable oligosaccharide-antigen chains and a semi-rough phenotype. It is effectively inactivated by complement factors due to resolved serum resistance and is, therefore, safe as a probiotic strain, i.e. for the treatment of inflammatory gastrointestinal diseases. It is unknown whether the modification of LPS in EcN contributes to its probiotic properties. Purified LPS from EcN and wild-type LPS from uropathogenic E. coli W536 together with raw lysates of both strains were analyzed for their gene expression activity with human PBMCs measured by microarrays. Comparing the two LPS molecules and the two lysate variants with each other, respectively, no differences of transcriptional patterns were observed. However, when comparing LPS with lysate patterns, pro-inflammatory cytokine IL-12p40 was up-regulated by both LPS molecules and anti-inflammatory IL-10 by both lysates. The higher the lysate concentration, the higher IL-10 release from PBMCs, clearly exceeding LPS induced IL-12p40 release. Furthermore, inflammatory chemokine CCL24 (eotaxin) was down-regulated by lysates and quantitative real-time PCR revealed that EcN compared to wild-type LPS was 8 times stronger in down-regulation of CCL24. We conclude that truncated LPS may down-regulate CCL24-mediated inflammation and that EcN lysate contains as yet unidentified factors which preferably induce anti-inflammatory activity. Both effects may contribute to the probiotic properties of EcN.
Collapse
|
126
|
Morin N, Lanneluc I, Connil N, Cottenceau M, Pons AM, Sablé S. Mechanism of bactericidal activity of microcin L in Escherichia coli and Salmonella enterica. Antimicrob Agents Chemother 2011; 55:997-1007. [PMID: 21189348 PMCID: PMC3067116 DOI: 10.1128/aac.01217-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/19/2010] [Accepted: 12/14/2010] [Indexed: 11/20/2022] Open
Abstract
For the first time, the mechanism of action of microcin L (MccL) was investigated in live bacteria. MccL is a gene-encoded peptide produced by Escherichia coli LR05 that exhibits a strong antibacterial activity against related Enterobacteriaceae, including Salmonella enterica serovars Typhimurium and Enteritidis. We first subcloned the MccL genetic system to remove the sequences not involved in MccL production. We then optimized the MccL purification procedure to obtain large amounts of purified microcin to investigate its antimicrobial and membrane properties. We showed that MccL did not induce outer membrane permeabilization, which indicated that MccL did not use this way to kill the sensitive cell or to enter into it. Using a set of E. coli and Salmonella enterica mutants lacking iron-siderophore receptors, we demonstrated that the MccL uptake required the outer membrane receptor Cir. Moreover, the MccL bactericidal activity was shown to depend on the TonB protein that transduces the proton-motive force of the cytoplasmic membrane to transport iron-siderophore complexes across the outer membrane. Using carbonyl cyanide 3-chlorophenylhydrazone, which is known to fully dissipate the proton-motive force, we proved that the proton-motive force was required for the bactericidal activity of MccL on E. coli. In addition, we showed that a primary target of MccL could be the cytoplasmic membrane: a high level of MccL disrupted the inner membrane potential of E. coli cells. However, no permeabilization of the membrane was detected.
Collapse
Affiliation(s)
- Natacha Morin
- Littoral Environnement Sociétés, UMR 6250 CNRS-ULR, Université de La Rochelle, UFR Sciences, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France
| | - Isabelle Lanneluc
- Littoral Environnement Sociétés, UMR 6250 CNRS-ULR, Université de La Rochelle, UFR Sciences, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France
| | - Nathalie Connil
- Littoral Environnement Sociétés, UMR 6250 CNRS-ULR, Université de La Rochelle, UFR Sciences, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France
| | - Marie Cottenceau
- Littoral Environnement Sociétés, UMR 6250 CNRS-ULR, Université de La Rochelle, UFR Sciences, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France
| | - Anne Marie Pons
- Littoral Environnement Sociétés, UMR 6250 CNRS-ULR, Université de La Rochelle, UFR Sciences, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France
| | - Sophie Sablé
- Littoral Environnement Sociétés, UMR 6250 CNRS-ULR, Université de La Rochelle, UFR Sciences, Bât. Marie Curie, Avenue Michel Crépeau, 17042 La Rochelle cedex 01, France
| |
Collapse
|
127
|
Bures J, Smajs D, Kvetina J, Förstl M, Smarda J, Kohoutova D, Kunes M, Cyrany J, Tacheci I, Rejchrt S, Lesna J, Vorisek V, Kopacova M. Bacteriocinogeny in experimental pigs treated with indomethacin and Escherichia coli Nissle. World J Gastroenterol 2011; 17:609-17. [PMID: 21350709 PMCID: PMC3040332 DOI: 10.3748/wjg.v17.i5.609] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate bacteriocinogeny in short-term high-dose indomethacin administration with or without probiotic Escherichia coli Nissle 1917 (EcN) in experimental pigs.
METHODS: Twenty-four pigs entered the study: Group A (controls), Group B (probiotics alone), Group C (indomethacin alone) and Group D (probiotics and indomethacin). EcN (3.5 × 1010 bacteria/d for 14 d) and/or indomethacin (15 mg/kg per day for 10 d) were administrated orally. Anal smears before and smears from the small and large intestine were taken from all animals. Bacteriocin production was determined with 6 different indicator strains; all strains were polymerase chain reaction tested for the presence of 29 individual bacteriocin-encoding determinants.
RESULTS: The general microbiota profile was rather uniform in all animals but there was a broad diversity in coliform bacteria (parallel genotypes A, B1, B2 and D found). In total, 637 bacterial strains were tested, mostly Escherichia coli (E. coli). There was a higher incidence of non-E. coli strains among samples taken from the jejunum and ileum compared to that of the colon and rectum indicating predominance of E. coli strains in the large intestine. Bacteriocinogeny was found in 24/77 (31%) before and in 155/560 (28%) isolated bacteria at the end of the study. Altogether, 13 individual bacteriocin types (out of 29 tested) were identified among investigated strains. Incidence of four E. coli genotypes was equally distributed in all groups of E. coli strains, with majority of genotype A (ranging from 81% to 88%). The following types of bacteriocins were most commonly revealed: colicins Ia/Ib (44%), microcin V (18%), colicin E1 (16%) and microcin H47 (6%). There was a difference in bacteriocinogeny between control group A (52/149, 35%) and groups with treatment at the end of the study: B: 31/122 (25%, P = 0.120); C: 43/155 (28%, P = 0.222); D: 29/134 (22%, P = 0.020). There was a significantly lower prevalence of colicin Ib, microcins H47 and V (probiotics group, P < 0.001), colicin E1 and microcin H47 (indomethacin group, P < 0.001) and microcins H47 and V (probiotics and indomethacin group, P = 0.025) compared to controls. Escherichia fergusonii (E. fergusonii) was identified in 6 animals (6/11 isolates from the rectum). One strain was non-colicinogenic, while all other strains of E. fergusonii solely produced colicin E1. All animals started and remained methanogenic despite the fact that EcN is a substantial hydrogen producer. There was an increase in breath methane (after the treatment) in 5/6 pigs from the indomethacin group (C).
CONCLUSION: EcN did not exert long-term liveability in the porcine intestine. All experimental pigs remained methanogenic. Indomethacin and EcN administered together might produce the worst impact on bacteriocinogeny.
Collapse
|
128
|
|
129
|
Smajs D, Micenková L, Smarda J, Vrba M, Sevčíková A, Vališová Z, Woznicová V. Bacteriocin synthesis in uropathogenic and commensal Escherichia coli: colicin E1 is a potential virulence factor. BMC Microbiol 2010; 10:288. [PMID: 21078157 PMCID: PMC2995468 DOI: 10.1186/1471-2180-10-288] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 11/15/2010] [Indexed: 11/10/2022] Open
Abstract
Background Bacteriocin production is an important characteristic of E. coli strains of human origin. To date, 26 colicin and 9 microcin types have been analyzed on a molecular level allowing molecular detection of the corresponding genes. The production incidence of 29 bacteriocin types and E. coli phylogroups were tested in a set of 361 E. coli strains isolated from human urinary tract infections (UTI) and in 411 control strains isolated from feces of patients without bacterial gut infection. Results Production of 17 and 20 individual bacteriocin types was found in the UTI and control strains, respectively. Microcin H47 encoding determinants were found more often among UTI strains compared to controls (37.9% and 27.0% respectively, p = 0.02) and strains producing microcin H47 belonged predominantly to phylogroup B2 when compared to other bacteriocin producers (67.4% and 36.7%, respectively; p < 0.0001). Producers of 3 or more identified bacteriocin types were more common in the UTI group (20.0% compared to 12.4% in controls, p = 0.03). In the UTI strains, there was a markedly higher number of those producing colicin E1 compared to controls (22.1% to 10.2%, respectively, p = 0.0008). Moreover, colicin E1 production was more common in the UTI bacteriocinogenic strains with multi-producer capabilities. As shown by Southern blotting, pColE1 DNA was not recognized by the ColIa probe and vice versa suggesting that pColE1 was independently associated with pColIa in UTI strains. Conclusion E. coli strains isolated from human urinary tract infections showed increased incidence of microcin H47 and colicin E1 production, respectively. Moreover, colicin E1 itself appears to be a potentially important virulence factor of certain uropathogenic E. coli strains.
Collapse
Affiliation(s)
- David Smajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
130
|
Trebichavsky I, Splichal I, Rada V, Splichalova A. Modulation of natural immunity in the gut by Escherichia coli strain Nissle 1917. Nutr Rev 2010; 68:459-64. [PMID: 20646223 DOI: 10.1111/j.1753-4887.2010.00305.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The beneficial effect of probiotic Escherichia coli strain Nissle 1917 (EcN) suggests the gut epithelium plays a basic role in immune interactions with bacteria. Contrary to other commensal strains of Escherichia coli, EcN profoundly modulates the gut barrier to elevate its resistance to microbial pathogens. The present review documents the properties of EcN that have led to the protection of gnotobiotic pigs against lethal enteric infections. This effect could be important in light of the growing number of acquired deficiencies that paralyze gut immunity in humans.
Collapse
Affiliation(s)
- Ilja Trebichavsky
- Division of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Novy Hradek, Czech Republic
| | | | | | | |
Collapse
|
131
|
Hausmann M. How bacteria-induced apoptosis of intestinal epithelial cells contributes to mucosal inflammation. Int J Inflam 2010; 2010:574568. [PMID: 21188215 PMCID: PMC3003958 DOI: 10.4061/2010/574568] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/26/2010] [Indexed: 12/14/2022] Open
Abstract
The life cycle of an intestinal epithelial cell is terminated by apoptosis and/or cell shedding. Apoptotic deletion of epithelial cells from the intact intestinal mucosa is not accompanied by detectable inflammatory response or loss of barrier function. But increased permeability of the epithelial barrier and increased apoptotic rates of epithelial cells have been reported for patients suffering from inflammatory bowel disease. Microbiota can both induce or inhibit apoptosis of intestinal epithelial cells thus contribute to mucosal inflammation or support epithelial integrity respectively. Bacteria-mediated cytokine secretion and altered cell signalling are central to epithelial injury. Tumor necrosis factor (TNF) secreted after exposure to invasive bacteria induces both apoptosis and cell shedding. TNF is the major target gene of the transcription factor nuclear factor-kappa B with both pro- and anti-apoptotic effects. Autophagy promotes both cell survival and “autophagic” cell death. If autophagy is directed against microbes it is termed xenophagy. Inhibition of xenophagy has been shown to decrease cell survival. Endoplasmic reticulum (ER) stress causes misfolded proteins to accumulate in the ER lumen. It was suggested that ER stress and autophagy may interact within intestinal epithelial cells. Apoptosis in response to infection may be well proposed by the host to delete infected epithelial cells or could be a strategy of microbial pathogens to escape from exhausted cells to invade deeper mucosal layers for a prolonged bacterial colonization.
Collapse
Affiliation(s)
- Martin Hausmann
- Division of Gastroenterology and Hepatology, Clinic of Gastroenterology and Hepatology, Department of Internal Medicine, University Hospital of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
132
|
Abstract
Siderophores are compounds produced by bacteria, fungi and graminaceous plants for scavenging iron from the environment. They are low-molecular-weight compounds (500-1500 daltons) possessing a high affinity for iron(III) (Kf > 1030), the biosynthesis of which is regulated by iron levels and the function of which is to supply iron to the cell. This article briefly describes the classification and chemical properties of siderophores, before outlining research on siderophore biosynthesis and transport. Clinically important siderophores and the therapeutic potential of siderophore design are described. Appendix 1 provides a comprehensive list of siderophore structures.
Collapse
Affiliation(s)
- Robert C Hider
- Division of Pharmaceutical Science, King's College, London, SE1 9NH, UK.
| | | |
Collapse
|
133
|
Zídek Z, Kmonícková E, Kostecká P, Tlaskalová-Hogenová H. Decisive role of lipopolysaccharide in activating nitric oxide and cytokine production by the probiotic Escherichia coli strain Nissle 1917. Folia Microbiol (Praha) 2010; 55:181-9. [PMID: 20490762 DOI: 10.1007/s12223-010-0027-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/25/2010] [Indexed: 02/06/2023]
Abstract
Effects of Gram-negative probiotic E. coli strain Nissle 1917 (EcN) on the production of nitric oxide (NO) and cytokines were determined in cultures of resident peritoneal cells of rats. The cells (2 x 10(6)/mL) were cultured for 24 h in the presence of live EcN suspension (EcN-Susp), bacteria-free supernatant of this suspension (Sup-EcN), and LPS of EcN origin (LPS-EcN). The biosynthesis of NO was substantially enhanced using live bacteria counts as low as 10(3)/mL applied in the form of EcN-Susp. The same NO-enhancing effect was produced by the correspondingly diluted Sup-EcN. It was found that Sup-EcN contained relatively high amounts of LPS. Administration of the LPS-EcN mimicked the high NO-augmenting activities of both Sup-EcN and EcN-Susp. However, the activity of LPS-EcN was significantly less pronounced than were the activities of Sup-EcN and EcN-Susp containing identical amounts of LPS. The NO-stimulatory effects of the EcN preparations were completely inhibited by polymyxin B. All LPS-EcN and correspondingly diluted Sup-EcN and EcN-Susp stimulated the secretion of cytokines TNF-alpha, IL-1beta, IL-6, IL-10 and VEGF. Also these effects were abrogated by polymyxin B. In contrast to the effects on NO production, the cytokine-stimulatory effects were significantly less pronounced after the exposure of the cells to Sup-EcN and EcN-Susp than to the identical amounts of LPS-EcN. It may be concluded that the in vitro stimulatory effects of EcN on NO and cytokine production are mediated by LPS. It is suggested that the immunostimulatory activity of LPS is modulated by EcN-derived factor(s), the nature of which remains to be identified.
Collapse
Affiliation(s)
- Z Zídek
- Institute of Experimental Medicine, v.v.i., Academy of Sciences of the Czech Republic, 142 20, Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
134
|
The K5 capsule of Escherichia coli strain Nissle 1917 is important in stimulating expression of Toll-like receptor 5, CD14, MyD88, and TRIF together with the induction of interleukin-8 expression via the mitogen-activated protein kinase pathway in epithelial cells. Infect Immun 2010; 78:2153-62. [PMID: 20145095 DOI: 10.1128/iai.01406-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Escherichia coli strain Nissle 1917, which has been widely used as a probiotic for the treatment of inflammatory bowel disorders, expresses a K5 capsule, the expression of which is often associated with extraintestinal and urinary tract isolates of E. coli. Previously, it had been shown that the expression of a K5 capsule by Nissle 1917 was important in mediating interactions with epithelial cells and the extent of chemokine expression. In this paper, we show that infection with Nissle 1917 induces expression of Toll-like receptor 4 (TLR4) and TLR5 in Caco-2 cells and that maximal induction of TLR5 required the K5 capsule. In addition, purified K5 polysaccharide was capable of inducing expression of TLR5 and mCD14 and potentiated the activity of both TLR4 and TLR5 agonists to increase the proinflammatory response. Infection with Nissle 1917 also increased the expression of the adaptor molecules MyD88 and TRIF, which was K5 capsule dependent. By Western blot analysis, it was possible to show that induction of interleukin-8 by Nissle 1917 was predominantly through the mitogen-activated protein (MAP) kinase pathway and that expression of the K5 capsule was important for activation of the MAP kinase pathway. This paper provides new information on the function of the K5 capsule in mediating interactions between Nissle 1917 and epithelial cells and the mechanisms that underlie the probiotic properties of Nissle 1917.
Collapse
|
135
|
Joeres-Nguyen-Xuan TH, Boehm SK, Joeres L, Schulze J, Kruis W. Survival of the probiotic Escherichia coli Nissle 1917 (EcN) in the gastrointestinal tract given in combination with oral mesalamine to healthy volunteers. Inflamm Bowel Dis 2010; 16:256-62. [PMID: 19637333 DOI: 10.1002/ibd.21042] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Mesalamine and the probiotic E. coli Nissle 1917 (EcN) are both effective agents for the treatment of ulcerative colitis. A combined therapy may have more than additive efficacy. However, mesalamine may have antimicrobial effects on EcN. MATERIALS AND METHODS In this prospective, randomized, double-blind, placebo-controlled study, 48 healthy volunteers took EcN in a run-in phase for 17 days (5-50 x 10(9) viable bacteria od). If stool samples became positive for EcN, volunteers received combination treatment with EcN plus either mesalamine (1500 mg twice a day) or placebo for 1 week. Fecal samples were further tested for EcN in 2- to 3-day intervals until a maximum of 48 weeks after treatment. Patient diaries, blood, and urine were checked to assess safety, compliance, and tolerance. RESULTS During run-in, viable EcN were detected in 45 of the 48 volunteers (94%); 2 volunteers were positive before taking EcN. From days 1 to 7 of combination treatment (n = 40), the number of EcN-positive volunteers varied between 70% and 80% in the mesalamine group and between 85% and 95% in the placebo group. Differences between the groups were not significant (normal approximation: day 3, P > 0.15; day 5, P > 0.25; day 7, P > 0.076). At treatment discontinuation, 16 of 20 volunteers in the mesalamine group and 15 of 20 volunteers in the placebo group were EcN positive, whereas this figure dropped continuously up to week 12 after discontinuation (mesalamine, 7 of 20; placebo, 4 of 20). No differences between the groups were seen with regard to tolerance and safety. CONCLUSIONS The combination of EcN and mesalamine has no significant effect on the survival of EcN in healthy volunteers.
Collapse
|
136
|
Hancock V, Dahl M, Klemm P. Probiotic Escherichia coli strain Nissle 1917 outcompetes intestinal pathogens during biofilm formation. J Med Microbiol 2010; 59:392-399. [PMID: 20110388 DOI: 10.1099/jmm.0.008672-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many bacterial infections are associated with biofilm formation. Bacterial biofilms can develop on essentially all kinds of surfaces, producing chronic and often intractable infections. Escherichia coli is an important pathogen causing a wide range of gastrointestinal infections. E. coli strain Nissle 1917 has been used for many decades as a probiotic against a variety of intestinal disorders and is probably the best field-tested E. coli strain in the world. Here we have investigated the biofilm-forming capacity of Nissle 1917. We found that the strain was a good biofilm former. Not only was it significantly better at biofilm formation than enteropathogenic, enterotoxigenic and enterohaemorrhagic E. coli strains, it was also able to outcompete such strains during biofilm formation. The results support the notion of bacterial prophylaxis employing Nissle 1917 and may partially explain why the strain has a beneficial effect on many intestinal disorders.
Collapse
Affiliation(s)
- Viktoria Hancock
- Microbial Genomics Group, Center for Biological Sequence Analysis, TechnicalUniversity of Denmark, Lyngby, Denmark
| | - Malin Dahl
- Microbial Genomics Group, Center for Biological Sequence Analysis, TechnicalUniversity of Denmark, Lyngby, Denmark
| | - Per Klemm
- Microbial Genomics Group, Center for Biological Sequence Analysis, TechnicalUniversity of Denmark, Lyngby, Denmark
| |
Collapse
|
137
|
Gordon DM. The potential of bacteriocin-producing probiotics and associated caveats. Future Microbiol 2010; 4:941-3. [PMID: 19824784 DOI: 10.2217/fmb.09.78] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
138
|
Sonnenborn U, Schulze J. The non-pathogenicEscherichia colistrain Nissle 1917 – features of a versatile probiotic. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910600903444267] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Jürgen Schulze
- Department of Medicine, Ardeypharm GmbH, Herdecke, Germany
- *Present address: Alice-Bloch-Str. 7, D-14558 Nuthetal, Germany
| |
Collapse
|
139
|
Azpiroz MF, Poey ME, Laviña M. Microcins and urovirulence in Escherichia coli. Microb Pathog 2009; 47:274-80. [DOI: 10.1016/j.micpath.2009.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 08/27/2009] [Accepted: 09/01/2009] [Indexed: 11/16/2022]
|
140
|
Barth S, Duncker S, Hempe J, Breves G, Baljer G, Bauerfeind R. Escherichia coliNissle 1917 for probiotic use in piglets: evidence for intestinal colonization. J Appl Microbiol 2009; 107:1697-710. [DOI: 10.1111/j.1365-2672.2009.04361.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
141
|
Hörmannsperger G, Haller D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int J Med Microbiol 2009; 300:63-73. [PMID: 19828372 DOI: 10.1016/j.ijmm.2009.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is current knowledge that the intestinal microbiota plays a major role in the development and maintenance of intestinal health. Intestinal epithelial cells (IEC) constitute the interface between the gut lumen and the innate and adaptive immune system. To maintain intestinal homeostasis, the organized and diffuse compartments of the gut-associated lymphoid tissue have to process the continuously varying information at the interface between the luminal side and the host. Dysregulated intestinal immune responses towards commensal bacteria are an important factor in the pathogenesis of inflammatory bowel diseases (IBD). In contrast to the colitogenic effects of enteric bacteria, clinical and experimental studies showed that specific probiotic strains are protective in the context of chronic intestinal inflammation. Although the molecular understanding of bacteria-host interaction is improving, the anti-inflammatory mechanisms induced by these probiotic bacteria are just starting to be unraveled. The present review is meant to summarize and discuss the clinical relevance of probiotics, but it also seeks to give an overview about currently known probiotic mechanisms in the context of chronic intestinal inflammation with a focus on IEC.
Collapse
Affiliation(s)
- Gabriele Hörmannsperger
- Biofunctionality, ZIEL-Research Center for Nutrition and Food Science, CDD-Center for Diet and Disease, Technische Universität München, Am Forum 5, D-85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
142
|
Gillor O, Giladi I, Riley MA. Persistence of colicinogenic Escherichia coli in the mouse gastrointestinal tract. BMC Microbiol 2009; 9:165. [PMID: 19674447 PMCID: PMC2741469 DOI: 10.1186/1471-2180-9-165] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 08/12/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The ability of a bacterial strain to competitively exclude or displace other strains can be attributed to the production of narrow spectrum antimicrobials, the bacteriocins. In an attempt to evaluate the importance of bacteriocin production for Escherichia coli strain residence in the gastrointestinal tract, a murine model experimental evolution study was undertaken. RESULTS Six colicin-producing, yet otherwise isogenic, E. coli strains were administered and established in the large intestine of streptomycin-treated mice. The strains' persistence, population density, and doubling time were monitored over a period of 112 days. Early in the experiment only minor differences in population density between the various colicin-producing and the non-producing control strains were detected. However, over time, the density of the control strains plummeted, while that of the colicin-producing strains remained significantly higher (F(7,66) = 2.317; P < 0.0008). CONCLUSION The data presented here support prior claims that bacteriocin production may play a significant role in the colonization of E. coli in the gastrointestinal tract. Further, this study suggests that the ability to produce bacteriocins may prove to be a critical factor in determining the success of establishing probiotic E. coli in the gastrointestinal tract of humans and animals.
Collapse
Affiliation(s)
- Osnat Gillor
- Zuckerberg Institute for Water Research, J Blaustein Institutes for Desert Research, Ben-Gurion University, Israel.
| | | | | |
Collapse
|
143
|
Abstract
The urinary tract is among the most common sites of bacterial infection, and Escherichia coli is by far the most common species infecting this site. Individuals at high risk for symptomatic urinary tract infection (UTI) include neonates, preschool girls, sexually active women, and elderly women and men. E. coli that cause the majority of UTIs are thought to represent only a subset of the strains that colonize the colon. E. coli strains that cause UTIs are termed uropathogenic E. coli (UPEC). In general, UPEC strains differ from commensal E. coli strains in that the former possess extragenetic material, often on pathogenicity-associated islands (PAIs), which code for gene products that may contribute to bacterial pathogenesis. Some of these genes allow UPEC to express determinants that are proposed to play roles in disease. These factors include hemolysins, secreted proteins, specific lipopolysaccharide and capsule types, iron acquisition systems, and fimbrial adhesions. The current dogma of bacterial pathogenesis identifies adherence, colonization, avoidance of host defenses, and damage to host tissues as events vital for achieving bacterial virulence. These considerations, along with analysis of the E. coli CFT073, UTI89, and 536 genomes and efforts to identify novel virulence genes should advance the field significantly and allow for the development of a comprehensive model of pathogenesis for uropathogenic E. coli.Further study of the adaptive immune response to UTI will be especially critical to refine our understanding and treatment of recurrent infections and to develop vaccines.
Collapse
|
144
|
Leatham MP, Banerjee S, Autieri SM, Mercado-Lubo R, Conway T, Cohen PS. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect Immun 2009; 77:2876-86. [PMID: 19364832 PMCID: PMC2708557 DOI: 10.1128/iai.00059-09] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/25/2009] [Accepted: 04/03/2009] [Indexed: 02/06/2023] Open
Abstract
Different Escherichia coli strains generally have the same metabolic capacity for growth on sugars in vitro, but they appear to use different sugars in the streptomycin-treated mouse intestine (Fabich et al., Infect. Immun. 76:1143-1152, 2008). Here, mice were precolonized with any of three human commensal strains (E. coli MG1655, E. coli HS, or E. coli Nissle 1917) and 10 days later were fed 10(5) CFU of the same strains. While each precolonized strain nearly eliminated its isogenic strain, confirming that colonization resistance can be modeled in mice, each allowed growth of the other commensal strains to higher numbers, consistent with different commensal E. coli strains using different nutrients in the intestine. Mice were also precolonized with any of five commensal E. coli strains for 10 days and then were fed 10(5) CFU of E. coli EDL933, an O157:H7 pathogen. E. coli Nissle 1917 and E. coli EFC1 limited growth of E. coli EDL933 in the intestine (10(3) to 10(4) CFU/gram of feces), whereas E. coli MG1655, E. coli HS, and E. coli EFC2 allowed growth to higher numbers (10(6) to 10(7) CFU/gram of feces). Importantly, when E. coli EDL933 was fed to mice previously co-colonized with three E. coli strains (MG1655, HS, and Nissle 1917), it was eliminated from the intestine (<10 CFU/gram of feces). These results confirm that commensal E. coli strains can provide a barrier to infection and suggest that it may be possible to construct E. coli probiotic strains that prevent growth of pathogenic E. coli strains in the intestine.
Collapse
Affiliation(s)
- Mary P Leatham
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island 02881, USA.
| | | | | | | | | | | |
Collapse
|
145
|
The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect Immun 2009; 77:2995-3003. [PMID: 19380467 DOI: 10.1128/iai.00040-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli strain Nissle 1917 has been widely used as a probiotic for the treatment of inflammatory bowel disorders and shown to have immunomodulatory effects. Nissle 1917 expresses a K5 capsule, the expression of which often is associated with extraintestinal and urinary tract isolates of E. coli. In this paper, we investigate the role of the K5 capsule in mediating interactions between Nissle 1917 and intestinal epithelial cells. We show that the loss of capsule significantly reduced the level of monocyte chemoattractant protein 1 (MCP-1), RANTES, macrophage inflammatory protein 2alpha (MIP-2alpha), MIP-2beta, interleukin-8, and gamma interferon-inducible protein 10 induction by Nissle 1917 in both Caco-2 cells and MCP-1 induction in ex vivo mouse small intestine. The complementation of the capsule-minus mutation confirmed that the effects on chemokine induction were capsule specific. The addition of purified K5, but not K1, capsular polysaccharide to the capsule-minus Nissle 1917 at least in part restored chemokine induction to wild-type levels. The purified K5 capsular polysaccharide alone was unable to stimulate chemokine production, indicating that the K5 polysaccharide was acting to mediate interactions between Nissle 1917 and intestinal epithelial cells. The induction of chemokine by Nissle 1917 was generated predominantly by interaction with the basolateral surface of Caco-2 cells, suggesting that Nissle 1917 will be most effective in inducing chemokine expression where the epithelial barrier is disrupted.
Collapse
|
146
|
Müller SI, Valdebenito M, Hantke K. Salmochelin, the long-overlooked catecholate siderophore of Salmonella. Biometals 2009; 22:691-5. [PMID: 19214756 DOI: 10.1007/s10534-009-9217-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/27/2009] [Indexed: 11/26/2022]
Abstract
Salmochelin is a C-glucosylated enterobactin produced by Salmonella species, uropathogenic and avian pathogenic Escherichia coli strains, and certain Klebsiella strains. It was the first glucosylated siderophore described. The glucosylation has been interpreted as a bacterial evasion mechanism against the mammalian catecholate siderophore-binding protein siderocalin (NGAL-lipocalin). The synthesis, excretion, and uptake of salmochelin requires five genes, iroBCDEN, and also the enterobactin biosynthesis and utilization system. Some salmochelin-producing strains also secrete microcins, which possess a C-terminal, linear glucosyl-enterobactin moiety. These microcins recognize the catecholate siderophore receptors IroN, Cir, Fiu, and FepA, and may inhibit the growth of competitors for catecholate siderophores.
Collapse
Affiliation(s)
- Silke I Müller
- Lehrstuhl für Mikrobiologie - Organismische Interaktionen, Universität Tübingen, Germany
| | | | | |
Collapse
|
147
|
Gillor O, Etzion A, Riley MA. The dual role of bacteriocins as anti- and probiotics. Appl Microbiol Biotechnol 2008; 81:591-606. [PMID: 18853155 PMCID: PMC2670069 DOI: 10.1007/s00253-008-1726-5] [Citation(s) in RCA: 225] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/19/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
Abstract
Bacteria employed in probiotic applications help to maintain or restore a host's natural microbial floral. The ability of probiotic bacteria to successfully outcompete undesired species is often due to, or enhanced by, the production of potent antimicrobial toxins. The most commonly encountered of these are bacteriocins, a large and functionally diverse family of antimicrobials found in all major lineages of Bacteria. Recent studies reveal that these proteinaceous toxins play a critical role in mediating competitive dynamics between bacterial strains and closely related species. The potential use of bacteriocin-producing strains as probiotic and bioprotective agents has recently received increased attention. This review will report on recent efforts involving the use of such strains, with a particular focus on emerging probiotic therapies for humans, livestock, and aquaculture.
Collapse
Affiliation(s)
- O. Gillor
- Department of Environmental Hydrology & Microbiology, Zuckerberg Institute for Water Research, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, Beersheba 84990, Israel
| | - A. Etzion
- Department of Dryland Biotechnologies, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, Beersheba 84990, Israel
| | - M. A. Riley
- Department of Biology, University of Massachusetts Amherst, 611 North Pleasant Street, Amherst, MA 01003, USA, e-mail:
| |
Collapse
|
148
|
Use of mchI encoding immunity to the antimicrobial peptide microcin H47 as a plasmid selection marker in attenuated bacterial live vectors. Infect Immun 2008; 76:4422-30. [PMID: 18663003 DOI: 10.1128/iai.00487-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live attenuated bacterial strains expressing heterologous antigens represent an attractive vaccine development strategy. However, the use of drug resistance genes for the selection of expression plasmids introduced into live vectors poses theoretical health risks. Therefore, we developed a novel approach for plasmid selection based on immunity to the antimicrobial peptide microcin H47 (MccH47). Two expression plasmids encoding the reporter green fluorescent protein (GFPuv) were constructed; selection markers comprised either mchI, conferring immunity to MccH47 (pGEN222I), or bla (encoding beta-lactamase), conferring conventional resistance to ampicillin (pGEN222). GFPuv-specific serum immunoglobulin G (IgG) antibody responses were analyzed in mice immunized intranasally either with Salmonella enterica serovar Typhi CVD 908-htrA or Shigella flexneri 2a CVD 1208S live vector and were boosted parenterally with purified GFPuv. Similar IgG antibody responses were observed for both pGEN222 and pGEN222I when either CVD 1208S or CVD 908-htrA(pGEN222I) was used as the carrier. Interestingly, CVD 908-htrA(pGEN222I) elicited a significantly higher IgG response than CVD 908-htrA(pGEN222). We also compared the priming potential of homologous priming either with CVD 908-htrA(pGEN222I) or CVD 1208S(pGEN222I) to heterologous priming first with CVD 908-htrA(pGEN222I) and then with CVD 1208S(pGEN222I) and vice versa. Immunization with two unrelated live vectors significantly enhanced the IgG responses compared to responses engendered by homologous CVD 908-htrA(pGEN222I) but not to those of CVD 1208S(pGEN222I). MccH47 offers an alternate system for plasmid selection in bacterial live vectors that greatly improves their clinical acceptability. Furthermore, the success of the heterologous priming strategy supports the feasibility of the future development of multivalent live vector-based immunization strategies against multiple human pathogens.
Collapse
|
149
|
Abstract
The probiotic Escherichia coli strain Nissle 1917 is in addition to some Lactobacilli sp. one of the best-studied probiotic strains. This particular E. coli strain was isolated in 1917 based on its potential to protect from presumably infectious gastroenteritis. Initial therapeutic success was noted in the management of gastrointestinal infectious disorders and infections affecting the urinary tract; the focus shifted later to chronic inflammatory conditions. The unique combination of fitness and survival factors to support intestinal survival, the lack of virulence, and obvious probiotic properties make this microorganism a safe and effective candidate in the treatment of chronic inflammatory bowel diseases. Three large clinical trials have assessed the potential in the maintenance of remission of ulcerative colitis and equivalence to standard 5-ASA medication was documented. This review aims to discuss important mechanisms of E. coli Nissle 1917 and will review the available literature regarding treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Michael Schultz
- Department of Medical and Surgical Sciences, Medicine Section, University of Otago Medical School, Dunedin, New Zealand.
| |
Collapse
|
150
|
Schultz M, Lindström AL. Rationale for probiotic treatment strategies in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2008; 2:337-55. [PMID: 19072384 DOI: 10.1586/17474124.2.3.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory bowel diseases (IBD), such as Crohn's disease and ulcerative colitis, are recurrent and aggressive inflammatory disorders that are most likely the result of an overly aggressive immune response to ubiquitous intestinal antigens in a genetically susceptible host. Despite decades of intense research, our knowledge of factors causing IBD remains incomplete and, therefore, conventional therapy to induce and maintain remission works in a symptomatic fashion, merely suppressing the immune response. Probiotic bacteria have long been known to confer health benefits, especially with regard to intestinal disorders. Although there is mounting evidence from in vitro and animal experiments supporting the use of probiotics in IBD, clinical trials have not provided definite evidence for the therapeutic effect of probiotic therapy in IBD to date. This is with the notable exception of pouchitis and the maintenance of remission in ulcerative colitis, whereas Crohn's disease and active ulcerative colitis do not seem amenable to probiotic intervention. The next 5 years will see more trials targeting specific clinical settings using tailor-made probiotic combinations, taking into account our increasing knowledge of individual probiotic properties and the diversity of these microorganisms.
Collapse
Affiliation(s)
- Michael Schultz
- Department of Medical and Surgical Sciences, Medicine Section, University of Otago Medical School, PO Box 913, Dunedin, New Zealand.
| | | |
Collapse
|