101
|
Kuasne H, Barros-Filho MC, Busso-Lopes A, Marchi FA, Pinheiro M, Muñoz JJM, Scapulatempo-Neto C, Faria EF, Guimarães GC, Lopes A, Trindade-Filho JCS, Domingues MAC, Drigo SA, Rogatto SR. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential clinical impact. Oncotarget 2017; 8:15294-15306. [PMID: 28122331 PMCID: PMC5362487 DOI: 10.18632/oncotarget.14783] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
Penile carcinoma (PeCa) is an important public health issue in poor and developing countries, and has only recently been explored in terms of genetic and epigenetic studies. Integrative data analysis is a powerful method for the identification of molecular drivers involved in cancer development and progression. miRNA and mRNA expression profiles followed by integrative analysis were investigated in 23 PeCa and 12 non-neoplastic penile tissues (NPT). Expression levels of eight miRNAs and 10 mRNAs were evaluated in the same set of samples used for microarray and in a validation set of cases (PeCa = 36; NPT = 27). Eighty-one miRNAs and 2,697 mRNAs were identified as differentially expressed in PeCa. Integrative data analysis revealed 255 mRNAs potentially regulated by 68 miRNAs. Using RT-qPCR, eight miRNAs and nine transcripts were confirmed as altered in PeCa. We identified that MMP1, MMP12 and PPARG and hsa-miR-31-5p, hsa-miR-224-5p, and hsa-miR-223-3p were able to distinguish tumors from NPT with high sensitivity and specificity. Higher MMP1 expression was detected as a better predictor of lymph node metastasis than the clinical-pathological data. In addition, PPARG and EGFR were highlighted as potential pathways for targeted therapy in PeCa. The analysis based on HPV positivity (7 of 23 cases) revealed five miRNA and 13 mRNA differentially expressed. Although in a limited number of cases, HPV positive PeCa presented less aggressive phenotype in comparison with negative cases. Overall, an integrative analysis using mRNA and miRNA profiles revealed markers related with tumor development and progression. Furthermore, MMP1 expression level was a predictive marker for lymph node metastasis in patients with PeCa.
Collapse
Affiliation(s)
- Hellen Kuasne
- CIPE-A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | | - Eliney F Faria
- Department of Urology, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Ademar Lopes
- Department of Urology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - José C S Trindade-Filho
- Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | | | - Sandra A Drigo
- Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil
| | - Silvia R Rogatto
- CIPE-A. C. Camargo Cancer Center, São Paulo, Brazil.,Department of Urology, Faculty of Medicine, São Paulo State University-UNESP, Botucatu, São Paulo, Brazil.,Department of Clinical Genetics, Vejle Sygehus, Vejle, Denmark.,Institute of Regional Health, University of Southern Denmark, Denmark
| |
Collapse
|
102
|
Bone marrow-derived cells and their conditioned medium induce microvascular repair in uremic rats by stimulation of endogenous repair mechanisms. Sci Rep 2017; 7:9444. [PMID: 28842629 PMCID: PMC5572734 DOI: 10.1038/s41598-017-09883-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/01/2017] [Indexed: 01/11/2023] Open
Abstract
The reduced number of circulating stem/progenitor cells that is found in chronic kidney disease (CKD) patients may contribute to impaired angiogenic repair and decreased capillary density in the heart. Cell therapy with bone marrow-derived cells (BMDCs) has been shown to induce positive effects on the microvasculature and cardiac function, most likely due to secretion of growth factors and cytokines, all of which are present in the conditioned medium (CM); however, this is controversial. Here we showed that treatment with BMDC or CM restored vascular density and decreased the extent of fibrosis in a rat model of CKD, the 5/6 nephrectomy. Engraftment and differentiation of exogenous BMDCs could not be detected. Yet CM led to the mobilization and infiltration of endogenous circulating cells into the heart. Cell recruitment was facilitated by the local expression of pro-inflammatory factors such as the macrophage chemoattractant protein-1, interleukin-6, and endothelial adhesion molecules. Consistently, in vitro assays showed that CM increased endothelial adhesiveness to circulating cells by upregulating the expression of adhesion molecules, and stimulated angiogenesis/endothelial tube formation. Overall, our results suggest that both treatments exert vasculoprotective effects on the heart of uremic rats by stimulating endogenous repair mechanisms.
Collapse
|
103
|
Mellows B, Mitchell R, Antonioli M, Kretz O, Chambers D, Zeuner MT, Denecke B, Musante L, Ramachandra DL, Debacq-Chainiaux F, Holthofer H, Joch B, Ray S, Widera D, David AL, Huber TB, Dengjel J, De Coppi P, Patel K. Protein and Molecular Characterization of a Clinically Compliant Amniotic Fluid Stem Cell-Derived Extracellular Vesicle Fraction Capable of Accelerating Muscle Regeneration Through Enhancement of Angiogenesis. Stem Cells Dev 2017; 26:1316-1333. [PMID: 28679310 DOI: 10.1089/scd.2017.0089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The secretome of human amniotic fluid stem cells (AFSCs) has great potential as a therapeutic agent in regenerative medicine. However, it must be produced in a clinically compliant manner before it can be used in humans. In this study, we developed a means of producing a biologically active secretome from AFSCs that is free of all exogenous molecules. We demonstrate that the full secretome is capable of promoting stem cell proliferation, migration, and protection of cells against senescence. Furthermore, it has significant anti-inflammatory properties. Most importantly, we show that it promotes tissue regeneration in a model of muscle damage. We then demonstrate that the secretome contains extracellular vesicles (EVs) that harbor much, but not all, of the biological activity of the whole secretome. Proteomic characterization of the EV and free secretome fraction shows the presence of numerous molecules specific to each fraction that could be key regulators of tissue regeneration. Intriguingly, we show that the EVs only contain miRNA and not mRNA. This suggests that tissue regeneration in the host is mediated by the action of EVs modifying existing, rather than imposing new, signaling pathways. The EVs harbor significant anti-inflammatory activity as well as promote angiogenesis, the latter may be the mechanistic explanation for their ability to promote muscle regeneration after cardiotoxin injury.
Collapse
Affiliation(s)
- Ben Mellows
- 1 School of Biological Sciences, University of Reading , Reading, United Kingdom
| | - Robert Mitchell
- 1 School of Biological Sciences, University of Reading , Reading, United Kingdom
| | - Manuela Antonioli
- 2 Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS 'Lazzaro Spallanzani' , Rome, Italy
| | - Oliver Kretz
- 3 Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,4 Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg , Freiburg, Germany .,5 Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - David Chambers
- 6 Wolfson Centre for Age-Related Diseases, King's College , London, United Kingdom
| | | | - Bernd Denecke
- 8 Interdisciplinary Centre for Clinical Research Aachen, RWTH Aachen University , Aachen, Germany
| | - Luca Musante
- 9 Centre for Bioanalytical Sciences (CBAS), Dublin City University , Dublin, Ireland
| | - Durrgah L Ramachandra
- 10 Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | | | - Harry Holthofer
- 9 Centre for Bioanalytical Sciences (CBAS), Dublin City University , Dublin, Ireland .,12 FRIAS Freiburg Institute for Advanced Studies, University of Freiburg , Freiburg, Germany
| | - Barbara Joch
- 5 Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Steve Ray
- 13 Micregen, Biohub, Cheshire, United Kingdom
| | - Darius Widera
- 7 School of Pharmacy, University of Reading , Reading, United Kingdom
| | - Anna L David
- 14 Institute for Women's Health, University College London , London, United Kingdom .,15 NIHR University College London Hospitals Biomedical Research Centre , London, United Kingdom
| | - Tobias B Huber
- 3 Department of Medicine III, Faculty of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany .,4 Renal Division, Faculty of Medicine, Medical Centre, University of Freiburg , Freiburg, Germany .,12 FRIAS Freiburg Institute for Advanced Studies, University of Freiburg , Freiburg, Germany .,16 BIOSS Centre for Biological Signalling Studies and Centre for Systems Biology (ZBSA), Albert-Ludwigs University , Freiburg, Germany
| | - Joern Dengjel
- 12 FRIAS Freiburg Institute for Advanced Studies, University of Freiburg , Freiburg, Germany .,17 Department of Biology, University of Fribourg , Fribourg, Switzerland
| | - Paolo De Coppi
- 10 Stem Cells and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health , London, United Kingdom
| | - Ketan Patel
- 1 School of Biological Sciences, University of Reading , Reading, United Kingdom .,12 FRIAS Freiburg Institute for Advanced Studies, University of Freiburg , Freiburg, Germany
| |
Collapse
|
104
|
Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR. Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 2017; 233:2949-2965. [DOI: 10.1002/jcp.26049] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Mashreghi
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hassan Azarpara
- School of Medicine; Iran University of Medical Sciences; Tehran Iran
| | - Mahere R. Bazaz
- Division of Biotechnology, Faculty of Veterinary Medicine; Ferdowsi University of Mashhad; Mashhad Iran
| | - Arash Jafari
- School of Medicine; Birjand University of Medical Sciences; Birjand Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center; Royan Institute for Biotechnology; ACECR Isfahan Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine; Mashhad University of Medical Sciences; Mashhad Iran
| | - Mahmoud R. Jaafari
- NanotechnologyResearch Center; Mashhad University of Medical Sciences; Mashhad Iran
- School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
105
|
Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer 2017; 56:769-787. [PMID: 28675510 PMCID: PMC5597468 DOI: 10.1002/gcc.22481] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were used. We focus on genes most strongly associated with CRC (fold change (FC) of ≥1.5 or ≤0.67) that were statistically significant after adjustment for multiple comparisons. Of the 74 TSGs evaluated, 22 were associated with carcinoma/normal mucosa differential expression. Ten TSGs were up-regulated (FAM123B, RB1, TP53, RUNX1, MSH2, BRCA1, BRCA2, SOX9, NPM1, and RNF43); six TSGs were down-regulated (PAX5, IZKF1, GATA3, PRDM1, TET2, and CYLD); four were associated with MSI tumors (MLH1, PTCH1, and CEBPA down-regulated and MSH6 up-regulated); and two were associated with MSS tumors (PHF6 and ASXL1 up-regulated). Thirteen of these TSGs were associated with 44 miRNAs. Twenty-seven of the 59 OGs evaluated were dysregulated: 14 down-regulated (KLF4, BCL2, SSETBP1, FGFR2, TSHR, MPL, KIT, PDGFRA, GNA11, GATA2, FGFR3, AR, CSF1R, and JAK3), seven up-regulated (DNMT1, EZH2, PTPN11, SKP2, CCND1, MET, and MYC); three down-regulated for MSI (FLT3, CARD11, and ALK); two up-regulated for MSI (IDH2 and HRAS); and one up-regulated with MSS tumors (CTNNB1). These findings suggest possible co-regulatory function between TSGs, OGs, and miRNAs, involving both direct and indirect associations that operate through feedback and feedforward loops.
Collapse
Affiliation(s)
| | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Sevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Lori Sakoda
- Kaiser Permanente Medical Research Program, Oakland, California
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
106
|
Zhang Y, Cai S, Jia Y, Qi C, Sun J, Zhang H, Wang F, Cao Y, Li X. Decoding Noncoding RNAs: Role of MicroRNAs and Long Noncoding RNAs in Ocular Neovascularization. Am J Cancer Res 2017; 7:3155-3167. [PMID: 28839470 PMCID: PMC5566112 DOI: 10.7150/thno.19646] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Ocular neovascularization is a pathological sequel of multiple eye diseases. Based on the anatomical site into which the abnormal neovessels grow, ocular neovascularization can be categorized into corneal neovascularization, choroidal neovascularization, and retinal neovascularization. Each category is intractable, and may lead to blindness if not appropriately treated. However, the current therapeutic modalities, including laser photocoagulation, vitrectomy surgery, and anti-VEGF drugs, raise concerns due to limited efficacy, damage on retinal parenchyma and vasculature, and the patients' unresponsiveness to the treatments. Therefore, the in-depth study on pathogenesis of and the search for novel therapeutic targets to the ocular neovascularization are needed. During the last 10 years or so, a large number of literatures have emerged indicating a critical role of noncoding RNAs, particularly microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), in the pathogenesis and regulation of the ocular neovascularization. This review summarizes the current understanding of the biosynthesis and functions of the miRNAs and lncRNAs, the regulation of the miRNAs and lncRNAs in neovascular eye diseases, as well as the roles of these noncoding RNAs in the disease models of ocular neovascularization, in the hope that it could provide clues for the pathogenesis of and molecular targets to the ocular neovascularization.
Collapse
|
107
|
Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S, Negahdari B, Sahebkar A, Masoudifar A, Mirzaei H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol 2017; 233:2902-2910. [PMID: 28543172 DOI: 10.1002/jcp.26029] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
Abstract
Angiogenesis is known as one of the hallmarks of cancer. Multiple lines evidence indicated that vascular endothelium growth factor (VEGF) is a key player in the progression of angiogenesis and exerts its functions via interaction with tyrosine kinase receptors (TKRs). These receptors could trigger a variety of cascades that lead to the supply of oxygen and nutrients to tumor cells and survival of these cells. With respect to pivotal role of angiogenesis in the tumor growth and survival, finding new therapeutic approaches via targeting angiogenesis could open a new horizon in cancer therapy. Among various types of therapeutic strategies, nanotechnology has emerged as new approach for the treatment of various cancers. Nanoparticles (NPs) could be used as effective tools for targeting a variety of therapeutic agents. According to in vitro and in vivo studies, NPs are efficient in depriving tumor cells from nutrients and oxygen by inhibiting angiogenesis. However, the utilization of NPs are associated with a variety of limitations. It seems that new approaches such as NPs conjugated with hydrogels could overcome to some limitations. In the present review, we summarize various mechanisms involved in angiogenesis, common anti-angiogenesis strategies, and application of NPs for targeting angiogenesis in various cancers.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Ghiyami-Hour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Jahangiri
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aria Masoudifar
- Department of Molecular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
108
|
Wang L, Shangguan S, Xin Y, Chang S, Wang Z, Lu X, Wu L, Niu B, Zhang T. Folate deficiency disturbs hsa-let-7 g level through methylation regulation in neural tube defects. J Cell Mol Med 2017. [PMID: 28631291 PMCID: PMC5706510 DOI: 10.1111/jcmm.13228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Folic acid deficiency during pregnancy is believed to be a high‐risk factor for neural tube defects (NTDs). Disturbed epigenetic modifications, including miRNA regulation, have been linked to the pathogenesis of NTDs in those with folate deficiency. However, the mechanism by which folic acid‐regulated miRNA influences this pathogenesis remains unclear. It is believed that DNA methylation is associated with dysregulated miRNA expression. To clarify this issue, here we measured the methylation changes of 22 miRNAs in 57 human NTD cases to explore whether such changes are involved in miRNA regulation in NTD cases through folate metabolism. In total, eight of the 22 miRNAs tested reduced their methylation modifications in NTD cases, which provide direct evidence of the roles of interactions between DNA methylation and miRNA level in these defects. Among the findings, there was a significant association between folic acid concentration and hsa‐let‐7 g methylation level in NTD cases. Hypomethylation of hsa‐let‐7 g increased its own expression level in both NTD cases and cell models, which indicated that hsa‐let‐7 g methylation directly regulates its own expression. Overexpression of hsa‐let‐7 g, along with its target genes, disturbed the migration and proliferation of SK‐N‐SH cells, implying that hsa‐let‐7 g plays important roles in the prevention of NTDs by folic acid. In summary, our data suggest a relationship between aberrant methylation of hsa‐let‐7 g and disturbed folate metabolism in NTDs, implying that improvements in nutrition during early pregnancy may prevent such defects, possibly via the donation of methyl groups for miRNAs.
Collapse
Affiliation(s)
- Li Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shaofang Shangguan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Yu Xin
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Shaoyan Chang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Zhen Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaolin Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
109
|
van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW. miRNAs: micro-managers of anticancer combination therapies. Angiogenesis 2017; 20:269-285. [PMID: 28474282 PMCID: PMC5519663 DOI: 10.1007/s10456-017-9545-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer progression and as such has been considered a target of therapeutic interest. However, single targeted agents have not fully lived up to the initial promise of anti-angiogenic therapy. Therefore, it has been suggested that combining therapies and agents will be the way forward in the oncology field. In recent years, microRNAs (miRNAs) have received considerable attention as drivers of tumor development and progression, either acting as tumor suppressors or as oncogenes (so-called oncomiRs), as well as in the process of tumor angiogenesis (angiomiRs). Not only from a functional, but also from a therapeutic view, miRNAs are attractive tools. Thus far, several mimics and antagonists of miRNAs have entered clinical development. Here, we review the provenance and promise of miRNAs as targets as well as therapeutics to contribute to anti-angiogenesis-based (combination) treatment of cancer.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Dennis Poel
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
110
|
Vimalraj S, Sumantran VN, Chatterjee S. MicroRNAs: Impaired vasculogenesis in metal induced teratogenicity. Reprod Toxicol 2017; 70:30-48. [PMID: 28249814 DOI: 10.1016/j.reprotox.2017.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 02/07/2023]
Abstract
Certain metals have been known for their toxic effects on embryos and fetal development. The vasculature in early pregnancy is extremely dynamic and plays an important role in organogenesis. Nascent blood vessels in early embryonic life are considered to be a primary and delicate target for many teratogens since the nascent blood islands follow a tightly controlled program to form vascular plexus around and inside the embryo for resourcing optimal ingredients for its development. The state of the distribution of toxic metals, their transport mechanisms and the molecular events by which they notch extra-embryonic and embryonic vasculatures are illustrated. In addition, pharmacological aspects of toxic metal induced teratogenicity have also been portrayed. The work reviewed state of the current knowledge of specific role of microRNAs (miRNAs) that are differentially expressed in response to toxic metals, and how they interfere with the vasculogenesis that manifests into embryonic anomalies.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India.
| | | | - Suvro Chatterjee
- Vascular Biology Lab, AU-KBC Research Centre, Anna University, Chennai, India; Department of Biotechnology, Anna University, Chennai, India.
| |
Collapse
|
111
|
Han YL, Cao XE, Wang JX, Dong CL, Chen HT. Correlations of microRNA-124a and microRNA-30d with clinicopathological features of breast cancer patients with type 2 diabetes mellitus. SPRINGERPLUS 2016; 5:2107. [PMID: 28066696 PMCID: PMC5179477 DOI: 10.1186/s40064-016-3786-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/09/2016] [Indexed: 12/25/2022]
Abstract
This study intends to investigate the correlations of miR-124a and miR-30d with clinicopathological features of breast cancer (BC) patients with type 2 diabetes mellitus (T2DM). A total of 72 BC patients with T2DM (diabetic group) and 144 BC patients without T2DM (non-diabetic group) were enrolled in this study. Blood glucose was detected by glucose oxidase methods. Glycosylated hemoglobin (HbA1c) was measured by high performance liquid chromatography. Fasting insulin (FIns) was measured by chemiluminescent microparticle immunoassay. Automatic biochemical analyzer was used to detect triglyceride, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). Estradiol (E2) was detected by radioimmunoassay. Homeostasis model assessment was applied to assess the insulin resistance (HOMA-IR) and β-cell insulin secretion (HOMA-IS). The expressions of miR124a and miR-30d were measured by quantitative real-time polymerase chain reaction (qRT-PCR). There were significant differences in age, the ratio of menopause, body mass index (BMI), HDL-C, TC, 2-h plasma glucose (2hPG), FIns, HbA1c, HOMA-IS and HOMA-IR between the diabetic and non-diabetic groups. The diabetic group had higher incidence of lymph node metastasis than non-diabetic group. The miR-124a expression was down-regulated while the miR-30d expression was up-regulated in BC patients with T2DM. The correlation analysis showed that miR-124a expression was positively correlated with HDL-C, while it was negatively correlated with age, HbA1c, LDL-C and E2. However, the miR-30d expression was negatively correlated with HDL-C but positively correlated with age, HbA1c, LDL-C and E2. In conclusion, miR-124a and miR-30d may be correlated with clinicopathological features of BC patients with T2DM. The miR-124a and miR-30d could serve as novel biomarkers for early diagnosis of BC in patients with T2DM.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Breast and Thyroid Surgery, Linyi People's Hospital, Linyi, 276000 People's Republic of China
| | - Xian-E Cao
- Department of Geriatrics, Linyi People's Hospital, North Park Road, 200 Meters East of Municipal Party School, Linyi, 276000 Shandong Province People's Republic of China
| | - Ju-Xun Wang
- Linyi City Family Planning Management Station, Linyi, 276000 People's Republic of China
| | - Chun-Ling Dong
- Department of Nurse, Linyi People's Hospital, Linyi, 276000 People's Republic of China
| | - Hong-Tao Chen
- Department of Rheumatism, Linyi People's Hospital, Linyi, 276000 People's Republic of China
| |
Collapse
|
112
|
Wang Y, Wu S, Yang Y, Peng F, Li Q, Tian P, Xiang E, Liang H, Wang B, Zhou X, Huang H, Zhou X. Differentially expressed miRNAs in oxygen‑induced retinopathy newborn mouse models. Mol Med Rep 2016; 15:146-152. [PMID: 27922698 PMCID: PMC5355681 DOI: 10.3892/mmr.2016.5993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 09/08/2016] [Indexed: 12/26/2022] Open
Abstract
The present study aimed to identify microRNAs (miRNAs) involved in regulating retinal neovascularization and retinopathy of prematurity (ROP). A total of 80 healthy C57BL/6 neonatal mice were randomly divided into the oxygen-induced retinopathy (OIR) group (n=40), in which 7-day-old mice were maintained in 75% oxygen conditions for 5 days, or the control group (n=40). Following collection of retinal tissue, retinal angiography and hematoxylin and eosin (H&E) staining were performed. Total RNA was also extracted from retinal tissue, and miRNA microarrays and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were performed to identify differentially expressed miRNAs in the two groups. Retinal angiography and H&E staining revealed damage to retinas in the OIR group. Compared with the control group, 67 miRNAs were differentially expressed in the OIR group, of which 34 were upregulated and 33 were downregulated. Of these differentially expressed miRNAs, 32 exhibited a fold change ≥2, of which 21 were upregulated and 11 were downregulated. The results of RT-qPCR for miR-130a-3p and miR-5107-5p were in accordance with those of the miRNA microarray. The newly identified miRNAs may be important in the development of ROP, and may provide a basis for future research into the mechanisms of ROP.
Collapse
Affiliation(s)
- Yunpeng Wang
- Department of Neonatology, Nanshan People's Hospital, Affiliated to Guangdong Medical University, Shenzhen, Guangdong 518052, P.R. China
| | - Suying Wu
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Fen Peng
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Qintao Li
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Peng Tian
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Erying Xiang
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Honglu Liang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Beibei Wang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiaoyu Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Hua Huang
- Department of Neonatology, University Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Xiaoguang Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
113
|
MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment. Nat Commun 2016; 7:13597. [PMID: 27886180 PMCID: PMC5133658 DOI: 10.1038/ncomms13597] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Rather than targeting tumour cells directly, elements of the tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here we report a unique mechanism by which ectopic microRNA-103 can manipulate tumour-associated endothelial cells to enhance tumour cell death. Using gain-and-loss of function approaches, we show that miR-103 exacerbates DNA damage and inhibits angiogenesis in vitro and in vivo. Local, systemic or vascular-targeted delivery of miR-103 in tumour-bearing mice decreased angiogenesis and tumour growth. Mechanistically, miR-103 regulation of its target gene TREX1 in endothelial cells governs the secretion of pro-inflammatory cytokines into the tumour microenvironment. Our data suggest that this inflammatory milieu may potentiate tumour cell death by supporting immune activation and inducing tumour expression of Fas and TRAIL receptors. Our findings reveal miR-mediated crosstalk between vasculature and tumour cells that can be exploited to improve the efficacy of chemotherapy and radiation. The tumour microenvironment can be modulated to sensitize tumours to the effects of therapy. Here the authors show that radiation induced miR-103 downregulates TREX1 in endothelial cells, decreases angiogenesis and leads to the secretion of proinflammatory mediators that reduce tumour growth.
Collapse
|
114
|
Ma Z, Li Y, Xu J, Ren Q, Yao J, Tian X. MicroRNA-409-3p regulates cell invasion and metastasis by targeting ZEB1 in breast cancer. IUBMB Life 2016; 68:394-402. [PMID: 27079864 DOI: 10.1002/iub.1494] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/27/2016] [Indexed: 02/04/2023]
Abstract
MicroRNA-409-3p (miR-409-3p) is an miRNA expressed by embryonic stem cells, and our previous study demonstrated depressed miR-409-3p expression in human breast cancer (BC) cell lines; however, its role and function in BC metastasis are still unknown. The purpose of this study was to examine the expression levels of miR-409-3p in human BC and its role in the metastasis of BC. We analyzed the status of miR-409-3p expression in BC tissues by quantitative real-time polymerase chain reaction (PCR) and its relationship to the clinicopathologic features of patients with BC. To study the role of miR-409-3p in BC metastasis, the invasion ability of BC cells was detected by transwell invasion assays and wound healing assays. WST-1 assays and colony formation assays were used to investigate cell proliferation. Luciferase reporter assays were used to verify that miR-409-3p targeted zinc-finger E-box-binding homeobox 1 (ZEB1). Western blot analyses and transwell assays were carried out to assess ZEB1 expression and its role in BC cell metastasis. The expression of miR-409-3p was lower in tumor tissues than in noncancerous breast tissues. We verified that miR-409-3p levels were downregulated and significantly correlated with poor outcomes in patients with BC. Overexpression of miR-409-3p inhibited cellular proliferation and suppressed cellular migration and invasion in vitro and in vivo. Dual-luciferase reporter assays showed that miR-409-3p binds the 3'-untranslated region (3'-UTR) of ZEB1, suggesting that ZEB1 is a direct target of miR-409-3p. Western blot analysis confirmed that overexpression of miR-409-3p reduced ZEB1 protein levels. These data demonstrate that miR-409-3p plays an important role in regulating the metastasis of BC, which is involved in the post-transcriptional repression of ZEB1. Our results indicate that miR-409-3p can regulate the invasion and metastasis process of BC by targeting ZEB1 and may serve as a new prognostic marker and therapeutic target for treating BC metastasis. © 2016 IUBMB Life, 68(5):394-402, 2016.
Collapse
Affiliation(s)
- Zhenhai Ma
- Breast Cancer Key Laboratory of Dalian, Department of Breast Disease and Reconstruction Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yang Li
- Breast Cancer Key Laboratory of Dalian, Department of Breast Disease and Reconstruction Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jingchao Xu
- Breast Cancer Key Laboratory of Dalian, Department of Breast Disease and Reconstruction Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Qiaozhen Ren
- Breast Cancer Key Laboratory of Dalian, Department of Breast Disease and Reconstruction Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Xiaofeng Tian
- Breast Cancer Key Laboratory of Dalian, Department of Breast Disease and Reconstruction Center, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
115
|
Yan XC, Cao J, Liang L, Wang L, Gao F, Yang ZY, Duan JL, Chang TF, Deng SM, Liu Y, Dou GR, Zhang J, Zheng QJ, Zhang P, Han H. miR-342-5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling. J Am Heart Assoc 2016; 5:JAHA.115.003042. [PMID: 26857067 PMCID: PMC4802463 DOI: 10.1161/jaha.115.003042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Endothelial cells (ECs) form blood vessels through angiogenesis that is regulated by coordination of vascular endothelial growth factor (VEGF), Notch, transforming growth factor β, and other signals, but the detailed molecular mechanisms remain unclear. Methods and Results Small RNA sequencing initially identified miR‐342‐5p as a novel downstream molecule of Notch signaling in ECs. Reporter assay, quantitative reverse transcription polymerase chain reaction and Western blot analysis indicated that miR‐342‐5p targeted endoglin and modulated transforming growth factor β signaling by repressing SMAD1/5 phosphorylation in ECs. Transfection of miR‐342‐5p inhibited EC proliferation and lumen formation and reduced angiogenesis in vitro and in vivo, as assayed by using a fibrin beads–based sprouting assay, mouse aortic ring culture, and intravitreal injection of miR‐342‐5p agomir in P3 pups. Moreover, miR‐342‐5p promoted the migration of ECs, accompanied by reduced endothelial markers and increased mesenchymal markers, indicative of increased endothelial–mesenchymal transition. Transfection of endoglin at least partially reversed endothelial–mesenchymal transition induced by miR‐342‐5p. The expression of miR‐342‐5p was upregulated by transforming growth factor β, and inhibition of miR‐342‐5p attenuated the inhibitory effects of transforming growth factor β on lumen formation and sprouting by ECs. In addition, VEGF repressed miR‐342‐5p expression, and transfection of miR‐342‐5p repressed VEGFR2 and VEGFR3 expression and VEGF‐triggered Akt phosphorylation in ECs. miR‐342‐5p repressed angiogenesis in a laser‐induced choroidal neovascularization model in mice, highlighting its clinical potential. Conclusions miR‐342‐5p acts as a multifunctional angiogenic repressor mediating the effects and interaction among angiogenic pathways.
Collapse
Affiliation(s)
- Xian-Chun Yan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zi-Yan Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan-Li Duan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian-Fang Chang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - San-Ming Deng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qi-Jun Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
116
|
Tissue Factor Regulation by miR-520g in Primitive Neuronal Brain Tumor Cells: A Possible Link between Oncomirs and the Vascular Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:446-59. [PMID: 26687818 DOI: 10.1016/j.ajpath.2015.10.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/18/2015] [Accepted: 10/21/2015] [Indexed: 12/19/2022]
Abstract
Pediatric embryonal brain tumors with multilayered rosettes demonstrate a unique oncogenic amplification of the chromosome 19 miRNA cluster, C19MC. Because oncogenic lesions often cause deregulation of vascular effectors, including procoagulant tissue factor (TF), this study explores whether there is a link between C19MC oncogenic miRNAs (oncomirs) and the coagulant properties of cancer cells, a question previously not studied. In a pediatric embryonal brain tumor tissue microarray, we observed an association between C19MC amplification and reduced fibrin content and TF expression, indicative of reduced procoagulant activity. In medulloblastoma cell lines (DAOY and UW228) engineered to express miR-520g, a biologically active constituent of the C19MC cluster, we observed reduced TF expression, procoagulant and TF signaling activities (responses to factor VIIa stimulation), and diminished TF emission as cargo of extracellular vesicles. Antimir and luciferase reporter assays revealed a specific and direct effect of miR-520g on the TF 3' untranslated region. Although the endogenous MIR520G locus is methylated in differentiated cells, exposure of DAOY cells to 5-aza-2'-deoxycytidine or their growth as stem cell-like spheres up-regulated endogenous miR-520g with a coincident reduction in TF expression. We propose that the properties of tumors harboring oncomirs may include unique alterations of the vascular microenvironment, including deregulation of TF, with a possible impact on the biology, therapy, and hemostatic adverse effects of both disease progression and treatment.
Collapse
|
117
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the "hallmarks" of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
118
|
Garcia NA, Ontoria-Oviedo I, González-King H, Diez-Juan A, Sepúlveda P. Glucose Starvation in Cardiomyocytes Enhances Exosome Secretion and Promotes Angiogenesis in Endothelial Cells. PLoS One 2015; 10:e0138849. [PMID: 26393803 PMCID: PMC4578916 DOI: 10.1371/journal.pone.0138849] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/06/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiomyocytes (CMs) and endothelial cells (ECs) have an intimate anatomical relationship that is essential for maintaining normal development and function in the heart. Little is known about the mechanisms that regulate cardiac and endothelial crosstalk, particularly in situations of acute stress when local active processes are required to regulate endothelial function. We examined whether CM-derived exosomes could modulate endothelial function. Under conditions of glucose deprivation, immortalized H9C2 cardiomyocytes increase their secretion of exosomes. CM-derived exosomes are loaded with a broad repertoire of miRNA and proteins in a glucose availability-dependent manner. Gene Ontology (GO) analysis of exosome cargo molecules identified an enrichment of biological process that could alter EC activity. We observed that addition of CM-derived exosomes to ECs induced changes in transcriptional activity of pro-angiogenic genes. Finally, we demonstrated that incubation of H9C2-derived exosomes with ECs induced proliferation and angiogenesis in the latter. Thus, exosome-mediated communication between CM and EC establishes a functional relationship that could have potential implications for the induction of local neovascularization during acute situations such as cardiac injury.
Collapse
Affiliation(s)
- Nahuel A. Garcia
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Imelda Ontoria-Oviedo
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Hernán González-King
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Antonio Diez-Juan
- Fundación IVI/INCLIVA, Valencia, Spain
- IGENOMIX, Valencia, Spain
- * E-mail: (PS); (ADJ)
| | - Pilar Sepúlveda
- Mixed Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe- Centro de Investigación Príncipe Felipe, Valencia, Spain
- * E-mail: (PS); (ADJ)
| |
Collapse
|
119
|
Bai Y, Sun Y, Peng J, Liao H, Gao H, Guo Y, Guo L. Overexpression of secretagogin inhibits cell apoptosis and induces chemoresistance in small cell lung cancer under the regulation of miR-494. Oncotarget 2015; 5:7760-75. [PMID: 25226615 PMCID: PMC4202159 DOI: 10.18632/oncotarget.2305] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Secretagogin (SCGN) has recently been identified to play a crucial role in cell apoptosis, receptor signaling and differentiation. However, its clinical significance and functional roles in SCLC chemoresistance remain unknown. Here we examined the expression of SCGN in clinical samples from SCLC patients and evaluated its relation with clinical prognosis. Then up and down-regulation of SCGN were carried out in SCLC cell lines to assess its influence on chemoresistance. Furthermore, luciferase reporter assay was used to evaluate whether SCGN is a novel direct target of miR-494. Our results revealed that elevated expression of SCGN was correlated with the poorer prognosis of SCLC patients and the more significant correlation with chemosensitivity. We also found that knockdown of SCGN expression in H69AR and H446AR cells increased chemosensitivity via increasing cell apoptosis and cell cycle arrest of G0/G1 phase, while over-expression of SCGN reduced chemosensitivity in sensitive H69 and H446 cells. SCGN as a novel target of miR-494 by luciferase reporter assay, up-regulation of miR-494 can sensitize H69AR cells to chemotherapeutic drugs. These results suggest SCGN is involved in the chemoresistance of SCLC under the regulation of miR-494 and may be a potential biomarker for predicting therapeutic response in treatment SCLC.
Collapse
Affiliation(s)
- Yifeng Bai
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China. Contributed equally to this work
| | - Yanqin Sun
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, School of Basic Medicine Science, Guangdong Medical College, Dongguan, China. Contributed equally to this work
| | - Juan Peng
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, the Third Affiliated Hospital Of Guangzhou Medical University, Guangzhou, China
| | - Hongzhan Liao
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyi Gao
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China. Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ying Guo
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linlang Guo
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
120
|
MicroRNA delivery for regenerative medicine. Adv Drug Deliv Rev 2015; 88:108-22. [PMID: 26024978 DOI: 10.1016/j.addr.2015.05.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/13/2015] [Accepted: 05/21/2015] [Indexed: 12/26/2022]
Abstract
MicroRNA (miRNA) directs post-transcriptional regulation of a network of genes by targeting mRNA. Although relatively recent in development, many miRNAs direct differentiation of various stem cells including induced pluripotent stem cells (iPSCs), a major player in regenerative medicine. An effective and safe delivery of miRNA holds the key to translating miRNA technologies. Both viral and nonviral delivery systems have seen success in miRNA delivery, and each approach possesses advantages and disadvantages. A number of studies have demonstrated success in augmenting osteogenesis, improving cardiogenesis, and reducing fibrosis among many other tissue engineering applications. A scaffold-based approach with the possibility of local and sustained delivery of miRNA is particularly attractive since the physical cues provided by the scaffold may synergize with the biochemical cues induced by miRNA therapy. Herein, we first briefly cover the application of miRNA to direct stem cell fate via replacement and inhibition therapies, followed by the discussion of the promising viral and nonviral delivery systems. Next we present the unique advantages of a scaffold-based delivery in achieving lineage-specific differentiation and tissue development.
Collapse
|
121
|
Meng Q, Wang W, Yu X, Li W, Kong L, Qian A, Li C, Li X. Upregulation of MicroRNA-126 Contributes to Endothelial Progenitor Cell Function in Deep Vein Thrombosis via Its Target PIK3R2. J Cell Biochem 2015; 116:1613-23. [PMID: 25652288 DOI: 10.1002/jcb.25115] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 01/26/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Qingyou Meng
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| | - Wenbin Wang
- Department of General Surgery; the Fourth Affiliated Hospital of Anhui Medical University; Hefei 230022 China
| | - Xiaobin Yu
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| | - Wendong Li
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| | - Lingshang Kong
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| | - Aimin Qian
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| | - Chenglong Li
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| | - Xiaoqiang Li
- Department of Vascular Surgery; the Second Affiliated Hospital of Soochow University; Suzhou 215000 China
| |
Collapse
|
122
|
Su CM, Hsu CJ, Tsai CH, Huang CY, Wang SW, Tang CH. Resistin Promotes Angiogenesis in Endothelial Progenitor Cells Through Inhibition of MicroRNA206: Potential Implications for Rheumatoid Arthritis. Stem Cells 2015; 33:2243-55. [PMID: 25828083 DOI: 10.1002/stem.2024] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) promote angiogenesis and are therefore key contributors to a wide variety of angiogenesis-related autoimmune diseases such as rheumatoid arthritis (RA). However, the signaling mechanisms through which these progenitor cells influence RA pathogenesis remain unknown. The aim of this study was to examine whether resistin plays a role in the pathogenesis of and angiogenesis associated with RA by circulating EPCs. We found that levels of resistin in synovial fluid and tissue from patients with RA and from mice with collagen-induced arthritis were overexpressed and promoted the homing of EPCs into the synovium, thereby inducing angiogenesis. EPCs isolated from healthy donors were used to investigate the signal transduction pathway underlying EPC migration and tube formation after treatment with resistin. We found that resistin directly induced a significant increase in expression of vascular endothelial growth factor (VEGF) in EPCs. We also found that the expression of microRNA-206 (miR-206) was negatively correlated with the expression of resistin during EPC-mediated angiogenesis. Notably, the increased expression of VEGF was associated with decreased binding of miR-206 to the VEGF-A 3' untranslated region through protein kinase C delta-dependent AMP-activated protein kinase signaling pathway. Moreover, blockade of resistin reduced EPC homing into synovial fluid and angiogenesis in vivo. Taken together, our study is the first to demonstrate that resistin promotes EPCs homing into the synovium during RA angiogenesis via a signal transduction pathway that involves VEGF expression in primary EPCs. These findings provide support for resistin as a therapeutic target for the patients with RA. Stem Cells 2015;33:2243-2255.
Collapse
Affiliation(s)
- Chen-Ming Su
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chin-Jung Hsu
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University, Taichung, Taiwan
| | - Chun-Yin Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.,Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yun-Lin County, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
123
|
Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol 2015; 10:45. [PMID: 25924779 PMCID: PMC4430031 DOI: 10.1186/s13000-015-0257-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/25/2015] [Indexed: 01/29/2023] Open
Abstract
Background MicroRNA-124 (miR-124) has been reported to be downregulated in breast cancer. However, its clinical significance and prognostic value in breast cancer have not been extensively studied. Methods The tissue expression levels of miR-124 were measured using quantitative real-time PCR in 133 breast cancer patients. The correlation between the miR-124 levels and the clinicopathological factors of the patients was also analyzed. Survival and Cox proportional-hazards regression analyses were performed to determine the correlation between miR-124 expression levels and prognosis in the patients. Results Quantitative real-time PCR analysis showed that miR-124 had lower expression in breast cancer specimens than that in matched adjacent normal breast tissues (0.39 ± 0.16 vs. 1.00 ± 0.39; P < 0.05). Low miR-124 expression level was significantly associated with advanced TNM stage (P = 0.011), lymph node metastasis (P = 0.012), and poorer pathological differentiation (P = 0.023). A significant difference was found that breast cancer patients with low miR-124 expression level had distinctly shorter overall survival than patients with high miR-124 expression level (63.8% vs. 35.2%, P = 0.03). Furthermore, multivariate analysis of the prognosis factors with a Cox proportional hazards model confirmed that low miR-124 expression was a significant independent predictor of poor survival in breast cancer (HR = 3.16, 95% CI: 1.79-9.13, P = 0.017). Conclusion These findings proved that the decreased expression of miR-124 might be associated with tumor progression and poor prognosis in patients with breast cancer. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3752603721493544
Collapse
Affiliation(s)
- Liang-Liang Dong
- Department of Medical Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong, 264000, China.
| | - Li-Ming Chen
- Department of Medical Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong, 264000, China.
| | - Wei-Min Wang
- Department of Medical Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong, 264000, China.
| | - Liang-Ming Zhang
- Department of Medical Oncology, Yantai Yuhuangding Hospital, 20 Yuhuangding East Road, Yantai, Shandong, 264000, China.
| |
Collapse
|
124
|
Raimondi L, Amodio N, Di Martino MT, Altomare E, Leotta M, Caracciolo D, Gullà A, Neri A, Taverna S, D'Aquila P, Alessandro R, Giordano A, Tagliaferri P, Tassone P. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget 2015; 5:3039-54. [PMID: 24839982 PMCID: PMC4102790 DOI: 10.18632/oncotarget.1747] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) cells induce relevant angiogenic effects within the human bone marrow milieu (huBMM) by the aberrant expression of angiogenic factors. Hypoxia triggers angiogenic events within the huBMM and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is over-expressed by MM cells. Since synthetic miR-199a-5p mimics negatively regulates HIF-1α, we here investigated a miRNA-based therapeutic strategy against hypoxic MM cells. We indeed found that enforced expression of miR-199a-5p led to down-modulated expression of HIF-1α as well as of other pro-angiogenic factors such as VEGF-A, IL-8, and FGFb in hypoxic MM cells in vitro. Moreover, miR-199a-5p negatively affected MM cells migration, while it increased the adhesion of MM cells to bone marrow stromal cells (BMSCs) in hypoxic conditions. Furthermore, transfection of MM cells with miR-199a-5p significantly impaired also endothelial cells migration and down-regulated the expression of endothelial adhesion molecules such as VCAM-1 and ICAM-1. Finally, we identified a hypoxia/AKT/miR-199a-5p loop as a potential molecular mechanism responsible of miR-199a-5p down-regulation in hypoxic MM cells. Taken together our results indicate that miR-199a-5p has an important role for the pathogenesis of MM and support the hypothesis that targeting angiogenesis via a miRNA/HIF-1α pathway may represent a novel potential therapeutical approach for this still lethal disease.
Collapse
Affiliation(s)
- Lavinia Raimondi
- Department of Experimental and Clinical Medicine, Magna Graecia University and Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Sohn EJ, Won G, Lee J, Lee S, Kim SH. Upregulation of miRNA3195 and miRNA374b Mediates the Anti-Angiogenic Properties of Melatonin in Hypoxic PC-3 Prostate Cancer Cells. J Cancer 2015; 6:19-28. [PMID: 25553085 PMCID: PMC4278911 DOI: 10.7150/jca.9591] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/13/2014] [Indexed: 12/14/2022] Open
Abstract
Recently microRNAs (miRNAs) have been attractive targets with their key roles in biological regulation through post-transcription to control mRNA stability and protein translation. Though melatonin was known as an anti-angiogenic agent, the underlying mechanism of melatonin in PC-3 prostate cancer cells under hypoxia still remains unclear. Thus, in the current study, we elucidated the important roles of miRNAs in melatonin-induced anti-angiogenic activity in hypoxic PC-3 cells. miRNA array revealed that 33 miRNAs (>2 folds) including miRNA3195 and miRNA 374b were significantly upregulated and 16 miRNAs were downregulated in melatonin-treated PC-3 cells under hypoxia compared to untreated control. Melatonin significantly attenuated the expression of hypoxia-inducible factor (HIF)-1 alpha, HIF-2 alpha and vascular endothelial growth factor (VEGF) at mRNA level in hypoxic PC-3 cells. Consistently, melatonin enhanced the expression of miRNA3195 and miRNA 374b in hypoxic PC-3 cells by qRT-PCR analysis. Of note, overexpression of miRNA3195 and miRNA374b mimics attenuated the mRNA levels of angiogenesis related genes such as HIF-1alpha, HIF-2 alpha and VEGF in PC-3 cells under hypoxia. Furthermore, overexpression of miRNA3195 and miRNA374b suppressed typical angiogenic protein VEGF at the protein level and VEGF production induced by melatonin, while antisense oligonucleotides against miRNA 3195 or miRNA 374b did not affect VEGF production induced by melatonin. Also, overexpression of miR3195 or miR374b reduced HIF-1 alpha immunofluorescent expression in hypoxic PC-3 compared to untreated control. Overall, our findings suggest that upregulation of miRNA3195 and miRNA374b mediates anti-angiogenic property induced by melatonin in hypoxic PC-3 cells.
Collapse
Affiliation(s)
- Eun Jung Sohn
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Gunho Won
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Jihyun Lee
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| | - Sangyoon Lee
- 2. Graduate School of East-West Medical Science, Kyung Hee University, Yongin 449-701, Republic of Korea
| | - Sung-Hoon Kim
- 1. College of Oriental Medicine, Kyung Hee University, Seoul 130-701, South Korea
| |
Collapse
|
126
|
Distinct microRNA expression in endometrial lymphocytes, endometrium, and trophoblast during spontaneous porcine fetal loss. J Reprod Immunol 2014; 107:64-79. [PMID: 25596873 DOI: 10.1016/j.jri.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 01/22/2023]
Abstract
Endometrial lymphocytes are recruited to the porcine maternal-fetal interface by conceptus-derived signals. The transiently recruited lymphocytes adopt a specialized phenotype in the endometrium that regulates various placental physiological processes, including angiogenesis. Small non-coding RNAs, microRNAs (miRNAs) are emerging as principal bio-molecules regulating the development of lymphocytes and their angiogenic functions. However, no information is available in the context of endometrial lymphocytes in pregnancy. We hypothesize that miRNAs are involved in the development of endometrial lymphocytes and their angiogenic functions at the porcine maternal-fetal interface. Using a targeted Q-PCR approach for selected miRNAs involved in immune cell development, angiogenesis, and anti-angiogenesis, we conducted a study to screen endometrial lymphocytes associated with healthy and spontaneously arresting conceptus attachment sites (CAS) at two well-defined periods of fetal loss. Comparisons were made with endometrium and trophoblasts associated with healthy and arresting CAS. In addition, levels of putative mRNA targets and subsequent functional clustering of genes were studied in order to predict the biological mechanisms affected. We found several significant differences for miRNAs involved in immune cell development and angiogenesis (miR-296-5P, miR-150, miR-17P-5P, miR-18a, and miR-19a) between endometrial lymphocytes associated with healthy and arresting CAS. Significant differences were also found in endometrium and trophoblasts for some miRNAs (miR-20b, miR-17-5P, miR-18a, miR-15b-5P, and miR-222). Finally, selected mRNA targets showed differential expression in all groups. Our data, although associative, are the first to unravel the selected miRNAs involved in immune cell development and provide insights into their possible regulation in abortive pregnancy.
Collapse
|
127
|
Liu GT, Chen HT, Tsou HK, Tan TW, Fong YC, Chen PC, Yang WH, Wang SW, Chen JC, Tang CH. CCL5 promotes VEGF-dependent angiogenesis by down-regulating miR-200b through PI3K/Akt signaling pathway in human chondrosarcoma cells. Oncotarget 2014; 5:10718-10731. [PMID: 25301739 PMCID: PMC4279405 DOI: 10.18632/oncotarget.2532] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/25/2014] [Indexed: 12/14/2022] Open
Abstract
Chondrosarcoma is the second most common primary malignant bone cancer, with potential for local invasion and distant metastasis. Chemokine CCL5 (formerly RANTES) of the CC-chemokine family plays a crucial role in metastasis. Angiogenesis is essential for the cancer metastasis. However, correlation of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is still unknown. CCL5-mediated VEGF expression was assessed by qPCR, ELISA, and Western blotting. CCL5-induced angiogenesis was examined by migration and tube formation in endothelial progenitor cells in vitro. CCL5 increased VEGF expression and also promoted chondrosarcoma conditional medium-mediated angiogenesis in vitro and in vivo. Stimulation of chondrosarcoma with CCL5 augmented PI3K and Akt phosphorylation, while PI3K and Akt inhibitor or siRNA abolished CCL5-induced VEGF expression and angiogenesis. We also demonstrated CCL5 inhibiting miR-200b expression and miR-200b mimic reversing the CCL5-enhanced VEGF expression and angiogenesis. Moreover, in chondrosarcoma patients showed the positive correlation between CCL5 and VEGF; negative correlation between CCL5 and miR-200b. Taken together, results demonstrate CCL5 promoting VEGF-dependent angiogenesis in human chondrosarcoma cells by down-regulating miR-200b through PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Guan-Ting Liu
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hsi-Kai Tsou
- Functional Neurosurgery Division, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Early Childhood Care and Education, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Tzu-Wei Tan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Po-Chen Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Hung Yang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, Taichung Hospital, Ministry of Health and Welfare, Taichung, Taiwan
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Jui-Chieh Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
128
|
Xiao X, Chen B, Liu X, Liu P, Zheng G, Ye F, Tang H, Xie X. Diallyl disulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by up-regulating miR-34a. PLoS One 2014; 9:e112720. [PMID: 25396727 PMCID: PMC4232521 DOI: 10.1371/journal.pone.0112720] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
Diallyl disulfide (DADS) is one of the major volatile components of garlic oil. DADS has various biological properties, including anticancer, antiangiogenic, and antioxidant effects. However, the anticancer mechanisms of DADS in human breast cancer have not been elucidated, particularly in vivo. In this study, we demonstrated that the expression of miR-34a was up-regulated in DADS-treated MDA-MB-231 cells. miR-34a not only inhibited breast cancer growth but also enhanced the antitumor effect of DADS, both in vitro and in vivo. Furthermore, Src was identified as a target of miR-34a, with miR-34a inhibiting SRC expression and consequently triggering the suppression of the SRC/Ras/ERK pathway. These results suggest that DADS could be a promising anticancer agent for breast cancer. miR-34a may also demonstrate a potential gene therapy agent that could enhance the antitumor effects of DADS.
Collapse
Affiliation(s)
- Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Bo Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Guopei Zheng
- Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Feng Ye
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
129
|
CCL5 promotes vascular endothelial growth factor expression and induces angiogenesis by down-regulating miR-199a in human chondrosarcoma cells. Cancer Lett 2014; 357:476-87. [PMID: 25444917 DOI: 10.1016/j.canlet.2014.11.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/28/2014] [Accepted: 11/09/2014] [Indexed: 01/22/2023]
Abstract
Chondrosarcoma is a primary malignant bone cancer, with a potent capacity to invade locally and cause distant metastasis. Angiogenesis is a critical step in tumor growth and metastasis. Chemokine CCL5 (previously called RANTES) has been shown to facilitate tumor progression and metastasis. However, the relationship of CCL5 with vascular endothelial growth factor (VEGF) expression and angiogenesis in human chondrosarcoma is mostly unknown. In this study, CCL5 increased VEGF expression and also promoted chondrosarcoma medium-mediated angiogenesis in vitro as well as angiogenesis effects in the chick chorioallantoic membrane and Matrigel plug nude mice model in vivo. MicroRNA analysis was performed in CCL5-treated chondrosarcoma cells versus control cells to investigate the mechanism of CCL5-mediated promotion of chondrosarcoma angiogenesis. Among the miRNAs regulated by CCL5, miR-199a was the most downregulated miRNA after CCL5 treatment. In addition, co-transfection with miR-199a mimic reversed the CCL5-mediated VEGF expression and angiogenesis in vitro and in vivo. Moreover, overexpression of CCL5 increased tumor-associated angiogenesis and tumor growth by downregulating miR-199a in the xenograft tumor angiogenesis model. Taken together, these results demonstrated that CCL5 promotes VEGF-dependent angiogenesis in human chondrosarcoma cells by downregulating miR-199a.
Collapse
|
130
|
Chen B, Tang H, Liu X, Liu P, Yang L, Xie X, Ye F, Song C, Xie X, Wei W. miR-22 as a prognostic factor targets glucose transporter protein type 1 in breast cancer. Cancer Lett 2014; 356:410-7. [PMID: 25304371 DOI: 10.1016/j.canlet.2014.09.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/25/2014] [Accepted: 09/14/2014] [Indexed: 12/31/2022]
Abstract
It has been reported that miR-22 plays an important role and may be a promising therapeutic target in cancer. In this study, we found that GLUT1 is a direct target of miR-22. The ectopic expression of miR-22 inhibited breast cancer cell proliferation and invasion by targeting GLUT1. A reverse correlation between the expression of miR-22 and GLUT1 was observed in breast cancer tissue samples. Furthermore, miR-22 was significantly correlated with the TNM stage, local relapse, distant metastasis, and survival of breast cancer patients. Our data suggest that miR-22 functions as a tumor suppressor and is a promising prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Bo Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoping Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lu Yang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Feng Ye
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Cailu Song
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Weidong Wei
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China; Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
131
|
MiRiad Roles for MicroRNAs in Cardiac Development and Regeneration. Cells 2014; 3:724-50. [PMID: 25055156 PMCID: PMC4197632 DOI: 10.3390/cells3030724] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Cardiac development is an exquisitely regulated process that is sensitive to perturbations in transcriptional activity and gene dosage. Accordingly, congenital heart abnormalities are prevalent worldwide, and are estimated to occur in approximately 1% of live births. Recently, small non-coding RNAs, known as microRNAs, have emerged as critical components of the cardiogenic regulatory network, and have been shown to play numerous roles in the growth, differentiation, and morphogenesis of the developing heart. Moreover, the importance of miRNA function in cardiac development has facilitated the identification of prospective therapeutic targets for patients with congenital and acquired cardiac diseases. Here, we discuss findings attesting to the critical role of miRNAs in cardiogenesis and cardiac regeneration, and present evidence regarding the therapeutic potential of miRNAs for cardiovascular diseases.
Collapse
|
132
|
O'Toole TE, Abplanalp W, Li X, Cooper N, Conklin DJ, Haberzettl P, Bhatnagar A. Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a. Toxicol Sci 2014; 140:271-82. [PMID: 24812010 DOI: 10.1093/toxsci/kfu087] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for these effects is unknown. Moreover, the effects of acrolein on microRNA (miRNA) have not been studied. Using AGILENT miRNA microarray high-throughput technology, we found that treatment of cultured human umbilical vein endothelial cells with acrolein led to a significant (>1.5-fold) upregulation of 12, and downregulation of 15, miRNAs. Among the miRNAs upregulated were members of the let-7 family and this upregulation was associated with decreased expression of their protein targets, β3 integrin, Cdc34, and K-Ras. Exposure to acrolein attenuated β3 integrin-dependent migration and reduced Akt phosphorylation in response to insulin. These effects of acrolein on endothelial cell migration and insulin signaling were reversed by expression of a let-7a inhibitor. Also, inhalation exposure of mice to acrolein (1 ppm x 6 h/day x 4 days) upregulated let-7a and led to a decrease in insulin-stimulated Akt phosphorylation in the aorta. These results suggest that acrolein exposure has broad effects on endothelial miRNA repertoire and that attenuation of endothelial cell migration and insulin signaling by acrolein is mediated in part by the upregulation of let-7a. This mechanism may be a significant feature of vascular injury caused by inflammation, oxidized lipids, and exposure to environmental pollutants.
Collapse
Affiliation(s)
| | | | - Xiaohong Li
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202
| | - Nigel Cooper
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202
| | | | | | | |
Collapse
|
133
|
Wu S, Yu W, Qu X, Wang R, Xu J, Zhang Q, Xu J, Li J, Chen L. Argonaute 2 promotes myeloma angiogenesis via microRNA dysregulation. J Hematol Oncol 2014; 7:40. [PMID: 24886719 PMCID: PMC4108130 DOI: 10.1186/1756-8722-7-40] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/22/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dysregulated microRNA (miRNA) expression contributes to cancer cell proliferation, apoptosis and angiogenesis. Angiogenesis is a hallmark of multiple myeloma (MM) development and progression. Argonaute 2 (AGO2) protein, a core component of the RNA-induced silencing complex (RISC), can directly bind to miRNAs and mediate target messenger RNA (mRNA) degradation. A previous study showed that AGO2 knockdown suppressed human umbilical vein endothelial cell (HUVEC) growth and tube formation. However, the roles and molecular mechanisms of AGO2-induced myeloma angiogenesis are not yet fully understood. The aim of this study was to characterize these roles and effects and their associated mechanisms. RESULTS Supernatants from AGO2-overexpressing MM lines induced HUVEC migration and accelerated tube formation. Conversely, supernatants from AGO2-knockdown MM lines suppressed HUVEC cell migration and tube formation. Moreover, a chick chorioallantoic membrane (CAM) assay was used to demonstrate that AGO2 could drive neovessel formation in MM lines in vivo. Using an miRNA microarray, we observed that 25 miRNAs were upregulated and 7 were downregulated in response to AGO2. Most let-7 family members and 2 miR-17/92 cluster members (miR-17a and miR-92-1), all known pro-angiogenic miRNAs, were positively regulated by AGO2 whereas anti-angiogenic miRNAs such as miR-145 and miR-361 were negatively regulated by AGO2. CONCLUSIONS We conclude that AGO2 can drive neovessel formation in vitro and in vivo by dysregulating the expression of some angiogenic miRNAs. The pro-angiogenic miRNAs of the let-7 family and the miR-17/92 cluster, along with the anti-angiogenic miRNA miR-145, play crucial roles in AGO2-mediated angiogenesis by targeting angiogenesis-related genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lijuan Chen
- Department of Hematology, First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing 210029, China.
| |
Collapse
|
134
|
Wang W, Li C, Li W, Kong L, Qian A, Hu N, Meng Q, Li X. MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thromb Res 2014; 133:590-8. [DOI: 10.1016/j.thromres.2013.12.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/02/2013] [Accepted: 12/30/2013] [Indexed: 01/01/2023]
|
135
|
Gauvrit S, Philippe J, Lesage M, Tjwa M, Godin I, Germain S. The role of RNA interference in the developmental separation of blood and lymphatic vasculature. Vasc Cell 2014; 6:9. [PMID: 24690185 PMCID: PMC4021977 DOI: 10.1186/2045-824x-6-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/25/2014] [Indexed: 01/08/2023] Open
Abstract
Background Dicer is an RNase III enzyme that cleaves double stranded RNA and generates functional interfering RNAs that act as important regulators of gene and protein expression. Dicer plays an essential role during mouse development because the deletion of the dicer gene leads to embryonic death. In addition, dicer-dependent interfering RNAs regulate postnatal angiogenesis. However, the role of dicer is not yet fully elucidated during vascular development. Methods In order to explore the functional roles of the RNA interference in vascular biology, we developed a new constitutive Cre/loxP-mediated inactivation of dicer in tie2 expressing cells. Results We show that cell-specific inactivation of dicer in Tie2 expressing cells does not perturb early blood vessel development and patterning. Tie2-Cre; dicerfl/fl mutant embryos do not show any blood vascular defects until embryonic day (E)12.5, a time at which hemorrhages and edema appear. Then, midgestational lethality occurs at E14.5 in mutant embryos. The developing lymphatic vessels of dicer-mutant embryos are filled with circulating red blood cells, revealing an impaired separation of blood and lymphatic vasculature. Conclusion Thus, these results show that RNA interference perturbs neither vasculogenesis and developmental angiogenesis, nor lymphatic specification from venous endothelial cells but actually provides evidence for an epigenetic control of separation of blood and lymphatic vasculature.
Collapse
Affiliation(s)
| | | | | | | | | | - Stéphane Germain
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB), 11, place Marcelin Berthelot, Paris F-75005, France.
| |
Collapse
|
136
|
Agrawal S, Chaqour B. MicroRNA signature and function in retinal neovascularization. World J Biol Chem 2014; 5:1-11. [PMID: 24600510 PMCID: PMC3942538 DOI: 10.4331/wjbc.v5.i1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/05/2023] Open
Abstract
Ischemic retinopathies are clinically well-defined chronic microvascular complications characterized by gradually progressive alterations in the retinal microvasculature and a compensatory aberrant neovascularization of the eye. The subsequent metabolic deficiencies result in structural and functional alterations in the retina which is highly susceptible to injurious stimuli such as diabetes, trauma, hyperoxia, inflammation, aging and dysplipidemia. Emerging evidence indicates that an effective therapy may require targeting multiple components of the angiogenic pathway. Conceptually, mircoRNA (miRNA)-based therapy provides the rationale basis for an effective antiangiogenic treatment. miRNAs are an evolutionarily conserved family of short RNAs, each regulating the expression of multiple protein-coding genes. The activity of specific miRNAs is important for vascular cell signaling and blood vessel formation and function. Recently, important progress has been made in mapping the miRNA-gene target network and miRNA-mediated gene expression control. Here we highlight the latest findings on angiogenic and antiangiogenic miRNAs and their targets as well as potential implications in ocular neovascular diseases. Emphasis is placed on how specific vascular-enriched miRNAs regulate cell responses to various cues by targeting several factors, receptors and/or signaling molecules in order to maintain either vascular function or dysfunction. Further improvement of our knowledge in not only miRNA specificity, turnover, and transport but also how miRNA sequences and functions can be altered will enhance the therapeutic utility of such molecules.
Collapse
|
137
|
Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ 2014; 5:3. [PMID: 24484532 PMCID: PMC3912347 DOI: 10.1186/2042-6410-5-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.
Collapse
Affiliation(s)
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, and Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA.
| |
Collapse
|
138
|
Moserle L, Jiménez-Valerio G, Casanovas O. Antiangiogenic Therapies: Going beyond Their Limits. Cancer Discov 2013; 4:31-41. [DOI: 10.1158/2159-8290.cd-13-0199] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
139
|
Role of microRNAs in stroke and poststroke depression. ScientificWorldJournal 2013; 2013:459692. [PMID: 24363618 PMCID: PMC3865697 DOI: 10.1155/2013/459692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022] Open
Abstract
microRNAs (miRNA), a sort of noncoding RNAs widely distributed in eukaryotic cells, could regulate gene expression by inhibiting transcription or translation. They were involved in important physiological and pathological processes including growth, development, and occurrence and progression of diseases. miRNAs are crucial for the development of the nervous system. Recent studies have demonstrated that some miRNAs play important roles in the occurrence and development of ischemic cerebrovascular diseases such as stroke and were also involved in the occurrence and development of poststroke depression (PSD). Herein, studies on the role of miRNAs in the cerebral ischemia and PSD were reviewed, and results may be helpful for the diagnosis and prognosis of cerebral ischemia and PSD with miRNAs in clinical practice.
Collapse
|
140
|
Hsa-let-7g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int J Mol Sci 2013; 14:22708-20. [PMID: 24252910 PMCID: PMC3856086 DOI: 10.3390/ijms141122708] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022] Open
Abstract
It has been well confirmed ox-LDL plays key roles in the development of atherosclerosis via binding to LOX-1 and inducing apoptosis in vascular endothelial cells. Recent studies have shown ox-LDL can suppress microRNA has-let-7g, which in turn inhibits the ox-LDL induced apoptosis. However, details need to be uncovered. To determine the anti-atherosclerosis effect of microRNA has-let-7g, and to evaluate the possibility of CASP3 as an anti-atherosclerotic drug target by has-let-7g, the present study determined the role of hsa-let-7g miRNA in ox-LDL induced apoptosis in the vascular endothelial cells. We found that miRNA has-let-7g was suppressed during the ox-LDL-induced apoptosis in EAhy926 endothelial cells. In addition, overexpression of has-let-7g negatively regulated apoptosis in the endothelial cells by targeting caspase-3 expression. Therefore, miRNA let-7g may play important role in endothelial apoptosis and atherosclerosis.
Collapse
|
141
|
Wang S, Li H, Wang J, Wang D. Expression of microRNA-497 and its prognostic significance in human breast cancer. Diagn Pathol 2013; 8:172. [PMID: 24143964 PMCID: PMC4015750 DOI: 10.1186/1746-1596-8-172] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/08/2013] [Indexed: 01/05/2023] Open
Abstract
Objective Dysregulation of microRNAs (miRNAs) plays critical roles in tumor progression. The aim of this study was to investigate the clinicopathologic and prognostic significance of miR-497 expression in human breast cancer (BC). Methods Taqman qRT-PCR assay was performed to detect the expression of microRNA (miR)-497 in 30 pairs of BC tissues and corresponding noncancerous breast tissues. Additionally, the expression of this miRNA was detected in another 128 BC tissues and its correlations with clinicopathologic features of patients were analyzed. Kaplan-Meier analyses were used to assess survival of patients. Univariate and multivariate analyses were performed using the Cox proportional hazards model to analyze the prognostic significance of miR-497 expression. Results Our data indicated that the relative level of miR-497 expression in BC tissues was significantly lower than that in corresponding noncancerous breast tissues (P = 0.0046). Of 128 BC patients, 74 (57.8%) were placed in the high-miR-497 group and 54 (42.2%) were placed in the low-miR-497 group. By statistical analyses, low miR-497 expression was observed to be closely correlated with higher differentiation grade, positive HER-2 expression, higher incidence of lymph node metastasis and advanced clinical stage. Moreover, patients with high miR-497 expression had better 5-year disease-free and overall survival compared with the low miR-497 group (P = 0.0124 and 0.0018, respectively). Univariate and multivariate analyses indicated that low miR-497 expression was an independent poor prognostic factor for BC patients. Conclusions Our data provided the first evidence that downregulation of miR-497 was correlated with BC progression, and miR-497 might be a potential molecular biomarker for predicting the prognosis of patients. Virtual slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2025828761093488
Collapse
Affiliation(s)
- Shaohua Wang
- Department of General Surgery, Jinling Hospital, School of Medicine, Nanjing University, 315 Zhongshan East Road, Nanjing, Jiangsu 210002, PR China.
| | | | | | | |
Collapse
|
142
|
Roy A, Zhang M, Saad Y, Kolattukudy PE. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am J Physiol Cell Physiol 2013; 305:C1021-32. [PMID: 24048733 DOI: 10.1152/ajpcell.00203.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Inflammatory angiogenesis involves the induction of a novel gene ZC3H12A encoding monocyte chemoattractant protein-1 (MCP-1)-induced protein-1 (MCPIP1) that has deubiquitinase and antidicer RNAse activities. If and how these enzymatic activities of MCPIP1 mediate the biological functions of MCPIP1 are unknown. Present studies with human umbilical vein endothelial cells suggest that MCPIP-induced angiogenesis is mediated via hypoxia-inducible factor (HIF-1α), vascular endothelial growth factor (VEGF), and silent information regulator (SIRT-1) induction that results in the inhibition of angiogenesis inhibitor thrombospondin-1. MCPIP1 expression inhibited the production of the antiangiogenic microRNA (miR)-20b and -34a that repress the translation of HIF-1α and SIRT-1, respectively. The RNase-dead MCPIP mutant D141N not only did not induce angiogenesis but also failed to inhibit the production of miR-20b and -34a suggesting that the antidicer RNase activity of MCPIP1 is involved in MCPIP-mediated angiogenesis. Mimetics of miR-20b and -34a inhibited MCPIP1-induced angiogenesis confirming that MCPIP1 suppresses the biogenesis of miR-20b and -34a. Furthermore, our results indicate that MCPIP expression induces nuclear translocation of HIF-1α. We show that under hypoxia angiogenesis is mediated via induction of MCPIP1 and under normoxia, in vitro, MCPIP deubiquitinates ubiquitinated HIF-1α and the stabilized HIF-1α enters the nucleus to promote the transcription of its target genes, cyclooxygenase-2 and VEGF, suggesting that the deubiquitinase activity of MCPIP may also promote angiogenesis. The present results show for the first time that the antidicer RNase activity of MCPIP1 is critical in mediating a biological function of MCPIP, namely angiogenesis.
Collapse
Affiliation(s)
- Arpita Roy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida
| | | | | | | |
Collapse
|
143
|
Wagner S, Willenbrock S, Nolte I, Murua Escobar H. Comparison of non-coding RNAs in human and canine cancer. Front Genet 2013; 4:46. [PMID: 23579348 PMCID: PMC3619122 DOI: 10.3389/fgene.2013.00046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/13/2013] [Indexed: 12/21/2022] Open
Abstract
The discovery of the post-transcriptional gene silencing (PTGS) by small non-protein-coding RNAs is considered as a major breakthrough in biology. In the last decade we just started to realize the biologic function and complexity of gene regulation by small non-coding RNAs. PTGS is a conserved phenomenon which was observed in various species such as fungi, worms, plants, and mammals. Micro RNAs (miRNA) and small interfering RNAs (siRNAs) are two gene silencing mediators constituting an evolutionary conserved class of non-coding RNAs regulating many biological processes in eukaryotes. As this small RNAs appear to regulate gene expression at translational and transcriptional level it is not surprising that during the last decade many human diseases among them Alzheimer's disease, cardiovascular diseases, and various cancer types were associated with deregulated miRNA expression. Consequently small RNAs are considered to hold big promises as therapeutic agents. However, despite of the enormous therapeutic potential many questions remain unanswered. A major critical point, when evaluating novel therapeutic approaches, is the transfer of in vitro settings to an in vivo model. Classical animal models rely on the laboratory kept animals under artificial conditions and often missing an intact immune system. Model organisms with spontaneously occurring tumors as e.g., dogs provide the possibility to evaluate therapeutic agents under the surveillance of an in intact immune system and thereby providing an authentic tumor reacting scenario. Considering the genomic similarity between canines and humans and the advantages of the dog as cancer model system for human neoplasias the analyses of the complex role of small RNAs in canine tumor development could be of major value for both species. Herein we discuss comparatively the role of miRNAs in human and canine cancer development and highlight the potential and advantages of the model organism dog for tumor research.
Collapse
Affiliation(s)
- Siegfried Wagner
- Small Animal Clinic, University of Veterinary Medicine Hannover Hannover, Germany
| | | | | | | |
Collapse
|
144
|
Xu Q, Dong QG, Sun LP, He CY, Yuan Y. Expression of serum miR-20a-5p, let-7a, and miR-320a and their correlations with pepsinogen in atrophic gastritis and gastric cancer: a case-control study. BMC Clin Pathol 2013; 13:11. [PMID: 23521833 PMCID: PMC3635921 DOI: 10.1186/1472-6890-13-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 03/18/2013] [Indexed: 02/07/2023] Open
Abstract
Background The identification of serial miRNAs targeting the same functional gastric protein could provide new and effective serological biomarkers for the diagnosis of gastric cancer (GC). The aim of this study was to evaluate the potential of miR-20a-5p, let-7a and miR-320a in the diagnosis of AG or GC and the correlation of the three miRNAs with their predicted target molecules PGA, PGC and PGA/PGC ratio. Methods The total of 291 patients included 103 controls (CON), 94 with atrophic gastritis (AG) and 94 with GC. The levels of serum miRNAs were detected by quantitative reverse transcription-polymerase chain reaction and serum pepsinogen A (PGA) and C (PGC) were determined by enzyme-linked immunosorbent assays. Results Serum miR-320a level decreased through the controls, AG and GC groups which were the cascades of GC development, while there were no significant differences in levels of miR-20a-5p and let-7a among the controls, AG and GC groups. When stratified by gender and age, serum miR-320a expression was lower in female GC patients than in controls (p = 0.035), especially in female GC patients older than 60 years (p = 0.008). For distinguishing female GC patients aged over 60, the area under the receiver operating characteristic curve for miR-320a was 0.699, and the best cut-off point was 4.76 with a sensitivity of 65.2% and specificity of 68.2%. Concerning the correlations between the selected miR-20a-5p, let-7a, miR-320a and PGs, we found that there were positive correlations between all the three and the ratio of PGA/PGC (r = 0.408, 0.255, 0.324; p = <0.001, 0.009, 0.001, respectively), but there was no relationship between the expression of serum miR-20a-5p and its predicted target PGA, or between let-7a and miR-320a and their predicted target PGC. Serum miR-320a was decreased and PGC was increased in the GC group compared with the control group. Conclusions Levels of serum miR-320a were lower in female GC patients older than 60 than in controls, which may provide a potential valuable marker for diagnosing older women with GC. The levels of serum miR-20a-5p, let-7a and miR-320a were positively correlated with PGA/PGC, which may indirectly reflect the functional status of the gastric mucosa.
Collapse
Affiliation(s)
- Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| | - Qi-Guan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China.,The Department of Medical Oncology, the General Hospital of Fushun Mining Bureau, Fushun, Liaoning Province 113008, China
| | - Li-Ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| | - Cai-Yun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, the Key Laboratory of Tumor Etiology and Prevention in Liaoning Province, Shenyang, Liaoning Province 110001, China
| |
Collapse
|
145
|
Anand S. A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell 2013; 5:2. [PMID: 23324117 PMCID: PMC3554556 DOI: 10.1186/2045-824x-5-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/11/2013] [Indexed: 01/08/2023] Open
Abstract
Development of the vasculature is a complex, dynamic process orchestrated by a balance of pro and anti-angiogenic signaling pathways. The same signaling pathways are mis-regulated and exploited during pathological angiogenesis in cancer, inflammation and cardiovascular diseases and contribute to disease progression. In the last decade, small non-coding RNA molecules termed microRNAs (miRs) have emerged as key regulators of several cellular processes including angiogenesis. It is becoming clear that miRs function in complex networks and regulate gene expression both at the mRNA and protein levels thereby altering cellular signaling responses to specific stimuli. In the vasculature, miRs can function either in a pro-angiogenic manner and potentiate angiogenesis or act as anti-angiogenic miRs by enhancing cell death and decreasing endothelial proliferation. This review aims to provide an update on how microRNAs regulate gene expression and illustrate miR function in the vasculature with a discussion of potential applications of miRs as anti-angiogenic therapeutics.
Collapse
Affiliation(s)
- Sudarshan Anand
- Moores UCSD Cancer Center, 3855 Health Sciences Drive #0803, La Jolla, CA, 92093, USA.
| |
Collapse
|