101
|
Ghosh T, Basu U. Cis-Acting Sequence Elements and Upstream Open Reading Frame in Mouse Utrophin-A 5'-UTR Repress Cap-Dependent Translation. PLoS One 2015; 10:e0134809. [PMID: 26230628 PMCID: PMC4521823 DOI: 10.1371/journal.pone.0134809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Utrophin, the autosomal homologue of dystrophin can functionally compensate for dystrophin deficiency. Utrophin upregulation could therefore be a therapeutic strategy in Duchenne Muscular Dystrophy (DMD) that arises from mutation in dystrophin gene. In contrast to its transcriptional regulation, mechanisms operating at post-transcriptional level of utrophin expression have not been well documented. Although utrophin-A 5'-UTR has been reported with internal ribosome entry site (IRES), its inhibitory effect on translation is also evident. In the present study we therefore aimed to compare relative contribution of cap-independent and cap-dependent translation with mouse utrophin-A 5'-UTR through m7G-capped and A-capped mRNA transfection based reporter assay. Our results demonstrate that cap-independent translation with utrophin-A 5'-UTR is not as strong as viral IRES. However, cap-independent mode has significant contribution as cap-dependent translation is severely repressed with utrophin-A 5'-UTR. We further identified two sequence elements and one upstream open reading frame in utrophin-A 5'-UTR responsible for repression. The repressor elements in utrophin-A 5'-UTR may be targeted for utrophin upregulation.
Collapse
Affiliation(s)
- Trinath Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, West Bengal, India
| | - Utpal Basu
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, West Bengal, India
- * E-mail:
| |
Collapse
|
102
|
Browning KS, Bailey-Serres J. Mechanism of cytoplasmic mRNA translation. THE ARABIDOPSIS BOOK 2015; 13:e0176. [PMID: 26019692 PMCID: PMC4441251 DOI: 10.1199/tab.0176] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein synthesis is a fundamental process in gene expression that depends upon the abundance and accessibility of the mRNA transcript as well as the activity of many protein and RNA-protein complexes. Here we focus on the intricate mechanics of mRNA translation in the cytoplasm of higher plants. This chapter includes an inventory of the plant translational apparatus and a detailed review of the translational processes of initiation, elongation, and termination. The majority of mechanistic studies of cytoplasmic translation have been carried out in yeast and mammalian systems. The factors and mechanisms of translation are for the most part conserved across eukaryotes; however, some distinctions are known to exist in plants. A comprehensive understanding of the complex translational apparatus and its regulation in plants is warranted, as the modulation of protein production is critical to development, environmental plasticity and biomass yield in diverse ecosystems and agricultural settings.
Collapse
Affiliation(s)
- Karen S. Browning
- Department of Molecular Biosciences and Institute for Cell and Molecular Biology, University of Texas at Austin, Austin TX 78712-0165
- Both authors contributed equally to this work
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California, Riverside, CA, 92521 USA
- Both authors contributed equally to this work
| |
Collapse
|
103
|
Andreev DE, O'Connor PBF, Fahey C, Kenny EM, Terenin IM, Dmitriev SE, Cormican P, Morris DW, Shatsky IN, Baranov PV. Translation of 5' leaders is pervasive in genes resistant to eIF2 repression. eLife 2015; 4:e03971. [PMID: 25621764 PMCID: PMC4383229 DOI: 10.7554/elife.03971] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022] Open
Abstract
Eukaryotic cells rapidly reduce protein synthesis in response to various stress
conditions. This can be achieved by the phosphorylation-mediated inactivation of a
key translation initiation factor, eukaryotic initiation factor 2 (eIF2). However,
the persistent translation of certain mRNAs is required for deployment of an adequate
stress response. We carried out ribosome profiling of cultured human cells under
conditions of severe stress induced with sodium arsenite. Although this led to a
5.4-fold general translational repression, the protein coding open reading frames
(ORFs) of certain individual mRNAs exhibited resistance to the inhibition. Nearly all
resistant transcripts possess at least one efficiently translated upstream open
reading frame (uORF) that represses translation of the main coding ORF under normal
conditions. Site-specific mutagenesis of two identified stress resistant mRNAs
(PPP1R15B and IFRD1) demonstrated that a single uORF is sufficient for eIF2-mediated
translation control in both cases. Phylogenetic analysis suggests that at least two
regulatory uORFs (namely, in SLC35A4 and MIEF1) encode functional protein
products. DOI:http://dx.doi.org/10.7554/eLife.03971.001 Proteins carry out essential tasks for living cells and genes contain the
instructions to make proteins within their DNA. These instructions are copied to make
a molecule of mRNA, and a molecular machine known as a ribosome then reads and
translates the mRNA to build the protein. The first step in the translation process is called ‘initiation’ and
requires a protein called eIF2 to work together with the ribosome. This step involves
identifying an instruction called the start codon that marks the beginning of the
mRNA's coding sequence. The section of an mRNA molecule before the start codon
is not normally translated by the ribosome and is hence called the 5′
untranslated region. Building proteins requires energy and resources, and so it is carefully regulated. If
a cell is stressed, such as by being exposed to harmful chemicals, it makes fewer
proteins in order to conserve its resources. This down-regulation of protein
production is achieved in part by the cell chemically modifying its eIF2 proteins to
make them less able to initiate translation. However, stressed cells still continue
to make more of certain proteins that help them to combat stress. The mRNA molecules
for some of these proteins contain at least one other start codon in the 5′
untranslated region. The sequence that would be translated from such a start codon is
known as an upstream open reading frame (or uORF for short)—and this feature
is thought to help certain proteins to still be expressed despite low levels of
active eIF2. Andreev, O'Connor et al. have now analysed which mRNAs are
translated in human cells that have been treated with a chemical that induces stress
and makes the eIF2 protein less able to initiate translation. To do so, a technique
called ribosome profiling was used to identify all of the mRNA molecules bound to
ribosomes shortly after treatment with this chemical. Overall translation of most mRNAs in stressed cells was reduced to a quarter of the
normal level. However, Andreev, O'Connor et al. observed that the translation
of a few mRNAs continued almost as normal, or even increased, after the chemical
treatment. Notably, most of these mRNAs encoded regulatory proteins, which are not
required in large amounts. With one exception, all of these resistant mRNAs contained
uORFs. In unstressed cells, these uORFs were efficiently translated, while the same
mRNA's coding sequences were translated less efficiently. Andreev,
O'Connor et al. suggest that these two features could be used to identify
mRNAs that are still translated into working proteins when cells are stressed.
Further work is now needed to explore the mechanisms by which translation of these
uORFs allows mRNAs to resist the stress. DOI:http://dx.doi.org/10.7554/eLife.03971.002
Collapse
Affiliation(s)
- Dmitry E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Ciara Fahey
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Elaine M Kenny
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Paul Cormican
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Derek W Morris
- Department of Psychiatry and Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
104
|
Kuehnert J, Sommer G, Zierk AW, Fedarovich A, Brock A, Fedarovich D, Heise T. Novel RNA chaperone domain of RNA-binding protein La is regulated by AKT phosphorylation. Nucleic Acids Res 2015; 43:581-94. [PMID: 25520193 PMCID: PMC4288197 DOI: 10.1093/nar/gku1309] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/13/2023] Open
Abstract
The cellular function of the cancer-associated RNA-binding protein La has been linked to translation of viral and cellular mRNAs. Recently, we have shown that the human La protein stimulates IRES-mediated translation of the cooperative oncogene CCND1 in cervical cancer cells. However, there is little known about the underlying molecular mechanism by which La stimulates CCND1 IRES-mediated translation, and we propose that its RNA chaperone activity is required. Herein, we show that La binds close to the CCND1 start codon and demonstrate that La's RNA chaperone activity can change the folding of its binding site. We map the RNA chaperone domain (RCD) within the C-terminal region of La in close proximity to a novel AKT phosphorylation site (T389). Phosphorylation at T389 by AKT-1 strongly impairs its RNA chaperone activity. Furthermore, we demonstrate that the RCD as well as T389 is required to stimulate CCND1 IRES-mediated translation in cells. In summary, we provide a model whereby a novel interplay between RNA-binding, RNA chaperoning and AKT phosphorylation of La protein regulates CCND1 IRES-mediated translation.
Collapse
Affiliation(s)
- Julia Kuehnert
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gunhild Sommer
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Avery W Zierk
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alexander Brock
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dzmitry Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tilman Heise
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
105
|
Ozretić P, Bisio A, Musani V, Trnski D, Sabol M, Levanat S, Inga A. Regulation of human PTCH1b expression by different 5' untranslated region cis-regulatory elements. RNA Biol 2015; 12:290-304. [PMID: 25826662 PMCID: PMC4615190 DOI: 10.1080/15476286.2015.1008929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/08/2023] Open
Abstract
PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway.
Collapse
Key Words
- 5'UTR
- 5′UTR, 5′ untranslated region
- CGG repeats
- Fluc, Firefly luciferase
- Hedgehog-Gli
- Hh-Gli, Hedgehog-Gli
- IRES
- IRES, internal ribosome entry site
- POL, polysome-associated
- PTC1-L, protein patched homolog 1
- PTCH1
- Rluc, Renilla luciferase
- SUB, subpolysomal
- isoform L PTCH1b, Patched 1 gene, transcript variant 1b
- uAUG
- uAUG, upstream AUG codon
- uORF
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| | - Vesna Musani
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alberto Inga
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| |
Collapse
|
106
|
Leprivier G, Rotblat B, Khan D, Jan E, Sorensen PH. Stress-mediated translational control in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:845-60. [PMID: 25464034 DOI: 10.1016/j.bbagrm.2014.11.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/31/2014] [Accepted: 11/04/2014] [Indexed: 12/22/2022]
Abstract
Tumor cells are continually subjected to diverse stress conditions of the tumor microenvironment, including hypoxia, nutrient deprivation, and oxidative or genotoxic stress. Tumor cells must evolve adaptive mechanisms to survive these conditions to ultimately drive tumor progression. Tight control of mRNA translation is critical for this response and the adaptation of tumor cells to such stress forms. This proceeds though a translational reprogramming process which restrains overall translation activity to preserve energy and nutrients, but which also stimulates the selective synthesis of major stress adaptor proteins. Here we present the different regulatory signaling pathways which coordinate mRNA translation in the response to different stress forms, including those regulating eIF2α, mTORC1 and eEF2K, and we explain how tumor cells hijack these pathways for survival under stress. Finally, mechanisms for selective mRNA translation under stress, including the utilization of upstream open reading frames (uORFs) and internal ribosome entry sites (IRESes) are discussed in the context of cell stress. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Gabriel Leprivier
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Barak Rotblat
- Department of Life Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Debjit Khan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L4, Canada; Department of Pathology, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada.
| |
Collapse
|
107
|
Lamandé SR, North KN. Activating internal ribosome entry to treat Duchenne muscular dystrophy. Nat Med 2014; 20:987-8. [PMID: 25198047 DOI: 10.1038/nm.3677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mutations in the DMD gene, encoding dystrophin, cause the most common forms of muscular dystrophy. A new study shows that forcing translation of DMD from an internal ribosome entry site can alleviate Duchenne muscular dystrophy symptoms in a mouse model.
Collapse
Affiliation(s)
- Shireen R Lamandé
- Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Kathryn N North
- Murdoch Childrens Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
108
|
Au HHT, Jan E. Novel viral translation strategies. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:779-801. [PMID: 25045163 PMCID: PMC7169809 DOI: 10.1002/wrna.1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/03/2014] [Accepted: 05/08/2014] [Indexed: 01/06/2023]
Abstract
Viral genomes are compact and encode a limited number of proteins. Because they do not encode components of the translational machinery, viruses exhibit an absolute dependence on the host ribosome and factors for viral messenger RNA (mRNA) translation. In order to recruit the host ribosome, viruses have evolved unique strategies to either outcompete cellular transcripts that are efficiently translated by the canonical translation pathway or to reroute translation factors and ribosomes to the viral genome. Furthermore, viruses must evade host antiviral responses and escape immune surveillance. This review focuses on some recent major findings that have revealed unconventional strategies that viruses utilize, which include usurping the host translational machinery, modulating canonical translation initiation factors to specifically enhance or repress overall translation for the purpose of viral production, and increasing viral coding capacity. The discovery of these diverse viral strategies has provided insights into additional translational control mechanisms and into the viral host interactions that ensure viral protein synthesis and replication. WIREs RNA 2014, 5:779–801. doi: 10.1002/wrna.1246 This article is categorized under:
Translation > Translation Mechanisms Translation > Translation Regulation
Collapse
Affiliation(s)
- Hilda H T Au
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
109
|
Ostareck DH, Naarmann-de Vries IS, Ostareck-Lederer A. DDX6 and its orthologs as modulators of cellular and viral RNA expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:659-78. [PMID: 24788243 DOI: 10.1002/wrna.1237] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/21/2022]
Abstract
DDX6 (Rck/p54), a member of the DEAD-box family of helicases, is highly conserved from unicellular eukaryotes to vertebrates. Functions of DDX6 and its orthologs in dynamic ribonucleoproteins contribute to global and transcript-specific messenger RNA (mRNA) storage, translational repression, and decay during development and differentiation in the germline and somatic cells. Its role in pathways that promote mRNA-specific alternative translation initiation has been shown to be linked to cellular homeostasis, deregulated tissue development, and the control of gene expression in RNA viruses. Recently, DDX6 was found to participate in mRNA regulation mediated by miRNA-mediated silencing. DDX6 and its orthologs have versatile functions in mRNA metabolism, which characterize them as important post-transcriptional regulators of gene expression.
Collapse
Affiliation(s)
- Dirk H Ostareck
- Experimental Research Unit, Department of Intensive Care and Intermediate Care, University Hospital, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|
110
|
Plank TDM, Whitehurst JT, Cencic R, Pelletier J, Kieft JS. Internal translation initiation from HIV-1 transcripts is conferred by a common RNA structure. ACTA ACUST UNITED AC 2014; 2:e27694. [PMID: 26779399 PMCID: PMC4705822 DOI: 10.4161/trla.27694] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/16/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022]
Abstract
Alternative splicing of the human immunodeficiency virus 1 (HIV-1) RNA transcripts produces mRNAs encoding nine different viral proteins. The leader of each contains a common non-coding exon at the 5' end. Previous studies showed that the leaders from the common exon-containing transcripts gag, nef, vif, vpr and vpu can direct protein synthesis through internal ribosome entry sites (IRESs) with varying efficiencies. Here we explored whether the common exon acts as an IRES element in the context of all the 5' leaders or if each harbors a distinct IRES. We also explored the relationship between the IRESs and initiation codon selection. We find that the common exon adopts a similar conformation in every leader we explored and that the sequence and structure is required for IRES activity. We also find that each leader uses a scanning mechanism for start codon identification. Together, our data point to a model in which the common exon on HIV-1 transcripts acts as the ribosome landing pad, recruiting preinitiation complexes upstream of the initiation codon, followed by scanning to each transcript's initiator AUG.
Collapse
Affiliation(s)
- Terra-Dawn M Plank
- Department of Biochemistry and Molecular Genetics and University of Colorado Denver School of Medicine, Aurora, CO USA
| | - James T Whitehurst
- Department of Pharmacology, University of Colorado Denver, School of Medicine, Aurora, CO USA
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, Quebec, QC Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, QC Canada; The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, QC Canada
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics and University of Colorado Denver School of Medicine, Aurora, CO USA; Howard Hughes Medical Institute, University of Colorado Denver School of Medicine, Aurora, CO USA
| |
Collapse
|
111
|
Abstract
In eukaryotes, the translation initiation codon is generally identified by the scanning mechanism, wherein every triplet in the messenger RNA leader is inspected for complementarity to the anticodon of methionyl initiator transfer RNA (Met-tRNAi). Binding of Met-tRNAi to the small (40S) ribosomal subunit, in a ternary complex (TC) with eIF2-GTP, is stimulated by eukaryotic initiation factor 1 (eIF1), eIF1A, eIF3, and eIF5, and the resulting preinitiation complex (PIC) joins the 5' end of mRNA preactivated by eIF4F and poly(A)-binding protein. RNA helicases remove secondary structures that impede ribosome attachment and subsequent scanning. Hydrolysis of eIF2-bound GTP is stimulated by eIF5 in the scanning PIC, but completion of the reaction is impeded at non-AUG triplets. Although eIF1 and eIF1A promote scanning, eIF1 and possibly the C-terminal tail of eIF1A must be displaced from the P decoding site to permit base-pairing between Met-tRNAi and the AUG codon, as well as to allow subsequent phosphate release from eIF2-GDP. A second GTPase, eIF5B, catalyzes the joining of the 60S subunit to produce an 80S initiation complex that is competent for elongation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892;
| |
Collapse
|
112
|
Affiliation(s)
- J Paul Taylor
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
113
|
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 2013; 5:a012351. [PMID: 23209131 DOI: 10.1101/cshperspect.a012351] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.
Collapse
Affiliation(s)
- Derek Walsh
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
114
|
Hershey JWB, Sonenberg N, Mathews MB. Principles of translational control: an overview. Cold Spring Harb Perspect Biol 2012; 4:4/12/a011528. [PMID: 23209153 DOI: 10.1101/cshperspect.a011528] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Translational control plays an essential role in the regulation of gene expression. It is especially important in defining the proteome, maintaining homeostasis, and controlling cell proliferation, growth, and development. Numerous disease states result from aberrant regulation of protein synthesis, so understanding the molecular basis and mechanisms of translational control is critical. Here we outline the pathway of protein synthesis, with special emphasis on the initiation phase, and identify areas needing further clarification. Features of translational control are described together with numerous specific examples, and we discuss prospects for future conceptual advances.
Collapse
Affiliation(s)
- John W B Hershey
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|