101
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
102
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
103
|
The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome. Nat Commun 2019; 10:30. [PMID: 30604745 PMCID: PMC6318279 DOI: 10.1038/s41467-018-07907-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi. The inactive X chromosome (Xi) has an atypical structure, with global loss of TADs, A/B compartments and formation of mega-domains. Here the authors show that the non-canonical SMC family protein, SmcHD1, important for developmental gene silencing on Xi, antagonises TAD formation and compartmentalization on the Xi in a transcription independent way.
Collapse
|
104
|
Debatisse M, Rosselli F. A journey with common fragile sites: From S phase to telophase. Genes Chromosomes Cancer 2018; 58:305-316. [PMID: 30387289 DOI: 10.1002/gcc.22704] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/25/2018] [Indexed: 12/17/2022] Open
Abstract
Some regions of the genome, notably common fragile sites (CFSs), are hypersensitive to replication stress and often involved in the generation of gross chromosome rearrangements in cancer cells. CFSs nest within very large genes and display cell-type-dependent instability. Fragile or not, large genes tend to replicate late in S-phase. A number of data now show that transcription perturbs replication completion across the body of large genes, particularly upon replication stress. However, the molecular mechanisms by which transcription elicits such under-replication and subsequent instability remain unclear. We present here our view of the mechanisms responsible for CFS under-replication and those allowing the cells to cope with this problem in G2 and mitosis. We notably focus on the major role played by the FANC proteins in the protection of CFSs from S phase up to late mitosis. We finally discuss a possible rationale for the conservation of large genes across vertebrate evolution.
Collapse
Affiliation(s)
- Michelle Debatisse
- CNRS UMR 8200, Equipe labellisée "La ligue Contre le Cancer", Villejuif, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Gustave Roussy Cancer Center, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR 8200, Equipe labellisée "La ligue Contre le Cancer", Villejuif, France.,Gustave Roussy Cancer Center, Villejuif, France.,Université Paris Saclay - Paris Sud, Orsay, France
| |
Collapse
|
105
|
ChECing out Rif1 action in freely cycling cells. Curr Genet 2018; 65:429-434. [PMID: 30456647 DOI: 10.1007/s00294-018-0902-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Accepted: 11/10/2018] [Indexed: 10/27/2022]
Abstract
In buddying yeast, like all eukaryotes examined so far, DNA replication is under temporal control, such that some origins fire early and some late during S phase. This replication timing program is established in G1 phase, where chromatin states are thought to prevent binding of key-limiting initiation factors at late-firing origins. Although many factors are involved in replication initiation, a new player, Rif1, has recently entered the scene, with a spate of papers revealing a global role for the protein in the control of replication initiation timing from yeasts to humans. Since budding yeast Rif1 was known to bind only to telomeric and silent mating loci regions, it remained controversial whether Rif1 acts directly at replication origins or instead influences origin activity indirectly. In this perspective, we discuss our recent finding that Rif1 binds directly to the replication origins that it controls. In this study, we also found that Rif1's regulatory activity at origins is best revealed by an assay (sort-seq) that measures replication in unperturbed, freely cycling cultures, as opposed to commonly used protocols in which cells are first blocked in the G1 phase of the cell cycle by mating pheromone, then released into a synchronous S phase. Finally, we discuss how the sequestration of Rif1 at telomeres, through an interaction with the arrays of Rap1 molecules bound there, plays an important role in limiting Rif1's action primarily to telomere-proximal replication origins.
Collapse
|
106
|
Batrakou DG, Heron ED, Nieduszynski CA. Rapid high-resolution measurement of DNA replication timing by droplet digital PCR. Nucleic Acids Res 2018; 46:e112. [PMID: 29986073 PMCID: PMC6212846 DOI: 10.1093/nar/gky590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/11/2018] [Accepted: 06/18/2018] [Indexed: 02/03/2023] Open
Abstract
Genomes are replicated in a reproducible temporal pattern. Current methods for assaying allele replication timing are time consuming and/or expensive. These include high-throughput sequencing which can be used to measure DNA copy number as a proxy for allele replication timing. Here, we use droplet digital PCR to study DNA replication timing at multiple loci in budding yeast and human cells. We establish that the method has temporal and spatial resolutions comparable to the high-throughput sequencing approaches, while being faster than alternative locus-specific methods. Furthermore, the approach is capable of allele discrimination. We apply this method to determine relative replication timing across timing transition zones in cultured human cells. Finally, multiple samples can be analysed in parallel, allowing us to rapidly screen kinetochore mutants for perturbation to centromere replication timing. Therefore, this approach is well suited to the study of locus-specific replication and the screening of cis- and trans-acting mutants to identify mechanisms that regulate local genome replication timing.
Collapse
Affiliation(s)
- Dzmitry G Batrakou
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Emma D Heron
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
107
|
Munden A, Rong Z, Sun A, Gangula R, Mallal S, Nordman JT. Rif1 inhibits replication fork progression and controls DNA copy number in Drosophila. eLife 2018; 7:e39140. [PMID: 30277458 PMCID: PMC6185109 DOI: 10.7554/elife.39140] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Control of DNA copy number is essential to maintain genome stability and ensure proper cell and tissue function. In Drosophila polyploid cells, the SNF2-domain-containing SUUR protein inhibits replication fork progression within specific regions of the genome to promote DNA underreplication. While dissecting the function of SUUR's SNF2 domain, we identified an interaction between SUUR and Rif1. Rif1 has many roles in DNA metabolism and regulates the replication timing program. We demonstrate that repression of DNA replication is dependent on Rif1. Rif1 localizes to active replication forks in a partially SUUR-dependent manner and directly regulates replication fork progression. Importantly, SUUR associates with replication forks in the absence of Rif1, indicating that Rif1 acts downstream of SUUR to inhibit fork progression. Our findings uncover an unrecognized function of the Rif1 protein as a regulator of replication fork progression.
Collapse
Affiliation(s)
- Alexander Munden
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| | - Zhan Rong
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| | - Amanda Sun
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| | - Rama Gangula
- Department of MedicineVanderbilt University School of MedicineNashvilleUnited States
| | - Simon Mallal
- Department of MedicineVanderbilt University School of MedicineNashvilleUnited States
- Department of Pathology, Microbiology and ImmunologyVanderbilt University School of MedicineNashvilleUnited States
| | - Jared T Nordman
- Department of Biological SciencesVanderbilt UniversityNashvilleUnited States
| |
Collapse
|
108
|
Mei Y, Liu YB, Cao S, Tian ZW, Zhou HH. RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/β-catenin signaling. Cell Death Dis 2018; 9:942. [PMID: 30237512 PMCID: PMC6148239 DOI: 10.1038/s41419-018-0972-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
Wnt/β-catenin signaling is essential for proliferation and maintenance of cancer stem cell-like traits of various cancer cells. In non-small-cell lung carcinoma (NSCLC), the mechanisms underlying the hyperactivation of Wnt signaling remain unclear, as mutations in APC and β-catenin genes are rare in NSCLC. RIF1 has been shown upregulated in breast and cervical cancer, this study intends to find out the potential effects of the expression and biological functions of RIF1 in NSCLC. Here we revealed that RIF1 was highly expressed in NCSLC at both mRNA and protein levels. RIF1 expression was significantly associated with clinical stage (P < 0.05) and prognosis (P < 0.001) of NSCLC patients. RIF1 knockdown inhibited NSCLC cell growth in vitro and in vivo, whereas overexpression of RIF1 in NSCLC cell lines promoted cell growth, cell cycle progression and cancer stem cell (CSC)-like properties via promoting PP1-AXIN interaction and thereby activating Wnt/β-catenin signaling. Inhibition of PP1 in RIF1-overexpressed cells counteracted the effects of RIF1 on cell growth and CSC-like phenotype, as well as the Wnt/β-catenin signaling. RIF1 expression was positively correlated with β-catenin at the protein level in 32 NSCLC tissues. RIF1 expression closely related to MYC (r = 0.28, P < 0.001) and CCND1 (r = 0.14, P < 0.01) expression at the mRNA level in cohorts of The Cancer Genome Atlas (TCGA). These results indicated that RIF1 had an oncogenic role as a novel positive regulator of Wnt/β-catenin signaling by directing PP1 to dephosphorylate AXIN; this novel mechanism may present a new therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ying Mei
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha P. R., China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha P. R., China
| | - Yong-Bin Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha P. R., China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha P. R., China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha P. R., China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha P. R., China
| | - Zheng-Wen Tian
- Department of Epidemiology and Medical Statistics, Xiangya School of Public Health, Central South University, 410008, Changsha P. R., China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 410008, Changsha P. R., China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 410078, Changsha P. R., China.
| |
Collapse
|
109
|
Hiraga SI, Monerawela C, Katou Y, Shaw S, Clark KR, Shirahige K, Donaldson AD. Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks. EMBO Rep 2018; 19:e46222. [PMID: 30104203 PMCID: PMC6123642 DOI: 10.15252/embr.201846222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 11/28/2022] Open
Abstract
Despite its evolutionarily conserved function in controlling DNA replication, the chromosomal binding sites of the budding yeast Rif1 protein are not well understood. Here, we analyse genome-wide binding of budding yeast Rif1 by chromatin immunoprecipitation, during G1 phase and in S phase with replication progressing normally or blocked by hydroxyurea. Rif1 associates strongly with telomeres through interaction with Rap1. By comparing genomic binding of wild-type Rif1 and truncated Rif1 lacking the Rap1-interaction domain, we identify hundreds of Rap1-dependent and Rap1-independent chromosome interaction sites. Rif1 binds to centromeres, highly transcribed genes and replication origins in a Rap1-independent manner, associating with both early and late-initiating origins. Interestingly, Rif1 also binds around activated origins when replication progression is blocked by hydroxyurea, suggesting association with blocked forks. Using nascent DNA labelling and DNA combing techniques, we find that in cells treated with hydroxyurea, yeast Rif1 stabilises recently synthesised DNA Our results indicate that, in addition to controlling DNA replication initiation, budding yeast Rif1 plays an ongoing role after initiation and controls events at blocked replication forks.
Collapse
Affiliation(s)
| | | | - Yuki Katou
- Institute for Quantitative Biosciences, University of Tokyo, Tokyo, Japan
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | - Kate Rm Clark
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
110
|
Gil RS, Vagnarelli P. Protein phosphatases in chromatin structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:90-101. [PMID: 30036566 PMCID: PMC6227384 DOI: 10.1016/j.bbamcr.2018.07.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure and dynamics are highly controlled and regulated processes that play an essential role in many aspects of cell biology. The chromatin transition stages and the factors that control this process are regulated by post-translation modifications, including phosphorylation. While the role of protein kinases in chromatin dynamics has been quite well studied, the nature and regulation of the counteracting phosphatases represent an emerging field but are still at their infancy. In this review we summarize the current literature on phosphatases involved in the regulation of chromatin structure and dynamics, with emphases on the major knowledge gaps that should require attention and more investigation.
Collapse
Affiliation(s)
- Raquel Sales Gil
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK
| | - Paola Vagnarelli
- Colleges of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, UK.
| |
Collapse
|
111
|
Ogawa S, Kido S, Handa T, Ogawa H, Asakawa H, Takahashi TS, Nakagawa T, Hiraoka Y, Masukata H. Shelterin promotes tethering of late replication origins to telomeres for replication-timing control. EMBO J 2018; 37:embj.201898997. [PMID: 29997179 DOI: 10.15252/embj.201898997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/19/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022] Open
Abstract
DNA replication initiates at many discrete loci on eukaryotic chromosomes, and individual replication origins are regulated under a spatiotemporal program. However, the underlying mechanisms of this regulation remain largely unknown. In the fission yeast Schizosaccharomyces pombe, the telomere-binding protein Taz1, ortholog of human TRF1/TRF2, regulates a subset of late replication origins by binding to the telomere-like sequence near the origins. Here, we showed using a lacO/LacI-GFP system that Taz1-dependent late origins were predominantly localized at the nuclear periphery throughout interphase, and were localized adjacent to the telomeres in the G1/S phase. The peripheral localization that depended on the nuclear membrane protein Bqt4 was not necessary for telomeric association and replication-timing control of the replication origins. Interestingly, the shelterin components Rap1 and Poz1 were required for replication-timing control and telomeric association of Taz1-dependent late origins, and this requirement was bypassed by a minishelterin Tpz1-Taz1 fusion protein. Our results suggest that Taz1 suppresses replication initiation through shelterin-mediated telomeric association of the origins at the onset of S phase.
Collapse
Affiliation(s)
- Shiho Ogawa
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Sayuri Kido
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Tetsuya Handa
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Hidesato Ogawa
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | - Haruhiko Asakawa
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | | | - Takuro Nakagawa
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| | - Hisao Masukata
- Graduate School of Science, Osaka University, Toyonaka Osaka, Japan .,Graduate School of Frontier Biosciences, Osaka University, Suita Osaka, Japan
| |
Collapse
|
112
|
Fu H, Baris A, Aladjem MI. Replication timing and nuclear structure. Curr Opin Cell Biol 2018; 52:43-50. [PMID: 29414592 PMCID: PMC5988923 DOI: 10.1016/j.ceb.2018.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/05/2018] [Accepted: 01/14/2018] [Indexed: 12/12/2022]
Abstract
DNA replication proceeds along spatially and temporally coordinated patterns within the nucleus, thus protecting the genome during the synthesis of new genetic material. While we have been able to visualize replication patterns on DNA fibers for 50 years, recent developments and discoveries have provided a greater insight into how DNA replication is controlled. In this review, we highlight many of these discoveries. Of great interest are the physiological role of the replication timing program, cis and trans-acting factors that modulate replication timing and the effects of chromatin structure on the replication timing program. We also discuss future directions in the study of replication timing.
Collapse
Affiliation(s)
- Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, United States
| | - Adrian Baris
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, United States
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
113
|
Fontana GA, Reinert JK, Thomä NH, Rass U. Shepherding DNA ends: Rif1 protects telomeres and chromosome breaks. MICROBIAL CELL 2018; 5:327-343. [PMID: 29992129 PMCID: PMC6035837 DOI: 10.15698/mic2018.07.639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells have evolved conserved mechanisms to protect DNA ends, such as those at the termini of linear chromosomes, or those at DNA double-strand breaks (DSBs). In eukaryotes, DNA ends at chromosomal termini are packaged into proteinaceous structures called telomeres. Telomeres protect chromosome ends from erosion, inadvertent activation of the cellular DNA damage response (DDR), and telomere fusion. In contrast, cells must respond to damage-induced DNA ends at DSBs by harnessing the DDR to restore chromosome integrity, avoiding genome instability and disease. Intriguingly, Rif1 (Rap1-interacting factor 1) has been implicated in telomere homeostasis as well as DSB repair. The protein was first identified in Saccharomyces cerevisiae as being part of the proteinaceous telosome. In mammals, RIF1 is not associated with intact telomeres, but was found at chromosome breaks, where RIF1 has emerged as a key mediator of pathway choice between the two evolutionary conserved DSB repair pathways of non-homologous end-joining (NHEJ) and homologous recombination (HR). While this functional dichotomy has long been a puzzle, recent findings link yeast Rif1 not only to telomeres, but also to DSB repair, and mechanistic parallels likely exist. In this review, we will provide an overview of the actions of Rif1 at DNA ends and explore how exclusion of end-processing factors might be the underlying principle allowing Rif1 to fulfill diverse biological roles at telomeres and chromosome breaks.
Collapse
Affiliation(s)
- Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.,University of Basel, Petersplatz 10, CH-4003 Basel, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
114
|
Nasa I, Rusin SF, Kettenbach AN, Moorhead GB. Aurora B opposes PP1 function in mitosis by phosphorylating the conserved PP1-binding RVxF motif in PP1 regulatory proteins. Sci Signal 2018; 11:11/530/eaai8669. [PMID: 29764992 DOI: 10.1126/scisignal.aai8669] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein phosphatase 1 (PP1) is a highly conserved protein phosphatase that performs most of the serine- and threonine-dephosphorylation reactions in eukaryotes and opposes the actions of a diverse set of serine and threonine (Ser-Thr) protein kinases. PP1 gains substrate specificity through binding to a large number (>200) of regulatory proteins that control PP1 localization, activity, and interactions with substrates. PP1 recognizes the well-characterized RVxF binding motif that is present in many of these regulatory proteins, thus generating a multitude of distinct PP1 holoenzymes. We showed that a subset of the RVxF binding motifs, in which x is a phosphorylatable amino acid (RV[S/T]F), was phosphorylated specifically during mitosis and that this phosphorylation event abrogated the interaction of PP1 with the regulatory protein. We determined that this phosphorylation was primarily governed by the mitotic protein kinase Aurora B and that high phosphorylation site stoichiometry of these sites maintained the phosphorylation of PP1 substrates during mitosis by disrupting the assembly of PP1 holoenzymes. We generated an antibody that recognizes the phosphorylated form of the RV[S/T]F motif (RVp[S/T]F) and used it to identify known PP1 regulatory proteins (KNL1, CDCA2, and RIF1) and multiple proteins that could potentially act as PP1 binding partners (UBR5, ASPM, SEH1, and ELYS) governed by this mechanism. Together, these data suggest a general regulatory mechanism by which the coordinated activities of Aurora B and PP1 control mitotic progression.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Scott F Rusin
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
115
|
Seller CA, O’Farrell PH. Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition. PLoS Biol 2018; 16:e2005687. [PMID: 29746464 PMCID: PMC5963817 DOI: 10.1371/journal.pbio.2005687] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/22/2018] [Accepted: 04/23/2018] [Indexed: 01/09/2023] Open
Abstract
In preparation for dramatic morphogenetic events of gastrulation, rapid embryonic cell cycles slow at the mid-blastula transition (MBT). In Drosophila melanogaster embryos, down-regulation of cyclin-dependent kinase 1 (Cdk1) activity initiates this slowing by delaying replication of heterochromatic satellite sequences and extending S phase. We found that Cdk1 activity inhibited the chromatin association of Rap1 interacting factor 1 (Rif1), a candidate repressor of replication. Furthermore, Rif1 bound selectively to satellite sequences following Cdk1 down-regulation at the MBT. In the next S phase, Rif1 dissociated from different satellites in an orderly schedule that anticipated their replication. Rif1 lacking potential phosphorylation sites failed to dissociate and dominantly prevented completion of replication. Loss of Rif1 in mutant embryos shortened the post-MBT S phase and rescued embryonic cell cycles disrupted by depletion of the S phase–promoting kinase, cell division cycle 7 (Cdc7). Our work shows that Rif1 and S phase kinases compose a replication timer controlling first the developmental onset of late replication and then the precise schedule of replication within S phase. In addition, we describe how onset of late replication fits into the progressive maturation of heterochromatin during development. Cells divide rapidly in the early embryos of most animals. However, during a conserved period of development known as the mid-blastula transition (MBT), the cell cycle slows down dramatically. In Drosophila embryos, genome duplication abruptly slows to initiate this cell cycle prolongation. This is achieved through the onset of late replication, a well-recognized phenomenon in which specific sequences of the genome await replication until long after other sequences have finished. Even though this temporal program of replication is a major determinant of the duration of S phase, the factors involved in this process remain unknown. Here, we use genetics and real-time microscopy to visualize replication in developing fly embryos and show that the protein Rap1 interacting factor 1 (Rif1) mediates the introduction of late replication at the MBT. We find that at this stage, Rif1 binds to and selectively delays the replication of large blocks of repetitive DNA known as satellite sequences. During the rapid cell cycles before the MBT, we show that the cyclin-dependent kinase 1 (Cdk1) prevents Rif1 from slowing down DNA replication by driving its removal from the chromatin. The developmental down-regulation of Cdk1 at the MBT allows Rif1 to associate with the satellite sequences and initiate cell cycle slowing. Our work provides new insights into the temporal programming of S phase and into the embryonic origin of late replication.
Collapse
Affiliation(s)
- Charles A. Seller
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick H. O’Farrell
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
116
|
Wallis ABA, Nieduszynski CA. Investigating the role of Rts1 in DNA replication initiation. Wellcome Open Res 2018; 3:23. [PMID: 29721551 PMCID: PMC5897792 DOI: 10.12688/wellcomeopenres.13884.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Understanding DNA replication initiation is essential to understand the mis-regulation of replication seen in cancer and other human disorders. DNA replication initiates from DNA replication origins. In eukaryotes, replication is dependent on cell cycle kinases which function during S phase. Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) act to phosphorylate the DNA helicase (composed of mini chromosome maintenance proteins: Mcm2-7) and firing factors to activate replication origins. It has recently been found that Rif1 can oppose DDK phosphorylation. Rif1 can recruit protein phosphatase 1 (PP1) to dephosphorylate MCM and restricts origin firing. In this study, we investigate a potential role for another phosphatase, protein phosphatase 2A (PP2A), in regulating DNA replication initiation. The PP2A regulatory subunit Rts1 was previously identified in a large-scale genomic screen to have a genetic interaction with
ORC2 (a DNA replication licensing factor). Deletion of
RTS1 synthetically rescued the temperature-sensitive (ts-) phenotype of
ORC2 mutants. Methods: We deleted
RTS1 in multiple ts-replication factor
Saccharomyces cerevisiae strains, including
ORC2. Dilution series assays were carried out to compare qualitatively the growth of double mutant
∆rts1 ts-replication factor strains relative to the respective single mutant strains. Results: No synthetic rescue of temperature-sensitivity was observed. Instead we found an additive phenotype, indicating gene products function in separate biological processes. These findings are in agreement with a recent genomic screen which found that
RTS1 deletion in several ts-replication factor strains led to increased temperature-sensitivity. Conclusions: We find no evidence that Rts1 is involved in the dephosphorylation of DNA replication initiation factors.
Collapse
Affiliation(s)
- Ana B A Wallis
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, OX1 3RE, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, OX1 3RE, UK
| |
Collapse
|
117
|
Kedziora S, Gali VK, Wilson RHC, Clark KRM, Nieduszynski CA, Hiraga SI, Donaldson AD. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast. Nucleic Acids Res 2018; 46:3993-4003. [PMID: 29529242 PMCID: PMC5934629 DOI: 10.1093/nar/gky132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 12/24/2022] Open
Abstract
The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.
Collapse
Affiliation(s)
- Sylwia Kedziora
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Rosemary HC Wilson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Kate RM Clark
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Conrad A Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Shin-ichiro Hiraga
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
118
|
Wang J, Zhang H, Al Shibar M, Willard B, Ray A, Runge KW. Rif1 phosphorylation site analysis in telomere length regulation and the response to damaged telomeres. DNA Repair (Amst) 2018; 65:26-33. [PMID: 29544213 PMCID: PMC5911405 DOI: 10.1016/j.dnarep.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Telomeres, the ends of eukaryotic chromosomes, consist of repetitive DNA sequences and their bound proteins that protect the end from the DNA damage response. Short telomeres with fewer repeats are preferentially elongated by telomerase. Tel1, the yeast homolog of human ATM kinase, is preferentially recruited to short telomeres and Tel1 kinase activity is required for telomere elongation. Rif1, a telomere-binding protein, negatively regulates telomere length by forming a complex with two other telomere binding proteins, Rap1 and Rif2, to block telomerase recruitment. Rif1 has 14 SQ/TQ consensus phosphorylation sites for ATM kinases, including 6 in a SQ/TQ Cluster Domain (SCD) similar to other DNA damage response proteins. These 14 sites were analyzed as N-terminal, SCD and C-terminal domains. Mutating some sites to non-phosphorylatable residues increased telomere length in cells lacking Tel1 while a different set of phosphomimetic mutants increased telomere length in cells lacking Rif2, suggesting that Rif1 phosphorylation has both positive and negative effects on length regulation. While these mutations did not alter the sensitivity to DNA damaging agents, inducing telomere-specific damage by growing cells lacking YKU70 at high temperature revealed a role for the SCD. Mass spectrometry of Rif1 from wild type cells or those induced for telomere-specific DNA damage revealed increased phosphorylation in cells with telomere damage at an ATM consensus site in the SCD, S1351, and non-ATM sites S181 and S1637. A phosphomimetic rif1-S1351E mutation caused an increase in telomere length at synthetic telomeres but not natural telomeres. These results indicate that the Rif1 SCD can modulate Rif1 function. As all Rif1 orthologs have one or more SCD domains, these results for yeast Rif1 have implications for the regulation of Rif1 function in humans and other organisms.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, United States; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States; Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Haitao Zhang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Mohammed Al Shibar
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Alo Ray
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Kurt W Runge
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, United States; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States; Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States.
| |
Collapse
|
119
|
Sales Gil R, de Castro IJ, Berihun J, Vagnarelli P. Protein phosphatases at the nuclear envelope. Biochem Soc Trans 2018; 46:173-182. [PMID: 29432143 PMCID: PMC5818667 DOI: 10.1042/bst20170139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Abstract
The nuclear envelope (NE) is a unique topological structure formed by lipid membranes (Inner and Outer Membrane: IM and OM) interrupted by open channels (Nuclear Pore complexes). Besides its well-established structural role in providing a physical separation between the genome and the cytoplasm and regulating the exchanges between the two cellular compartments, it has become quite evident in recent years that the NE also represents a hub for localized signal transduction. Mechanical, stress, or mitogen signals reach the nucleus and trigger the activation of several pathways, many effectors of which are processed at the NE. Therefore, the concept of the NE acting just as a barrier needs to be expanded to embrace all the dynamic processes that are indeed associated with it. In this context, dynamic protein association and turnover coupled to reversible post-translational modifications of NE components can provide important clues on how this integrated cellular machinery functions as a whole. Reversible protein phosphorylation is the most used mechanism to control protein dynamics and association in cells. Keys to the reversibility of the system are protein phosphatases and the regulation of their activity in space and time. As the NE is clearly becoming an interesting compartment for the control and transduction of several signalling pathways, in this review we will focus on the role of Protein Phosphatases at the NE since the significance of this class of proteins in this context has been little explored.
Collapse
Affiliation(s)
- Raquel Sales Gil
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K
| | - Ines J de Castro
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg and German Center for Infection Research (DZIF), Heidelberg 69120, Germany
| | - Jerusalem Berihun
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K
| | - Paola Vagnarelli
- College of Health and Life Science, Research Institute for Environment Health and Society, Brunel University London, London UB8 3PH, U.K.
| |
Collapse
|
120
|
Hou H, Cooper JP. Stretching, scrambling, piercing and entangling: Challenges for telomeres in mitotic and meiotic chromosome segregation. Differentiation 2018; 100:12-20. [PMID: 29413748 DOI: 10.1016/j.diff.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/24/2022]
Abstract
The consequences of telomere loss or dysfunction become most prominent when cells enter the nuclear division stage of the cell cycle. At this climactic stage when chromosome segregation occurs, telomere fusions or entanglements can lead to chromosome breakage, wreaking havoc on genome stability. Here we review recent progress in understanding the mechanisms of detangling and breaking telomere associations at mitosis, as well as the unique ways in which telomeres are processed to allow regulated sister telomere separation. Moreover, we discuss unexpected roles for telomeres in orchestrating nuclear envelope breakdown and spindle formation, crucial processes for nuclear division. Finally, we discuss the discovery that telomeres create microdomains in the nucleus that are conducive to centromere assembly, cementing the unexpectedly influential role of telomeres in mitosis.
Collapse
Affiliation(s)
- Haitong Hou
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA
| | - Julia Promisel Cooper
- Telomere Biology Section, LBMB, NCI, NIH, Building 37, Room 6050, Bethesda MD 20892, USA.
| |
Collapse
|
121
|
Moriyama K, Yoshizawa-Sugata N, Masai H. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture. J Biol Chem 2018; 293:3607-3624. [PMID: 29348174 DOI: 10.1074/jbc.ra117.000446] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/21/2017] [Indexed: 11/06/2022] Open
Abstract
Rap1-interacting protein 1 (Rif1) regulates telomere length in budding yeast. We previously reported that, in metazoans and fission yeast, Rif1 also plays pivotal roles in controlling genome-wide DNA replication timing. We proposed that Rif1 may assemble chromatin compartments that contain specific replication-timing domains by promoting chromatin loop formation. Rif1 also is involved in DNA lesion repair, restart after replication fork collapse, anti-apoptosis activities, replicative senescence, and transcriptional regulation. Although multiple physiological functions of Rif1 have been characterized, biochemical and structural information on mammalian Rif1 is limited, mainly because of difficulties in purifying the full-length protein. Here, we expressed and purified the 2418-amino-acid-long, full-length murine Rif1 as well as its partially truncated variants in human 293T cells. Hydrodynamic analyses indicated that Rif1 forms elongated or extended homo-oligomers in solution, consistent with the presence of a HEAT-type helical repeat segment known to adopt an elongated shape. We also observed that the purified murine Rif1 bound G-quadruplex (G4) DNA with high specificity and affinity, as was previously shown for Rif1 from fission yeast. Both the N-terminal (HEAT-repeat) and C-terminal segments were involved in oligomer formation and specifically bound G4 DNA, and the central intrinsically disordered polypeptide segment increased the affinity for G4. Of note, pulldown assays revealed that Rif1 simultaneously binds multiple G4 molecules. Our findings support a model in which Rif1 modulates chromatin loop structures through binding to multiple G4 assemblies and by holding chromatin fibers together.
Collapse
Affiliation(s)
- Kenji Moriyama
- From the Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoko Yoshizawa-Sugata
- From the Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- From the Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
122
|
Fang D, Lengronne A, Shi D, Forey R, Skrzypczak M, Ginalski K, Yan C, Wang X, Cao Q, Pasero P, Lou H. Dbf4 recruitment by forkhead transcription factors defines an upstream rate-limiting step in determining origin firing timing. Genes Dev 2018; 31:2405-2415. [PMID: 29330352 PMCID: PMC5795786 DOI: 10.1101/gad.306571.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
Abstract
Fang et al. show that Dbf4 is enriched at early origins through its interaction with forkhead transcription factors Fkh1 and Fkh2. Dbf4 interacts directly with Sld3 and promotes the recruitment of downstream limiting factors. Initiation of eukaryotic chromosome replication follows a spatiotemporal program. The current model suggests that replication origins compete for a limited pool of initiation factors. However, it remains to be answered how these limiting factors are preferentially recruited to early origins. Here, we report that Dbf4 is enriched at early origins through its interaction with forkhead transcription factors Fkh1 and Fkh2. This interaction is mediated by the Dbf4 C terminus and was successfully reconstituted in vitro. An interaction-defective mutant, dbf4ΔC, phenocopies fkh alleles in terms of origin firing. Remarkably, genome-wide replication profiles reveal that the direct fusion of the DNA-binding domain (DBD) of Fkh1 to Dbf4 restores the Fkh-dependent origin firing but interferes specifically with the pericentromeric origin activation. Furthermore, Dbf4 interacts directly with Sld3 and promotes the recruitment of downstream limiting factors. These data suggest that Fkh1 targets Dbf4 to a subset of noncentromeric origins to promote early replication in a manner that is reminiscent of the recruitment of Dbf4 to pericentromeric origins by Ctf19.
Collapse
Affiliation(s)
- Dingqiang Fang
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Armelle Lengronne
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Equipe Labellisée Ligue Contre le Cancer, F-34396 Montpellier Cedex 5, France
| | - Di Shi
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Romain Forey
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Equipe Labellisée Ligue Contre le Cancer, F-34396 Montpellier Cedex 5, France
| | - Magdalena Skrzypczak
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Changhui Yan
- Department of Computer Science, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Xiaoke Wang
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qinhong Cao
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Philippe Pasero
- Institute of Human Genetics, Centre National de la Recherche Scientifique, University of Montpellier, Equipe Labellisée Ligue Contre le Cancer, F-34396 Montpellier Cedex 5, France
| | - Huiqiang Lou
- State Key Laboratory of Agro-Biotechnology, Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
123
|
Takikawa M, Tarumoto Y, Ishikawa F. Fission yeast Stn1 is crucial for semi-conservative replication at telomeres and subtelomeres. Nucleic Acids Res 2017; 45:1255-1269. [PMID: 28180297 PMCID: PMC5388396 DOI: 10.1093/nar/gkw1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/08/2016] [Accepted: 11/23/2016] [Indexed: 12/29/2022] Open
Abstract
The CST complex is a phylogenetically conserved protein complex consisting of CTC1/Cdc13, Stn1 and Ten1 that protects telomeres on linear chromosomes. Deletion of the fission yeast homologs stn1 and ten1 results in complete telomere loss; however, the precise function of Stn1 is still largely unknown. Here, we have isolated a high-temperature sensitive stn1 allele (termed stn1-1). stn1-1 cells abruptly lost telomeric sequence almost completely at the restrictive temperature. The loss of chromosomal DNA happened without gradual telomere shortening, and extended to 30 kb from the ends of chromosomes. We found transient and modest single-stranded G-strand exposure, but did not find any evidence of checkpoint activation in stn1-1 at the restrictive temperature. When we probed neutral-neutral 2D gels for subtelomere regions, we found no Y-arc-shaped replication intermediates in cycling cells. We conclude that the loss of telomere and subtelomere DNAs in stn1-1 cells at the restrictive temperature is caused by very frequent replication fork collapses specifically in subtelomere regions. Furthermore, we identified two independent suppressor mutants of the high-temperature sensitivity of stn1-1: a multi-copy form of pmt3 and a deletion of rif1. Collectively, we propose that fission yeast Stn1 primarily safeguards the semi-conservative DNA replication at telomeres and subtelomeres.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Yusuke Tarumoto
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
124
|
Hinshaw SM, Makrantoni V, Harrison SC, Marston AL. The Kinetochore Receptor for the Cohesin Loading Complex. Cell 2017; 171:72-84.e13. [PMID: 28938124 PMCID: PMC5610175 DOI: 10.1016/j.cell.2017.08.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/03/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
Abstract
The ring-shaped cohesin complex brings together distant DNA domains to maintain, express, and segregate the genome. Establishing specific chromosomal linkages depends on cohesin recruitment to defined loci. One such locus is the budding yeast centromere, which is a paradigm for targeted cohesin loading. The kinetochore, a multiprotein complex that connects centromeres to microtubules, drives the recruitment of high levels of cohesin to link sister chromatids together. We have exploited this system to determine the mechanism of specific cohesin recruitment. We show that phosphorylation of the Ctf19 kinetochore protein by a conserved kinase, DDK, provides a binding site for the Scc2/4 cohesin loading complex, thereby directing cohesin loading to centromeres. A similar mechanism targets cohesin to chromosomes in vertebrates. These findings represent a complete molecular description of targeted cohesin loading, a phenomenon with wide-ranging importance in chromosome segregation and, in multicellular organisms, transcription regulation.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Vasso Makrantoni
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Adèle L Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
125
|
Zhu B, He Q, Xiang J, Qi F, Cai H, Mao J, Zhang C, Zhang Q, Li H, Lu L, Wang T, Yu W. Quantitative Phosphoproteomic Analysis Reveals Key Mechanisms of Cellular Proliferation in Liver Cancer Cells. Sci Rep 2017; 7:10908. [PMID: 28883432 PMCID: PMC5589854 DOI: 10.1038/s41598-017-10716-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023] Open
Abstract
Understanding the mechanisms of uncontrolled proliferation in cancer cells provides valuable insights into tumor development and is benefit for discovering efficient methods in cancer treatment. In this study, we identified and quantified 2,057 phosphoproteins and 9,824 unique phosphosites in three liver cell lines with high (QGY, Hep3B) and low (L02) proliferative potentials and disclosed the wide variations in phosphorylation sites and levels among them. We found that the number of identified phosphoproteins and phosphosites in these cells were negatively correlated with their proliferative abilities. The function analysis suggested that the aberrant phosphorylation of SR proteins and activation of MAPK pathway might be two critical factors to promote cancer cell proliferation. Meanwhile, the phosphorylation status of mini-chromosome maintenance (MCM) and nuclear pore (NPC) complexes are significantly different between cell lines with high and low proliferative potentials. Furthermore, the phosphosites targeted by kinase families of CDK, STE and HIPK in the proteins coded by cancer driver genes showed distinct profiles between caner and normal cell lines. These results present key phosphorylation networks involving in abnormal proliferation of cancer cells and uncovered potential molecular markers for estimating the proliferation ability of liver cancer cells.
Collapse
Affiliation(s)
- Bo Zhu
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Quanze He
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jingjing Xiang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Fang Qi
- The Second Department of Surgery, Hospital of China No. 17 Metallurgical Constrution Corp, Maanshan, 243000, Anhui, P.R. China
| | - Hao Cai
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China
| | - Jun Mao
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Chunhua Zhang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Qin Zhang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Haibo Li
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Lu Lu
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ting Wang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, Suzhou, Jiangsu, China.
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Department of Genetics, School of Life Sciences, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
126
|
Abstract
Complete duplication of large metazoan chromosomes requires thousands of potential initiation sites, only a small fraction of which are selected in each cell cycle. Assembly of the replication machinery is highly conserved and tightly regulated during the cell cycle, but the sites of initiation are highly flexible, and their temporal order of firing is regulated at the level of large-scale multi-replicon domains. Importantly, the number of replication forks must be quickly adjusted in response to replication stress to prevent genome instability. Here we argue that large genomes are divided into domains for exactly this reason. Once established, domain structure abrogates the need for precise initiation sites and creates a scaffold for the evolution of other chromosome functions.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
127
|
Rainey MD, Quachthithu H, Gaboriau D, Santocanale C. DNA Replication Dynamics and Cellular Responses to ATP Competitive CDC7 Kinase Inhibitors. ACS Chem Biol 2017; 12:1893-1902. [PMID: 28560864 DOI: 10.1021/acschembio.7b00117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CDC7 kinase, by phosphorylating the MCM DNA helicase, is a key switch for DNA replication initiation. ATP competitive CDC7 inhibitors are being developed as potential anticancer agents; however how human cells respond to the selective pharmacological inhibition of this kinase is controversial and not understood. Here we have characterized the mode of action of the two widely used CDC7 inhibitors, PHA-767491 and XL-413, which have become important tool compounds to explore the kinase's cellular functions. We have used a chemical genetics approach to further characterize pharmacological CDC7 inhibition and CRISPR/CAS9 technology to assess the requirement for kinase activity for cell proliferation. We show that, in human breast cells, CDC7 is essential and that CDC7 kinase activity is formally required for proliferation. However, full and sustained inhibition of the kinase, which is required to block the cell-cycle progression with ATP competitor compounds, is problematic to achieve. We establish that MCM2 phosphorylation is highly sensitive to CDC7 inhibition and, as a biomarker, it lacks in dynamic range since it is easily lost at concentrations of inhibitors that only mildly affect DNA synthesis. Furthermore, we find that the cellular effects of selective CDC7 inhibitors can be altered by the concomitant inhibition of cell-cycle and transcriptional CDKs. This work shows that DNA replication and cell proliferation can occur with reduced CDC7 activity for at least 5 days and that the bulk of DNA synthesis is not tightly coupled to MCM2 phosphorylation and provides guidance for the development of next generation CDC7 inhibitors.
Collapse
Affiliation(s)
- Michael D. Rainey
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - David Gaboriau
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| | - Corrado Santocanale
- Centre for Chromosome Biology,
School of Natural Sciences, National University of Ireland Galway H91 TK33, Ireland
| |
Collapse
|
128
|
Mattarocci S, Reinert JK, Bunker RD, Fontana GA, Shi T, Klein D, Cavadini S, Faty M, Shyian M, Hafner L, Shore D, Thomä NH, Rass U. Rif1 maintains telomeres and mediates DNA repair by encasing DNA ends. Nat Struct Mol Biol 2017; 24:588-595. [PMID: 28604726 DOI: 10.1038/nsmb.3420] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022]
Abstract
In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric, but it suppresses DNA end resection at chromosomal breaks, promoting repair by nonhomologous end joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ∼125-kDa N-terminal domain of Rif1 from Saccharomyces cerevisiae (Rif1-NTD), revealing an α-helical fold shaped like a shepherd's crook. We identify a high-affinity DNA-binding site in the Rif1-NTD that fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions.
Collapse
Affiliation(s)
- Stefano Mattarocci
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Julia K Reinert
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Richard D Bunker
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gabriele A Fontana
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Tianlai Shi
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland
| | - Dominique Klein
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Simone Cavadini
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Mahamadou Faty
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Maksym Shyian
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Lukas Hafner
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Nicolas H Thomä
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Rass
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|
129
|
Abstract
The accurate and complete replication of genomic DNA is essential for all life. In eukaryotic cells, the assembly of the multi-enzyme replisomes that perform replication is divided into stages that occur at distinct phases of the cell cycle. Replicative DNA helicases are loaded around origins of DNA replication exclusively during G1 phase. The loaded helicases are then activated during S phase and associate with the replicative DNA polymerases and other accessory proteins. The function of the resulting replisomes is monitored by checkpoint proteins that protect arrested replisomes and inhibit new initiation when replication is inhibited. The replisome also coordinates nucleosome disassembly, assembly, and the establishment of sister chromatid cohesion. Finally, when two replisomes converge they are disassembled. Studies in Saccharomyces cerevisiae have led the way in our understanding of these processes. Here, we review our increasingly molecular understanding of these events and their regulation.
Collapse
|
130
|
Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Sci Rep 2017; 7:2119. [PMID: 28522851 PMCID: PMC5437018 DOI: 10.1038/s41598-017-01910-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Rif1 is a conserved protein that plays essential roles in orchestrating DNA replication timing, controlling nuclear architecture, telomere length and DNA repair. However, the relationship between these different roles, as well as the molecular basis of Rif1 function is still unclear. The association of Rif1 with insoluble nuclear lamina has thus far hampered exhaustive characterization of the associated protein complexes. We devised a protocol that overcomes this problem, and were thus able to discover a number of novel Rif1 interactors, involved in chromatin metabolism and phosphorylation. Among them, we focus here on PP1. Data from different systems have suggested that Rif1-PP1 interaction is conserved and has important biological roles. Using mutagenesis, NMR, isothermal calorimetry and surface plasmon resonance we demonstrate that Rif1 is a high-affinity PP1 adaptor, able to out-compete the well-established PP1-inhibitor I2 in vitro. Our conclusions have important implications for understanding Rif1 diverse roles and the relationship between the biological processes controlled by Rif1.
Collapse
|
131
|
Abstract
In this Hypothesis, Greider describes a new model for telomere length regulation, which links DNA replication and telomere elongation. Telomere length is regulated around an equilibrium set point. Telomeres shorten during replication and are lengthened by telomerase. Disruption of the length equilibrium leads to disease; thus, it is important to understand the mechanisms that regulate length at the molecular level. The prevailing protein-counting model for regulating telomerase access to elongate the telomere does not explain accumulating evidence of a role of DNA replication in telomere length regulation. Here I present an alternative model: the replication fork model that can explain how passage of a replication fork and regulation of origin firing affect telomere length.
Collapse
Affiliation(s)
- Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
132
|
Alver RC, Chadha GS, Gillespie PJ, Blow JJ. Reversal of DDK-Mediated MCM Phosphorylation by Rif1-PP1 Regulates Replication Initiation and Replisome Stability Independently of ATR/Chk1. Cell Rep 2017; 18:2508-2520. [PMID: 28273463 PMCID: PMC5357733 DOI: 10.1016/j.celrep.2017.02.042] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/05/2017] [Accepted: 02/14/2017] [Indexed: 11/27/2022] Open
Abstract
Dbf4-dependent kinases (DDKs) are required for the initiation of DNA replication, their essential targets being the MCM2-7 proteins. We show that, in Xenopus laevis egg extracts and human cells, hyper-phosphorylation of DNA-bound Mcm4, but not phosphorylation of Mcm2, correlates with DNA replication. These phosphorylations are differentially affected by the DDK inhibitors PHA-767491 and XL413. We show that DDK-dependent MCM phosphorylation is reversed by protein phosphatase 1 (PP1) targeted to chromatin by Rif1. Loss of Rif1 increased MCM phosphorylation and the rate of replication initiation and also compromised the ability of cells to block initiation when challenged with replication inhibitors. We also provide evidence that Rif1 can mediate MCM dephosphorylation at replication forks and that the stability of dephosphorylated replisomes strongly depends on Chk1 activity. We propose that both replication initiation and replisome stability depend on MCM phosphorylation, which is maintained by a balance of DDK-dependent phosphorylation and Rif1-mediated dephosphorylation.
Collapse
Affiliation(s)
- Robert C Alver
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Peter J Gillespie
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - J Julian Blow
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
133
|
Hiraga SI, Ly T, Garzón J, Hořejší Z, Ohkubo YN, Endo A, Obuse C, Boulton SJ, Lamond AI, Donaldson AD. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep 2017; 18:403-419. [PMID: 28077461 PMCID: PMC5331243 DOI: 10.15252/embr.201641983] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023] Open
Abstract
The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Tony Ly
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Javier Garzón
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zuzana Hořejší
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Yoshi-Nobu Ohkubo
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Akinori Endo
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Simon J Boulton
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
134
|
Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 2017; 18:101-116. [PMID: 27867195 PMCID: PMC6596300 DOI: 10.1038/nrg.2016.141] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian chromosome duplication progresses in a precise order and is subject to constraints that are often relaxed in developmental disorders and malignancies. Molecular information about the regulation of DNA replication at the chromatin level is lacking because protein complexes that initiate replication seem to bind chromatin indiscriminately. High-throughput sequencing and mathematical modelling have yielded detailed genome-wide replication initiation maps. Combining these maps and models with functional genetic analyses suggests that distinct DNA-protein interactions at subgroups of replication initiation sites (replication origins) modulate the ubiquitous replication machinery and supports an emerging model that delineates how indiscriminate DNA-binding patterns translate into a consistent, organized replication programme.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
135
|
Toteva T, Mason B, Kanoh Y, Brøgger P, Green D, Verhein-Hansen J, Masai H, Thon G. Establishment of expression-state boundaries by Rif1 and Taz1 in fission yeast. Proc Natl Acad Sci U S A 2017; 114:1093-1098. [PMID: 28096402 PMCID: PMC5293076 DOI: 10.1073/pnas.1614837114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Shelterin component Rif1 has emerged as a global regulator of the replication-timing program in all eukaryotes examined to date, possibly by modulating the 3D-organization of the genome. In fission yeast a second Shelterin component, Taz1, might share similar functions. Here, we identified unexpected properties for Rif1 and Taz1 by conducting high-throughput genetic screens designed to identify cis- and trans-acting factors capable of creating heterochromatin-euchromatin boundaries in fission yeast. The preponderance of cis-acting elements identified in the screens originated from genomic loci bound by Taz1 and associated with origins of replication whose firing is repressed by Taz1 and Rif1. Boundary formation and gene silencing by these elements required Taz1 and Rif1 and coincided with altered replication timing in the region. Thus, small chromosomal elements sensitive to Taz1 and Rif1 (STAR) could simultaneously regulate gene expression and DNA replication over a large domain, at the edge of which they established a heterochromatin-euchromatin boundary. Taz1, Rif1, and Rif1-associated protein phosphatases Sds21 and Dis2 were each sufficient to establish a boundary when tethered to DNA. Moreover, efficient boundary formation required the amino-terminal domain of the Mcm4 replicative helicase onto which the antagonistic activities of the replication-promoting Dbf4-dependent kinase and Rif1-recruited phosphatases are believed to converge to control replication origin firing. Altogether these observations provide an insight into a coordinated control of DNA replication and organization of the genome into expression domains.
Collapse
Affiliation(s)
- Tea Toteva
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Bethany Mason
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Yutaka Kanoh
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Peter Brøgger
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Daniel Green
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Janne Verhein-Hansen
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Geneviève Thon
- Department of Biology, BioCenter, University of Copenhagen, 2200 Copenhagen N, Denmark;
| |
Collapse
|
136
|
Wei L, Zhao X. Roles of SUMO in Replication Initiation, Progression, and Termination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:371-393. [PMID: 29357067 PMCID: PMC6643980 DOI: 10.1007/978-981-10-6955-0_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accurate genome duplication during cell division is essential for life. This process is accomplished by the close collaboration between replication factors and many additional proteins that provide assistant roles. Replication factors establish the replication machineries capable of copying billions of nucleotides, while regulatory proteins help to achieve accuracy and efficiency of replication. Among regulatory proteins, protein modification enzymes can bestow fast and reversible changes to many targets, leading to coordinated effects on replication. Recent studies have begun to elucidate how one type of protein modification, sumoylation, can modify replication proteins and regulate genome duplication through multiple mechanisms. This chapter summarizes these new findings, and how they can integrate with the known regulatory circuitries of replication. As this area of research is still at its infancy, many outstanding questions remain to be explored, and we discuss these issues in light of the new advances.
Collapse
Affiliation(s)
- Lei Wei
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
137
|
Rif1-Dependent Regulation of Genome Replication in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:259-272. [DOI: 10.1007/978-981-10-6955-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
138
|
Affiliation(s)
- Junko Kanoh
- Institute for Protein Research, Osaka University
| |
Collapse
|
139
|
Moriyama K, Lai MS, Masai H. Interaction of Rif1 Protein with G-Quadruplex in Control of Chromosome Transactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:287-310. [PMID: 29357064 DOI: 10.1007/978-981-10-6955-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent studies on G-quadruplex (G4) revealed crucial and conserved functions of G4 in various biological systems. We recently showed that Rif1, a conserved nuclear factor, binds to G4 present in the intergenic regions and plays a major role in spatiotemporal regulation of DNA replication. Rif1 may tether chromatin fibers through binding to G4, generating specific chromatin domains that dictate the replication timing. G4 and its various binding partners are now implicated in many other chromosome regulations, including transcription, replication initiation, recombination, gene rearrangement, and transposition.
Collapse
Affiliation(s)
- Kenji Moriyama
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mong Sing Lai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
140
|
Marks AB, Fu H, Aladjem MI. Regulation of Replication Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:43-59. [PMID: 29357052 DOI: 10.1007/978-981-10-6955-0_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genome duplication starts concomitantly at many replication initiation sites termed replication origins. The replication initiation program is spatially and temporally coordinated to ensure accurate, efficient DNA synthesis that duplicates the entire genome while maintaining other chromatin-dependent functions. Unlike in prokaryotes, not all potential replication origins in eukaryotes are needed for complete genome duplication during each cell cycle. Instead, eukaryotic cells vary the use of initiation sites so that only a fraction of potential replication origins initiate replication each cell cycle. Flexibility in origin choice allows each eukaryotic cell type to utilize different initiation sites, corresponding to unique nuclear DNA packaging patterns. These patterns coordinate replication with gene expression and chromatin condensation. Budding yeast replication origins share a consensus sequence that marks potential initiation sites. Metazoan origins, on the other hand, lack a consensus sequence. Rather, they are associated with a collection of structural features, chromatin packaging features, histone modifications, transcription, and DNA-DNA/DNA-protein interactions. These features confer cell type-specific replication and expression and play an essential role in maintaining genomic stability.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
141
|
Masai H, Kanoh Y, Moriyama K, Yamazaki S, Yoshizawa N, Matsumoto S. Telomere-binding factors in the regulation of DNA replication. Genes Genet Syst 2017; 92:119-125. [DOI: 10.1266/ggs.17-00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science
| | - Yutaka Kanoh
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science
| | - Kenji Moriyama
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science
| | - Satoshi Yamazaki
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science
| | - Naoko Yoshizawa
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science
| | - Seiji Matsumoto
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
142
|
Kelly T. Historical Perspective of Eukaryotic DNA Replication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:1-41. [PMID: 29357051 DOI: 10.1007/978-981-10-6955-0_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The replication of the genome of a eukaryotic cell is a complex process requiring the ordered assembly of multiprotein replisomes at many chromosomal sites. The process is strictly controlled during the cell cycle to ensure the complete and faithful transmission of genetic information to progeny cells. Our current understanding of the mechanisms of eukaryotic DNA replication has evolved over a period of more than 30 years through the efforts of many investigators. The aim of this perspective is to provide a brief history of the major advances during this period.
Collapse
Affiliation(s)
- Thomas Kelly
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
143
|
Gispan A, Carmi M, Barkai N. Model-based analysis of DNA replication profiles: predicting replication fork velocity and initiation rate by profiling free-cycling cells. Genome Res 2016; 27:310-319. [PMID: 28028072 PMCID: PMC5287236 DOI: 10.1101/gr.205849.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Eukaryotic cells initiate DNA synthesis by sequential firing of hundreds of origins. This ordered replication is described by replication profiles, which measure the DNA content within a cell population. Here, we show that replication dynamics can be deduced from replication profiles of free-cycling cells. While such profiles lack explicit temporal information, they are sensitive to fork velocity and initiation capacity through the passive replication pattern, namely the replication of origins by forks emanating elsewhere. We apply our model-based approach to a compendium of profiles that include most viable budding yeast mutants implicated in replication. Predicted changes in fork velocity or initiation capacity are verified by profiling synchronously replicating cells. Notably, most mutants implicated in late (or early) origin effects are explained by global modulation of fork velocity or initiation capacity. Our approach provides a rigorous framework for analyzing DNA replication profiles of free-cycling cells.
Collapse
Affiliation(s)
- Ariel Gispan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
144
|
Duncker BP. Mechanisms Governing DDK Regulation of the Initiation of DNA Replication. Genes (Basel) 2016; 8:genes8010003. [PMID: 28025497 PMCID: PMC5294998 DOI: 10.3390/genes8010003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
The budding yeast Dbf4-dependent kinase (DDK) complex—comprised of cell division cycle (Cdc7) kinase and its regulatory subunit dumbbell former 4 (Dbf4)—is required to trigger the initiation of DNA replication through the phosphorylation of multiple minichromosome maintenance complex subunits 2-7 (Mcm2-7). DDK is also a target of the radiation sensitive 53 (Rad53) checkpoint kinase in response to replication stress. Numerous investigations have determined mechanistic details, including the regions of Mcm2, Mcm4, and Mcm6 phosphorylated by DDK, and a number of DDK docking sites. Similarly, the way in which the Rad53 forkhead-associated 1 (FHA1) domain binds to DDK—involving both canonical and non-canonical interactions—has been elucidated. Recent work has revealed mutual promotion of DDK and synthetic lethal with dpb11-1 3 (Sld3) roles. While DDK phosphorylation of Mcm2-7 subunits facilitates their interaction with Sld3 at origins, Sld3 in turn stimulates DDK phosphorylation of Mcm2. Details of a mutually antagonistic relationship between DDK and Rap1-interacting factor 1 (Rif1) have also recently come to light. While Rif1 is able to reverse DDK-mediated Mcm2-7 complex phosphorylation by targeting the protein phosphatase glycogen 7 (Glc7) to origins, there is evidence to suggest that DDK can counteract this activity by binding to and phosphorylating Rif1.
Collapse
Affiliation(s)
- Bernard P Duncker
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada.
| |
Collapse
|
145
|
Shyian M, Mattarocci S, Albert B, Hafner L, Lezaja A, Costanzo M, Boone C, Shore D. Budding Yeast Rif1 Controls Genome Integrity by Inhibiting rDNA Replication. PLoS Genet 2016; 12:e1006414. [PMID: 27820830 PMCID: PMC5098799 DOI: 10.1371/journal.pgen.1006414] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
The Rif1 protein is a negative regulator of DNA replication initiation in eukaryotes. Here we show that budding yeast Rif1 inhibits DNA replication initiation at the rDNA locus. Absence of Rif1, or disruption of its interaction with PP1/Glc7 phosphatase, leads to more intensive rDNA replication. The effect of Rif1-Glc7 on rDNA replication is similar to that of the Sir2 deacetylase, and the two would appear to act in the same pathway, since the rif1Δ sir2Δ double mutant shows no further increase in rDNA replication. Loss of Rif1-Glc7 activity is also accompanied by an increase in rDNA repeat instability that again is not additive with the effect of sir2Δ. We find, in addition, that the viability of rif1Δ cells is severely compromised in combination with disruption of the MRX or Ctf4-Mms22 complexes, both of which are implicated in stabilization of stalled replication forks. Significantly, we show that removal of the rDNA replication fork barrier (RFB) protein Fob1, alleviation of replisome pausing by deletion of the Tof1/Csm3 complex, or a large deletion of the rDNA repeat array all rescue this synthetic growth defect of rif1Δ cells lacking in addition either MRX or Ctf4-Mms22 activity. These data suggest that the repression of origin activation by Rif1-Glc7 is important to avoid the deleterious accumulation of stalled replication forks at the rDNA RFB, which become lethal when fork stability is compromised. Finally, we show that Rif1-Glc7, unlike Sir2, has an important effect on origin firing outside of the rDNA locus that serves to prevent activation of the DNA replication checkpoint. Our results thus provide insights into a mechanism of replication control within a large repetitive chromosomal domain and its importance for the maintenance of genome stability. These findings may have important implications for metazoans, where large blocks of repetitive sequences are much more common.
Collapse
Affiliation(s)
- Maksym Shyian
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Stefano Mattarocci
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Lukas Hafner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Aleksandra Lezaja
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| | - Michael Costanzo
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - Charlie Boone
- University of Toronto, Donnelly Centre, Toronto, Ontario, Canada
| | - David Shore
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), Geneva, Switzerland
| |
Collapse
|
146
|
Valton AL, Prioleau MN. G-Quadruplexes in DNA Replication: A Problem or a Necessity? Trends Genet 2016; 32:697-706. [DOI: 10.1016/j.tig.2016.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
|
147
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
148
|
rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants. G3-GENES GENOMES GENETICS 2016; 6:2829-38. [PMID: 27449518 PMCID: PMC5015940 DOI: 10.1534/g3.116.030296] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae.
Collapse
|
149
|
Piqueret-Stephan L, Ricoul M, Hempel WM, Sabatier L. Replication Timing of Human Telomeres is Conserved during Immortalization and Influenced by Respective Subtelomeres. Sci Rep 2016; 6:32510. [PMID: 27587191 PMCID: PMC5009427 DOI: 10.1038/srep32510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022] Open
Abstract
Telomeres are specific structures that protect chromosome ends and act as a biological clock, preventing normal cells from replicating indefinitely. Mammalian telomeres are replicated throughout S-phase in a predetermined order. However, the mechanism of this regulation is still unknown. We wished to investigate this phenomenon under physiological conditions in a changing environment, such as the immortalization process to better understand the mechanism for its control. We thus examined the timing of human telomere replication in normal and SV40 immortalized cells, which are cytogenetically very similar to cancer cells. We found that the timing of telomere replication was globally conserved under different conditions during the immortalization process. The timing of telomere replication was conserved despite changes in telomere length due to endogenous telomerase reactivation, in duplicated homologous chromosomes, and in rearranged chromosomes. Importantly, translocated telomeres, possessing their initial subtelomere, retained the replication timing of their homolog, independently of the proportion of the translocated arm, even when the remaining flanking DNA is restricted to its subtelomere, the closest chromosome-specific sequences (inferior to 500 kb). Our observations support the notion that subtelomere regions strongly influence the replication timing of the associated telomere.
Collapse
Affiliation(s)
- Laure Piqueret-Stephan
- PROCyTOX Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses and Université Paris-Saclay, France
| | - Michelle Ricoul
- PROCyTOX Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses and Université Paris-Saclay, France
| | - William M Hempel
- PROCyTOX Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses and Université Paris-Saclay, France
| | - Laure Sabatier
- PROCyTOX Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Fontenay-aux-Roses and Université Paris-Saclay, France
| |
Collapse
|
150
|
Wu KZL, Wang GN, Fitzgerald J, Quachthithu H, Rainey MD, Cattaneo A, Bachi A, Santocanale C. DDK dependent regulation of TOP2A at centromeres revealed by a chemical genetics approach. Nucleic Acids Res 2016; 44:8786-8798. [PMID: 27407105 PMCID: PMC5062981 DOI: 10.1093/nar/gkw626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/02/2016] [Indexed: 11/14/2022] Open
Abstract
In eukaryotic cells the CDC7/DBF4 kinase, also known as DBF4-dependent kinase (DDK), is required for the firing of DNA replication origins. CDC7 is also involved in replication stress responses and its depletion sensitises cells to drugs that affect fork progression, including Topoisomerase 2 poisons. Although CDC7 is an important regulator of cell division, relatively few substrates and bona-fide CDC7 phosphorylation sites have been identified to date in human cells. In this study, we have generated an active recombinant CDC7/DBF4 kinase that can utilize bulky ATP analogues. By performing in vitro kinase assays using benzyl-thio-ATP, we have identified TOP2A as a primary CDC7 substrate in nuclear extracts, and serine 1213 and serine 1525 as in vitro phosphorylation sites. We show that CDC7/DBF4 and TOP2A interact in cells, that this interaction mainly occurs early in S-phase, and that it is compromised after treatment with CDC7 inhibitors. We further provide evidence that human DBF4 localises at centromeres, to which TOP2A is progressively recruited during S-phase. Importantly, we found that CDC7/DBF4 down-regulation, as well S1213A/S1525A TOP2A mutations can advance the timing of centromeric TOP2A recruitment in S-phase. Our results indicate that TOP2A is a novel DDK target and have important implications for centromere biology.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Guan-Nan Wang
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Jennifer Fitzgerald
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Huong Quachthithu
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Michael D Rainey
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| | - Angela Cattaneo
- IFOM-FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan 20139, Italy
| | - Corrado Santocanale
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Ireland
| |
Collapse
|