101
|
Schumann GG, Fuchs NV, Tristán-Ramos P, Sebe A, Ivics Z, Heras SR. The impact of transposable element activity on therapeutically relevant human stem cells. Mob DNA 2019; 10:9. [PMID: 30899334 PMCID: PMC6408843 DOI: 10.1186/s13100-019-0151-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapies.
Collapse
Affiliation(s)
- Gerald G Schumann
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Nina V Fuchs
- 2Host-Pathogen Interactions, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Pablo Tristán-Ramos
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Attila Sebe
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Zoltán Ivics
- 1Division of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str.51-59, 63225 Langen, Germany
| | - Sara R Heras
- 3GENYO. Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada-Avenida de la Ilustración, 114, 18016 Granada, Spain.,4Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| |
Collapse
|
102
|
Reznik B, Cincotta SA, Jaszczak RG, Mateo LJ, Shen J, Cao M, Baskin L, Ye P, An W, Laird DJ. Heterogeneity of transposon expression and activation of the repressive network in human fetal germ cells. Development 2019; 146:dev.171157. [PMID: 30658985 DOI: 10.1242/dev.171157] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022]
Abstract
Epigenetic resetting in germ cells during development de-represses transposable elements (TEs). piRNAs protect fetal germ cells by targeted mRNA destruction and deposition of repressive epigenetic marks. Here, we provide the first evidence for an active piRNA pathway and TE repression in germ cells of human fetal testis. We identify pre-pachytene piRNAs with features of secondary amplification that map most abundantly to the long interspersed element type 1 (L1) family of TEs. L1-ORF1p expression is heterogeneous in fetal germ cells, peaks at mid-gestation and declines concomitantly with increases in piRNAs, nuclear localization of HIWI2 and an increase in H3K9me3. Surprisingly, the same cells with accumulation of L1-ORF1p display highest levels of HIWI2 and H3K9me3. Conversely, the earliest germ cells with high levels of L1-ORF1p express low levels of the chaperone HSP90α. We propose that a subset of germ cells resists L1 expression, whereas L1-expressing germ cells activate the repression pathway that leads to epigenetic silencing of L1 via H3K9me3.
Collapse
Affiliation(s)
- Boris Reznik
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Steven A Cincotta
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca G Jaszczak
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Leslie J Mateo
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joel Shen
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mei Cao
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ping Ye
- Avera McKennan Hospital and University Health Center, Sioux Falls, SD 57105, USA.,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Science; Center for Reproductive Sciences; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
103
|
Lisitskaya L, Aravin AA, Kulbachinskiy A. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nat Commun 2018; 9:5165. [PMID: 30514832 PMCID: PMC6279821 DOI: 10.1038/s41467-018-07449-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Recognition and repression of RNA targets by Argonaute proteins guided by small RNAs is the essence of RNA interference in eukaryotes. Argonaute proteins with diverse structures are also found in many bacterial and archaeal genomes. Recent studies revealed that, similarly to their eukaryotic counterparts, prokaryotic Argonautes (pAgos) may function in cell defense against foreign genetic elements but, in contrast, preferably act on DNA targets. Many crucial details of the pAgo action, and the roles of a plethora of pAgos with non-conventional architecture remain unknown. Here, we review available structural and biochemical data on pAgos and discuss their possible functions in host defense and other genetic processes in prokaryotic cells. In this review, Aravin and colleagues examine bacterial and archaeal Argonaute proteins, discuss their diverse architectures and their possible roles in host defense, proposing additional functions for Argonaute proteins in prokaryotic cells.
Collapse
Affiliation(s)
- Lidiya Lisitskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Alexei A Aravin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
104
|
Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, Hannon GJ. piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu Rev Genet 2018; 52:131-157. [PMID: 30476449 PMCID: PMC10784713 DOI: 10.1146/annurev-genet-120417-031441] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PIWI-interacting RNAs (piRNAs) and their associated PIWI clade Argonaute proteins constitute the core of the piRNA pathway. In gonadal cells, this conserved pathway is crucial for genome defense, and its main function is to silence transposable elements. This is achieved through posttranscriptional and transcriptional gene silencing. Precursors that give rise to piRNAs require specialized transcription and transport machineries because piRNA biogenesis is a cytoplasmic process. The ping-pong cycle, a posttranscriptional silencing mechanism, combines the cleavage-dependent silencing of transposon RNAs with piRNA production. PIWI proteins also function in the nucleus, where they scan for nascent target transcripts with sequence complementarity, instructing transcriptional silencing and deposition of repressive chromatin marks at transposon loci. Although studies have revealed numerous factors that participate in each branch of the piRNA pathway, the precise molecular roles of these factors often remain unclear. In this review, we summarize our current understanding of the mechanisms involved in piRNA biogenesis and function.
Collapse
Affiliation(s)
- Benjamin Czech
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Marzia Munafò
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Filippo Ciabrelli
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Evelyn L Eastwood
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Martin H Fabry
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Emma Kneuss
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, United Kingdom; ,
| |
Collapse
|
105
|
Kalinava N, Ni JZ, Gajic Z, Kim M, Ushakov H, Gu SG. C. elegans Heterochromatin Factor SET-32 Plays an Essential Role in Transgenerational Establishment of Nuclear RNAi-Mediated Epigenetic Silencing. Cell Rep 2018; 25:2273-2284.e3. [PMID: 30463021 PMCID: PMC6317888 DOI: 10.1016/j.celrep.2018.10.086] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 09/24/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
The dynamic process by which nuclear RNAi engages a transcriptionally active target, before the repressive state is stably established, remains largely a mystery. Here, we found that the onset of exogenous dsRNA-induced nuclear RNAi in C. elegans is a transgenerational process, and it requires a putative histone methyltransferase (HMT), SET-32. By developing a CRISPR-based genetic approach, we found that silencing establishment at the endogenous targets of germline nuclear RNAi also requires SET-32. Although SET-32 and two H3K9 HMTs, MET-2 and SET-25, are dispensable for the maintenance of silencing, they do contribute to transcriptional repression in mutants that lack the germline nuclear Argonaute protein HRDE-1, suggesting a conditional role of heterochromatin in the maintenance phase. Our study indicates that (1) establishment and maintenance of siRNA-guided transcriptional repression are two distinct processes with different genetic requirements and (2) the rate-limiting step of the establishment phase is a transgenerational, chromatin-based process.
Collapse
Affiliation(s)
- Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Zoran Gajic
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Matthew Kim
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Helen Ushakov
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
106
|
Orqueda AJ, Gatti CR, Ogara MF, Falzone TL. SOX-11 regulates LINE-1 retrotransposon activity during neuronal differentiation. FEBS Lett 2018; 592:3708-3719. [PMID: 30276805 DOI: 10.1002/1873-3468.13260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/25/2023]
Abstract
Activity of the human long interspersed nuclear elements-1 (LINE-1) retrotransposon occurs mainly in early embryonic development and during hippocampal neurogenesis. SOX-11, a transcription factor relevant to neuronal development, has unknown functions in the control of LINE-1 retrotransposon activity during neuronal differentiation. To study the dependence of LINE-1 activity on SOX-11 during neuronal differentiation, we induced differentiation of human SH-SY5Y neuroblastoma cells and adult adipose mesenchymal stem cells (hASCs) to a neuronal fate and found increased LINE-1 activity. We also show that SOX-11 protein binding to the LINE-1 promoter is higher in differentiating neuroblastoma cells, while knock-down of SOX-11 inhibits the induction of LINE-1 transcription in differentiating conditions. These results suggest that activation of LINE-1 retrotransposition during neuronal differentiation is mediated by SOX-11.
Collapse
Affiliation(s)
- Andrés J Orqueda
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hospital Italiano de Buenos Aires e Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - Cintia R Gatti
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hospital Italiano de Buenos Aires e Instituto Universitario del Hospital Italiano, Buenos Aires, Argentina
| | - María F Ogara
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET-UBA), FCEN, UBA, Buenos Aires, Argentina
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencias (IBCN-CONICET-UBA), Facultad de Medicina, UBA, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
107
|
Line-1: Implications in the etiology of cancer, clinical applications, and pharmacologic targets. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 778:51-60. [DOI: 10.1016/j.mrrev.2018.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022]
|
108
|
Watanabe T, Cui X, Yuan Z, Qi H, Lin H. MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J 2018; 37:e95329. [PMID: 30108053 PMCID: PMC6138435 DOI: 10.15252/embj.201695329] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
Argonaute/Piwi proteins can regulate gene expression via RNA degradation and translational regulation using small RNAs as guides. They also promote the establishment of suppressive epigenetic marks on repeat sequences in diverse organisms. In mice, the nuclear Piwi protein MIWI2 and Piwi-interacting RNAs (piRNAs) are required for DNA methylation of retrotransposon sequences and some other sequences. However, its underlying molecular mechanisms remain unclear. Here, we show that piRNA-dependent regions are transcribed at the stage when piRNA-mediated DNA methylation takes place. MIWI2 specifically interacts with RNAs from these regions. In addition, we generated mice with deletion of a retrotransposon sequence either in a representative piRNA-dependent region or in a piRNA cluster. Both deleted regions were required for the establishment of DNA methylation of the piRNA-dependent region, indicating that piRNAs determine the target specificity of MIWI2-mediated DNA methylation. Our results indicate that MIWI2 affects the chromatin state through base-pairing between piRNAs and nascent RNAs, as observed in other organisms possessing small RNA-mediated epigenetic regulation.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xiekui Cui
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Zhongyu Yuan
- Zhiyuan College, Shanghai Jiaotong University, Shanghai, China
| | - Hongying Qi
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
109
|
Jehn J, Gebert D, Pipilescu F, Stern S, Kiefer JST, Hewel C, Rosenkranz D. PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Commun Biol 2018; 1:137. [PMID: 30272016 PMCID: PMC6128900 DOI: 10.1038/s42003-018-0141-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022] Open
Abstract
PIWI proteins and PIWI-interacting RNAs (piRNAs) suppress transposon activity in animals, thus protecting their genomes from detrimental insertion mutagenesis. Here, we reveal that PIWI genes and piRNAs are ubiquitously expressed in mollusks, similar to the situation in arthropods. We describe lineage-specific adaptations of transposon composition in piRNA clusters in the great pond snail and the pacific oyster, likely reflecting differential transposon activity in gastropods and bivalves. We further show that different piRNA clusters with unique transposon composition are dynamically expressed during oyster development. Finally, bioinformatics analyses suggest that different populations of piRNAs presumably bound to different PIWI paralogs participate in homotypic and heterotypic ping-pong amplification loops in a tissue- and sex-specific manner. Together with recent findings from other animal species, our results support the idea that somatic piRNA expression represents the ancestral state in metazoans.
Collapse
Affiliation(s)
- Julia Jehn
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany
| | - Daniel Gebert
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany
| | - Frank Pipilescu
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany
| | - Sarah Stern
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany
| | - Julian Simon Thilo Kiefer
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany
| | - Charlotte Hewel
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany
| | - David Rosenkranz
- Institute of Organismic and Molecular Evolution, Anthropology, Johannes Gutenberg University Mainz, Anselm-Franz-von-Bentzel-Weg 7, 55099, Mainz, Germany.
| |
Collapse
|
110
|
Gainetdinov I, Colpan C, Arif A, Cecchini K, Zamore PD. A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol Cell 2018; 71:775-790.e5. [PMID: 30193099 PMCID: PMC6130920 DOI: 10.1016/j.molcel.2018.08.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/21/2018] [Accepted: 08/03/2018] [Indexed: 01/20/2023]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) guide PIWI proteins to silence transposons and regulate gene expression. The mechanisms for making piRNAs have been proposed to differ among cell types, tissues, and animals. Our data instead suggest a single model that explains piRNA production in most animals. piRNAs initiate piRNA production by guiding PIWI proteins to slice precursor transcripts. Next, PIWI proteins direct the stepwise fragmentation of the sliced precursor transcripts, yielding tail-to-head strings of phased precursor piRNAs (pre-piRNAs). Our analyses detect evidence for this piRNA biogenesis strategy across an evolutionarily broad range of animals, including humans. Thus, PIWI proteins initiate and sustain piRNA biogenesis by the same mechanism in species whose last common ancestor predates the branching of most animal lineages. The unified model places PIWI-clade Argonautes at the center of piRNA biology and suggests that the ancestral animal-the Urmetazoan-used PIWI proteins both to generate piRNA guides and to execute piRNA function.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Cansu Colpan
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Amena Arif
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Katharine Cecchini
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| | - Phillip D Zamore
- RNA Therapeutics Institute, Howard Hughes Medical Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
111
|
Blaudin de Thé FX, Rekaik H, Peze-Heidsieck E, Massiani-Beaudoin O, Joshi RL, Fuchs J, Prochiantz A. Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE-1 repression. EMBO J 2018; 37:embj.201797374. [PMID: 29941661 DOI: 10.15252/embj.201797374] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 12/21/2022] Open
Abstract
LINE-1 mobile genetic elements have shaped the mammalian genome during evolution. A minority of them have escaped fossilization which, when activated, can threaten genome integrity. We report that LINE-1 are expressed in substantia nigra ventral midbrain dopaminergic neurons, a class of neurons that degenerate in Parkinson's disease. In Engrailed-1 heterozygotes, these neurons show a progressive degeneration that starts at 6 weeks of age, coinciding with an increase in LINE-1 expression. Similarly, DNA damage and cell death, induced by an acute oxidative stress applied to embryonic midbrain neurons in culture or to adult midbrain dopaminergic neurons in vivo, are accompanied by enhanced LINE-1 expression. Reduction of LINE-1 activity through (i) direct transcriptional repression by Engrailed, (ii) a siRNA directed against LINE-1, (iii) the nucleoside analogue reverse transcriptase inhibitor stavudine, and (iv) viral Piwil1 expression, protects against oxidative stress in vitro and in vivo We thus propose that LINE-1 overexpression triggers oxidative stress-induced DNA strand breaks and that an Engrailed adult function is to protect mesencephalic dopaminergic neurons through the repression of LINE-1 expression.
Collapse
Affiliation(s)
- François-Xavier Blaudin de Thé
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Hocine Rekaik
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Eugenie Peze-Heidsieck
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Olivia Massiani-Beaudoin
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Rajiv L Joshi
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Julia Fuchs
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| | - Alain Prochiantz
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris Cedex 05, France
| |
Collapse
|
112
|
Chang KW, Tseng YT, Chen YC, Yu CY, Liao HF, Chen YC, Tu YFE, Wu SC, Liu IH, Pinskaya M, Morillon A, Pain B, Lin SP. Stage-dependent piRNAs in chicken implicated roles in modulating male germ cell development. BMC Genomics 2018; 19:425. [PMID: 29859049 PMCID: PMC5984780 DOI: 10.1186/s12864-018-4820-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background The PIWI/piRNA pathway is a conserved machinery important for germ cell development and fertility. This piRNA-guided molecular machinery is best known for repressing derepressed transposable elements (TE) during epigenomic reprogramming. The extent to which piRNAs are involved in modulating transcripts beyond TEs still need to be clarified, and it may be a stage-dependent event. We chose chicken germline as a study model because of the significantly lower TE complexity in the chicken genome compared to mammalian species. Results We generated high-confidence piRNA candidates in various stages across chicken germline development by 3′-end-methylation-enriched small RNA sequencing and in-house bioinformatics analysis. We observed a significant developmental stage-dependent loss of TE association and a shifting of the ping-pong cycle signatures. Moreover, the stage-dependent reciprocal abundance of LINE retrotransposons, CR1-C, and its associated piRNAs implicated the developmental stage-dependent role of piRNA machinery. The stage dependency of piRNA expression and its potential functions can be better addressed by analyzing the piRNA precursors/clusters. Interestingly, the new piRNA clusters identified from embryonic chicken testes revealed evolutionary conservation between chickens and mammals, which was previously thought to not exist. Conclusions In this report, we provided an original chicken RNA resource and proposed an analytical methodology that can be used to investigate stage-dependent changes in piRNA compositions and their potential roles in TE regulation and beyond, and also revealed possible conserved functions of piRNAs in developing germ cells. Electronic supplementary material The online version of this article (10.1186/s12864-018-4820-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan.,Present Address: Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - Yen-Tzu Tseng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Chen Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.,Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan.,Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Chih-Yun Yu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Hung-Fu Liao
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Chun Chen
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Fan Evan Tu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Shinn-Chih Wu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, 106, Taiwan
| | - Marina Pinskaya
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University, Université Pierre et Marie Curie, F-75005, Paris, France
| | - Antonin Morillon
- ncRNA, epigenetic and genome fluidity, Institut Curie, Centre de Recherche, CNRS UMR 3244, PSL Research University, Université Pierre et Marie Curie, F-75005, Paris, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRA, Stem Cell and Brain Research Institute, U1208, USC1361, F-69500, Bron, France
| | - Shau-Ping Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan. .,Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, 106, Taiwan. .,Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, 106, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
113
|
Kashima M, Agata K, Shibata N. Searching for non-transposable targets of planarian nuclear PIWI in pluripotent stem cells and differentiated cells. Dev Growth Differ 2018; 60:260-277. [DOI: 10.1111/dgd.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Makoto Kashima
- Department of Biophysics; Graduate School of Science; Kyoto University; Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics; Graduate School of Science; Kyoto University; Kyoto Japan
| | - Norito Shibata
- Department of Biophysics; Graduate School of Science; Kyoto University; Kyoto Japan
| |
Collapse
|
114
|
Teo RYW, Anand A, Sridhar V, Okamura K, Kai T. Heterochromatin protein 1a functions for piRNA biogenesis predominantly from pericentric and telomeric regions in Drosophila. Nat Commun 2018; 9:1735. [PMID: 29728561 PMCID: PMC5935673 DOI: 10.1038/s41467-018-03908-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
In metazoan germline, Piwi-interacting RNAs (piRNAs) provide defence against transposons. Piwi-piRNA complex mediates transcriptional silencing of transposons in nucleus. Heterochromatin protein 1a (HP1a) has been proposed to function downstream of Piwi-piRNA complex in Drosophila. Here we show that HP1a germline knockdown (HP1a-GLKD) leads to a reduction in the total and Piwi-bound piRNAs mapping to clusters and transposons insertions, predominantly in the regions close to telomeres and centromeres, resulting in derepression of a limited number of transposons from these regions. In addition, HP1a-GLKD increases the splicing of transcripts arising from clusters in above regions, suggesting HP1a also functions upstream to piRNA processing. Evolutionarily old transposons enriched in the pericentric regions exhibit significant loss in piRNAs targeting these transposons upon HP1a-GLKD. Our study suggests that HP1a functions to repress transposons in a chromosomal compartmentalised manner.
Collapse
Affiliation(s)
- Ryan Yee Wei Teo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore
- Department of Pathology, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Amit Anand
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore.
| | - Vishweshwaren Sridhar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore, Singapore
| | - Toshie Kai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
115
|
Transposon control mechanisms in telomere biology. Curr Opin Genet Dev 2018; 49:56-62. [DOI: 10.1016/j.gde.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022]
|
116
|
|
117
|
Xiao Z, Shen J, Zhang L, Li M, Hu W, Cho C. Therapeutic targeting of noncoding RNAs in hepatocellular carcinoma: Recent progress and future prospects. Oncol Lett 2018; 15:3395-3402. [PMID: 29467864 PMCID: PMC5796293 DOI: 10.3892/ol.2018.7758] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Due to the high mortality rate and unsatisfactory treatment options available, hepatocellular carcinoma (HCC) remains one of the most common malignancies and a leading cause of cancer-associated mortality. Novel therapeutic targets for HCC are urgently required. Advanced RNA sequencing technology enables the identification of considerable amounts of noncoding RNAs (ncRNAs), including small noncoding RNAs and long noncoding RNAs, which exhibit no protein-coding activities. In this respect, ncRNAs and their regulatory processes are important factors in liver tumorigenesis. The present review focuses on the characteristics and biological roles of ncRNAs in HCC. Potential therapeutic applications of ncRNAs in HCC are also evaluated.
Collapse
Affiliation(s)
- Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lin Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Hu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Chihin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
118
|
Assessment of piRNA biogenesis and function in testicular germ cell tumors and their precursor germ cell neoplasia in situ. BMC Cancer 2018; 18:20. [PMID: 29301509 PMCID: PMC5755174 DOI: 10.1186/s12885-017-3945-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aberrant overexpression of PIWI/piRNA pathway proteins is shown for many types of tumors. Interestingly, these proteins are downregulated in testicular germ cell tumors (TGCTs) compared to normal testis tissues. Here, we used germline and TGCT markers to assess the piRNA biogenesis and function in TGCTs and their precursor germ cell neoplasia in situ (GCNIS). METHODS We used small RNA deep sequencing, qRT-PCR, and mining public RNAseq/small RNA-seq datasets to examine PIWI/piRNA gene expression and piRNA biogenesis at four stages of TGCT development: (i) germ cells in healthy testis tissues, (ii) germ cells in testis tissues adjacent to TGCTs, (iii) GCNIS cells and (iv) TGCT cells. To this end, we studied three types of samples: (a) healthy testis, (b) testis tissues adjacent to two types of TGCTs (seminomas and nonseminomas) and containing both germ cells and GCNIS cells, as well as (c) matching TGCT samples. RESULTS Based on our analyses of small RNA-seq data as well as the presence/absence of expression correlation between PIWI/piRNA pathway genes and germline or TGCT markers, we can suggest that piRNA biogenesis is intact in germ cells present in healthy adult testes, and adjacent to TGCTs. Conversely, GCNIS and TGCT cells were found to lack PIWI/piRNA pathway gene expression and germline-like piRNA biogenesis. However, using an in vitro cell line model, we revealed a possible role for a short PIWIL2/HILI isoform expressed in TGCTs in posttranscriptional regulation of the youngest members of LINE and SINE classes of transposable elements. Importantly, this regulation is also implemented without involvement of germline-like biogenesis of piRNAs. CONCLUSIONS Though further studies are warranted, these findings suggest that the conventional germline-like PIWI/piRNA pathway is lost in transition from germ cells to GCNIS cells.
Collapse
|
119
|
Yamashiro H, Siomi MC. PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem Rev 2017; 118:4404-4421. [PMID: 29281264 DOI: 10.1021/acs.chemrev.7b00393] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PIWI-interacting RNAs (piRNAs) are germline-enriched small RNAs that control transposons to maintain genome integrity. To achieve this, upon being processed from piRNA precursors, most of which are transcripts of intergenic piRNA clusters, piRNAs bind PIWI proteins, germline-specific Argonaute proteins, to form effector complexes. The mechanism of this piRNA-mediated transposon silencing pathway is fundamentally similar to that of siRNA/miRNA-dependent gene silencing in that a small RNA guides its partner Argonaute protein to target gene transcripts for repression via RNA-RNA base pairing. However, the uniqueness of this piRNA pathway has emerged through intensive genetic, biochemical, bioinformatic, and structural investigations. Here, we review the studies that elucidated the piRNA pathway, mainly in Drosophila, by describing both historical and recent progress. Studies in other species that have made important contributions to the field are also described.
Collapse
Affiliation(s)
- Haruna Yamashiro
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| | - Mikiko C Siomi
- Department of Biological Sciences, Graduate School of Science , The University of Tokyo , Tokyo 113-0032 , Japan
| |
Collapse
|
120
|
Romero MA, Mobley CB, Mumford PW, Roberson PA, Haun CT, Kephart WC, Healy JC, Beck DT, Young KC, Martin JS, Lockwood CM, Roberts MD. Acute and chronic resistance training downregulates select LINE-1 retrotransposon activity markers in human skeletal muscle. Am J Physiol Cell Physiol 2017; 314:C379-C388. [PMID: 29351416 DOI: 10.1152/ajpcell.00192.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herein, we examined if acute or chronic resistance exercise affected markers of skeletal muscle long interspersed nuclear element-1 (LINE-1) retrotransposon activity. In study 1, 10 resistance-trained college-aged men performed three consecutive daily back squat sessions, and vastus lateralis biopsies were taken before (Pre), 2 h following session 1 (Post1), and 3 days following session 3 (Post2). In study 2, 13 untrained college-aged men performed a full-body resistance training program (3 days/wk), and vastus lateralis biopsies were taken before ( week 0) and ~72 h following training cessation ( week 12). In study 1, LINE-1 mRNA decreased 42-48% at Post1 and 2 ( P < 0.05), and reverse transcriptase (RT) activity trended downward at Post2 (-37%, P = 0.067). In study 2, LINE-1 mRNA trended downward at week 12 (-17%, P = 0.056) while LINE-1 promoter methylation increased (+142%, P = 0.041). Open reading frame (ORF)2p protein expression (-24%, P = 0.059) and RT activity (-26%, P = 0.063) also trended downward by week 12. Additionally, changes in RT activity versus satellite cell number were inversely associated ( r = -0.725, P = 0.008). Follow-up in vitro experiments demonstrated that 48-h treatments with lower doses (1 μM and 10 μM) of efavirenz and nevirapine (non-nucleoside RT inhibitors) increased myoblast proliferation ( P < 0.05). However, we observed a paradoxical decrease in myoblast proliferation with higher doses (50 μM) of efavirenz and delavirdine. This is the first report suggesting that resistance exercise downregulates markers of skeletal muscle LINE-1 activity. Given our discordant in vitro findings, future research is needed to thoroughly assess whether LINE-1-mediated RT activity enhances or blunts myoblast, or primary satellite cell, proliferative capacity.
Collapse
Affiliation(s)
| | | | | | | | - Cody T Haun
- School of Kinesiology, Auburn University , Auburn, Alabama
| | | | - James C Healy
- School of Kinesiology, Auburn University , Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | - Darren T Beck
- School of Kinesiology, Auburn University , Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | - Kaelin C Young
- School of Kinesiology, Auburn University , Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | - Jeffrey S Martin
- School of Kinesiology, Auburn University , Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University , Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus , Auburn, Alabama
| |
Collapse
|
121
|
piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature 2017; 552:268-272. [PMID: 29211718 PMCID: PMC5933846 DOI: 10.1038/nature25018] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Transposable elements can drive genome evolution, but their enhanced activity is detrimental to the host and therefore must be tightly regulated1. The piwi-interacting small RNAs (piRNAs) pathway is critically important for transposable element regulation, by inducing transcriptional silencing or post-transcriptional decay of mRNAs2. Here, we show that piRNAs and piRNA biogenesis components regulate pre-mRNA splicing of P transposable element transcripts in vivo, leading to the production of the non-transposase-encoding mature mRNA isoform in germ cells. Unexpectedly, we show that the piRNA pathway components do not act to reduce P-element transposon transcript levels during P-M hybrid dysgenesis, a syndrome that affects germline development in Drosophila3,4. Instead, splicing regulation is mechanistically achieved in concert with piRNA-mediated changes to repressive chromatin states, and relies on the function of the Piwi-piRNA complex proteins Asterix/Gtsf15–7 and Panoramix/Silencio8,9, as well as Heterochromatin Protein 1a (Su(var)205/HP1a). Furthermore, we show that this machinery, together with the piRNA Flamenco cluster10, not only controls the accumulation of Gypsy retrotransposon transcripts11 but also regulates splicing of Gypsy mRNAs in cultured ovarian somatic cells, a process required for the production of infectious particles that can lead to heritable transposition events12,13. Our findings identify splicing regulation as a new role and essential function for the Piwi pathway in protecting the genome against transposon mobility, and provide a model system for studying the role of chromatin structure in modulating alternative splicing during development.
Collapse
|
122
|
Abstract
Tudor domain containing protein 9 (TDRD9) is a RNA helicase normally expressed in the germline, where it is involved in the biosynthesis of PIWI-interacting RNAs (piRNAs). Here, we show that TDRD9 is highly expressed in a subset of non-small cell lung carcinomas and derived cell lines by hypomethylation of its CpG island. Furthermore, TDRD9 expression is associated with poor prognosis in lung adenocarcinoma. We find that downregulation of TDRD9 expression in TDRD9-positive cell lines causes a decrease in cell proliferation, S-phase cell cycle arrest, and apoptosis. Transcriptomic analysis demonstrated that TDRD9 knockdown causes upregulation of cell cycle and DNA repair genes. We also observed that TDRD9 knockdown triggers activation of the catalytic subunit of the DNA dependent protein kinase (DNA-PKcs) and phosphorylation of H2A.X, which are indicative of an increase of DNA double strand breaks. TDRD9-silenced cells also presented aberrant mitosis and abnormal-shaped nuclei indicating defects in chromosomal segregation. Finally, TDRD9 silencing caused hypersensitivity to the replication stress inducer aphidicolin, while overexpression of the protein increased resistance to the drug, suggesting that TDRD9 protects from replicative stress to TDRD9-positive tumor cells. Thus, our results place TDRD9 as a marker for prognosis and as a potential therapeutic target in a subset of lung carcinomas.
Collapse
|
123
|
Kojima-Kita K, Kuramochi-Miyagawa S, Nagamori I, Ogonuki N, Ogura A, Hasuwa H, Akazawa T, Inoue N, Nakano T. MIWI2 as an Effector of DNA Methylation and Gene Silencing in Embryonic Male Germ Cells. Cell Rep 2017; 16:2819-2828. [PMID: 27626653 DOI: 10.1016/j.celrep.2016.08.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 06/17/2016] [Accepted: 08/08/2016] [Indexed: 01/02/2023] Open
Abstract
During the development of mammalian embryonic germ cells, global demethylation and de novo DNA methylation take place. In mouse embryonic germ cells, two PIWI family proteins, MILI and MIWI2, are essential for the de novo DNA methylation of retrotransposons, presumably through PIWI-interacting RNAs (piRNAs). Although piRNA-associated MIWI2 has been reported to play critical roles in the process, its molecular mechanisms have remained unclear. To identify the mechanism, transgenic mice were produced; they contained a fusion protein of MIWI2 and a zinc finger (ZF) that recognized the promoter region of a type A LINE-1 gene. The ZF-MIWI2 fusion protein brought about DNA methylation, suppression of the type A LINE-1 gene, and a partial rescue of the impaired spermatogenesis of MILI-null mice. In addition, ZF-MIWI2 was associated with the proteins involved in DNA methylation. These data indicate that MIWI2 functions as an effector of de novo DNA methylation of the retrotransposon.
Collapse
Affiliation(s)
- Kanako Kojima-Kita
- Department of Pathology, Medical School, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satomi Kuramochi-Miyagawa
- Department of Pathology, Medical School, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; CREST, Japan Science and Technology Agency
| | - Ippei Nagamori
- Department of Pathology, Medical School, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Narumi Ogonuki
- RIKEN BioResources Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Atsuo Ogura
- RIKEN BioResources Center, Tsukuba 305-0074, Ibaraki, Japan
| | - Hidetoshi Hasuwa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Akazawa
- Department of Tumor Immunology, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Norimitsu Inoue
- Department of Tumor Immunology, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Toru Nakano
- Department of Pathology, Medical School, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; CREST, Japan Science and Technology Agency.
| |
Collapse
|
124
|
Ernst C, Odom DT, Kutter C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat Commun 2017; 8:1411. [PMID: 29127279 PMCID: PMC5681665 DOI: 10.1038/s41467-017-01049-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/14/2017] [Indexed: 01/09/2023] Open
Abstract
Transposable elements (TEs) contribute to the large amount of repetitive sequences in mammalian genomes and have been linked to species-specific genome innovations by rewiring regulatory circuitries. However, organisms need to restrict TE activity to ensure genome integrity, especially in germline cells to protect the transmission of genetic information to the next generation. This review features our current understandings of mammalian PIWI-interacting RNAs (piRNAs) and their role in TE regulation in spermatogenesis. Here we discuss functional implication and explore additional molecular mechanisms that inhibit transposon activity and altogether illustrate the paradoxical arms race between genome evolution and stability.
Collapse
Affiliation(s)
- Christina Ernst
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge, CB2 0RE, UK
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Nobels väg 16, 171 77, Stockholm, Sweden.
| |
Collapse
|
125
|
Gainetdinov I, Skvortsova Y, Kondratieva S, Funikov S, Azhikina T. Two modes of targeting transposable elements by piRNA pathway in human testis. RNA (NEW YORK, N.Y.) 2017; 23:1614-1625. [PMID: 28842508 PMCID: PMC5648030 DOI: 10.1261/rna.060939.117] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
PIWI proteins and their partner small RNAs, termed piRNAs, are known to control transposable elements (TEs) in the germline. Here, we provide evidence that in humans this control is exerted in two different modes. On the one hand, production of piRNAs specifically targeting evolutionarily youngest TEs (L1HS, L1PA2-L1PA6, LTR12C, SVA) is present both at prenatal and postnatal stages of spermatogenesis and is performed without involvement of piRNA clusters. On the other hand, at postnatal stages, piRNAs deriving from pachytene clusters target "older" TEs and thus complement cluster-independent piRNA production to achieve relevant targeting of virtually all TEs expressed in postnatal testis. We also find that converging transcription of antisense-oriented genes contributes to the origin of genic postnatal prepachytene clusters. Finally, while a fraction of pachytene piRNAs was previously shown to arise from long intergenic noncoding RNAs (lincRNAs, i.e., pachytene piRNA cluster primary transcripts), we ascertain that these are a specific set of lincRNAs that both possess distinguishing epigenetic features and are expressed exclusively in testis.
Collapse
Affiliation(s)
- Ildar Gainetdinov
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Yulia Skvortsova
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sofia Kondratieva
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sergey Funikov
- Department of Structural, Functional and Evolutionary Genomics, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tatyana Azhikina
- Department of Genomics and Postgenomic Technologies, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| |
Collapse
|
126
|
Chromatin Dynamics in Genome Stability: Roles in Suppressing Endogenous DNA Damage and Facilitating DNA Repair. Int J Mol Sci 2017; 18:ijms18071486. [PMID: 28698521 PMCID: PMC5535976 DOI: 10.3390/ijms18071486] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/01/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
Genomic DNA is compacted into chromatin through packaging with histone and non-histone proteins. Importantly, DNA accessibility is dynamically regulated to ensure genome stability. This is exemplified in the response to DNA damage where chromatin relaxation near genomic lesions serves to promote access of relevant enzymes to specific DNA regions for signaling and repair. Furthermore, recent data highlight genome maintenance roles of chromatin through the regulation of endogenous DNA-templated processes including transcription and replication. Here, we review research that shows the importance of chromatin structure regulation in maintaining genome integrity by multiple mechanisms including facilitating DNA repair and directly suppressing endogenous DNA damage.
Collapse
|
127
|
Jarrous N. Roles of RNase P and Its Subunits. Trends Genet 2017; 33:594-603. [PMID: 28697848 DOI: 10.1016/j.tig.2017.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022]
Abstract
Recent studies show that nuclear RNase P is linked to chromatin structure and function. Thus, variants of this ribonucleoprotein (RNP) complex bind to chromatin of small noncoding RNA genes; integrate into initiation complexes of RNA polymerase (Pol) III; repress histone H3.3 nucleosome deposition; control tRNA and PIWI-interacting RNA (piRNA) gene clusters for genome defense; and respond to Werner syndrome helicase (WRN)-related replication stress and DNA double-strand breaks (DSBs). Likewise, the related RNase MRP and RMRP-TERT (telomerase reverse transcriptase) are implicated in RNA-dependent RNA polymerization for chromatin silencing, whereas the telomerase carries out RNA-dependent DNA polymerization for telomere lengthening. Remarkably, the four RNPs share several protein subunits, including two Alba-like chromatin proteins that possess DEAD-like and ATPase motifs found in chromatin modifiers and remodelers. Based on available data, RNase P and related RNPs act in transition processes of DNA to RNA and vice versa and connect these processes to genome preservation, including replication, DNA repair, and chromatin remodeling.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
128
|
Abstract
The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1-/- testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1-/- germ cells compared with the wild-type. Analysis of adult Mov10l1-/- germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1-/- phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.
Collapse
|
129
|
Kannan M, Li J, Fritz SE, Husarek KE, Sanford JC, Sullivan TL, Tiwary PK, An W, Boeke JD, Symer DE. Dynamic silencing of somatic L1 retrotransposon insertions reflects the developmental and cellular contexts of their genomic integration. Mob DNA 2017; 8:8. [PMID: 28491150 PMCID: PMC5424313 DOI: 10.1186/s13100-017-0091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/03/2017] [Indexed: 02/15/2023] Open
Abstract
Background The ongoing mobilization of mammalian transposable elements (TEs) contributes to natural genetic variation. To survey the epigenetic control and expression of reporter genes inserted by L1 retrotransposition in diverse cellular and genomic contexts, we engineered highly sensitive, real-time L1 retrotransposon reporter constructs. Results Here we describe different patterns of expression and epigenetic controls of newly inserted sequences retrotransposed by L1 in various somatic cells and tissues including cultured human cancer cells, mouse embryonic stem cells, and tissues of pseudofounder transgenic mice and their progeny. In cancer cell lines, the newly inserted sequences typically underwent rapid transcriptional gene silencing, but they lacked cytosine methylation even after many cell divisions. L1 reporter expression was reversible and oscillated frequently. Silenced or variegated reporter expression was strongly and uniformly reactivated by treatment with inhibitors of histone deacetylation, revealing the mechanism for their silencing. By contrast, de novo integrants retrotransposed by L1 in pluripotent mouse embryonic stem (ES) cells underwent rapid silencing by dense cytosine methylation. Similarly, de novo cytosine methylation also was identified at new integrants when studied in several distinct somatic tissues of adult founder mice. Pre-existing L1 elements in cultured human cancer cells were stably silenced by dense cytosine methylation, whereas their transcription modestly increased when cytosine methylation was experimentally reduced in cells lacking DNA methyltransferases DNMT1 and DNMT3b. As a control, reporter genes mobilized by piggyBac (PB), a DNA transposon, revealed relatively stable and robust expression without apparent silencing in both cultured cancer cells and ES cells. Conclusions We hypothesize that the de novo methylation marks at newly inserted sequences retrotransposed by L1 in early pre-implantation development are maintained or re-established in adult somatic tissues. By contrast, histone deacetylation reversibly silences L1 reporter insertions that had mobilized at later timepoints in somatic development and differentiation, e.g., in cancer cell lines. We conclude that the cellular contexts of L1 retrotransposition can determine expression or silencing of newly integrated sequences. We propose a model whereby reporter expression from somatic TE insertions reflects the timing, molecular mechanism, epigenetic controls and the genomic, cellular and developmental contexts of their integration. Electronic supplementary material The online version of this article (doi:10.1186/s13100-017-0091-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manoj Kannan
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani, 333031 Rajasthan India.,Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Present Address: Birla Institute of Technology and Science, Pilani, Dubai campus, Dubai, United Arab Emirates
| | - Jingfeng Li
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA.,Department of Internal Medicine, The Ohio State University, Columbus, OH USA
| | - Sarah E Fritz
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kathryn E Husarek
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: Aventiv Research, Inc., Columbus, OH USA
| | - Jonathan C Sanford
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH USA.,Present Address: Drug Safety Research and Development, Pfizer, Inc., Groton, CT USA
| | - Teresa L Sullivan
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Pawan Kumar Tiwary
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Present Address: Biocon, Bangalore, India
| | - Wenfeng An
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present Address: Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD USA
| | - Jef D Boeke
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD USA.,Present Address: Institute for Systems Genetics, New York University Langone Medical Center, New York, NY USA
| | - David E Symer
- Laboratory of Immunobiology, Mouse Cancer Genetics Program and Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA.,Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH USA.,Human Cancer Genetics Program, and Department of Biomedical Informatics, The Ohio State University, Columbus, OH USA.,Human Cancer Genetics Program, Department of Cancer Biology and Genetics, and Department of Biomedical Informatics, The Ohio State University, Tzagournis Research Facility, Room 440, 420 West 12th Ave, Columbus, OH 43210 USA
| |
Collapse
|
130
|
Hall AC, Ostrowski LA, Pietrobon V, Mekhail K. Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes. Nucleus 2017; 8:162-181. [PMID: 28406751 DOI: 10.1080/19491034.2017.1292193] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci.
Collapse
Affiliation(s)
- Amanda C Hall
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Lauren A Ostrowski
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Violena Pietrobon
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| | - Karim Mekhail
- a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada.,b Canada Research Chairs Program ; Faculty of Medicine, University of Toronto , Toronto, Ontario , Canada
| |
Collapse
|
131
|
Kalinava N, Ni JZ, Peterman K, Chen E, Gu SG. Decoupling the downstream effects of germline nuclear RNAi reveals that H3K9me3 is dispensable for heritable RNAi and the maintenance of endogenous siRNA-mediated transcriptional silencing in Caenorhabditis elegans. Epigenetics Chromatin 2017; 10:6. [PMID: 28228846 PMCID: PMC5311726 DOI: 10.1186/s13072-017-0114-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 02/08/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Germline nuclear RNAi in C. elegans is a transgenerational gene-silencing pathway that leads to H3K9 trimethylation (H3K9me3) and transcriptional silencing at the target genes. H3K9me3 induced by either exogenous double-stranded RNA (dsRNA) or endogenous siRNA (endo-siRNA) is highly specific to the target loci and transgenerationally heritable. Despite these features, the role of H3K9me3 in siRNA-mediated transcriptional silencing and inheritance of the silencing state at native target genes is unclear. In this study, we took combined genetic and whole-genome approaches to address this question. RESULTS Here we demonstrate that siRNA-mediated H3K9me3 requires combined activities of three H3K9 histone methyltransferases: MET-2, SET-25, and SET-32. set-32 single, met-2 set-25 double, and met-2 set-25;set-32 triple mutant adult animals all exhibit prominent reductions in H3K9me3 throughout the genome, with met-2 set-25;set-32 mutant worms losing all detectable H3K9me3 signals. Surprisingly, loss of high-magnitude H3K9me3 at the native nuclear RNAi targets has no effect on the transcriptional silencing state. In addition, the exogenous dsRNA-induced transcriptional silencing and heritable RNAi at oma-1, a well-established nuclear RNAi reporter gene, are completely resistant to the loss of H3K9me3. CONCLUSIONS Nuclear RNAi-mediated H3K9me3 in C. elegans requires multiple histone methyltransferases, including MET-2, SET-25, and SET-32. H3K9me3 is not essential for dsRNA-induced heritable RNAi or the maintenance of endo-siRNA-mediated transcriptional silencing in C. elegans. We propose that siRNA-mediated transcriptional silencing in C. elegans can be maintained by an H3K9me3-independent mechanism.
Collapse
Affiliation(s)
- Natallia Kalinava
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Julie Zhouli Ni
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Kimberly Peterman
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Esteban Chen
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA
| | - Sam Guoping Gu
- Department of Molecular Biology and Biochemistry, Rutgers the State University of New Jersey, Piscataway, NJ 08854 USA.,Nelson Labs A125, 604 Allison Road, Piscataway, NJ 08854 USA
| |
Collapse
|
132
|
From Embryo to Adult: piRNA-Mediated Silencing throughout Germline Development in Drosophila. G3-GENES GENOMES GENETICS 2017; 7:505-516. [PMID: 27932388 PMCID: PMC5295597 DOI: 10.1534/g3.116.037291] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In metazoan germ cells, transposable element activity is repressed by small noncoding PIWI-associated RNAs (piRNAs). Numerous studies in Drosophila have elucidated the mechanism of this repression in the adult germline. However, when and how transposable element repression is established during germline development has not been addressed. Here, we show that homology-dependent trans silencing is active in female primordial germ cells from late embryogenesis through pupal stages, and that genes related to the adult piRNA pathway are required for silencing during development. In larval gonads, we detect rhino-dependent piRNAs indicating de novo biogenesis of functional piRNAs during development. Those piRNAs exhibit the molecular signature of the “ping-pong” amplification step. Moreover, we show that Heterochromatin Protein 1a is required for the production of piRNAs coming from telomeric transposable elements. Furthermore, as in adult ovaries, incomplete, bimodal, and stochastic repression resembling variegation can occur at all developmental stages. Clonal analysis indicates that the repression status established in embryonic germ cells is maintained until the adult stage, suggesting the implication of a cellular memory mechanism. Taken together, data presented here show that piRNAs and their associated proteins are epigenetic components of a continuous repression system throughout germ cell development.
Collapse
|
133
|
Da Ros M, Lehtiniemi T, Olotu O, Fischer D, Zhang FP, Vihinen H, Jokitalo E, Sironen A, Toppari J, Kotaja N. FYCO1 and autophagy control the integrity of the haploid male germ cell-specific RNP granules. Autophagy 2016; 13:302-321. [PMID: 27929729 PMCID: PMC5324852 DOI: 10.1080/15548627.2016.1261319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribonucleoprotein (RNP) granules play a major role in compartmentalizing cytoplasmic RNA regulation. Haploid round spermatids that have exceptionally diverse transcriptomes are characterized by a unique germ cell-specific RNP granule, the chromatoid body (CB). The CB shares many characteristics with somatic RNP granules but also has germline-specific features. The CB appears to be a central structure in PIWI-interacting RNA (piRNA)-targeted RNA regulation. Here, we identified a novel CB component, FYCO1, which is involved in the intracellular transport of autophagic vesicles in somatic cells. We demonstrated that the CB is associated with autophagic activity. Induction of autophagy leads to the recruitment of lysosomal vesicles onto the CB in a FYCO1-dependent manner as demonstrated by the analysis of a germ cell-specific Fyco1 conditional knockout mouse model. Furthermore, in the absence of FYCO1, the integrity of the CB was affected and the CB was fragmented. Our results suggest that RNP granule homeostasis is regulated by FYCO1-mediated autophagy.
Collapse
Affiliation(s)
- Matteo Da Ros
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,b Department of Cellular and Molecular Biology , Faculty of Medicine, University of Ottawa , Ottawa , ON , Canada
| | - Tiina Lehtiniemi
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| | - Opeyemi Olotu
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| | - Daniel Fischer
- c Natural Resources Institute Finland (Luke), Green Technology , Jokioinen , Finland
| | - Fu-Ping Zhang
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,d Turku Center for Disease Modeling, University of Turku , Turku , Finland
| | - Helena Vihinen
- e Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki , Helsinki , Finland
| | - Eija Jokitalo
- e Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki , Helsinki , Finland
| | - Anu Sironen
- c Natural Resources Institute Finland (Luke), Green Technology , Jokioinen , Finland
| | - Jorma Toppari
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland.,f Department of Pediatrics , University of Turku and Turku University Hospital , Turku , Finland
| | - Noora Kotaja
- a Institute of Biomedicine, Department of Physiology , University of Turku , Turku , Finland
| |
Collapse
|
134
|
Export of piRNA precursors by EJC triggers assembly of cytoplasmic Yb-body in Drosophila. Nat Commun 2016; 7:13739. [PMID: 27929060 PMCID: PMC5155165 DOI: 10.1038/ncomms13739] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/28/2016] [Indexed: 01/04/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs) are effectors of transposable element (TE) silencing in the reproductive apparatus. In Drosophila ovarian somatic cells, piRNAs arise from longer single-stranded RNA precursors that are processed in the cytoplasm presumably within the Yb-bodies. piRNA precursors encoded by the flamenco (flam) piRNA cluster accumulate in a single focus away from their sites of transcription. In this study, we identify the exportin complex containing Nxf1 and Nxt1 as required for flam precursor nuclear export. Together with components of the exon junction complex (EJC), it is necessary for the efficient transfer of flam precursors away from their site of transcription. Indeed, depletion of these components greatly affects flam intra-nuclear transit. Moreover, we show that Yb-body assembly is dependent on the nucleo-cytoplasmic export of flam transcripts. These results suggest that somatic piRNA precursors are thus required for the assembly of the cytoplasmic transposon silencing machinery.
Collapse
|
135
|
Moretti C, Vaiman D, Tores F, Cocquet J. Expression and epigenomic landscape of the sex chromosomes in mouse post-meiotic male germ cells. Epigenetics Chromatin 2016; 9:47. [PMID: 27795737 PMCID: PMC5081929 DOI: 10.1186/s13072-016-0099-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During meiosis, the X and Y chromosomes are transcriptionally silenced. The persistence of repressive chromatin marks on the sex chromatin after meiosis initially led to the assumption that XY gene silencing persists to some extent in spermatids. Considering the many reports of XY-linked genes expressed and needed in the post-meiotic phase of mouse spermatogenesis, it is still unclear whether or not the mouse sex chromatin is a repressive or permissive environment, after meiosis. RESULTS To determine the transcriptional and chromatin state of the sex chromosomes after meiosis, we re-analyzed ten ChIP-Seq datasets performed on mouse round spermatids and four RNA-seq datasets from male germ cells purified at different stages of spermatogenesis. For this, we used the last version of the genome (mm10/GRCm38) and included reads that map to several genomic locations in order to properly interpret the high proportion of sex chromosome-encoded multicopy genes. Our study shows that coverage of active epigenetic marks H3K4me3 and Kcr is similar on the sex chromosomes and on autosomes. The post-meiotic sex chromatin nevertheless differs from autosomal chromatin in its enrichment in H3K9me3 and its depletion in H3K27me3 and H4 acetylation. We also identified a posttranslational modification, H3K27ac, which specifically accumulates on the Y chromosome. In parallel, we found that the X and Y chromosomes are enriched in genes expressed post-meiotically and display a higher proportion of spermatid-specific genes compared to autosomes. Finally, we observed that portions of chromosome 14 and of the sex chromosomes share specific features, such as enrichment in H3K9me3 and the presence of multicopy genes that are specifically expressed in round spermatids, suggesting that parts of chromosome 14 are under the same evolutionary constraints than the sex chromosomes. CONCLUSIONS Based on our expression and epigenomic studies, we conclude that, after meiosis, the mouse sex chromosomes are no longer silenced but are nevertheless regulated differently than autosomes and accumulate different chromatin marks. We propose that post-meiotic selective constraints are at the basis of the enrichment of spermatid-specific genes and of the peculiar chromatin composition of the sex chromosomes and of parts of chromosome 14.
Collapse
Affiliation(s)
- Charlotte Moretti
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Daniel Vaiman
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frederic Tores
- INSERM U1163, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Julie Cocquet
- Institut National de la Sante et de la Recherche Medicale (INSERM) U1016, Institut Cochin, Paris, France ; Centre National de la Recherche Scientifique (CNRS), UMR8104, Paris, France ; Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
136
|
Canovas S, Campos R, Aguilar E, Cibelli JB. Progress towards human primordial germ cell specification in vitro. Mol Hum Reprod 2016; 23:4-15. [PMID: 27798275 DOI: 10.1093/molehr/gaw069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
Primordial germ cells (PGCs) have long been considered the link between one generation and the next. PGC specification begins in the early embryo as a result of a highly orchestrated combination of transcriptional and epigenetic mechanisms. Understanding the molecular events that lead to proper PGC development will facilitate the development of new treatments for human infertility as well as species conservation. This article describes the latest, most relevant findings about the mechanisms of PGC formation, emphasizing human PGC. It also discusses our own laboratory's progress in using transdifferentiation protocols to derive human PGCs (hPGCs). Our preliminary results arose from our pursuit of a sequential hPGC induction strategy that starts with the repression of lineage-specific factors in the somatic cell, followed by the reactivation of germ cell-related genes using specific master regulators, which can indeed reactivate germ cell-specific genes in somatic cells. While it is still premature to assume that fully functional human gametes can be obtained in a dish, our results, together with those recently published by others, provide strong evidence that generating their precursors, PGCs, is within reach.
Collapse
Affiliation(s)
- S Canovas
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain
| | - R Campos
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain
| | - E Aguilar
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain
| | - J B Cibelli
- LARCEL, Centro Andaluz de Nanomedicina y Biotecnología (BIONAND), C/Severo Ochoa 35, Malaga 29590, Spain .,Department of Physiology and Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
137
|
Fu Q, Pandey RR, Leu NA, Pillai RS, Wang PJ. Mutations in the MOV10L1 ATP Hydrolysis Motif Cause piRNA Biogenesis Failure and Male Sterility in Mice. Biol Reprod 2016; 95:103. [PMID: 27655786 PMCID: PMC5178147 DOI: 10.1095/biolreprod.116.142430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/19/2016] [Indexed: 11/17/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of small noncoding RNAs. piRNAs protect the genome integrity of the germline by silencing active transposable elements and are essential for germ cell development. Most piRNA pathway proteins are evolutionarily conserved. MOV10L1, a testis-specific RNA helicase, binds to piRNA precursors and is a master regulator of piRNA biogenesis in mouse. Here we report that mutation of the MOV10L1 ATP hydrolysis site leads to depletion of piRNAs on Piwi proteins, de-repression of transposable elements, and conglomeration of piRNA pathway proteins into polar granules. The Mov10l1 mutant mice exhibit meiotic arrest and male sterility. Our results show that mutation of the MOV10L1 ATP hydrolysis site perturbs piRNA biogenesis.
Collapse
Affiliation(s)
- Qi Fu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Radha Raman Pandey
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Ramesh S. Pillai
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
- Correspondence: P. Jeremy Wang, Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104. E-mail:
| |
Collapse
|
138
|
van Kruijsbergen I, Hontelez S, Elurbe DM, van Heeringen SJ, Huynen MA, Veenstra GJC. Heterochromatic histone modifications at transposons in Xenopus tropicalis embryos. Dev Biol 2016; 426:460-471. [PMID: 27639284 DOI: 10.1016/j.ydbio.2016.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/20/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022]
Abstract
Transposable elements are parasitic genomic elements that can be deleterious for host gene function and genome integrity. Heterochromatic histone modifications are involved in the repression of transposons. However, it remains unknown how these histone modifications mark different types of transposons during embryonic development. Here we document the variety of heterochromatic epigenetic signatures at parasitic elements during development in Xenopus tropicalis, using genome-wide ChIP-sequencing data and ChIP-qPCR analysis. We show that specific subsets of transposons in various families and subfamilies are marked by different combinations of the heterochromatic histone modifications H4K20me3, H3K9me2/3 and H3K27me3. Many DNA transposons are marked at the blastula stage already, whereas at retrotransposons the histone modifications generally accumulate at the gastrula stage or later. Furthermore, transposons marked by H3K9me3 and H4K20me3 are more prominent in gene deserts. Using intra-subfamily divergence as a proxy for age, we show that relatively young DNA transposons are preferentially marked by early embryonic H4K20me3 and H3K27me3. In contrast, relatively young retrotransposons are marked by increasing H3K9me3 and H4K20me3 during development, and are also linked to piRNA-sized small non-coding RNAs. Our results implicate distinct repression mechanisms that operate in a transposon-selective and developmental stage-specific fashion.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Saartje Hontelez
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Dei M Elurbe
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Simon J van Heeringen
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn A Huynen
- Radboud University Medical Center, Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
139
|
Abstract
A significant part of eukaryotic genomes is formed by transposable elements (TEs) containing not only genes but also regulatory sequences. Some of the regulatory sequences located within TEs can form secondary structures like hairpins or three-stranded (triplex DNA) and four-stranded (quadruplex DNA) conformations. This review focuses on recent evidence showing that G-quadruplex-forming sequences in particular are often present in specific parts of TEs in plants and humans. We discuss the potential role of these structures in the TE life cycle as well as the impact of G-quadruplexes on replication, transcription, translation, chromatin status, and recombination. The aim of this review is to emphasize that TEs may serve as vehicles for the genomic spread of G-quadruplexes. These non-canonical DNA structures and their conformational switches may constitute another regulatory system that, together with small and long non-coding RNA molecules and proteins, contribute to the complex cellular network resulting in the large diversity of eukaryotes.
Collapse
|
140
|
Abstract
Retrotransposons have generated about 40 % of the human genome. This review examines the strategies the cell has evolved to coexist with these genomic "parasites", focussing on the non-long terminal repeat retrotransposons of humans and mice. Some of the restriction factors for retrotransposition, including the APOBECs, MOV10, RNASEL, SAMHD1, TREX1, and ZAP, also limit replication of retroviruses, including HIV, and are part of the intrinsic immune system of the cell. Many of these proteins act in the cytoplasm to degrade retroelement RNA or inhibit its translation. Some factors act in the nucleus and involve DNA repair enzymes or epigenetic processes of DNA methylation and histone modification. RISC and piRNA pathway proteins protect the germline. Retrotransposon control is relaxed in some cell types, such as neurons in the brain, stem cells, and in certain types of disease and cancer, with implications for human health and disease. This review also considers potential pitfalls in interpreting retrotransposon-related data, as well as issues to consider for future research.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA 212051
| |
Collapse
|
141
|
Ecco G, Cassano M, Kauzlaric A, Duc J, Coluccio A, Offner S, Imbeault M, Rowe HM, Turelli P, Trono D. Transposable Elements and Their KRAB-ZFP Controllers Regulate Gene Expression in Adult Tissues. Dev Cell 2016; 36:611-23. [PMID: 27003935 DOI: 10.1016/j.devcel.2016.02.024] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
KRAB-containing zinc finger proteins (KRAB-ZFPs) are early embryonic controllers of transposable elements (TEs), which they repress with their cofactor KAP1 through histone and DNA methylation, a process thought to result in irreversible silencing. Using a target-centered functional screen, we matched murine TEs with their cognate KRAB-ZFP. We found the paralogs ZFP932 and Gm15446 to bind overlapping but distinguishable subsets of ERVK (endogenous retrovirus K), repress these elements in embryonic stem cells, and regulate secondarily the expression of neighboring genes. Most importantly, we uncovered that these KRAB-ZFPs and KAP1 control TEs in adult tissues, in cell culture and in vivo, where they partner up to modulate cellular genes. Therefore, TEs and KRAB-ZFPs establish transcriptional networks that likely regulate not only development but also many physiological events. Given the high degree of species specificity of TEs and KRAB-ZFPs, these results have important implications for understanding the biology of higher vertebrates, including humans.
Collapse
Affiliation(s)
- Gabriela Ecco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Marco Cassano
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Annamaria Kauzlaric
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Julien Duc
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Andrea Coluccio
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Sandra Offner
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Michaël Imbeault
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Helen M Rowe
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Priscilla Turelli
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland.
| |
Collapse
|
142
|
Göke J, Ng HH. CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep 2016; 17:1131-44. [PMID: 27402545 DOI: 10.15252/embr.201642743] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022] Open
Abstract
The human genome contains millions of fragments from retrotransposons-highly repetitive DNA sequences that were once able to "copy and paste" themselves to other regions in the genome. However, the majority of retrotransposons have lost this capacity through acquisition of mutations or through endogenous silencing mechanisms. Without this imminent threat of transposition, retrotransposons have the potential to act as a major source of genomic innovation. Indeed, large numbers of retrotransposons have been found to be active in specific contexts: as gene regulatory elements and promoters for protein-coding genes or long noncoding RNAs, among others. In this review, we summarise recent findings about retrotransposons, with implications in gene expression regulation, the expansion of gene isoform diversity and the generation of long noncoding RNAs. We highlight key examples that demonstrate their role in cellular identity and their versatility as markers of cell states, and we discuss how their dysregulation may contribute to the formation of and possibly therapeutic response in human cancers.
Collapse
Affiliation(s)
- Jonathan Göke
- Computational and Systems Biology, Genome Institute of Singapore, Singapore
| | - Huck Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore Department of Biochemistry, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
143
|
Yang F, Wang PJ. Multiple LINEs of retrotransposon silencing mechanisms in the mammalian germline. Semin Cell Dev Biol 2016; 59:118-125. [PMID: 26957474 DOI: 10.1016/j.semcdb.2016.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 02/07/2023]
Abstract
Retrotransposons play an important role in genome evolution but pose acute challenges to host genome integrity, particularly in early stage germ cells where epigenetic control is relaxed to permit genome-wide reprogramming. In most species, the inability to silence retrotransposons in the germline is usually associated with sterility. LINE1 is the most abundant retrotransposon type in the mammalian genome. Mammalian germ cells employ multiple mechanisms to suppress retrotransposon activity, including small non-coding piRNAs, DNA methylation, and repressive histone modifications. Novel factors contributing to the epigenetic silencing of retrotransposons in the germline continue to be identified. Recent studies have provided insight into how epigenetic changes associated with retrotransposon activation impact on fertility.
Collapse
Affiliation(s)
- Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
144
|
Walter M, Teissandier A, Pérez-Palacios R, Bourc'his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 2016; 5. [PMID: 26814573 PMCID: PMC4769179 DOI: 10.7554/elife.11418] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
DNA methylation is extensively remodeled during mammalian gametogenesis and embryogenesis. Most transposons become hypomethylated, raising the question of their regulation in the absence of DNA methylation. To reproduce a rapid and extensive demethylation, we subjected mouse ES cells to chemically defined hypomethylating culture conditions. Surprisingly, we observed two phases of transposon regulation. After an initial burst of de-repression, various transposon families were efficiently re-silenced. This was accompanied by a reconfiguration of the repressive chromatin landscape: while H3K9me3 was stable, H3K9me2 globally disappeared and H3K27me3 accumulated at transposons. Interestingly, we observed that H3K9me3 and H3K27me3 occupy different transposon families or different territories within the same family, defining three functional categories of adaptive chromatin responses to DNA methylation loss. Our work highlights that H3K9me3 and, most importantly, polycomb-mediated H3K27me3 chromatin pathways can secure the control of a large spectrum of transposons in periods of intense DNA methylation change, ensuring longstanding genome stability.
Collapse
Affiliation(s)
- Marius Walter
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,Paris Science Lettres Research University, .,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France
| | - Aurélie Teissandier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France.,Paris Science Lettres Research University, .,Bioinformatics, Biostatistics, Epidemiology and Computational Systems Biology of Cancer, Institut Curie, Paris, France.,Mines Paris Tech, Paris, France.,U900, Inserm, Paris, France
| | - Raquel Pérez-Palacios
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France.,Paris Science Lettres Research University,
| | - Déborah Bourc'his
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France.,UMR3215, CNRS, Paris, France.,U934, Inserm, Paris, France.,Paris Science Lettres Research University,
| |
Collapse
|
145
|
Molaro A, Malik HS. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr Opin Genet Dev 2016; 37:51-58. [PMID: 26821364 DOI: 10.1016/j.gde.2015.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 01/07/2023]
Abstract
Retroelements comprise a major fraction of most mammalian genomes. To protect their fitness and stability, hosts must keep retroelements in check in their germline. In most tissues mobile element insertions are decorated with chromatin modifications suggestive of transcriptional silencing. However, germline cells undergo massive chromatin reprogramming events, which erase repressive chromatin marks and necessitate de novo re-establishment of silencing. How do host genomes achieve the discrimination necessary for this de novo silencing? A series of recent studies have revealed aspects of the multi-pronged strategy that mammalian genomes use to identify and silence retroelements. These strategies include the use of small RNA-guides, of specialized DNA-binding protein adaptors and of proteins that repair chromatin discontinuities caused by retroelement insertions. Genetic analyses reveal the importance of these mechanisms of protection, each of which specializes in silencing retroelements of different evolutionary ages. Together, these strategies allow mammalian genomes to withstand the high burden of their parasites.
Collapse
Affiliation(s)
- Antoine Molaro
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States; Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States.
| |
Collapse
|
146
|
Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2016; 528:218-24. [PMID: 26659182 PMCID: PMC4866648 DOI: 10.1038/nature15749] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022]
Abstract
Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.
Collapse
Affiliation(s)
- Sihem Cheloufi
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Barbara Hopfgartner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Youngsook L Jung
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Jernej Murn
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Maria Ninova
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Maria Hubmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Aimee I Badeaux
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Danielle Tenen
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Daniel J Wesche
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Nadezhda Abazova
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Max Hogue
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Nilgun Tasdemir
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Justin Brumbaugh
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Philipp Rathert
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Julian Jude
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Francesco Ferrari
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Andres Blanco
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Michaela Fellner
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Daniel Wenzel
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Marietta Zinner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Simon E Vidal
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Matthias Stadtfeld
- The Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, New York 10016, USA
| | - Howard Y Chang
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Scott W Lowe
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John Rinn
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology and Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, California 91125, USA
| | - Yang Shi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.,Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), A-1030 Vienna, Austria
| | - Konrad Hochedlinger
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.,Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
147
|
Politz JCR, Scalzo D, Groudine M. The redundancy of the mammalian heterochromatic compartment. Curr Opin Genet Dev 2015; 37:1-8. [PMID: 26706451 DOI: 10.1016/j.gde.2015.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 10/28/2015] [Indexed: 01/05/2023]
Abstract
Two chromatin compartments are present in most mammalian cells; the first contains primarily euchromatic, early replicating chromatin and the second, primarily late-replicating heterochromatin, which is the subject of this review. Heterochromatin is concentrated in three intranuclear regions: the nuclear periphery, the perinucleolar space and in pericentromeric bodies. We review recent evidence demonstrating that the heterochromatic compartment is critically involved in global nuclear organization and the maintenance of genome stability, and discuss models regarding how this compartment is formed and maintained. We also evaluate our understanding of how heterochromatic sequences (herein named heterochromatic associated regions (HADs)) might be tethered within these regions and review experiments that reveal the stochastic nature of individual HAD positioning within the compartment. These investigations suggest a substantial level of functional redundancy within the heterochromatic compartment.
Collapse
Affiliation(s)
| | - David Scalzo
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Mark Groudine
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States.
| |
Collapse
|
148
|
A Small RNA-Based Immune System Defends Germ Cells against Mobile Genetic Elements. Stem Cells Int 2015; 2016:7595791. [PMID: 26681955 PMCID: PMC4670677 DOI: 10.1155/2016/7595791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/11/2015] [Indexed: 11/17/2022] Open
Abstract
Transposons are mobile genetic elements that threaten the survival of species by destabilizing the germline genomes. Limiting the spread of these selfish elements is imperative. Germ cells employ specialized small regulatory RNA pathways to restrain transposon activity. PIWI proteins and Piwi-interacting RNAs (piRNAs) silence transposons at the transcriptional and posttranscriptional level with loss-of-function mutant animals universally exhibiting sterility often associated with germ cell defects. This short review aims to illustrate basic strategies of piRNA-guided defense against transposons. Mechanisms of piRNA silencing are most readily studied in Drosophila melanogaster, which serves as a model to delineate molecular concepts and as a reference for mammalian piRNA systems. PiRNA pathways utilize two major strategies to handle the challenges of transposon control: (1) the hard-wired molecular memory of prior transpositions enables recognition of mobile genetic elements and discriminates transposons from host genes; (2) a feed-forward adaptation mechanism shapes piRNA populations to selectively combat the immediate threat of transposon transcripts. In flies, maternally contributed PIWI-piRNA complexes bolster both of these lines of defense and ensure transgenerational immunity. While recent studies have provided a conceptual framework of what could be viewed as an ancient immune system, we are just beginning to appreciate its many molecular innovations.
Collapse
|
149
|
Senti KA, Jurczak D, Sachidanandam R, Brennecke J. piRNA-guided slicing of transposon transcripts enforces their transcriptional silencing via specifying the nuclear piRNA repertoire. Genes Dev 2015; 29:1747-62. [PMID: 26302790 PMCID: PMC4561483 DOI: 10.1101/gad.267252.115] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this study, Senti et al investigate how cytoplasmic post-transcriptional silencing influences transcriptional silencing in the nucleus. They show that Piwi-bound piRNA populations depend almost exclusively on prior piRNA-guided transcript slicing, thus providing further insight into the regulation of piRNA biogenesis in the developing Drosophila ovary. PIWI clade Argonaute proteins silence transposon expression in animal gonads. Their target specificity is defined by bound ∼23- to 30-nucleotide (nt) PIWI-interacting RNAs (piRNAs) that are processed from single-stranded precursor transcripts via two distinct pathways. Primary piRNAs are defined by the endonuclease Zucchini, while biogenesis of secondary piRNAs depends on piRNA-guided transcript cleavage and results in piRNA amplification. Here, we analyze the interdependencies between these piRNA biogenesis pathways in developing Drosophila ovaries. We show that secondary piRNA-guided target slicing is the predominant mechanism that specifies transcripts—including those from piRNA clusters—as primary piRNA precursors and defines the spectrum of Piwi-bound piRNAs in germline cells. Post-transcriptional silencing in the cytoplasm therefore enforces nuclear transcriptional target silencing, which ensures the tight suppression of transposons during oogenesis. As target slicing also defines the nuclear piRNA pool during mouse spermatogenesis, our findings uncover an unexpected conceptual similarity between the mouse and fly piRNA pathways.
Collapse
Affiliation(s)
- Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Daniel Jurczak
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Ravi Sachidanandam
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
150
|
Sienski G, Batki J, Senti KA, Dönertas D, Tirian L, Meixner K, Brennecke J. Silencio/CG9754 connects the Piwi-piRNA complex to the cellular heterochromatin machinery. Genes Dev 2015; 29:2258-71. [PMID: 26494711 PMCID: PMC4647559 DOI: 10.1101/gad.271908.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022]
Abstract
In this study, Sienski et al. characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi's nuclear function in guiding the transcriptional silencing of transposons. These results provide novel insight into the transcriptional silencing process downstream from Piwi and the regulation of piRNA-guided heterochromatin formation. The repression of transposable elements in eukaryotes often involves their transcriptional silencing via targeted chromatin modifications. In animal gonads, nuclear Argonaute proteins of the PIWI clade complexed with small guide RNAs (piRNAs) serve as sequence specificity determinants in this process. How binding of nuclear PIWI–piRNA complexes to nascent transcripts orchestrates heterochromatin formation and transcriptional silencing is unknown. Here, we characterize CG9754/Silencio as an essential piRNA pathway factor that is required for Piwi-mediated transcriptional silencing in Drosophila. Ectopic targeting of Silencio to RNA or DNA is sufficient to elicit silencing independently of Piwi and known piRNA pathway factors. Instead, Silencio requires the H3K9 methyltransferase Eggless/SetDB1 for its silencing ability. In agreement with this, SetDB1, but not Su(var)3-9, is required for Piwi-mediated transcriptional silencing genome-wide. Due to its interaction with the target-engaged Piwi–piRNA complex, we suggest that Silencio acts as linker between the sequence specificity factor Piwi and the cellular heterochromatin machinery.
Collapse
Affiliation(s)
- Grzegorz Sienski
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Julia Batki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Kirsten-André Senti
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Derya Dönertas
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Laszlo Tirian
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katharina Meixner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|