101
|
Peytavi R, Hong SS, Gay B, d'Angeac AD, Selig L, Bénichou S, Benarous R, Boulanger P. HEED, the product of the human homolog of the murine eed gene, binds to the matrix protein of HIV-1. J Biol Chem 1999; 274:1635-45. [PMID: 9880543 DOI: 10.1074/jbc.274.3.1635] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
heed, the human homolog of mouse eed and Drosophila esc, two members of the trithorax (trx) and Polycomb group (Pc-G) of genes, was isolated by screening an activated lymphocyte cDNA library versus the immunodeficiency virus type 1 (HIV-1) MA protein used as a bait in a two-hybrid system in yeast. The human EED protein (HEED) had 99. 5% identity with the mouse EED protein and contained seven WD repeats. Two heed gene transcripts were identified, with a putative 407-nucleotide-long intron, giving rise to two HEED protein isoforms of 535 and 494 residues in length, respectively. The shorter HEED isoform, originated from the unspliced message, lacked the seventh WD repeat. HEED was found to bind to MA protein in vitro, as efficiently as in vivo in yeast cells. Site-directed mutagenesis and phage biopanning suggested that the interaction between HEED and MA involved the N-terminal region of the MA protein, including the first polybasic signal, in a MA conformation-dependent manner. In the HEED protein, however, two discrete linear MA-binding motifs were identified within residues 388-403, overlapping the origin of the fifth WD repeat. Deletion of the C-terminal 41 residues of HEED, spanning the seventh WD repeat, as in the 494-residue HEED protein, was detrimental to HEED-MA interaction in vivo, suggesting the existence of another C-terminal binding site and/or a conformational role of the HEED C-terminal domain in the MA-HEED interaction. MA and HEED proteins co-localized within the nucleus of co-transfected human cells and of recombinant baculovirus co-infected insect cells. This and the failure of HEED to bind to uncleaved GAG precursor suggested a role of HEED at the early stages of virus infection, rather than late in the virus life cycle.
Collapse
Affiliation(s)
- R Peytavi
- Laboratoire de Virologie Moléculaire and Pathogénèse Virale, CNRS UMR-5812, Faculté de Médecine, 2, Boulevard Henri IV, 34060 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Nymark-McMahon MH, Sandmeyer SB. Mutations in nonconserved domains of Ty3 integrase affect multiple stages of the Ty3 life cycle. J Virol 1999; 73:453-65. [PMID: 9847351 PMCID: PMC103852 DOI: 10.1128/jvi.73.1.453-465.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ty3, a retroviruslike element of Saccharomyces cerevisiae, transposes into positions immediately upstream of RNA polymerase III-transcribed genes. The Ty3 integrase (IN) protein is required for integration of the replicated, extrachromosomal Ty3 DNA. In retroviral IN, a conserved core region is sufficient for strand transfer activity. In this study, charged-to-alanine scanning mutagenesis was used to investigate the roles of the nonconserved amino- and carboxyl-terminal regions of Ty3 IN. Each of the 20 IN mutants was defective for transposition, but no mutant was grossly defective for capsid maturation. All mutations affecting steady-state levels of mature IN protein resulted in reduced levels of replicated DNA, even when polymerase activity was not grossly defective as measured by exogenous reverse transcriptase activity assay. Thus, IN could contribute to nonpolymerase functions required for DNA production in vivo or to the stability of the DNA product. Several mutations in the carboxyl-terminal domain resulted in relatively low levels of processed 3' ends of the replicated DNA, suggesting that this domain may be important for binding of IN to the long terminal repeat. Another class of mutants produced wild-type amounts of DNA with correctly processed 3' ends. This class could include mutants affected in nuclear entry and target association. Collectively, these mutations demonstrate that in vivo, within the preintegration complex, IN performs a central role in coordinating multiple late stages of the retrotransposition life cycle.
Collapse
Affiliation(s)
- M H Nymark-McMahon
- Department of Biological Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
103
|
Hoff EF, Levin HL, Boeke JD. Schizosaccharomyces pombe retrotransposon Tf2 mobilizes primarily through homologous cDNA recombination. Mol Cell Biol 1998; 18:6839-52. [PMID: 9774697 PMCID: PMC109267 DOI: 10.1128/mcb.18.11.6839] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tf2 retrotransposon, found in the fission yeast Schizosaccharomyces pombe, is nearly identical to its sister element, Tf1, in its reverse transcriptase-RNase H and integrase domains but is very divergent in the gag domain, the protease, the 5' untranslated region, and the U3 domain of the long terminal repeats. It has now been demonstrated that a neo-marked copy of Tf2 overexpressed from a heterologous promoter can mobilize into the S. pombe genome and produce true transposition events. However, the Tf2-neo mobilization frequency is 10- to 20-fold lower than that of Tf1-neo, and 70% of the Tf2-neo events are homologous recombination events generated independently of a functional Tf2 integrase. Thus, the Tf2 element is primarily dependent on homologous recombination with preexisting copies of Tf2 for its propagation. Finally, production of Tf2-neo proteins and cDNA was also analyzed; surprisingly, Tf2 was found to produce its reverse transcriptase as a single species in which it is fused to protease, unlike all other retroviruses and retrotransposons.
Collapse
Affiliation(s)
- E F Hoff
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
104
|
Dej KJ, Gerasimova T, Corces VG, Boeke JD. A hotspot for the Drosophila gypsy retroelement in the ovo locus. Nucleic Acids Res 1998; 26:4019-25. [PMID: 9705514 PMCID: PMC147786 DOI: 10.1093/nar/26.17.4019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila retroelement gypsy has a number of unusual features including an unusual LTR terminal sequence and an apparent target sequence preference. The ovo locus is a known hotspot for gypsy insertion. We examined the target sequence preference of gypsy within ovo by isolating 26 new insertions and sequencing the gypsy/ovo junctions. Insertions were found at multiple sites within the ovo locus. The insertions clustered within an approximately 150 bp region in the non-translated region of the ovo beta transcript, with most insertions falling within the first intron. There were seven sites of insertion within this region and these mostly conform to the consensus sequence YRYRYR (where Y = pyrimidine and R = purine). However, this target sequence is at best necessary but not sufficient to specify a hotspot, as there were several other sequences conforming to this consensus in the ovo locus that were not hit. The results indicate that gypsy may have a higher degree of target specificity than most infectious LTR retroelements.
Collapse
Affiliation(s)
- K J Dej
- Department of Biology, Johns Hopkins University and Department of Molecular Biology and Genetics,Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
105
|
Hansen MS, Carteau S, Hoffmann C, Li L, Bushman F. Retroviral cDNA integration: mechanism, applications and inhibition. GENETIC ENGINEERING 1998; 20:41-61. [PMID: 9666555 DOI: 10.1007/978-1-4899-1739-3_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M S Hansen
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
106
|
Affiliation(s)
- J D Boeke
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
107
|
Gai X, Voytas DF. A single amino acid change in the yeast retrotransposon Ty5 abolishes targeting to silent chromatin. Mol Cell 1998; 1:1051-5. [PMID: 9651588 DOI: 10.1016/s1097-2765(00)80105-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Many retrotransposons and retroviruses are thought to select integration sites through interactions with specific chromosomal proteins. In yeast, the Ty5 retrotransposon integrates preferentially with regions bound by silent chromatin, namely the telomeres and the HMR and HML mating loci. A Ty5 mutant (M3) was identified with an approximately 20-fold decrease in targeted integration as measured by a plasmid-based targeting assay. Often chromosomal insertions generated by M3, none were located at the telomeres or silent mating loci. A single amino acid change at the boundary of integrase and reverse transcriptase is responsible for the mutant phenotype. We predict that this mutation lies within a targeting domain that mediates Ty5 target choice by interacting with a component of silent chromatin.
Collapse
Affiliation(s)
- X Gai
- Department of Zoology and Genetics, Iowa State University, Ames 50011, USA
| | | |
Collapse
|
108
|
Affiliation(s)
- S Sandmeyer
- Department of Biological Chemistry, College of Medicine, University of California, Irvine, California 92717-4700, USA.
| |
Collapse
|
109
|
Kim JM, Vanguri S, Boeke JD, Gabriel A, Voytas DF. Transposable elements and genome organization: a comprehensive survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 1998; 8:464-78. [PMID: 9582191 DOI: 10.1101/gr.8.5.464] [Citation(s) in RCA: 373] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We conducted a genome-wide survey of Saccharomyces cerevisiae retrotransposons and identified a total of 331 insertions, including 217 Ty1, 34 Ty2, 41 Ty3, 32 Ty4, and 7 Ty5 elements. Eighty-five percent of insertions were solo long terminal repeats (LTRs) or LTR fragments. Overall, retrotransposon sequences constitute >377 kb or 3.1% of the genome. Independent evolution of retrotransposon sequences was evidenced by the identification of a single-base pair insertion/deletion that distinguishes the highly similar Ty1 and Ty2 LTRs and the identification of a distinct Ty1 subfamily (Ty1'). Whereas Ty1, Ty2, and Ty5 LTRs displayed a broad range of sequence diversity (typically ranging from 70%-99% identity), Ty3 and Ty4 LTRs were highly similar within each element family (most sharing >96% nucleotide identity). Therefore, Ty3 and Ty4 may be more recent additions to the S. cerevisiae genome and perhaps entered through horizontal transfer or past polyploidization events. Distribution of Ty elements is distinctly nonrandom: 90% of Ty1, 82% of Ty2, 95% of Ty3, and 88% of Ty4 insertions were found within 750 bases of tRNA genes or other genes transcribed by RNA polymerase III. tRNA genes are the principle determinant of retrotransposon distribution, and there is, on average, 1.2 insertions per tRNA gene. Evidence for recombination was found near many Ty elements, particularly those not associated with tRNA gene targets. For these insertions, 5'- and 3'-flanking sequences were often duplicated and rearranged among multiple chromosomes, indicating that recombination between retrotransposons can influence genome organization. S. cerevisiae offers the first opportunity to view organizational and evolutionary trends among retrotransposons at the genome level, and we hope our compiled data will serve as a starting point for further investigation and for comparison to other, more complex genomes.
Collapse
Affiliation(s)
- J M Kim
- Department of Zoology and Genetics, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
110
|
Carteau S, Hoffmann C, Bushman F. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J Virol 1998; 72:4005-14. [PMID: 9557688 PMCID: PMC109628 DOI: 10.1128/jvi.72.5.4005-4014.1998] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Integration of retroviral cDNA into host chromosomal DNA is an essential and distinctive step in viral replication. Despite considerable study, the host determinants of sites for integration have not been fully clarified. To investigate integration site selection in vivo, we used two approaches. (i) We have analyzed the host sequences flanking 61 human immunodeficiency virus type 1 (HIV-1) integration sites made by experimental infection and compared them to a library of 104 control sequences. (ii) We have also analyzed HIV-1 integration frequencies near several human repeated-sequence DNA families, using a repeat-specific PCR-based assay. At odds with previous reports from smaller-scale studies, we found no strong biases either for or against integration near repetitive sequences such as Alu or LINE-1 elements. We also did not find a clear bias for integration in transcription units as proposed previously, although transcription units were found somewhat more frequently near integration sites than near controls. However, we did find that centromeric alphoid repeats were selectively absent at integration sites. The repeat-specific PCR-based assay also indicated that alphoid repeats were disfavored for integration in vivo but not as naked DNA in vitro. Evidently the distinctive DNA organization at centromeres disfavors cDNA integration. We also found a weak consensus sequence for host DNA at integration sites, and assays of integration in vitro indicated that this sequence is favored as naked DNA, revealing in addition an influence of target primary sequence.
Collapse
Affiliation(s)
- S Carteau
- Infectious Disease Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
111
|
Dildine SL, Respess J, Jolly D, Sandmeyer SB. A chimeric Ty3/Moloney murine leukemia virus integrase protein is active in vivo. J Virol 1998; 72:4297-307. [PMID: 9557720 PMCID: PMC109660 DOI: 10.1128/jvi.72.5.4297-4307.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/1996] [Accepted: 01/26/1998] [Indexed: 02/07/2023] Open
Abstract
This report describes the results of experiments to determine whether chimeras between a retrovirus and portions of Ty3 are active in vivo. A chimera between Ty3 and a Neo(r)-marked Moloney murine leukemia virus (M-MuLV) was constructed. The C-terminal domain of M-MuLV integrase (IN) was replaced with the C-terminal domain of Ty3 IN. The chimeric retroviruses were expressed from an amphotrophic envelope packaging cell line. The virus generated was used to infect the human fibrosarcoma cell line HT1080, and cells in which integration had occurred were selected by G418 resistance. Three independently integrated viruses were rescued. In each case, the C-terminal Ty3 IN sequences were maintained and short direct repeats of the genomic DNA flanked the integration site. Sequence analysis of the genomic DNA flanking the insertion did not identify a tRNA gene; therefore, these integration events did not have Ty3 position specificity. This study showed that IN sequences from the yeast retrovirus-like element Ty3 can substitute for M-MuLV IN sequences in the C-terminal domain and contribute to IN function in vivo. It is also one of the first in vivo demonstrations of activity of a retrovirus encoding an integrase chimera. Studies of chimeras between IN species with distinctive integration patterns should complement previous work by expanding our understanding of the roles of nonconserved domains.
Collapse
Affiliation(s)
- S L Dildine
- Department of Biological Chemistry, University of California-Irvine, 92697-1700, USA
| | | | | | | |
Collapse
|
112
|
Labudova O, Lubec G. cAMP upregulates the transposable element mys-1: a possible link between signaling and mobile DNA. Life Sci 1998; 62:431-7. [PMID: 9449233 DOI: 10.1016/s0024-3205(97)01136-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mys represents one of the many families of transposable elements abundant in the mammalian genome. Transposable elements (transposons, retrotransposons, Tr) are best described as "mobile DNA". Mechanisms for the transposition process have been well-described and recently two human Tr have been identified as the progenitors of disease producing insertions. A functional role, however, has never been proposed. Studying overexpression of genes induced by cAMP using the technique of subtractive hybridization, a clone Sch. p15 was isolated and sequenced. Computer assisted analysis of the sequence revealed strong homology to mys-1. In a parallel clone cAMP related and cAMP inducible genes were found by this technique. The fact that a mammalian Tr is modulated by the cell's signalling / second messenger system made us hypothesize that transposition may well be under physiological control and that Tr may play physiological roles as e.g. rearranging, reshuffling or programmed erasing of genes. Although methodologically sound, the interpretation of our data remains hypothetical due to the absence of any previous studies on transposition function in eukaryotes.
Collapse
Affiliation(s)
- O Labudova
- University of Vienna, Dpt of Pediatrics, Austria
| | | |
Collapse
|
113
|
Morozov A, Yung E, Kalpana GV. Structure-function analysis of integrase interactor 1/hSNF5L1 reveals differential properties of two repeat motifs present in the highly conserved region. Proc Natl Acad Sci U S A 1998; 95:1120-5. [PMID: 9448295 PMCID: PMC18693 DOI: 10.1073/pnas.95.3.1120] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/1997] [Accepted: 11/26/1997] [Indexed: 02/05/2023] Open
Abstract
Retroviral integrase (IN) catalyzes the integration of retroviral cDNA into host chromosome. Ini1 (integrase interactor 1) is a host protein that specifically binds and stimulates in vitro joining activity of HIV-1 IN. Ini1 has homology to yeast transcription factor SNF5 and is a component of the analogous mammalian SWI/SNF complex that can remodel chromatin. Little is known about the function of Ini1 in mammalian cells. To gain insight into the functional domains of Ini1, and to understand the details of protein-protein interactions of IN and Ini1, a structure-function analysis of Ini1 was initiated. By means of the yeast two-hybrid system, the minimal IN binding domain of Ini1 was characterized. One of the two repeat motifs present in the highly conserved regions of Ini1 was found necessary and sufficient to bind to IN in yeast as well as in vitro. Because IN binds to only one of the two repeat motifs in this conserved region of Ini1, it appears that the IN-Ini1 interaction is very specific and functionally significant. Characterization of DNA-binding properties of Ini1 revealed that Ini1 can bind to plasmid DNA, binding more readily to supercoiled DNA than to the relaxed circular DNA. The minimal domain for DNA binding was localized to a region upstream of repeat 1. The DNA binding activity of Ini1 is not required for its ability to interact with IN. The finding that the two repeat motifs of Ini1 display differential binding to HIV-1 IN and that this discrete component of mammalian SWI/SNF complex binds to DNA will help understand the role of Ini1 in HIV-1 integration and in cellular process.
Collapse
Affiliation(s)
- A Morozov
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, U821, Bronx, NY 10461, USA
| | | | | |
Collapse
|
114
|
Abstract
A survey of tRNA genes and retroelements (Ty) in the genome of the yeast Saccharomyces cerevisiae is presented. Aspects of genomic organization and evolution of these genetic entities and their interplay are discussed. Attention is also given to the relationship between tRNA gene multiplicity and codon selection in yeast and the role of Ty elements.
Collapse
Affiliation(s)
- J Hani
- Munich Information Centre for Protein Sequences, Max-Planck-Institut f-ur Biochemie, D-82152 Martinsried, Germany
| | | |
Collapse
|
115
|
Abstract
Transposable elements propagate by inserting into new locations in the genomes of the hosts they inhabit. Their transposition might thus negatively affect the fitness of the host, suggesting the requirement for a tight control in the regulation of transposable element mobilization. The nature of this control depends on the structure of the transposable element. DNA elements encode a transposase that is necessary, and in most cases sufficient, for mobilization. In general, regulation of these elements depends on intrinsic factors with little direct input from the host. Retrotransposons require an RNA intermediate for transposition, and their frequency of mobilization is controlled at multiple steps by the host genome by regulating both their expression levels and their insertional specificity. As a result, a symbiotic relationship has developed between transposable elements and their host. Examples are now emerging showing that transposons can contribute significantly to the well being of the organisms they populate.
Collapse
Affiliation(s)
- M Labrador
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
116
|
Davies K, Kalpana G. Integration of Retroviruses into a Predetermined Site. Gene Ther 1998. [DOI: 10.1007/978-3-642-72160-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
117
|
Matthews GD, Goodwin TJ, Butler MI, Berryman TA, Poulter RT. pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans. J Bacteriol 1997; 179:7118-28. [PMID: 9371461 PMCID: PMC179655 DOI: 10.1128/jb.179.22.7118-7128.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Retrotransposons are mobile genetic elements. They can transpose via the reverse transcription of mRNA into double-stranded DNA (dsDNA) followed by the insertion of this dsDNA into new sites within the host genome. The unintegrated, linear, dsDNA form of retrotransposons is usually very rare. We report here the isolation of a retrotransposon from Candida albicans which is unusual in this respect. This element, which we have named pCal, was first identified as a distinct band when uncut C. albicans DNA was examined on an agarose gel. Sequence analysis of the cloned element revealed that it is a retrotransposon belonging to the Ty1/copia group. It is estimated that pCal produces 50 to 100 free, linear, dsDNA copies of itself per cell. This is a much higher level of expression than even that of the system in which Ty1 is expressed behind the highly active GAL1 promoter on a high-copy-number plasmid (about 10 copies per cell). Another unusual feature of pCal is that its Pol enzymes are likely to be expressed via the pseudoknot-assisted suppression of an upstream, in-phase stop codon, as has been shown for Moloney murine leukemia virus.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Candida albicans/genetics
- Chromosome Mapping
- Cloning, Molecular
- Codon, Terminator
- DNA Transposable Elements/genetics
- DNA, Fungal/analysis
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Endopeptidases/genetics
- Gene Expression Regulation, Fungal
- Gene Products, pol/genetics
- Gene Products, pol/metabolism
- Integrases/genetics
- Molecular Sequence Data
- Molecular Structure
- Open Reading Frames
- Phylogeny
- Plasmids
- Promoter Regions, Genetic
- RNA-Directed DNA Polymerase/genetics
- Retroelements
- Ribonucleases/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- G D Matthews
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
118
|
Ke N, Irwin PA, Voytas DF. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J 1997; 16:6272-80. [PMID: 9321406 PMCID: PMC1326311 DOI: 10.1093/emboj/16.20.6272] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces retrotransposon Ty5 integrates preferentially into transcriptionally inactive regions (silent chromatin) at the HM loci and telomeres. We found that silent chromatin represses basal Ty5 transcription, indicating that these elements are encompassed by silent chromatin in their native genomic context. Because transcription is a requirement for transposition, integration into silent chromatin would appear to prevent subsequent rounds of replication. Using plasmid-borne Ty5-lacZ constructs, we found that Ty5 expression is haploid specific and is repressed 10-fold in diploid strains. Ty5 transcription is also regulated by the pheromone response pathway and is induced approximately 20-fold upon pheromone treatment. Deletion analysis of the Ty5 LTR promoter revealed that a 33 bp region with three perfect matches to the pheromone response element is responsible for both mating pheromone and cell-type regulation. Transcriptional repression of Ty5 by silent chromatin can be reversed by pheromone treatment, which leads to transcription and transposition. Ty5 replication, therefore, is normally repressed by silent chromatin and appears to be induced during mating. This is the first example of transcriptional activation of a gene that naturally resides within silent chromatin.
Collapse
Affiliation(s)
- N Ke
- Department of Zoology and Genetics, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
119
|
Dildine SL, Sandmeyer SB. Integration of the yeast retrovirus-like element Ty3 upstream of a human tRNA gene expressed in yeast. Gene 1997; 194:227-33. [PMID: 9272864 DOI: 10.1016/s0378-1119(97)00167-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The retrovirus-like element Ty3 of Saccharomyces cerevisae integrates into the yeast genomic DNA in a position specific manner. Ty3 integrates within 1-2 base pairs of the site of transcription initiation by RNA polymerase III. The human tRNA(Lys)3 gene was used as a target for transposition in a plasmid-based assay to determine whether Ty3 integration can be targeted to a human tRNA gene. Each transposition event observed was adjacent to the site of initiation of transcription of the human tRNA gene. Therefore, heterologous tRNA genes can serve as targets for Ty3 in yeast. This is a first step toward development of a system for targeted integrations in heterologous organisms.
Collapse
Affiliation(s)
- S L Dildine
- Department of Microbiology and Molecular Genetics, University of California-Irvine, 92697, USA
| | | |
Collapse
|
120
|
Zou S, Voytas DF. Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc Natl Acad Sci U S A 1997; 94:7412-6. [PMID: 9207105 PMCID: PMC23835 DOI: 10.1073/pnas.94.14.7412] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The HML and HMR mating loci of Saccharomyces cerevisiae are bound in silent chromatin, which is assembled at the flanking E and I transcriptional silencers. The retrotransposon Ty5 preferentially integrates into regions of silent chromatin, and Ty5 insertions near the HMR-E silencer account for approximately 2% of total transposition events. Most Ty5 insertions occur within 800 bp on either side of the autonomously replicating consensus sequence within HMR-E. Ty5 target preference is determined by silent chromatin, because integration near HMR-E is abolished in strains with silencer mutations that alleviate transcriptional repression. The recognition of specific DNA sequences per se does not direct integration, rather, it is the protein complex assembled at the silencers. As demonstrated here for Ty5, recognition of specific chromatin domains may be a general mechanism by which retrotransposons and retroviruses determine integration sites.
Collapse
Affiliation(s)
- S Zou
- Department of Zoology and Genetics, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
121
|
Batchu RB, Hinds T. Human immunodeficiency virus-1 proviral gene disruption by targeted gene therapy: a hypothetical technique for the elimination of provirus from the infected cells. Med Hypotheses 1997; 49:35-9. [PMID: 9247905 DOI: 10.1016/s0306-9877(97)90249-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A hypothetical technique is proposed for the elimination of all the integrated human immunodeficiency virus-1 provirus from infected cells, based on the developing technology of selective gene excision through homologous recombination. In this technique, a recombinant retroviral packaging cell-line which would produce integrase-Rep78 chimeric protein would be constructed. Replication defective viral stocks would be made from this system which would have recombinant integrase-Rep78 protein packaged along with human immunodeficiency virus-1 long terminal repeat DNA. Since the Rep78 protein, which is a major regulatory protein of adeno-associated virus, has high affinity for human immunodeficiency virus-1 long terminal repeat, it would tether the newly synthesized human immunodeficiency virus-1 long terminal repeat (therapeutic DNA) to the human immunodeficiency virus-1 proviral site in the infected cell. This newly reverse transcribed human immunodeficiency virus-1 long terminal repeat would undergo homologous recombination with the provirus in the infected cells, facilitated by the nicking of the integrase part of the integrase-Rep78 recombinant protein. This selective gene knockout would be accomplished by the combined action of the chimeric integrase-Rep78 protein, where the Rep78 part would help docking of the therapeutic DNA to the proviral integration site and the integrase would provide nicking activity after homologous recombination, resulting in the replacement of human immunodeficiency virus-1 proviral genome with therapeutic DNA.
Collapse
Affiliation(s)
- R B Batchu
- Department of Medicine: Hem/Onc, Arkansas Cancer Research Center, University of Arkansas for Medical Sciences; Little Rock 72205, USA
| | | |
Collapse
|
122
|
Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev 1997; 11:255-69. [PMID: 9009207 DOI: 10.1101/gad.11.2.255] [Citation(s) in RCA: 311] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We demonstrate that in Saccharomyces cerevisiae, the tandem array of ribosomal RNA genes (RDN1) is a target for integration of the Ty1 retrotransposon that results in silencing of Ty1 transcription and transposition. Ty1 elements transpose into random rDNA repeat units and are mitotically stable. In addition, we have found that mutation of several putative modifiers of RDN1 chromatin structure abolishes silencing of Ty1 elements in the rDNA array. Disruption of SIR2, which elevates recombination in RDN1, or TOP1, which increases psoralen accessibility in rDNA, or HTA1-HTB1, which reduces histone H2A-H2B levels and causes localized chromatin perturbations, abolishes transcriptional silencing of Ty1 elements in RDN1. Furthermore, deletion of the gene for the ubiquitin conjugating enzyme Ubc2p, which ubiquitinates histones in vitro, derepresses not only Ty1 transcription but also mitotic recombination in RDN1. On the basis of these results, we propose that a specialized chromatin structure exists in RDN1 that silences transcription of the Ty1 retrotransposon.
Collapse
Affiliation(s)
- M Bryk
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, 12201-2002, USA
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
Transposable elements are discrete mobile DNA segments that can insert into non-homologous target sites. Diverse patterns of target site selectivity are observed: Some elements display considerable target site selectivity and others display little obvious selectivity, although none appears to be truly "random." A variety of mechanisms for target site selection are used: Some elements use direct interactions between the recombinase and target DNA whereas other elements depend upon interactions with accessory proteins that communicate both with the target DNA and the recombinase. The study of target site selectivity is useful in probing recombination mechanisms, in studying genome structure and function, and also in providing tools for genome manipulation.
Collapse
Affiliation(s)
- N L Craig
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
124
|
Bushman FD, Miller MD. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J Virol 1997; 71:458-64. [PMID: 8985371 PMCID: PMC191072 DOI: 10.1128/jvi.71.1.458-464.1997] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integration of retroviral cDNA in vivo is normally not sequence specific with respect to the integration target DNA. We have been investigating methods for directing the integration of retroviral DNA to predetermined sites, with the dual goal of understanding potential mechanisms governing normal site selection and developing possible methods for gene therapy. To this end, we have fused retroviral integrase enzymes to sequence-specific DNA-binding domains and investigated target site selection by the resulting proteins. In a previous study, we purified and analyzed a fusion protein composed of human immunodeficiency virus integrase linked to the DNA-binding domain of lambda repressor. This fusion could direct selective integration in vitro into target DNA containing lambda repressor binding sites. Here we investigate the properties of a fusion integrase in the context of a human immunodeficiency virus provirus. We used a fusion of integrase to the DNA binding domain of the zinc finger protein zif268 (IN-zif). Initially we found that the fusion was highly detrimental to replication as measured by the multinuclear activation of a galactosidase indicator (MAGI) assay for infected centers. However, we found that viruses containing mixtures of wild-type integrase and IN-zif were infectious. We prepared preintegration complexes from cells infected with these viruses and found that such complexes directed increased integration near zif268 recognition sites.
Collapse
Affiliation(s)
- F D Bushman
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
125
|
Affiliation(s)
- D F Voytas
- Department of Zoology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
126
|
Affiliation(s)
- M J Curcio
- Molecular Genetics Program, Wadsworth Center, Albany, NY, USA.
| | | |
Collapse
|
127
|
Abstract
Most transposons display target site selectivity, inserting preferentially into sites that contain particular features. The bacterial transposon Tn7 possesses the unusual ability to recognize two different classes of target sites. Tn7 inserts into these classes of target sites through two transposition pathways mediated by different combinations of the five Tn7-encoded transposition proteins. In one transposition pathway, Tn7 inserts into a unique site in the bacterial chromosome, attTn7, through specific recognition of sequences in attTn7; the other transposition pathway ignores the attTn7 target. Here we examine targets of the non-attTn7 pathway and find that Tn7 preferentially inserts into bacterial plasmids that can conjugate between cells. Furthermore, Tn7 appears to recognize preferred targets through the conjugation process, as we show that Tn7 inserts poorly into plasmids containing mutations that block plasmid transfer. We propose that Tn7 recognizes preferred targets through features of the conjugation process, a distinctive target specificity that offers Tn7 the ability to spread efficiently through bacterial populations.
Collapse
Affiliation(s)
- C A Wolkow
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
128
|
Affiliation(s)
- B D Preston
- Department of Biochemistry, University of Utah, Salt Lake City 84112, USA
| |
Collapse
|
129
|
Kirchner J, Sandmeyer SB. Ty3 integrase mutants defective in reverse transcription or 3'-end processing of extrachromosomal Ty3 DNA. J Virol 1996; 70:4737-47. [PMID: 8676501 PMCID: PMC190411 DOI: 10.1128/jvi.70.7.4737-4747.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Ty3, a retroviruslike element in Saccharomyces cerevisiae, encodes an integrase (IN) which is essential for position-specific transposition. The Ty3 integrase contains the highly conserved His-Xaa(3-7)-His-Xaa(23-32)-Cys-Xaa(2)-Cys and Asp, Asp-Xaa(35)-Glu [D,D(35)E] motifs found in retroviral integrases. Mutations were introduced into the coding region for the Ty3 integrase to determine the effects in vivo of changes in conserved residues of the putative catalytic triad D,D(35)E and the nonconserved carboxyl-terminal region. Ty3 viruslike particles were found to be associated with significant amounts of linear DNA of the approximate size expected for a full-length reverse transcription product and with plus-strand strong-stop DNA. The full-length, preintegrative DNA has at each 3' end 2 bp that are removed prior to or during integration. Such 3'-end processing has not been observed for other retroviruslike elements. A mutation at either D-225 or E-261 of the Ty3 integrase blocked transposition and prevented processing of the 3' ends of Ty3 DNA in vivo, suggesting that the D,D(35)E region is part of the catalytic domain of Ty3 IN. Carboxyl-terminal deletions of integrase caused a dramatic reduction in the amount of Ty3 DNA in vivo and a decrease in reverse transcriptase activity in vitro but did not affect the apparent size or amount of the 55-kDa reverse transcriptase in viruslike particles. The 115-kDa viruslike particle protein, previously shown to react with antibodies to Ty3 integrase, was shown to be a reverse transcriptase-IN fusion protein. These results are consistent with a role for the integrase domain either in proper folding of reverse transcriptase or as part of a heterodimeric reverse transcriptase molecule.
Collapse
Affiliation(s)
- J Kirchner
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195-7370, USA
| | | |
Collapse
|
130
|
Menees TM, Sandmeyer SB. Cellular stress inhibits transposition of the yeast retrovirus-like element Ty3 by a ubiquitin-dependent block of virus-like particle formation. Proc Natl Acad Sci U S A 1996; 93:5629-34. [PMID: 8643628 PMCID: PMC39299 DOI: 10.1073/pnas.93.11.5629] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Many stress proteins and their cognates function as molecular chaperones or as components of proteolytic systems. Viral infection can stimulate synthesis of stress proteins and particular associations of viral and stress proteins have been documented. However, demonstrations of functions for stress proteins in viral life cycles are few. We have initiated an investigation of the roles of stress proteins in eukaryotic viral life cycles using as a model the Ty3 retrovirus-like element of Saccharomyces cerevisiae. During stress, Ty3 transposition is inhibited; Ty3 DNA is not synthesized and, although precursor proteins are detected, mature Ty3 proteins and virus-like particles (VLPs) do not accumulate. The same phenotype is observed in the constitutively stressed ssa1 ssa2 mutant, which lacks two cytoplasmic members of the hsp70 family of chaperones. Ty3 VLPs preformed under nonstress conditions are degraded more rapidly if cells are shifted from 30 degrees C to 37 degrees C. These results suggest that Ty3 VLPs are destroyed by cellular stress proteins. Elevated expression of the yeast UBP3 gene, which encodes a protease that removes ubiquitin from proteins, allows mature Ty3 proteins and VLPs to accumulate in the ssa1 ssa2 mutant, suggesting that, at least under stress conditions, ubiquitination plays a role in regulating Ty3 transposition.
Collapse
Affiliation(s)
- T M Menees
- Department of Microbiology and Molecular Genetics, University of California, Irvine, 92717, USA
| | | |
Collapse
|
131
|
Abstract
Replication fork pause (RFP) sites transiently arresting replication fork movement were mapped to transfer RNA (tRNA) genes of Saccharomyces cerevisiae in vivo. RFP sites are polar, stalling replication forks only when they oppose the direction of tRNA transcription. Mutant tRNA genes defective in assembly of transcription initiation complexes and a temperature-sensitive RNA polymerase III mutant (rpc160-41) defective in initiation of transcription do not stall replication forks, suggesting that transcription is required for RFP activity.
Collapse
Affiliation(s)
- A M Deshpande
- Department of Micobiology and Molecular Genetics, UMDNJ Medical School and UMDNJ-Graduate School of Biomedical Sciences, Newark, NJ 07103, USA
| | | |
Collapse
|
132
|
Zou S, Ke N, Kim JM, Voytas DF. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev 1996; 10:634-45. [PMID: 8598292 DOI: 10.1101/gad.10.5.634] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The nonrandom integration of retrotransposons and retroviruses suggests that chromatin influences target choice. Targeted integration, in turn, likely affects genome organization. In Saccharomyces, native Ty5 retrotransposons are located near telomeres and the silent mating locus HMR. To determine whether this distribution is a consequence of targeted integration, we isolated a transposition-competent Ty5 element from S. paradoxus, a species closely related to S. cerevisiae. This Ty5 element was used to develop a transposition assay in S. cerevisiae to investigate target preference of de novo transposition events. Of 87 independent Ty5 insertions, approximately 30% were located on chromosome III, indicating this small chromosome (approximately 1/40 of the yeast genome) is a highly preferred target. Mapping of the exact location of 19 chromosome III insertions showed that 18 were within or adjacent to transcriptional silencers flanking HML and HMR or the type X subtelomeric repeat. We predict Ty5 target preference is attributable to interactions between transposition intermediates and constituents of silent chromatin assembled at these sites. Ty5 target preference extends the link between telomere structure and reverse transcription as carried out by telomerase and Drosophila retrotransposons.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chromatin/genetics
- Chromosome Mapping
- Chromosomes, Fungal
- Gene Expression Regulation, Fungal
- Mating Factor
- Models, Genetic
- Molecular Sequence Data
- Peptides/genetics
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Repetitive Sequences, Nucleic Acid
- Retroelements/genetics
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Species Specificity
- Telomere/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- S Zou
- Department of Zoology and Genetics, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
133
|
PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf02153053] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
134
|
Devine SE, Boeke JD. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev 1996; 10:620-33. [PMID: 8598291 DOI: 10.1101/gad.10.5.620] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Retroviruses and their relatives, the LTR-containing retrotransposons, integrate newly replicated cDNA copies of their genomes into the genomes of their hosts using element-encoded integrases. Although target site selection is not well understood for this general class of elements, it is becoming clear that some elements target their integration events to very specific regions of their host genomes. Evidence is accumulating that the yeast retrotransposon Ty1 behaves in this manner. Ty1 is found frequently adjacent to tRNA genes in the yeast genome and experimental evidence implicates these regions as preferred integration sites. To determine the basis for Ty1 targeting, we developed an in vivo integration assay using a Ty1 donor plasmid and a second target plasmid that could be used to measure the relative frequency of Ty1 integration into sequences cloned from various regions of the yeast genome. Targets containing genes transcribed by RNA polymerase III (Pol III) were up to several hundredfold more active as integration targets than "cold" sequences lacking such genes. High-frequency targeting was dependent on Pol III transcription, and integration was "region specific," occurring exclusively upstream of the transcription start sites of these genes. Thus, Ty1 has evolved a powerful targeting mechanism, requiring Pol III transcription to integrate its DNA at very specific locations within the yeast genome.
Collapse
MESH Headings
- Base Sequence
- Chromosomes, Fungal
- Cloning, Molecular
- DNA, Ribosomal
- Genes, Fungal
- Molecular Sequence Data
- Plasmids
- Promoter Regions, Genetic
- RNA Polymerase III/metabolism
- RNA, Ribosomal, 5S/genetics
- RNA, Small Nuclear/genetics
- RNA, Transfer, Gly/genetics
- Retroelements/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- S E Devine
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
135
|
Abstract
BACKGROUND The early steps of human immunodeficiency virus 1 (HIV-1) replication involve reverse transcription of the viral RNA and integration of the resulting cDNA into a host chromosome. The DNA integration step requires the integration machinery ('preintegration complex') to bind to the host DNA before connecting the viral and host DNAs. Here, we present experiments that distinguish among three possible pathways of target-DNA capture: repeated binding and release of target DNA prior to the chemical strand-transfer step; binding followed by facilitated diffusion along target DNA (sliding); and integration at the initial target-capture site. The mechanism of target-DNA capture has implications for the design of gene therapy methods, and influences the interpretation of results on the selection of integration target sites in vivo. RESULTS We present new in vitro conditions that allow us to assemble HIV-1 integrase--the virus-encoded recombination enzyme--with a viral DNA and then to trap assembled complexes bound to target DNA. We find that complexes of integrase and viral DNA do not slide along target DNA substantially after binding. We confirm and extend these results by analyzing target capture by a hybrid protein composed of HIV-1 integrase linked to a sequence-specific DNA-binding domain. We find that the integrase domain binds quickly and tightly under the above conditions, thereby obstructing function of the fused sequence-specific DNA-binding domain. We also monitor target-DNA capture by HIV-1 preintegration complexes purified from freshly infected cells. Partially purified complexes commit quickly and stably to the first target DNA added, whereas preintegration complexes in crude cytoplasmic extracts do not. The addition of extracts from uninfected cells to partially purified complexes blocks quick commitment. CONCLUSIONS Under new conditions favorable for the analysis of target-DNA capture in vitro, HIV-1 integrase complexes bind quickly and stably to target DNA without subsequent sliding. Parallel studies of preintegration complexes support a model in which target-site capture in vivo is reversible as a result of the action of cellular factors.
Collapse
Affiliation(s)
- M D Miller
- Infectious Disease Laboratory, Salk Institute for Biological Studies, La Jolla, California 92024, USA
| | | | | |
Collapse
|
136
|
Hu W, Das OP, Messing J. Zeon-1, a member of a new maize retrotransposon family. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:471-80. [PMID: 7565611 DOI: 10.1007/bf02191647] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have previously shown that the tandemly duplicated 27 kDa maize storage protein locus underwent mitotic rearrangement to yield a single-copy allele in isolates of the inbred line A188. This rearrangement contains a new LTR retrotransposon, designated Zeon-1. This middle repetitive element of 7313 bp had two long terminal repeats, a primer binding site, a polypurine tract and a gag-related open reading frame of 375 amino acids. Transcripts of the gag-related region were detected by the polymerase chain reaction (PCR) in certain maize tissues, and Western blots detected the gag-related protein in the same tissues. Moreover, the product of this mitotic rearrangement was shown to contain the same insertion site and 3' LTR as Zeon-1, suggesting that this rearrangement occurs with unusual precision. Zeon elements were found to be present in teosinte and not present in the Gramineae wheat, barley, sorghum and rye.
Collapse
Affiliation(s)
- W Hu
- Waksman Institute, Rutgers, State University of New Jersey, Piscataway 08855-0759, USA
| | | | | |
Collapse
|
137
|
Fruscoloni P, Zamboni M, Panetta G, De Paolis A, Tocchini-Valentini GP. Mutational analysis of the transcription start site of the yeast tRNA(Leu3) gene. Nucleic Acids Res 1995; 23:2914-8. [PMID: 7659514 PMCID: PMC307130 DOI: 10.1093/nar/23.15.2914] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In addition to the well-known internal promoter elements of tRNA genes, 5' flanking sequences can also influence the efficiency of transcription by Saccharomyces cerevisiae extracts in vitro. A consensus sequence of yeast tRNA genes in the vicinity of the transcriptional start site can be derived. To determine whether the activity of this region can be attributed to particular sequence features we studied in vitro mutants of the start site region. We found that the start site can be shifted, but only to a limited extent, by moving the conserved sequence element. We found that both a pyrimidine-purine motif (with transcription initiating at the purine) and a small T:A base pair block upstream are important for efficient transcription in vitro. Thus the sequence surrounding the start site of transcription of the yeast tRNA(Leu3) gene does play a role in determining transcription efficiency and fixing the precise site of initiation by RNA polymerase III.
Collapse
|
138
|
Batistoni R, Pesole G, Marracci S, Nardi I. A tandemly repeated DNA family originated from SINE-related elements in the European plethodontid salamanders (Amphibia, Urodela). J Mol Evol 1995; 40:608-15. [PMID: 7643411 DOI: 10.1007/bf00160508] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have characterized a highly repetitive family, named Hy/Pol III, in the genome of the European salamanders Hydromantes (Plethodontidae). This family consists of short, tandemly repeated sequences organized in clusters, scattered through the genome as shown both by in situ hybridization to chromosomes and by Southern blot hybridization. The repeat unit is about 200 bp in length and it is a composite element since it contains a SINE-like retroposon with a tRNA structure, flanked by two short direct repeats. The whole element itself is bordered by two other direct repeats. The sequence data suggest that two elements, presumably derived from polymerase III transcripts, have been inserted one into the other, giving rise to the observed composite structure. During evolution the Hy/Pol III family was then amplified by tandem duplication at the DNA level. The inferred relationships between Hy/Pol III members from three representative species of the European Hydromantes suggests that a subfamily structure characterizes the evolutionary history of this family.
Collapse
Affiliation(s)
- R Batistoni
- Laboratori di Biologia Cellulare e dello Sviluppo, Dipartimento di Fisiologia e Biochemica, Pisa, Italy
| | | | | | | |
Collapse
|
139
|
Abstract
The newly discovered Ini1 cellular protein binds HIV-1 integrase and is part of a protein complex thought to alter nucleosomal structure; such alterations may influence the selection of sites for HIV-1 DNA integration.
Collapse
Affiliation(s)
- M D Miller
- Infectious Disease Laboratory, Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
140
|
Affiliation(s)
- F Bushman
- Infectious Disease Laboratory, Salk Institute, La Jolla, CA 92037
| |
Collapse
|
141
|
Kirchner J, Connolly CM, Sandmeyer SB. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 1995; 267:1488-91. [PMID: 7878467 DOI: 10.1126/science.7878467] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The yeast retroviruslike element Ty3 inserts at the transcription initiation sites of genes transcribed by RNA polymerase III (Pol III). An in vitro integration assay was developed with the use of Ty3 viruslike particles and a modified SUP2 tyrosine transfer RNA (tRNA(Tyr)) gene target. Integration was position-specific and required Ty3 integrase, Pol III transcription factor (TF) IIIB-, TFIIIC-, and Pol III-containing fractions showed that TFIIIB and TFIIIC, together, were sufficient for position-specific Ty3 integration, but not for transcription. This report demonstrates that in vitro integration of a retroelement can be targeted by cellular proteins.
Collapse
Affiliation(s)
- J Kirchner
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717
| | | | | |
Collapse
|
142
|
Zou S, Wright DA, Voytas DF. The Saccharomyces Ty5 retrotransposon family is associated with origins of DNA replication at the telomeres and the silent mating locus HMR. Proc Natl Acad Sci U S A 1995; 92:920-4. [PMID: 7846079 PMCID: PMC42732 DOI: 10.1073/pnas.92.3.920] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have characterized the genomic organization of the Ty5 retrotransposons among diverse strains of Saccharomyces cerevisiae and the related species Saccharomyces paradoxus. The S. cerevisiae strain S288C (or its derivatives) carries eight Ty5 insertions. Six of these are located near the telomeres, and five are found within 500 bp of autonomously replicating sequences present in the type X subtelomeric repeat. The remaining two S. cerevisiae elements are adjacent to the silent mating locus HMR and are located within 500 bp of the origin of replication present in the transcriptional silencer HMR-E. Although the S. cerevisiae Ty5 elements no longer appear capable of transposition, some strains of S. paradoxus have numerous Ty5 insertions, suggesting that transposition is occurring in this species. Most of these elements are adjacent to type X telomeric repeats, and regions flanking four of five characterized S. paradoxus insertions carry autonomously replicating sequences. The genomic organization of the Ty5 elements is in marked contrast to the other S. cerevisiae retrotransposon families (Ty1-4), which are typically located within 500 bp of tRNA genes. For Ty3, this association reflects an interaction between Ty3 and the RNA polymerase III transcription complex, which appears to direct integration [Chalker, D. L. & Sandmeyer, S. B. (1992) Genes Dev. 6, 117-128]. By analogy to Ty3, we predict that Ty5 target choice is specified by interactions with factors present at both the telomeres and HMR that are involved in DNA replication, transcription silencing, or the maintenance of the unique chromatin structure at these sites.
Collapse
Affiliation(s)
- S Zou
- Department of Zoology and Genetics, Iowa State University, Ames 50011
| | | | | |
Collapse
|
143
|
Abstract
Host cell cycle genes provide important functions to retroviruses and retroviruslike elements. To define some of these functions, the cell cycle dependence of transposition of the yeast retroviruslike element Ty3 was examined. Ty3 is unique among retroviruslike elements because of the specificity of its integration, which occurs upstream of genes transcribed by RNA polymerase III. A physical assay for Ty3 transposition which takes advantage of this position-specific integration was developed. The assay uses PCR to amplify a product of Ty3 integration into a target plasmid that carries a modified tRNA gene. By using the GAL1 upstream activating sequence to regulate expression of Ty3, transposition was detected within one generation of cell growth after Ty3 transcription was initiated. This physical assay was used to show that Ty3 did not transpose when yeast cells were arrested in G1 during treatment with the mating pheromone alpha-factor. The restriction of transposition was not due to changes in transcription of either Ty3 or tRNA genes or to aspects of the mating pheromone response unrelated to cell cycle arrest. The block of the Ty3 life cycle was reversed when cells were released from G1 arrest. Examination of Ty3 intermediates during G1 arrest indicated that Ty3 viruslike particles were present but that reverse transcription of the Ty3 genomic RNA into double-stranded DNA had not occurred. In G1, the Ty3 life cycle is blocked after particle assembly but before the completion of reverse transcription.
Collapse
|
144
|
Marsolier MC, Chaussivert N, Lefebvre O, Conesa C, Werner M, Sentenac A. Directing transcription of an RNA polymerase III gene via GAL4 sites. Proc Natl Acad Sci U S A 1994; 91:11938-42. [PMID: 7991561 PMCID: PMC45351 DOI: 10.1073/pnas.91.25.11938] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A yeast chimeric RNA polymerase III transcription system was constructed to explore the ordered, multistep process of gene activation in vivo. A promoter-deficient U6 RNA gene harboring GAL4-binding sites could be reactivated by fusing the GAL4 DNA-binding domain to components of the general transcription factor TFIIIC (tau) or TFIIIB. Expression of chimeric tau 138 or tau 131 (but not tau 95) subunits activated transcription from GAL4-binding sites located at various positions, including upstream of or within the gene. The function(s) of the B block binding domain of TFIIIC was provided by the fused GAL4-(1-147) domain. The GAL4-(1-147)-TFIIIB70 fusion protein acted at a distance like an activator of transcription. In contrast, none of the 10 different GAL4-(1-147)-polymerase subunit fusions was able to induce transcription, suggesting that RNA polymerase recruitment is not sufficient to initiate transcription.
Collapse
Affiliation(s)
- M C Marsolier
- Service de Biochimie et de Génétique Moléculaire, Commissariat à l'Energie Atomique, Saclay, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
145
|
Menees TM, Sandmeyer SB. Transposition of the yeast retroviruslike element Ty3 is dependent on the cell cycle. Mol Cell Biol 1994; 14:8229-40. [PMID: 7969160 PMCID: PMC359362 DOI: 10.1128/mcb.14.12.8229-8240.1994] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Host cell cycle genes provide important functions to retroviruses and retroviruslike elements. To define some of these functions, the cell cycle dependence of transposition of the yeast retroviruslike element Ty3 was examined. Ty3 is unique among retroviruslike elements because of the specificity of its integration, which occurs upstream of genes transcribed by RNA polymerase III. A physical assay for Ty3 transposition which takes advantage of this position-specific integration was developed. The assay uses PCR to amplify a product of Ty3 integration into a target plasmid that carries a modified tRNA gene. By using the GAL1 upstream activating sequence to regulate expression of Ty3, transposition was detected within one generation of cell growth after Ty3 transcription was initiated. This physical assay was used to show that Ty3 did not transpose when yeast cells were arrested in G1 during treatment with the mating pheromone alpha-factor. The restriction of transposition was not due to changes in transcription of either Ty3 or tRNA genes or to aspects of the mating pheromone response unrelated to cell cycle arrest. The block of the Ty3 life cycle was reversed when cells were released from G1 arrest. Examination of Ty3 intermediates during G1 arrest indicated that Ty3 viruslike particles were present but that reverse transcription of the Ty3 genomic RNA into double-stranded DNA had not occurred. In G1, the Ty3 life cycle is blocked after particle assembly but before the completion of reverse transcription.
Collapse
Affiliation(s)
- T M Menees
- Department of Microbiology and Molecular Genetics, University of California, Irvine 92717
| | | |
Collapse
|
146
|
Abstract
Although retroviral integration requires specific viral DNA sequences, factors which govern the choice of a chromosomal target site within an infected cell are less clear. For example, certain chromosomal regions may be inaccessible to the viral integration machinery, while others may favor integration. A recent paper by Withers-Ward et al.(1) addresses this issue using a polymerase chain reaction-based assay capable of identifying single integration events within a large population of infected cells. Their results show that integration can occur into many different chromosomal regions, and that local DNA structure can influence the site of integration within a given region.
Collapse
Affiliation(s)
- A Engelman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892-0560
| |
Collapse
|
147
|
Hallet B, Rezsöhazy R, Mahillon J, Delcour J. IS231A insertion specificity: consensus sequence and DNA bending at the target site. Mol Microbiol 1994; 14:131-9. [PMID: 7830551 DOI: 10.1111/j.1365-2958.1994.tb01273.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In its natural host, Bacillus thuringiensis, the insertion sequence IS231A is preferentially inserted into the terminal inverted repeats of the transposon Tn4430. Using a novel transposition assay, we demonstrate that the Tn4430 ends behave as insertion hot spots for IS231A in Escherichia coli. Sequence analysis reveals that IS231A insertion sites match the 5'-GGG(N)5CCC-3' consensus. However, this consensus is not the only determinant of IS231A insertion specificity. Although both Tn4430 ends have identical sequences, one is strongly preferred to the other and the orientation of insertion into this end is not random. We demonstrate that this preference is determined by the flanking regions of the site. These regions display a conserved periodic organization of their sequence which, by conferring anisotropic flexibility, would induce the DNA to bend in a roughly 'S'-shaped structure centered on the target consensus. DNA conformation analysis by polyacrylamide gel electrophoresis indeed shows that the preferred target site of IS231A is flanked by DNA segments curved in opposite directions. We present a model in which DNA bendability and curvature would contribute to the positioning of IS231A transposase on the target DNA.
Collapse
Affiliation(s)
- B Hallet
- Unité de Génétique, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
| | | | | | | |
Collapse
|
148
|
Pruss D, Reeves R, Bushman F, Wolffe A. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31494-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
149
|
Bushman FD. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc Natl Acad Sci U S A 1994; 91:9233-7. [PMID: 7937746 PMCID: PMC44786 DOI: 10.1073/pnas.91.20.9233] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Certain retrovirus and retrotransposons display strong biases in the selection of host DNA sites for integration. To probe the possibility that simple tethering of the retroelement integrase protein to a target DNA site is sufficient to direct integration, the activities of a hybrid composed of human immunodeficiency virus 1 integrase and lambda repressor were analyzed. In in vitro reactions containing several target DNAs, the lambda repressor-integrase hybrid was found to direct integration selectively to targets containing lambda operators. Addition of lambda repressor blocked selective integration, indicating that binding to the operators was required. The lambda repressor-integrase hybrid protein directed integration primarily to sites near the operators on the same face of the B-DNA helix, indicating that target DNA was probably captured by looping out the intervening sequences. Such hybrid integrase proteins may be useful for directing retroviral integration to specific sequences in vivo.
Collapse
Affiliation(s)
- F D Bushman
- Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
150
|
Pruss D, Bushman FD, Wolffe AP. Human immunodeficiency virus integrase directs integration to sites of severe DNA distortion within the nucleosome core. Proc Natl Acad Sci U S A 1994; 91:5913-7. [PMID: 8016088 PMCID: PMC44107 DOI: 10.1073/pnas.91.13.5913] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have examined the consequences of DNA distortion and specific histone-DNA contacts within the nucleosome for integration mediated by the human immunodeficiency virus (HIV)-encoded integrase enzyme. We find that sites of high-frequency integration cluster in the most severely deformed, kinked DNA regions within the nucleosome core. This may reflect either a preference for a wide major groove for association of the integrase or a requirement for target DNA distortion in the DNA strand transfer mechanism. Both the distortion and folding of the target DNA through packaging into nucleosomes may influence the selection of HIV integration sites within the chromosome.
Collapse
Affiliation(s)
- D Pruss
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|