101
|
Del Vecchio F, Mastroiaco V, Di Marco A, Compagnoni C, Capece D, Zazzeroni F, Capalbo C, Alesse E, Tessitore A. Next-generation sequencing: recent applications to the analysis of colorectal cancer. J Transl Med 2017; 15:246. [PMID: 29221448 PMCID: PMC5723063 DOI: 10.1186/s12967-017-1353-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the establishment of the Sanger sequencing method, scientists around the world focused their efforts to progress in the field to produce the utmost technology. The introduction of next-generation sequencing (NGS) represents a revolutionary step and promises to lead to massive improvements in our understanding on the role of nucleic acids functions. Cancer research began to use this innovative and highly performing method, and interesting results started to appear in colorectal cancer (CRC) analysis. Several studies produced high-quality data in terms of mutation discovery, especially about actionable or less frequently mutated genes, epigenetics, transcriptomics. Analysis of results is unveiling relevant perspectives aiding to evaluate the response to therapies. Novel evidences have been presented also in other directions such as gut microbiota or CRC circulating tumor cells. However, despite its unquestioned potential, NGS poses some issues calling for additional studies. This review intends to offer a view of the state of the art of NGS applications to CRC through examination of the most important technologies and discussion of recent published results.
Collapse
Affiliation(s)
- Filippo Del Vecchio
- Division of Cancer Sciences, University of Southampton, Southampton, Hampshire, SO16 6YD UK
| | - Valentina Mastroiaco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Antinisca Di Marco
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Daria Capece
- Department of Medicine, Centre for Cell Signaling and Inflammation, Imperial College London, London, W12 0NN UK
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, La Sapienza University, Rome, 00161 Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, 67100 Italy
| |
Collapse
|
102
|
Saka E, Harrison BJ, West K, Petruska JC, Rouchka EC. Framework for reanalysis of publicly available Affymetrix® GeneChip® data sets based on functional regions of interest. BMC Genomics 2017; 18:875. [PMID: 29244006 PMCID: PMC5731501 DOI: 10.1186/s12864-017-4266-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Since the introduction of microarrays in 1995, researchers world-wide have used both commercial and custom-designed microarrays for understanding differential expression of transcribed genes. Public databases such as ArrayExpress and the Gene Expression Omnibus (GEO) have made millions of samples readily available. One main drawback to microarray data analysis involves the selection of probes to represent a specific transcript of interest, particularly in light of the fact that transcript-specific knowledge (notably alternative splicing) is dynamic in nature. RESULTS We therefore developed a framework for reannotating and reassigning probe groups for Affymetrix® GeneChip® technology based on functional regions of interest. This framework addresses three issues of Affymetrix® GeneChip® data analyses: removing nonspecific probes, updating probe target mapping based on the latest genome knowledge and grouping probes into gene, transcript and region-based (UTR, individual exon, CDS) probe sets. Updated gene and transcript probe sets provide more specific analysis results based on current genomic and transcriptomic knowledge. The framework selects unique probes, aligns them to gene annotations and generates a custom Chip Description File (CDF). The analysis reveals only 87% of the Affymetrix® GeneChip® HG-U133 Plus 2 probes uniquely align to the current hg38 human assembly without mismatches. We also tested new mappings on the publicly available data series using rat and human data from GSE48611 and GSE72551 obtained from GEO, and illustrate that functional grouping allows for the subtle detection of regions of interest likely to have phenotypical consequences. CONCLUSION Through reanalysis of the publicly available data series GSE48611 and GSE72551, we profiled the contribution of UTR and CDS regions to the gene expression levels globally. The comparison between region and gene based results indicated that the detected expressed genes by gene-based and region-based CDFs show high consistency and regions based results allows us to detection of changes in transcript formation.
Collapse
Affiliation(s)
- Ernur Saka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA
| | - Benjamin J Harrison
- Department of Anatomical Sciences and Neurobiology, School of Medicine University of Louisville, Louisville, KY, USA.,Department of Biological Sciences, University of New England, Biddeford, ME, USA
| | - Kirk West
- Department of Biochemistry and Molecular Biology University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Jeffrey C Petruska
- Department of Anatomical Sciences and Neurobiology, School of Medicine University of Louisville, Louisville, KY, USA
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
103
|
Liu X, Freitas J, Zheng D, Oliveira MS, Hoque M, Martins T, Henriques T, Tian B, Moreira A. Transcription elongation rate has a tissue-specific impact on alternative cleavage and polyadenylation in Drosophila melanogaster. RNA (NEW YORK, N.Y.) 2017; 23:1807-1816. [PMID: 28851752 PMCID: PMC5689002 DOI: 10.1261/rna.062661.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Alternative polyadenylation (APA) is a mechanism that generates multiple mRNA isoforms with different 3'UTRs and/or coding sequences from a single gene. Here, using 3' region extraction and deep sequencing (3'READS), we have systematically mapped cleavage and polyadenylation sites (PASs) in Drosophila melanogaster, expanding the total repertoire of PASs previously identified for the species, especially those located in A-rich genomic sequences. Cis-element analysis revealed distinct sequence motifs around fly PASs when compared to mammalian ones, including the greater enrichment of upstream UAUA elements and the less prominent presence of downstream UGUG elements. We found that over 75% of mRNA genes in Drosophila melanogaster undergo APA. The head tissue tends to use distal PASs when compared to the body, leading to preferential expression of APA isoforms with long 3'UTRs as well as with distal terminal exons. The distance between the APA sites and intron location of PAS are important parameters for APA difference between body and head, suggesting distinct PAS selection contexts. APA analysis of the RpII215C4 mutant strain, which harbors a mutant RNA polymerase II (RNAPII) with a slower elongation rate, revealed that a 50% decrease in transcriptional elongation rate leads to a mild trend of more usage of proximal, weaker PASs, both in 3'UTRs and in introns, consistent with the "first come, first served" model of APA regulation. However, this trend was not observed in the head, suggesting a different regulatory context in neuronal cells. Together, our data expand the PAS collection for Drosophila melanogaster and reveal a tissue-specific effect of APA regulation by RNAPII elongation rate.
Collapse
Affiliation(s)
- Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Jaime Freitas
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Marta S Oliveira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Mainul Hoque
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Torcato Martins
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Telmo Henriques
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Alexandra Moreira
- Gene Regulation, i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-013 Porto, Portugal
| |
Collapse
|
104
|
Zhang SJ, Wang C, Yan S, Fu A, Luan X, Li Y, Sunny Shen Q, Zhong X, Chen JY, Wang X, Chin-Ming Tan B, He A, Li CY. Isoform Evolution in Primates through Independent Combination of Alternative RNA Processing Events. Mol Biol Evol 2017; 34:2453-2468. [PMID: 28957512 PMCID: PMC5850651 DOI: 10.1093/molbev/msx212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent RNA-seq technology revealed thousands of splicing events that are under rapid evolution in primates, whereas the reliability of these events, as well as their combination on the isoform level, have not been adequately addressed due to its limited sequencing length. Here, we performed comparative transcriptome analyses in human and rhesus macaque cerebellum using single molecule long-read sequencing (Iso-seq) and matched RNA-seq. Besides 359 million RNA-seq reads, 4,165,527 Iso-seq reads were generated with a mean length of 14,875 bp, covering 11,466 human genes, and 10,159 macaque genes. With Iso-seq data, we substantially expanded the repertoire of alternative RNA processing events in primates, and found that intron retention and alternative polyadenylation are surprisingly more prevalent in primates than previously estimated. We then investigated the combinatorial mode of these alternative events at the whole-transcript level, and found that the combination of these events is largely independent along the transcript, leading to thousands of novel isoforms missed by current annotations. Notably, these novel isoforms are selectively constrained in general, and 1,119 isoforms have even higher expression than the previously annotated major isoforms in human, indicating that the complexity of the human transcriptome is still significantly underestimated. Comparative transcriptome analysis further revealed 502 genes encoding selectively constrained, lineage-specific isoforms in human but not in rhesus macaque, linking them to some lineage-specific functions. Overall, we propose that the independent combination of alternative RNA processing events has contributed to complex isoform evolution in primates, which provides a new foundation for the study of phenotypic difference among primates.
Collapse
Affiliation(s)
- Shi-Jian Zhang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Chenqu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Science, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shouyu Yan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Aisi Fu
- Wuhan Institute of Biotechnology, Wuhan, Hubei, China
| | - Xuke Luan
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Science, Beijing, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yumei Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiaoming Zhong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jia-Yu Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Bertrand Chin-Ming Tan
- Department of Biomedical Sciences and Graduate Institute of Biomedical Sciences College of Medicine, Tao-Yuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chuan-Yun Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
105
|
Genome-Wide Profiling Reveals That Herbal Medicine Jinfukang-Induced Polyadenylation Alteration Is Involved in Anti-Lung Cancer Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5326909. [PMID: 29234412 PMCID: PMC5687148 DOI: 10.1155/2017/5326909] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/15/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023]
Abstract
Alternative polyadenylation (APA) plays an important role in regulation of genes expression and is involved in many biological processes. As eukaryotic cells receive a variety of external signals, genes produce diverse transcriptional isoforms and exhibit different translation efficiency. The traditional Chinese medicine (TCM) Jinfukang (JFK) has been effectively used for lung cancer treatment. In this study, we investigated whether JFK exerts its antitumor effect by modulating APA patterns in lung cancer cells. We performed a genome-wide APA site profiling analysis in JFK treated lung cancer cells A549 with 3T-seq approach that we reported previously. Comparing with those in untreated A549, in JFK treated A549 we observed APA-mediated 3′ UTRs alterations in 310 genes including 77 genes with shortened 3′ UTRs. In particular, we identified TMEM123, a gene involved in oncotic cell death, which produced transcripts with shortened 3′ UTR and thus was upregulated upon JFK treatment. Taken together, our studies suggest that APA might be one of the antitumor mechanisms of JFK and provide a new insight for the understanding of TCM against cancer.
Collapse
|
106
|
Qiu F, Fu Y, Lu C, Feng Y, Wang Q, Huo Z, Jia X, Chen C, Chen S, Xu A. Small Nuclear Ribonucleoprotein Polypeptide A-Mediated Alternative Polyadenylation of STAT5B during Th1 Cell Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3106-3115. [PMID: 28954886 DOI: 10.4049/jimmunol.1601872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/22/2017] [Indexed: 11/19/2022]
Abstract
T cells are activated and differentiated into Th cells depending on the rapid and accurate changes in the cell transcriptome. In addition to changes in mRNA expression, the sequences of many transcripts are altered by alternative splicing and alternative polyadenylation (APA). We profiled the APA sites of human CD4+ T cell subsets with high-throughput sequencing and found that Th1 cells harbored more genes with shorter tandem 3' untranslated regions (UTRs) than did naive T cells. We observed that STAT5B, a key regulator of Th1 differentiation, possessed three major APA sites and preferred shorter 3' UTRs in Th1 cells. In addition, small nuclear ribonucleoprotein polypeptide A (SNRPA) was found to bind directly to STAT5B 3' UTR and facilitate its APA switching. We also found that p65 activation triggered by TCR signaling could promote SNRPA transcription and 3' UTR shortening of STAT5B. Thus we propose that the APA switching of STAT5B induced by TCR activation is mediated by SNRPA.
Collapse
Affiliation(s)
- Feifei Qiu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Yonggui Fu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Chan Lu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Qiong Wang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Zhanfeng Huo
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Xin Jia
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Chengyong Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People's Republic of China; and
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
107
|
Afik S, Bartok O, Artyomov MN, Shishkin AA, Kadri S, Hanan M, Zhu X, Garber M, Kadener S. Defining the 5΄ and 3΄ landscape of the Drosophila transcriptome with Exo-seq and RNaseH-seq. Nucleic Acids Res 2017; 45:e95. [PMID: 28335028 PMCID: PMC5499799 DOI: 10.1093/nar/gkx133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 02/15/2017] [Indexed: 01/19/2023] Open
Abstract
Cells regulate biological responses in part through changes in transcription start sites (TSS) or cleavage and polyadenylation sites (PAS). To fully understand gene regulatory networks, it is therefore critical to accurately annotate cell type-specific TSS and PAS. Here we present a simple and straightforward approach for genome-wide annotation of 5΄- and 3΄-RNA ends. Our approach reliably discerns bona fide PAS from false PAS that arise due to internal poly(A) tracts, a common problem with current PAS annotation methods. We applied our methodology to study the impact of temperature on the Drosophila melanogaster head transcriptome. We found hundreds of previously unidentified TSS and PAS which revealed two interesting phenomena: first, genes with multiple PASs tend to harbor a motif near the most proximal PAS, which likely represents a new cleavage and polyadenylation signal. Second, motif analysis of promoters of genes affected by temperature suggested that boundary element association factor of 32 kDa (BEAF-32) and DREF mediates a transcriptional program at warm temperatures, a result we validated in a fly line where beaf-32 is downregulated. These results demonstrate the utility of a high-throughput platform for complete experimental and computational analysis of mRNA-ends to improve gene annotation.
Collapse
Affiliation(s)
- Shaked Afik
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Osnat Bartok
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Alexander A Shishkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sabah Kadri
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Mor Hanan
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Xiaopeng Zhu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Sebastian Kadener
- Biological Chemistry Department, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
108
|
Szkop KJ, Nobeli I. Untranslated Parts of Genes Interpreted: Making Heads or Tails of High-Throughput Transcriptomic Data via Computational Methods: Computational methods to discover and quantify isoforms with alternative untranslated regions. Bioessays 2017; 39. [PMID: 29052251 DOI: 10.1002/bies.201700090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/12/2017] [Indexed: 01/07/2023]
Abstract
In this review we highlight the importance of defining the untranslated parts of transcripts, and present a number of computational approaches for the discovery and quantification of alternative transcription start and poly-adenylation events in high-throughput transcriptomic data. The fate of eukaryotic transcripts is closely linked to their untranslated regions, which are determined by the position at which transcription starts and ends at a genomic locus. Although the extent of alternative transcription starts and alternative poly-adenylation sites has been revealed by sequencing methods focused on the ends of transcripts, the application of these methods is not yet widely adopted by the community. We suggest that computational methods applied to standard high-throughput technologies are a useful, albeit less accurate, alternative to the expertise-demanding 5' and 3' sequencing and they are the only option for analysing legacy transcriptomic data. We review these methods here, focusing on technical challenges and arguing for the need to include better normalization of the data and more appropriate statistical models of the expected variation in the signal.
Collapse
Affiliation(s)
- Krzysztof J Szkop
- Institute of Structural and Molecular Biology, Department of Biological Sciences Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Department of Biological Sciences Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
109
|
Alternative Polyadenylation: Methods, Findings, and Impacts. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:287-300. [PMID: 29031844 PMCID: PMC5673674 DOI: 10.1016/j.gpb.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 12/21/2022]
Abstract
Alternative polyadenylation (APA), a phenomenon that RNA molecules with different 3' ends originate from distinct polyadenylation sites of a single gene, is emerging as a mechanism widely used to regulate gene expression. In the present review, we first summarized various methods prevalently adopted in APA study, mainly focused on the next-generation sequencing (NGS)-based techniques specially designed for APA identification, the related bioinformatics methods, and the strategies for APA study in single cells. Then we summarized the main findings and advances so far based on these methods, including the preferences of alternative polyA (pA) site, the biological processes involved, and the corresponding consequences. We especially categorized the APA changes discovered so far and discussed their potential functions under given conditions, along with the possible underlying molecular mechanisms. With more in-depth studies on extensive samples, more signatures and functions of APA will be revealed, and its diverse roles will gradually heave in sight.
Collapse
|
110
|
Martin G, Schmidt R, Gruber AJ, Ghosh S, Keller W, Zavolan M. 3' End Sequencing Library Preparation with A-seq2. J Vis Exp 2017. [PMID: 29053696 PMCID: PMC5752398 DOI: 10.3791/56129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Studies in the last decade have revealed a complex and dynamic variety of pre-mRNA cleavage and polyadenylation reactions. mRNAs with long 3' untranslated regions (UTRs) are generated in differentiated cells whereas proliferating cells preferentially express transcripts with short 3'UTRs. We describe the A-seq protocol, now at its second version, which was developed to map polyadenylation sites genome-wide and study the regulation of pre-mRNA 3' end processing. Also this current protocol takes advantage of the polyadenylate (poly(A)) tails that are added during the biogenesis of most mammalian mRNAs to enrich for fully processed mRNAs. A DNA adaptor with deoxyuracil at its fourth position allows the precise processing of mRNA 3' end fragments for sequencing. Not including the cell culture and the overnight ligations, the protocol requires about 8 h hands-on time. Along with it, an easy-to-use software package for the analysis of the derived sequencing data is provided. A-seq2 and the associated analysis software provide an efficient and reliable solution to the mapping of pre-mRNA 3' ends in a wide range of conditions, from 106 or fewer cells.
Collapse
Affiliation(s)
- Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel
| | - Ralf Schmidt
- Computational and Systems Biology, Biozentrum, University of Basel
| | - Andreas J Gruber
- Computational and Systems Biology, Biozentrum, University of Basel
| | - Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel
| | - Walter Keller
- Computational and Systems Biology, Biozentrum, University of Basel
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel; Swiss Institute of Bioinformatics, Biozentrum, University of Basel;
| |
Collapse
|
111
|
Major splice variants and multiple polyadenylation site utilization in mRNAs encoding human translation initiation factors eIF4E1 and eIF4E3 regulate the translational regulators? Mol Genet Genomics 2017; 293:167-186. [PMID: 28942592 DOI: 10.1007/s00438-017-1375-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/19/2017] [Indexed: 01/01/2023]
Abstract
Alternative polyadenylation is an important and pervasive mechanism that generates heterogeneous 3'-termini of mRNA and is considered an important regulator of gene expression. We performed bioinformatics analyses of ESTs and the 3'-UTRs of the main transcript splice variants of the translational initiation factor eIF4E1 and its family members, eIF4E2 and eIF4E3. This systematic analysis led to the prediction of new polyadenylation signals. All identified polyadenylation sites were subsequently verified by 3'RACE of transcripts isolated from human lymphoblastic cell lines. This led to the observation that multiple simultaneous polyadenylation site utilization occurs in single cell population. Importantly, we described the use of new polyadenylation site in the eIF4E1 mRNA, which lacked any known polyadenylation signal. The proportion of eIF4E1 transcripts derived from the first two polyadenylation sites in eIF4E1 mRNA achieved 15% in a wide range of cell lines. This result demonstrates the ubiquitous presence of ARE-lacking transcripts, which escape HuR/Auf1-mediated control, the main mechanism of eIF4E1 gene expression regulation. We found many EST clones documenting the significant production of transcript variants 2-4 of eIF4E2 gene that encode proteins with C-termini that were distinct from the mainly studied prototypical isoform A. Similarly, eIF4E3 mRNAs are produced as two main variants with the same very long 3'-UTR with potential for heavy post-transcriptional regulation. We identified sparsely documented transcript variant 1 of eIF4E3 gene in human placenta. eIF4E3 truncated transcript variants were found mainly in brain. We propose to elucidate the minor splice variants of eIF4E2 and eIF4E3 in great detail because they might produce proteins with modified features that fulfill different cellular roles from their major counterparts.
Collapse
|
112
|
Turner RE, Pattison AD, Beilharz TH. Alternative polyadenylation in the regulation and dysregulation of gene expression. Semin Cell Dev Biol 2017; 75:61-69. [PMID: 28867199 DOI: 10.1016/j.semcdb.2017.08.056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Transcriptional control shapes a cell's transcriptome composition, but it is RNA processing that refines its expression. The untranslated regions (UTRs) of mRNA are hotspots for regulatory control. Features in these can impact mRNA stability, localisation and translation. Here we describe how alternative cleavage and polyadenylation can change mRNA fate by changing the length of its 3'UTR.
Collapse
Affiliation(s)
- Rachael Emily Turner
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew David Pattison
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia
| | - Traude Helene Beilharz
- Development and stem cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia.
| |
Collapse
|
113
|
Li J, He L, Zhang Y, Xue C, Cao Y. A novel method for genome-wide profiling of dynamic host-pathogen interactions using 3' end enriched RNA-seq. Sci Rep 2017; 7:8681. [PMID: 28819105 PMCID: PMC5561256 DOI: 10.1038/s41598-017-08700-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Marek's disease is a contagious lymphoproliferative disease of chickens and typical model of viral oncogenesis. Mapping changes or different states over the course of infection for both host and pathogen would provide important insights into dynamic host-pathogen interactions. Here we introduced 3' end enriched RNA-seq as a novel method to study host-pathogen interactions in chicken embryo fibroblasts cells challenged with Marek's disease virus. The method allowed accurate profiling of gene expression and alternative polyadenylation sites for host and pathogen simultaneously. We totally identified 476 differentially expressed genes and 437 APA switching genes in host, including switching in tandem 3' UTRs and switching between coding region and 3' UTR. Most of these genes were related to innate immunity, apoptosis and metabolism, but two sets of genes overlapped a little, suggesting two complementary mechanisms in gene regulation during MDV infection. In summary, our results provided a relatively comprehensive insight into dynamic host-pathogen interactions in regulation of gene transcription during infection of Marek's disease virus and suggested that 3' end enriched RNA-seq was a promising method to investigate global host-pathogen interactions.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.,Guangdong Wen's Foodstuffs Group Co., Ltd. Yunfu, Guangdong, China
| | - Liangliang He
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
114
|
Zhang C, Zhang B, Lin LL, Zhao S. Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics 2017; 18:583. [PMID: 28784092 PMCID: PMC5547501 DOI: 10.1186/s12864-017-4002-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternatively spliced transcript isoforms are commonly observed in higher eukaryotes. The expression levels of these isoforms are key for understanding normal functions in healthy tissues and the progression of disease states. However, accurate quantification of expression at the transcript level is limited with current RNA-seq technologies because of, for example, limited read length and the cost of deep sequencing. RESULTS A large number of tools have been developed to tackle this problem, and we performed a comprehensive evaluation of these tools using both experimental and simulated RNA-seq datasets. We found that recently developed alignment-free tools are both fast and accurate. The accuracy of all methods was mainly influenced by the complexity of gene structures and caution must be taken when interpreting quantification results for short transcripts. Using TP53 gene simulation, we discovered that both sequencing depth and the relative abundance of different isoforms affect quantification accuracy CONCLUSIONS: Our comprehensive evaluation helps data analysts to make informed choice when selecting computational tools for isoform quantification.
Collapse
Affiliation(s)
- Chi Zhang
- Early Clinical Development, Pfizer Worldwide R&D, Cambridge, MA, 02139, USA
| | - Baohong Zhang
- Early Clinical Development, Pfizer Worldwide R&D, Cambridge, MA, 02139, USA
| | - Lih-Ling Lin
- Inflammation and Immunology RU, Pfizer Worldwide R&D, Cambridge, MA, 02139, USA
| | - Shanrong Zhao
- Early Clinical Development, Pfizer Worldwide R&D, Cambridge, MA, 02139, USA.
| |
Collapse
|
115
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
116
|
Peng Y, Yuan J, Zhang Z, Chang X. Cytoplasmic poly(A)-binding protein 1 (PABPC1) interacts with the RNA-binding protein hnRNPLL and thereby regulates immunoglobulin secretion in plasma cells. J Biol Chem 2017; 292:12285-12295. [PMID: 28611064 DOI: 10.1074/jbc.m117.794834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/11/2017] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence indicates that alternative processing of mRNA, including alternative splicing, 3' alternative polyadenylation, and regulation of mRNA stability/translation, represents a major mechanism contributing to protein diversification. For example, in alternative polyadenylation, the 3' end of the immunoglobulin heavy chain mRNA is processed during B cell differentiation, and this processing involves RNA-binding proteins. hnRNPLL (heterogeneous nuclear ribonucleoprotein L-like protein) is an RNA-binding protein expressed in terminally differentiated lymphocytes, such as memory T cells and plasma cells. hnRNPLL regulates various processes of RNA metabolism, including alternative pre-mRNA splicing and RNA stability. In plasma cells, hnRNPLL also regulates the transition from the membrane isoform of the immunoglobulin heavy-chain (mIgH) to the secreted isoform (sIgH), but the precise mechanism remains to be identified. In this study, we report that hnRNPLL specifically associates with cytoplasmic PABPC1 (poly(A)-binding protein 1) in both T cells and plasma cells. We found that although PABPC1 is not required for the alternative splicing of CD45, a primary target of hnRNPLL in lymphocytes, PABPC1 does promote the binding of hnRNPLL to the immunoglobulin mRNA and regulates switching from mIgH to sIgH in plasma cells. Given the recently identified role of PABPC1 in mRNA alternative polyadenylation, our findings suggest that PABPC1 recruits hnRNPLL to the 3'-end of RNA and regulates the transition from membrane Ig to secreted Ig through mRNA alternative polyadenylation. In conclusion, our study has revealed a mechanism that regulates immunoglobulin secretion in B cells via cooperation between a plasma cell-specific RBP (hnRNPLL) and a universally expressed RBP (PABPC1).
Collapse
Affiliation(s)
- Yuanzheng Peng
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Juanjuan Yuan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Zhenchao Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xing Chang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences and Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.
| |
Collapse
|
117
|
Zhao H, Liu F, Wu S, Yang L, Zhang YP, Li CP. Ultrasensitive electrochemical detection of Dicer1 3'UTR for the fast analysis of alternative cleavage and polyadenylation. NANOSCALE 2017; 9:4272-4282. [PMID: 28294236 DOI: 10.1039/c6nr09300k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Alternative cleavage and polyadenylation (APA) is involved in several important biological processes in animals, e.g. cell growth and development, and cancer progression. The increasing data show that cancer cells are inclined to produce mRNA isoforms with a shortened 3'UTR undergoing APA. For example, the Dicer1 isoform with a shorter 3'untranslated region (3'UTR) was found to be overexpressed in some cancer cells, which may be used as a potential novel prognostic biomarker for cancer. In the present work, a novel electrochemical biosensor for ultrasensitive determination of Dicer1 was designed by using gold nanoparticles and p-sulfonated calix[6]arene functionalized reduced graphene oxide (Au@SCX6-rGO) as nanocarriers. The results showed that the expressions of the shorter 3'UTR (Dicer1-S) both in BT474 and SKBR3 were obviously higher than those of the longer Dicer1 (Dicer1-L) by the constructed biosensor, which agreed well with the result analyzed by the RT-qPCR method. The detection ranges of Dicer1-S and Dicer1-L were 10-14-10-9 M and 10-15-10-10 M. The LODs were 3.5 and 0.53 fM. The specificity of the proposed biosensor was also very high. For the first time, the expressional analysis of different 3'UTRs caused by APA was studied by an electrochemical method. Moreover, the use of a macrocyclic host for constructing an electrochemical/biosensing platform has rarely been reported. The proposed electrochemical sensing strategy is thus expected to provide a new method for determination of novel biomarkers and a novel method for fast and cheap analysis of APA.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, PR China.
| | - Feng Liu
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, PR China. and School of Life Science, Yunnan University, Kunming 650091, China
| | - Shilian Wu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Long Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Ya-Ping Zhang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091, PR China. and State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China
| | - Can-Peng Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
118
|
The role of alternative polyadenylation in the antiviral innate immune response. Nat Commun 2017; 8:14605. [PMID: 28233779 PMCID: PMC5333124 DOI: 10.1038/ncomms14605] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Alternative polyadenylation (APA) is an important regulatory mechanism of gene functions in many biological processes. However, the extent of 3' UTR variation and the function of APA during the innate antiviral immune response are unclear. Here, we show genome-wide poly(A) sites switch and average 3' UTR length shortens gradually in response to vesicular stomatitis virus (VSV) infection in macrophages. Genes with APA and mRNA abundance change are enriched in immune-related categories such as the Toll-like receptor, RIG-I-like receptor, JAK-STAT and apoptosis-related signalling pathways. The expression of 3' processing factors is down-regulated upon VSV infection. When the core 3' processing factors are knocked down, viral replication is affected. Thus, our study reports the annotation of genes with APA in antiviral immunity and highlights the roles of 3' processing factors on 3' UTR variation upon viral infection.
Collapse
|
119
|
He XJ, Zhang Q, Ma LP, Li N, Chang XH, Zhang YJ. Aberrant Alternative Polyadenylation is Responsible for Survivin Up-regulation in Ovarian Cancer. Chin Med J (Engl) 2017; 129:1140-6. [PMID: 27174320 PMCID: PMC4878157 DOI: 10.4103/0366-6999.181965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Survivin is an oncoprotein silenced in normal mature tissues but reactivated in serous ovarian cancer (SOC). Although transcriptional activation is assumed for its overexpression, the long 3'-untranslated region (3'-UTR) in survivin gene, which contains many alternate polyadenylation (APA) sites, implies a propensity for posttranscriptional control and therefore was the aim of our study. METHODS The abundance of the coding region, the proximal and the distal region of survivin mRNA 3'-UTR, was evaluated by real-time polymerase chain reaction (PCR) in SOC samples, cell lines, and normal fallopian tube (NFT) tissues. The APA sites were confirmed by rapid amplification of cDNA 3' ends and DNA sequencing. Real-time PCR were used to screen survivin-targeting microRNAs (miRNAs) that were inversely correlated with survivin. The expression of an inversely correlated miRNA was restored by pre-miRNA transfection or induction with a genotoxic agent to test its inhibitory effect on survivin overexpression. RESULTS Varying degrees of APA were observed in SOC by comparing the abundance of the proximal and the distal region of survivin 3'-UTR, and changes of 3'-UTR correlated significantly with survivin expression (r = 0.708, P< 0.01). The main APA sites are proved at 1197 and 1673 of survivin 3'-UTR by DNA sequencing. Higher level of 3'-UTR proximal region than coding region was observed in NFT, as well as in SOC and cell lines. Among the survivin-targeting miRNAs, only a few highly expressed miRNAs were inversely correlated with survivin levels, and they mainly targeted the distal part of the 3'-UTR. However, in ovarian cancer cells, restoration of an inversely correlated miRNA (miR-34c) showed little effect on survivin expression. CONCLUSIONS In NFT tissues, survivin is not transcriptionally silenced but regulate posttranscriptionally. In SOC, aberrant APA leads to the shortening of survivin 3'-UTR which enables it to escape the negative regulation of miRNAs and is responsible for survivin up-regulation.
Collapse
Affiliation(s)
- Xiang-Jun He
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Qi Zhang
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Li-Ping Ma
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Na Li
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Xiao-Hong Chang
- Gynecology Oncology Center, Peking University People's Hospital, Beijing 100044, China
| | - Yu-Jun Zhang
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
120
|
Prediction of Poly(A) Sites by Poly(A) Read Mapping. PLoS One 2017; 12:e0170914. [PMID: 28135292 PMCID: PMC5279776 DOI: 10.1371/journal.pone.0170914] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/12/2017] [Indexed: 11/19/2022] Open
Abstract
RNA-seq reads containing part of the poly(A) tail of transcripts (denoted as poly(A) reads) provide the most direct evidence for the position of poly(A) sites in the genome. However, due to reduced coverage of poly(A) tails by reads, poly(A) reads are not routinely identified during RNA-seq mapping. Nevertheless, recent studies for several herpesviruses successfully employed mapping of poly(A) reads to identify herpesvirus poly(A) sites using different strategies and customized programs. To more easily allow such analyses without requiring additional programs, we integrated poly(A) read mapping and prediction of poly(A) sites into our RNA-seq mapping program ContextMap 2. The implemented approach essentially generalizes previously used poly(A) read mapping approaches and combines them with the context-based approach of ContextMap 2 to take into account information provided by other reads aligned to the same location. Poly(A) read mapping using ContextMap 2 was evaluated on real-life data from the ENCODE project and compared against a competing approach based on transcriptome assembly (KLEAT). This showed high positive predictive value for our approach, evidenced also by the presence of poly(A) signals, and considerably lower runtime than KLEAT. Although sensitivity is low for both methods, we show that this is in part due to a high extent of spurious results in the gold standard set derived from RNA-PET data. Sensitivity improves for poly(A) sites of known transcripts or determined with a more specific poly(A) sequencing protocol and increases with read coverage on transcript ends. Finally, we illustrate the usefulness of the approach in a high read coverage scenario by a re-analysis of published data for herpes simplex virus 1. Thus, with current trends towards increasing sequencing depth and read length, poly(A) read mapping will prove to be increasingly useful and can now be performed automatically during RNA-seq mapping with ContextMap 2.
Collapse
|
121
|
Abstract
Deep sequencing of the 3' end region of poly(A)+ RNA identifies the cleavage and polyadenylation site (PAS) and measures transcript abundance. However, mispriming at internal A-rich regions by the oligo-dT oligo in reverse transcription can lead to falsely identified PASs. This problem can be resolved by direct ligation of an adapter to the 3' end of RNA. However, ligation-based methods are often inefficient. Here, we describe 3'READS+, an accurate and sensitive method for deep sequencing of the 3' end of poly(A)+ RNA. Through partial digestion by RNase H of the poly(A) tail bound to a locked nucleic acid (LNA)/DNA hybrid oligo, this method sequences an optimal number of terminal A's, which balances sequencing quality and accurate identification of PAS in A-rich regions. With efficient ligation steps, 3'READS+ is amenable to small amounts of input RNA. 3'READS+ can also be readily used as a cost-effective method for gene expression analysis.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Cancer Institute of New Jersey, 205 South Orange Avenue, Newark, NJ, 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers Cancer Institute of New Jersey, 205 South Orange Avenue, Newark, NJ, 07103, USA.
| |
Collapse
|
122
|
Hu W, Li S, Park JY, Boppana S, Ni T, Li M, Zhu J, Tian B, Xie Z, Xiang M. Dynamic landscape of alternative polyadenylation during retinal development. Cell Mol Life Sci 2016; 74:1721-1739. [PMID: 27990575 DOI: 10.1007/s00018-016-2429-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
The development of the central nervous system (CNS) is a complex process that must be exquisitely controlled at multiple levels to ensure the production of appropriate types and quantity of neurons. RNA alternative polyadenylation (APA) contributes to transcriptome diversity and gene regulation, and has recently been shown to be widespread in the CNS. However, the previous studies have been primarily focused on the tissue specificity of APA and developmental APA change of whole model organisms; a systematic survey of APA usage is lacking during CNS development. Here, we conducted global analysis of APA during mouse retinal development, and identified stage-specific polyadenylation (pA) sites that are enriched for genes critical for retinal development and visual perception. Moreover, we demonstrated 3'UTR (untranslated region) lengthening and increased usage of intronic pA sites over development that would result in gaining many different RBP (RNA-binding protein) and miRNA target sites. Furthermore, we showed that a considerable number of polyadenylated lncRNAs are co-expressed with protein-coding genes involved in retinal development and functions. Together, our data indicate that APA is highly and dynamically regulated during retinal development and maturation, suggesting that APA may serve as a crucial mechanism of gene regulation underlying the delicate process of CNS development.
Collapse
Affiliation(s)
- Wenyan Hu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China
| | - Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Ji Yeon Park
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Sridhar Boppana
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Miaoxin Li
- Department of Medical Genetics, Center for Genome Research, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07101, USA
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China.
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 500040, China. .,Center for Advanced Biotechnology and Medicine and Department of Pediatrics, Rutgers University-Robert Wood Johnson Medical School, 679 Hoes Lane West, Piscataway, NJ, 08854, USA.
| |
Collapse
|
123
|
Fu H, Yang D, Su W, Ma L, Shen Y, Ji G, Ye X, Wu X, Li QQ. Genome-wide dynamics of alternative polyadenylation in rice. Genome Res 2016; 26:1753-1760. [PMID: 27733415 PMCID: PMC5131826 DOI: 10.1101/gr.210757.116] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 12/02/2022]
Abstract
Alternative polyadenylation (APA), in which a transcript uses one of the poly(A) sites to define its 3'-end, is a common regulatory mechanism in eukaryotic gene expression. However, the potential of APA in determining crop agronomic traits remains elusive. This study systematically tallied poly(A) sites of 14 different rice tissues and developmental stages using the poly(A) tag sequencing (PAT-seq) approach. The results indicate significant involvement of APA in developmental and quantitative trait loci (QTL) gene expression. About 48% of all expressed genes use APA to generate transcriptomic and proteomic diversity. Some genes switch APA sites, allowing differentially expressed genes to use alternate 3' UTRs. Interestingly, APA in mature pollen is distinct where differential expression levels of a set of poly(A) factors and different distributions of APA sites are found, indicating a unique mRNA 3'-end formation regulation during gametophyte development. Equally interesting, statistical analyses showed that QTL tends to use APA for regulation of gene expression of many agronomic traits, suggesting a potential important role of APA in rice production. These results provide thus far the most comprehensive and high-resolution resource for advanced analysis of APA in crops and shed light on how APA is associated with trait formation in eukaryotes.
Collapse
Affiliation(s)
- Haihui Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China, 361102
| | - Dewei Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China, 350018
| | - Wenyue Su
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China, 361102
| | - Liuyin Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China, 361102
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China, 361102
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, China, 361005
| | - Xinfu Ye
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China, 350018
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, China, 361005
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China, 361102
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China, 350018
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
124
|
Wang H, Li R, Zhou X, Xue L, Xu X, Liu B. Genome-Wide Analysis and Functional Characterization of the Polyadenylation Site in Pigs Using RNAseq Data. Sci Rep 2016; 6:36388. [PMID: 27812017 PMCID: PMC5095665 DOI: 10.1038/srep36388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/14/2016] [Indexed: 12/05/2022] Open
Abstract
Polyadenylation, a critical step in the production of mature mRNA for translation in most eukaryotes, involves cleavage and poly(A) tail addition at the 3′ end of mRNAs at the polyadenylation site (PAS). Sometimes, one gene can have more than one PAS, which can produce the alternative polyadenylation (APA) phenomenon and affect the stability, localization and translation of the mRNA. In this study, we discovered 28,363 PASs using pig RNAseq data, with 13,033 located in 7,403 genes. Among the genes, 41% were identified to have more than one PAS. PAS distribution analysis indicated that the PAS position was highly variable in genes. Additionally, the analysis of RNAseq data from the liver and testis showed a difference in their PAS number and usage. RT-PCR and qRT-PCR were performed to confirm our findings by detecting the expression of 3′UTR isoforms for five candidate genes. The analysis of RNAseq data under a different androstenone level and salmonella inoculation indicated that the functional usage of PAS might participate in the immune response and may be related to the androstenone level in pigs. This study provides new insights into pig PAS and facilitates further functional research of PAS.
Collapse
Affiliation(s)
- Hongyang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education &Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rui Li
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Liyao Xue
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education &Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education &Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education &Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture; Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
125
|
Grassi E, Mariella E, Lembo A, Molineris I, Provero P. Roar: detecting alternative polyadenylation with standard mRNA sequencing libraries. BMC Bioinformatics 2016; 17:423. [PMID: 27756200 PMCID: PMC5069797 DOI: 10.1186/s12859-016-1254-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/08/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Post-transcriptional regulation is a complex mechanism that plays a central role in defining multiple cellular identities starting from a common genome. Modifications in the length of 3'UTRs have been found to play an important role in this context, since alternative 3' UTRs could lead to differences for example in regulation by microRNAs and cellular localization of the transcripts thus altering their fate. RESULTS We propose a strategy to identify the genes undergoing regulation of 3' UTR length using RNA sequencing data obtained from standard libraries, thus widely applicable to data originally obtained to perform classical differential expression analyses. We decided to exploit previously annotated APA sites from public databases, in contrast with other approaches recently proposed in which the location of the APA site is inferred from the data together with the relative abundance of the isoforms. We demonstrate the reliability of our method by comparing it to the results of other microarray based or specific RNA-seq libraries methods and show that using APA sites databases results in higher sensitivity compared to de novo site prediction approach. CONCLUSIONS We implemented the algorithm in a Bioconductor package to facilitate its broad usage in the scientific community. The ability of this approach to detect shortening from libraries with a number of reads comparable to that needed for differential expression analyses makes it useful for investigating if alternative polyadenylation is relevant in a certain biological process without requiring specific experimental assays.
Collapse
Affiliation(s)
- Elena Grassi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Via Nizza 52, Torino, 10126, Italy.
| | - Elisa Mariella
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Via Nizza 52, Torino, 10126, Italy
| | - Antonio Lembo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Via Nizza 52, Torino, 10126, Italy
| | - Ivan Molineris
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Via Nizza 52, Torino, 10126, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Via Nizza 52, Torino, 10126, Italy
- Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 60, Milan, 20132, Italy
| |
Collapse
|
126
|
Genome-Wide Analysis of Polyadenylation Events in Schmidtea mediterranea. G3-GENES GENOMES GENETICS 2016; 6:3035-3048. [PMID: 27489207 PMCID: PMC5068929 DOI: 10.1534/g3.116.031120] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, 3' untranslated regions (UTRs) play important roles in regulating posttranscriptional gene expression. The 3'UTR is defined by regulated cleavage/polyadenylation of the pre-mRNA. The advent of next-generation sequencing technology has now enabled us to identify these events on a genome-wide scale. In this study, we used poly(A)-position profiling by sequencing (3P-Seq) to capture all poly(A) sites across the genome of the freshwater planarian, Schmidtea mediterranea, an ideal model system for exploring the process of regeneration and stem cell function. We identified the 3'UTRs for ∼14,000 transcripts and thus improved the existing gene annotations. We found 97 transcripts, which are polyadenylated within an internal exon, resulting in the shrinking of the ORF and loss of a predicted protein domain. Around 40% of the transcripts in planaria were alternatively polyadenylated (ApA), resulting either in an altered 3'UTR or a change in coding sequence. We identified specific ApA transcript isoforms that were subjected to miRNA mediated gene regulation using degradome sequencing. In this study, we also confirmed a tissue-specific expression pattern for alternate polyadenylated transcripts. The insights from this study highlight the potential role of ApA in regulating the gene expression essential for planarian regeneration.
Collapse
|
127
|
Miles WO, Lembo A, Volorio A, Brachtel E, Tian B, Sgroi D, Provero P, Dyson N. Alternative Polyadenylation in Triple-Negative Breast Tumors Allows NRAS and c-JUN to Bypass PUMILIO Posttranscriptional Regulation. Cancer Res 2016; 76:7231-7241. [PMID: 27758885 DOI: 10.1158/0008-5472.can-16-0844] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022]
Abstract
Alternative polyadenylation (APA) is a process that changes the posttranscriptional regulation and translation potential of mRNAs via addition or deletion of 3' untranslated region (3' UTR) sequences. To identify posttranscriptional-regulatory events affected by APA in breast tumors, tumor datasets were analyzed for recurrent APA events. Motif mapping of the changed 3' UTR regions found that APA-mediated removal of Pumilio regulatory elements (PRE) was unusually common. Breast tumor subtype-specific APA profiling identified triple-negative breast tumors as having the highest levels of APA. To determine the frequency of these events, an independent cohort of triple-negative breast tumors and normal breast tissue was analyzed for APA. APA-mediated shortening of NRAS and c-JUN was seen frequently, and this correlated with changes in the expression of downstream targets. mRNA stability and luciferase assays demonstrated APA-dependent alterations in RNA and protein levels of affected candidate genes. Examination of clinical parameters of these tumors found those with APA of NRAS and c-JUN to be smaller and less proliferative, but more invasive than non-APA tumors. RT-PCR profiling identified elevated levels of polyadenylation factor CSTF3 in tumors with APA. Overexpression of CSTF3 was common in triple-negative breast cancer cell lines, and elevated CSTF3 levels were sufficient to induce APA of NRAS and c-JUN. Our results support the hypothesis that PRE-containing mRNAs are disproportionately affected by APA, primarily due to high sequence similarity in the motifs utilized by polyadenylation machinery and the PUM complex. Cancer Res; 76(24); 7231-41. ©2016 AACR.
Collapse
Affiliation(s)
- Wayne O Miles
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts. .,Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Antonio Lembo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Angela Volorio
- Department of Pathology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Elena Brachtel
- Department of Pathology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Dennis Sgroi
- Department of Pathology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy
| | - Nicholas Dyson
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts.
| |
Collapse
|
128
|
Zheng D, Liu X, Tian B. 3'READS+, a sensitive and accurate method for 3' end sequencing of polyadenylated RNA. RNA (NEW YORK, N.Y.) 2016; 22:1631-1639. [PMID: 27512124 PMCID: PMC5029459 DOI: 10.1261/rna.057075.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Sequencing of the 3' end of poly(A)(+) RNA identifies cleavage and polyadenylation sites (pAs) and measures transcript expression. We previously developed a method, 3' region extraction and deep sequencing (3'READS), to address mispriming issues that often plague 3' end sequencing. Here we report a new version, named 3'READS+, which has vastly improved accuracy and sensitivity. Using a special locked nucleic acid oligo to capture poly(A)(+) RNA and to remove the bulk of the poly(A) tail, 3'READS+ generates RNA fragments with an optimal number of terminal A's that balance data quality and detection of genuine pAs. With improved RNA ligation steps for efficiency, the method shows much higher sensitivity (over two orders of magnitude) compared to the previous version. Using 3'READS+, we have uncovered a sizable fraction of previously overlooked pAs located next to or within a stretch of adenylate residues in human genes and more accurately assessed the frequency of alternative cleavage and polyadenylation (APA) in HeLa cells (∼50%). 3'READS+ will be a useful tool to accurately study APA and to analyze gene expression by 3' end counting, especially when the amount of input total RNA is limited.
Collapse
Affiliation(s)
- Dinghai Zheng
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Xiaochuan Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA
| |
Collapse
|
129
|
Abstract
Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.
Collapse
|
130
|
Ferreira PG, Oti M, Barann M, Wieland T, Ezquina S, Friedländer MR, Rivas MA, Esteve-Codina A, Rosenstiel P, Strom TM, Lappalainen T, Guigó R, Sammeth M. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing. Sci Rep 2016; 6:32406. [PMID: 27617755 PMCID: PMC5019111 DOI: 10.1038/srep32406] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing-alternative splice sites, introns, and cleavage sites-which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.
Collapse
Affiliation(s)
- Pedro G. Ferreira
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Instituto de Investigação e Inovação em Saúde, (i3S) Universidade do Porto, 4200-625 Porto, Portugal
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-625 Porto, Portugal
| | - Martin Oti
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Matthias Barann
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Suzana Ezquina
- Center for Human Genome and Stem-cell research (HUG-CELL), University of São Paulo (USP), 05508090 São Paulo, Brazil
| | - Marc R. Friedländer
- Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Manuel A. Rivas
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Esteve-Codina
- Centre Nacional d’Anàlisi Genòmica, 08028 Barcelona, Catalonia, Spain
- Center for Research in Agricultural Genomics (CRAG), Autonome University of Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christians-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Tuuli Lappalainen
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
- Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Roderic Guigó
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), 08003 Barcelona, Catalonia, Spain
| | - Michael Sammeth
- Bioinformatics and Genomics, Center for Genomic Regulation (CRG), 08003 Barcelona, Catalonia, Spain
- Institute of Biophysics Carlos Chagas Filho (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
- National Center of Scientific Computing (LNCC), 2233-6000 Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
131
|
Cellular responses to HSV-1 infection are linked to specific types of alterations in the host transcriptome. Sci Rep 2016; 6:28075. [PMID: 27354008 PMCID: PMC4926211 DOI: 10.1038/srep28075] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pathogen invasion triggers a number of cellular responses and alters the host transcriptome. Here we report that the type of changes to cellular transcriptome is related to the type of cellular functions affected by lytic infection of Herpes Simplex Virus type I in Human primary fibroblasts. Specifically, genes involved in stress responses and nuclear transport exhibited mostly changes in alternative polyadenylation (APA), cell cycle genes showed mostly alternative splicing (AS) changes, while genes in neurogenesis, rarely underwent these changes. Transcriptome wide, the infection resulted in 1,032 cases of AS, 161 incidences of APA, 1,827 events of isoform changes, and up regulation of 596 genes and down regulations of 61 genes compared to uninfected cells. Thus, these findings provided important and specific links between cellular responses to HSV-1 infection and the type of alterations to the host transcriptome, highlighting important roles of RNA processing in virus-host interactions.
Collapse
|
132
|
Wu X, Zhang Y, Li QQ. PlantAPA: A Portal for Visualization and Analysis of Alternative Polyadenylation in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:889. [PMID: 27446120 PMCID: PMC4914594 DOI: 10.3389/fpls.2016.00889] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 05/24/2023]
Abstract
Alternative polyadenylation (APA) is an important layer of gene regulation that produces mRNAs that have different 3' ends and/or encode diverse protein isoforms. Up to 70% of annotated genes in plants undergo APA. Increasing numbers of poly(A) sites collected in various plant species demand new methods and tools to access and mine these data. We have created an open-access web service called PlantAPA (http://bmi.xmu.edu.cn/plantapa) to visualize and analyze genome-wide poly(A) sites in plants. PlantAPA provides various interactive and dynamic graphics and seamlessly integrates a genome browser that can profile heterogeneous cleavage sites and quantify expression patterns of poly(A) sites across different conditions. Particularly, through PlantAPA, users can analyze poly(A) sites in extended 3' UTR regions, intergenic regions, and ambiguous regions owing to alternative transcription or RNA processing. In addition, it also provides tools for analyzing poly(A) site selections, 3' UTR lengthening or shortening, non-canonical APA site switching, and differential gene expression between conditions, making it more powerful for the study of APA-mediated gene expression regulation. More importantly, PlantAPA offers a bioinformatics pipeline that allows users to upload their own short reads or ESTs for poly(A) site extraction, enabling users to further explore poly(A) site selection using stored PlantAPA poly(A) sites together with their own poly(A) site datasets. To date, PlantAPA hosts the largest database of APA sites in plants, including Oryza sativa, Arabidopsis thaliana, Medicago truncatula, and Chlamydomonas reinhardtii. As a user-friendly web service, PlantAPA will be a valuable addition to the community of biologists studying APA mechanisms and gene expression regulation in plants.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Automation, Xiamen UniversityXiamen, China
| | - Yumin Zhang
- Department of Automation, Xiamen UniversityXiamen, China
| | - Qingshun Q. Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen UniversityXiamen, China
- Graduate College of Biomedical Sciences, Western University of Health SciencesPomona, CA, USA
| |
Collapse
|
133
|
Ogorodnikov A, Kargapolova Y, Danckwardt S. Processing and transcriptome expansion at the mRNA 3' end in health and disease: finding the right end. Pflugers Arch 2016; 468:993-1012. [PMID: 27220521 PMCID: PMC4893057 DOI: 10.1007/s00424-016-1828-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 04/19/2016] [Indexed: 01/09/2023]
Abstract
The human transcriptome is highly dynamic, with each cell type, tissue, and organ system expressing an ensemble of transcript isoforms that give rise to considerable diversity. Apart from alternative splicing affecting the "body" of the transcripts, extensive transcriptome diversification occurs at the 3' end. Transcripts differing at the 3' end can have profound physiological effects by encoding proteins with distinct functions or regulatory properties or by affecting the mRNA fate via the inclusion or exclusion of regulatory elements (such as miRNA or protein binding sites). Importantly, the dynamic regulation at the 3' end is associated with various (patho)physiological processes, including the immune regulation but also tumorigenesis. Here, we recapitulate the mechanisms of constitutive mRNA 3' end processing and review the current understanding of the dynamically regulated diversity at the transcriptome 3' end. We illustrate the medical importance by presenting examples that are associated with perturbations of this process and indicate resulting implications for molecular diagnostics as well as potentially arising novel therapeutic strategies.
Collapse
Affiliation(s)
- Anton Ogorodnikov
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Yulia Kargapolova
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany
| | - Sven Danckwardt
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstr 1, 55131, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Langenbeckstr 1, 55131, Mainz, Germany.
| |
Collapse
|
134
|
Park SM, Ou J, Chamberlain L, Simone TM, Yang H, Virbasius CM, Ali AM, Zhu LJ, Mukherjee S, Raza A, Green MR. U2AF35(S34F) Promotes Transformation by Directing Aberrant ATG7 Pre-mRNA 3' End Formation. Mol Cell 2016; 62:479-90. [PMID: 27184077 PMCID: PMC5012111 DOI: 10.1016/j.molcel.2016.04.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Recurrent mutations in the splicing factor U2AF35 are found in several cancers and myelodysplastic syndrome (MDS). How oncogenic U2AF35 mutants promote transformation remains to be determined. Here we derive cell lines transformed by the oncogenic U2AF35(S34F) mutant and identify aberrantly processed pre-mRNAs by deep sequencing. We find that in U2AF35(S34F)-transformed cells the autophagy-related factor 7 (Atg7) pre-mRNA is abnormally processed, which unexpectedly is not due to altered splicing but rather selection of a distal cleavage and polyadenylation (CP) site. This longer Atg7 mRNA is translated inefficiently, leading to decreased ATG7 levels and an autophagy defect that predisposes cells to secondary mutations, resulting in transformation. MDS and acute myeloid leukemia patient samples harboring U2AF35(S34F) have a similar increased use of the ATG7 distal CP site, and previous studies have shown that mice with hematopoietic cells lacking Atg7 develop an MDS-like syndrome. Collectively, our results reveal a basis for U2AF35(S34F) oncogenic activity.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Animals
- Autophagy
- Autophagy-Related Protein 7/genetics
- Autophagy-Related Protein 7/metabolism
- Cell Line, Transformed
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitochondria/metabolism
- Mitochondria/pathology
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Polyadenylation
- RNA 3' End Processing
- RNA Interference
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Time Factors
- Transfection
- Tumor Burden
Collapse
Affiliation(s)
- Sung Mi Park
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lynn Chamberlain
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tessa M Simone
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Huan Yang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ching-Man Virbasius
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Abdullah M Ali
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Programs in Molecular Medicine and Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Siddhartha Mukherjee
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA
| | - Azra Raza
- Department of Medicine, Division of Hematology and Oncology, Columbia University Medical Center and New York Presbyterian Hospital, New York, NY 10032, USA.
| | - Michael R Green
- Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
135
|
Erson-Bensan AE, Can T. Alternative Polyadenylation: Another Foe in Cancer. Mol Cancer Res 2016; 14:507-17. [PMID: 27075335 DOI: 10.1158/1541-7786.mcr-15-0489] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/30/2016] [Indexed: 11/16/2022]
Abstract
Advancements in sequencing and transcriptome analysis methods have led to seminal discoveries that have begun to unravel the complexity of cancer. These studies are paving the way toward the development of improved diagnostics, prognostic predictions, and targeted treatment options. However, it is clear that pieces of the cancer puzzle are still missing. In an effort to have a more comprehensive understanding of the development and progression of cancer, we have come to appreciate the value of the noncoding regions of our genomes, partly due to the discovery of miRNAs and their significance in gene regulation. Interestingly, the miRNA-mRNA interactions are not solely dependent on variations in miRNA levels. Instead, the majority of genes harbor multiple polyadenylation signals on their 3' UTRs (untranslated regions) that can be differentially selected on the basis of the physiologic state of cells, resulting in alternative 3' UTR isoforms. Deregulation of alternative polyadenylation (APA) has increasing interest in cancer research, because APA generates mRNA 3' UTR isoforms with potentially different stabilities, subcellular localizations, translation efficiencies, and functions. This review focuses on the link between APA and cancer and discusses the mechanisms as well as the tools available for investigating APA events in cancer. Overall, detection of deregulated APA-generated isoforms in cancer may implicate some proto-oncogene activation cases of unknown causes and may help the discovery of novel cases; thus, contributing to a better understanding of molecular mechanisms of cancer. Mol Cancer Res; 14(6); 507-17. ©2016 AACR.
Collapse
Affiliation(s)
- Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU) (ODTU), Ankara, Turkey.
| | - Tolga Can
- Department of Computer Engineering, Middle East Technical University (METU) (ODTU), Ankara, Turkey
| |
Collapse
|
136
|
Huang G, Huang S, Wang R, Yan X, Li Y, Feng Y, Wang S, Yang X, Chen L, Li J, You L, Chen S, Luo G, Xu A. Dynamic Regulation of Tandem 3' Untranslated Regions in Zebrafish Spleen Cells during Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:715-725. [PMID: 26673144 DOI: 10.4049/jimmunol.1500847] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/08/2015] [Indexed: 12/24/2022]
Abstract
Alternative polyadenylation (APA) has been found to be involved in tumorigenesis, development, and cell differentiation, as well as in the activation of several subsets of immune cells in vitro. Whether APA takes place in immune responses in vivo is largely unknown. We profiled the variation in tandem 3' untranslated regions (UTRs) in pathogen-challenged zebrafish and identified hundreds of APA genes with ∼ 10% being immune response genes. The detected immune response APA genes were enriched in TLR signaling, apoptosis, and JAK-STAT signaling pathways. A greater number of microRNA target sites and AU-rich elements were found in the extended 3' UTRs than in the common 3' UTRs of these APA genes. Further analysis suggested that microRNA and AU-rich element-mediated posttranscriptional regulation plays an important role in modulating the expression of APA genes. These results indicate that APA is extensively involved in immune responses in vivo, and it may be a potential new paradigm for immune regulation.
Collapse
Affiliation(s)
- Guangrui Huang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Ruihua Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xinyu Yan
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuxin Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Yuchao Feng
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shaozhou Wang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Xia Yang
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Jun Li
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Leiming You
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| | - Guangbin Luo
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Anlong Xu
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China; State Key Laboratory of Biocontrol, Department of Biochemistry, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, Guangdong 510275, People's Republic of China; and
| |
Collapse
|
137
|
AĞUŞ HH, ERSON BENSAN AE. Mechanisms of mRNA polyadenylation. Turk J Biol 2016. [DOI: 10.3906/biy-1505-94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
138
|
Huang Y, Xiong Y, Lin Z, Feng X, Jiang X, Songyang Z, Huang J. Specific Tandem 3'UTR Patterns and Gene Expression Profiles in Mouse Thy1+ Germline Stem Cells. PLoS One 2015; 10:e0145417. [PMID: 26713853 PMCID: PMC4699828 DOI: 10.1371/journal.pone.0145417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 12/03/2015] [Indexed: 12/14/2022] Open
Abstract
A recently developed strategy of sequencing alternative polyadenylation (APA) sites (SAPAS) with second-generation sequencing technology can be used to explore complete genome-wide patterns of tandem APA sites and global gene expression profiles. spermatogonial stem cells (SSCs) maintain long-term reproductive abilities in male mammals. The detailed mechanisms by which SSCs self-renew and generate mature spermatozoa are not clear. To understand the specific alternative polyadenylation pattern and global gene expression profile of male germline stem cells (GSCs, mainly referred to SSCs here), we isolated and purified mouse Thy1+ cells from testis by magnetic-activated cell sorting (MACS) and then used the SAPAS method for analysis, using pluripotent embryonic stem cells (ESCs) and differentiated mouse embryonic fibroblast cells (MEFs) as controls. As a result, we obtained 99,944 poly(A) sites, approximately 40% of which were newly detected in our experiments. These poly(A) sites originated from three mouse cell types and covered 17,499 genes, including 831 long non-coding RNA (lncRNA) genes. We observed that GSCs tend to have shorter 3'UTR lengths while MEFs tend towards longer 3'UTR lengths. We also identified 1337 genes that were highly expressed in GSCs, and these genes were highly consistent with the functional characteristics of GSCs. Our detailed bioinformatics analysis identified APA site-switching events at 3'UTRs and many new specifically expressed genes in GSCs, which we experimentally confirmed. Furthermore, qRT-PCR was performed to validate several events of the 334 genes with distal-to-proximal poly(A) switch in GSCs. Consistently APA reporter assay confirmed the total 3'UTR shortening in GSCs compared to MEFs. We also analyzed the cis elements around the proximal poly(A) site preferentially used in GSCs and found C-rich elements may contribute to this regulation. Overall, our results identified the expression level and polyadenylation site profiles and these data provide new insights into the processes potentially involved in the GSC life cycle and spermatogenesis.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Yuanyan Xiong
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
- SYSU-CMU Shunde International Joint Research Institute, Shunde, China
| | - Zhuoheng Lin
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Xuyang Feng
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Xue Jiang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Zhou Songyang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 51000, China
- * E-mail:
| |
Collapse
|
139
|
Fu Y, Ge Y, Sun Y, Liang J, Wan L, Wu X, Xu A. IVT-SAPAS: Low-Input and Rapid Method for Sequencing Alternative Polyadenylation Sites. PLoS One 2015; 10:e0145477. [PMID: 26710068 PMCID: PMC4692544 DOI: 10.1371/journal.pone.0145477] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/06/2015] [Indexed: 12/03/2022] Open
Abstract
Gene transcribing with alternative polyadenylation (APA) sites leads to mRNA isoforms, which may encode different proteins or harbor different 3'UTRs. APA plays an important role in regulating gene expression network among various physiological processes, such as development, immune responses and cancer. Several methods of library construction for APA study have been developed to apply high-throughput sequencing. However, the requirement of high-input RNA and time-consuming nature of the current methods limited the studies of APA for the samples difficult to obtain. Here, we describe a new method based on our SAPAS in combining in vitro transcription (IVT) and magnetic beads purification. The new IVT-SAPAS provides a rapid and high-parallel procedure for APA library construction with low-input sample, which may be a new robust approach for studying APA.
Collapse
Affiliation(s)
- Yonggui Fu
- Shenzhen Research Center of State Key Laboratory for Biocontrol, Research Institute of Sun Yat-sen University at Shenzhen, Shenzhen Virtual University Park, Hi-tech Industrial Park, Nanshan District, Shenzhen, 518057, P. R. China
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yutong Ge
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Yu Sun
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Jiahui Liang
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Liang Wan
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P. R. China
| | - Xiaojian Wu
- The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, P. R. China
| | - Anlong Xu
- State Key Laboratory for Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, 510006, P. R. China
- Beijing University of Chinese Medicine, 11 Bei San Huan Dong Road, Chao-yang District, Beijing, 100029, P. R. China
| |
Collapse
|
140
|
Mayr C. Evolution and Biological Roles of Alternative 3'UTRs. Trends Cell Biol 2015; 26:227-237. [PMID: 26597575 DOI: 10.1016/j.tcb.2015.10.012] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/21/2022]
Abstract
More than half of human genes use alternative cleavage and polyadenylation to generate alternative 3' untranslated region (3'UTR) isoforms. Most efforts have focused on transcriptome-wide mapping of alternative 3'UTRs and on the question of how 3'UTR isoform ratios may be regulated. However, it remains less clear why alternative 3'UTRs have evolved and what biological roles they play. This review summarizes our current knowledge of the functional roles of alternative 3'UTRs, including mRNA localization, mRNA stability, and translational efficiency. Recent work suggests that alternative 3'UTRs may also enable the formation of protein-protein interactions to regulate protein localization or to diversify protein functions. These recent findings open an exciting research direction for the investigation of new biological roles of alternative 3'UTRs.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
141
|
Sui W, Zheng C, Yang M, Ou M, Chen J, Dong L, Chen P, Hou X, Liu F, Wei X, Dai Y. Study on 3'-UTR length polymorphism in peripheral blood mononuclear cells of uremia patient. Ren Fail 2015; 38:96-9. [PMID: 26554293 DOI: 10.3109/0886022x.2015.1104989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this study was to measure the 3'-untranslated region (3'-UTR) polymorphism lengths in peripheral blood mononuclear cells (PBMCs) from uremia patients. METHOD We sequenced the alternative polyadenylation sites in the 3'-UTR of PBMCs from 10 uremic patients and 10 healthy people to detect different gene expression levels between uremia patients and healthy controls. Quantitative reverse transcription polymerase chain reaction was used as validation. RESULT Compared with the healthy control group, 691 genes in uremic patients had significantly different 3'-UTR lengths. Of these genes, 475 genes showed shortened 3'-UTRs, and the 3'-UTRs of 216 genes were lengthened. The verification results matched the original sequencing results. CONCLUSION There were significant differences in 3'-UTR lengths between uremic patients and healthy controls, and analysis of the differential genes may contribute to the understanding of uremia pathogenesis.
Collapse
Affiliation(s)
- Weiguo Sui
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Can Zheng
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Ming Yang
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Minglin Ou
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Jiejing Chen
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Li Dong
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Peng Chen
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Xianliang Hou
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Fuhua Liu
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Xiaolian Wei
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and
| | - Yong Dai
- a Guangxi Key Laboratory of Metabolic Diseases Research, Nephrology Department of Guilin 181st Hospital , Guilin , Guangxi , China and.,b Clinical Medical Research Center, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital , Shenzhen , Guangdong , China
| |
Collapse
|
142
|
Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven A, Seemann T, Beilharz TH. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA (NEW YORK, N.Y.) 2015; 21:1502-10. [PMID: 26092945 PMCID: PMC4509939 DOI: 10.1261/rna.048355.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/20/2015] [Indexed: 05/21/2023]
Abstract
A major objective of systems biology is to quantitatively integrate multiple parameters from genome-wide measurements. To integrate gene expression with dynamics in poly(A) tail length and adenylation site, we developed a targeted next-generation sequencing approach, Poly(A)-Test RNA-sequencing. PAT-seq returns (i) digital gene expression, (ii) polyadenylation site/s, and (iii) the polyadenylation-state within and between eukaryotic transcriptomes. PAT-seq differs from previous 3' focused RNA-seq methods in that it depends strictly on 3' adenylation within total RNA samples and that the full-native poly(A) tail is included in the sequencing libraries. Here, total RNA samples from budding yeast cells were analyzed to identify the intersect between adenylation state and gene expression in response to loss of the major cytoplasmic deadenylase Ccr4. Furthermore, concordant changes to gene expression and adenylation-state were demonstrated in the classic Crabtree-Warburg metabolic shift. Because all polyadenylated RNA is interrogated by the approach, alternative adenylation sites, noncoding RNA and RNA-decay intermediates were also identified. Most important, the PAT-seq approach uses standard sequencing procedures, supports significant multiplexing, and thus replication and rigorous statistical analyses can for the first time be brought to the measure of 3'-UTR dynamics genome wide.
Collapse
Affiliation(s)
- Paul F Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia Monash Bioinformatics Platform, Monash University, Clayton 3800, Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia Monash Bioinformatics Platform, Monash University, Clayton 3800, Australia
| | - Jennifer L Clancy
- EMBL-Australia Collaborating Laboratory, Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) 2601, Australian Capital Territory, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Laboratory, Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) 2601, Australian Capital Territory, Australia Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| |
Collapse
|
143
|
Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity. Sci Rep 2015; 5:12163. [PMID: 26178010 PMCID: PMC4503977 DOI: 10.1038/srep12163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Gene expression regulation is a complex and highly organized process involving a variety of genomic factors. It is widely accepted that differences in gene expression can contribute to the phenotypic variability between species, and that their interpretation can aid in the understanding of the physiologic variability. CNVs and miRNAs are two major players in the regulation of expression plasticity and may be responsible for the unique phenotypic characteristics observed in different lineages. We have previously demonstrated that a close interaction between these two genomic elements may have contributed to the regulation of gene expression during evolution. This work presents the molecular interactions between CNV and non CNV genes with miRNAs and other genomic elements in eight different species. A comprehensive analysis of these interactions indicates a unique nature of human CNV genes regulation as compared to other species. By using genes with short 3′ UTR that abolish the “canonical” miRNA-dependent regulation, as a model, we demonstrate a distinct and tight regulation of human genes that might explain some of the unique features of human physiology. In addition, comparison of gene expression regulation between species indicated that there is a significant difference between humans and mice possibly questioning the effectiveness of the latest as experimental models of human diseases.
Collapse
|
144
|
Wu X, Zeng Y, Guan J, Ji G, Huang R, Li QQ. Genome-wide characterization of intergenic polyadenylation sites redefines gene spaces in Arabidopsis thaliana. BMC Genomics 2015; 16:511. [PMID: 26155789 PMCID: PMC4568572 DOI: 10.1186/s12864-015-1691-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022] Open
Abstract
Background Messenger RNA polyadenylation is an essential step for the maturation of most eukaryotic mRNAs. Accurate determination of poly(A) sites helps define the 3’-ends of genes, which is important for genome annotation and gene function research. Genomic studies have revealed the presence of poly(A) sites in intergenic regions, which may be attributed to 3’-UTR extensions and novel transcript units. However, there is no systematically evaluation of intergenic poly(A) sites in plants. Results Approximately 16,000 intergenic poly(A) site clusters (IPAC) in Arabidopsis thaliana were discovered and evaluated at the whole genome level. Based on the distributions of distance from IPACs to nearby sense and antisense genes, these IPACs were classified into three categories. About 70 % of them were from previously unannotated 3’-UTR extensions to known genes, which would extend 6985 transcripts of TAIR10 genome annotation beyond their 3’-ends, with a mean extension of 134 nucleotides. 1317 IPACs were originated from novel intergenic transcripts, 37 of which were likely to be associated with protein coding transcripts. 2957 IPACs corresponded to antisense transcripts for genes on the reverse strand, which might affect 2265 protein coding genes and 39 non-protein-coding genes, including long non-coding RNA genes. The rest of IPACs could be originated from transcriptional read-through or gene mis-annotations. Conclusions The identified IPACs corresponding to novel transcripts, 3’-UTR extensions, and antisense transcription should be incorporated into current Arabidopsis genome annotation. Comprehensive characterization of IPACs from this study provides insights of alternative polyadenylation and antisense transcription in plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1691-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Yong Zeng
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Jinting Guan
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, Fujian, China. .,Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, China.
| | - Rongting Huang
- Department of Automation, Xiamen University, Xiamen, Fujian, China.
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education on Costal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China. .,Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA. .,Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China.
| |
Collapse
|
145
|
Zhang Y, Gu L, Hou Y, Wang L, Deng X, Hang R, Chen D, Zhang X, Zhang Y, Liu C, Cao X. Integrative genome-wide analysis reveals HLP1, a novel RNA-binding protein, regulates plant flowering by targeting alternative polyadenylation. Cell Res 2015; 25:864-76. [PMID: 26099751 PMCID: PMC4493284 DOI: 10.1038/cr.2015.77] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/17/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism for gene regulation and has been implicated in flowering, but the molecular basis governing the choice of a specific poly(A) site during the vegetative-to-reproductive growth transition remains unclear. Here we characterize HLP1, an hnRNP A/B protein as a novel regulator for pre-mRNA 3′-end processing in Arabidopsis. Genetic analysis reveals that HLP1 suppresses Flowering Locus C (FLC), a key repressor of flowering in Arabidopsis. Genome-wide mapping of HLP1-RNA interactions indicates that HLP1 binds preferentially to A-rich and U-rich elements around cleavage and polyadenylation sites, implicating its role in 3′-end formation. We show HLP1 is significantly enriched at transcripts involved in RNA metabolism and flowering. Comprehensive profiling of the poly(A) site usage reveals that HLP1 mutations cause thousands of poly(A) site shifts. A distal-to-proximal poly(A) site shift in the flowering regulator FCA, a direct target of HLP1, leads to upregulation of FLC and delayed flowering. Our results elucidate that HLP1 is a novel factor involved in 3′-end processing and controls reproductive timing via targeting APA.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lianfeng Gu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yifeng Hou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lulu Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian Deng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runlai Hang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc., Novonest Building, 8 Nanhu Avenue, East Lake Hi-Tech Development Zone, Wuhan, Hubei 430064, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc., Novonest Building, 8 Nanhu Avenue, East Lake Hi-Tech Development Zone, Wuhan, Hubei 430064, China
| | - Chunyan Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Cao
- 1] State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China [2] Collaborative Innovation Center of Genetics and Development, Shanghai 200433, China
| |
Collapse
|
146
|
Abstract
With the advances in deep-sequencing techniques over the last decade, the study of alternative cleavage and polyadenylation (APA) has shifted from individual gene to whole transcriptome analysis. Findings from such global studies have elevated APA to its currently accepted status as a major player in the regulation of eukaryotic gene expression. Although ~70% of human genes have been shown to contain multiple cleavage and polyadenylation sites, the extent of the consequences of APA and its role in regulating physiological processes are still largely unknown. The present review aims to summarize the experimental evidence that supports a physiological role of APA and highlights some of the shortcomings that need addressing to substantiate the widely proposed claim that APA is a key player in global gene regulation.
Collapse
|
147
|
Li J, Li R, You L, Xu A, Fu Y, Huang S. Evaluation of two statistical methods provides insights into the complex patterns of alternative polyadenylation site switching. PLoS One 2015; 10:e0124324. [PMID: 25875641 PMCID: PMC4396989 DOI: 10.1371/journal.pone.0124324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/01/2015] [Indexed: 11/19/2022] Open
Abstract
Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3'-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3'-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3'-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Leiming You
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shengfeng Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, College of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
148
|
Jambor H, Surendranath V, Kalinka AT, Mejstrik P, Saalfeld S, Tomancak P. Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. eLife 2015; 4. [PMID: 25838129 PMCID: PMC4384636 DOI: 10.7554/elife.05003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 03/09/2015] [Indexed: 01/02/2023] Open
Abstract
mRNA localization is critical for eukaryotic cells and affects numerous transcripts, yet how cells regulate distribution of many mRNAs to their subcellular destinations is still unknown. We combined transcriptomics and systematic imaging to determine the tissue-specific expression and subcellular distribution of 5862 mRNAs during Drosophila oogenesis. mRNA localization is widespread in the ovary and detectable in all of its cell types—the somatic epithelial, the nurse cells, and the oocyte. Genes defined by a common RNA localization share distinct gene features and differ in expression level, 3′UTR length and sequence conservation from unlocalized mRNAs. Comparison of mRNA localizations in different contexts revealed that localization of individual mRNAs changes over time in the oocyte and between ovarian and embryonic cell types. This genome scale image-based resource (Dresden Ovary Table, DOT, http://tomancak-srv1.mpi-cbg.de/DOT/main.html) enables the transition from mechanistic dissection of singular mRNA localization events towards global understanding of how mRNAs transcribed in the nucleus distribute in cells. DOI:http://dx.doi.org/10.7554/eLife.05003.001 To make a protein, the DNA sequence that encodes it must first be ‘transcribed’ to build a molecule of messenger RNA (called mRNA for short). Although many mRNA molecules are found throughout a cell, some are ‘localized’ to certain areas; and recent evidence suggests that this mRNA localization may be more common than previously thought. Not much is known about how cells identify which mRNAs need to be localized, or how these molecules are then transported to their destination. The localization process has been studied in most detail in the developing egg cell—also known as an oocyte—of the fruit fly species Drosophila melanogaster. These studies have identified few mRNA molecules that, if they are not carefully localized within the cell, cause the different parts of the fly embryo to fail to develop correctly when the oocyte is fertilized. Jambor et al. created an open-access online resource called the ‘Dresden Ovary Table’ that shows how 5862 mRNA molecules are distributed in several cell types involved in oocyte production in the ovary of female D. melanogaster flies. This resource consists of a combination of three-dimensional fluorescent images and measurements of mRNA amounts recorded at different stages in the development of the oocyte. Using the resource, Jambor et al. demonstrate that all of the cell types that make up the ovary localize many different mRNA molecules to several distinct destinations within the cells. The localized mRNAs share certain features, with mRNAs localized in the same part of the cell showing the most similarities. For example, localized mRNAs have longer so-called 3′ untranslated regions (3′UTR) that carry regulatory information and these sequences are also more evolutionarily conserved. Further, when the mRNA molecules in the oocyte were examined at different times during its development and compared with the embryo, the majority of these mRNAs were found to change where they are localized as the organism develops. The resource can be used to gain insight into specific genetic features that control the distribution of mRNAs. This information will be instrumental for cracking the ‘RNA localization code’ and understanding how it affects the activity of proteins in cells. DOI:http://dx.doi.org/10.7554/eLife.05003.002
Collapse
Affiliation(s)
- Helena Jambor
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Alex T Kalinka
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Mejstrik
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stephan Saalfeld
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
149
|
Lai DP, Tan S, Kang YN, Wu J, Ooi HS, Chen J, Shen TT, Qi Y, Zhang X, Guo Y, Zhu T, Liu B, Shao Z, Zhao X. Genome-wide profiling of polyadenylation sites reveals a link between selective polyadenylation and cancer metastasis. Hum Mol Genet 2015; 24:3410-7. [DOI: 10.1093/hmg/ddv089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/06/2015] [Indexed: 01/10/2023] Open
|
150
|
de Klerk E, 't Hoen PAC. Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet 2015; 31:128-39. [PMID: 25648499 DOI: 10.1016/j.tig.2015.01.001] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/22/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
The human transcriptome comprises >80,000 protein-coding transcripts and the estimated number of proteins synthesized from these transcripts is in the range of 250,000 to 1 million. These transcripts and proteins are encoded by less than 20,000 genes, suggesting extensive regulation at the transcriptional, post-transcriptional, and translational level. Here we review how RNA sequencing (RNA-seq) technologies have increased our understanding of the mechanisms that give rise to alternative transcripts and their alternative translation. We highlight four different regulatory processes: alternative transcription initiation, alternative splicing, alternative polyadenylation, and alternative translation initiation. We discuss their transcriptome-wide distribution, their impact on protein expression, their biological relevance, and the possible molecular mechanisms leading to their alternative regulation. We conclude with a discussion of the coordination and the interdependence of these four regulatory layers.
Collapse
Affiliation(s)
- Eleonora de Klerk
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter A C 't Hoen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|