101
|
Zemoura K, Schenkel M, Acuña MA, Yévenes GE, Zeilhofer HU, Benke D. Endoplasmic reticulum-associated degradation controls cell surface expression of γ-aminobutyric acid, type B receptors. J Biol Chem 2013; 288:34897-905. [PMID: 24114844 DOI: 10.1074/jbc.m113.514745] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys(48)-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.
Collapse
Affiliation(s)
- Khaled Zemoura
- From the Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
102
|
Zhang YV, Raghuwanshi RP, Shen WL, Montell C. Food experience-induced taste desensitization modulated by the Drosophila TRPL channel. Nat Neurosci 2013; 16:1468-76. [PMID: 24013593 PMCID: PMC3785572 DOI: 10.1038/nn.3513] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023]
Abstract
Animals tend to reject bitter foods. However, long-term exposure to some unpalatable tastants increases acceptance of these foods. Here we show that dietary exposure to an unappealing but safe additive, camphor, caused the fruit fly Drosophila melanogaster to decrease camphor rejection. The transient receptor potential-like (TRPL) cation channel was a direct target for camphor in gustatory receptor neurons, and long-term feeding on a camphor diet led to reversible downregulation of TRPL protein concentrations. The turnover of TRPL was controlled by an E3 ubiquitin ligase, Ube3a. The decline in TRPL levels and increased acceptance of camphor reversed after returning the flies to a camphor-free diet long term. We propose that dynamic regulation of taste receptors by ubiquitin-mediated protein degradation comprises an important molecular mechanism that allows an animal to alter its taste behavior in response to a changing food environment.
Collapse
Affiliation(s)
- Yali V. Zhang
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Rakesh P. Raghuwanshi
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Wei L. Shen
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology University of California Santa Barbara, Santa Barbara, CA, 93110, USA
- Departments of Biological Chemistry and Department of Neuroscience The Johns Hopkins University School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
103
|
Wuwongse S, Cheng SSY, Wong GTH, Hung CHL, Zhang NQ, Ho YS, Law ACK, Chang RCC. Effects of corticosterone and amyloid-beta on proteins essential for synaptic function: implications for depression and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2245-56. [PMID: 23928361 DOI: 10.1016/j.bbadis.2013.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 07/02/2013] [Accepted: 07/29/2013] [Indexed: 11/30/2022]
Abstract
The relationship between Alzheimer's disease (AD) and depression has been well established in terms of epidemiological and clinical observations. Depression has been considered to be both a symptom and risk factor of AD. Several genetic and neurobiological mechanisms have been described to underlie these two disorders. Despite the accumulating knowledge on this topic, the precise neuropathological mechanisms remain to be elucidated. In this study, we propose that synaptic degeneration plays an important role in the disease progression of depression and AD. Using primary culture of hippocampal neurons treated with oligomeric Aβ and corticosterone as model agents for AD and depression, respectively, we found significant changes in the pre-synaptic vesicle proteins synaptophysin and synaptotagmin. We further investigated whether the observed protein changes affected synaptic functions. By using FM(®)4-64 fluorescent probe, we showed that synaptic functions were compromised in treated neurons. Our findings led us to investigate the involvement of protein degradation mechanisms in mediating the observed synaptic protein abnormalities, namely, the ubiquitin-proteasome system and autophagy. We found up-regulation of ubiquitin-mediated protein degradation, and the preferential signaling for the autophagic-lysosomal degradation pathway. Lastly, we investigated the neuroprotective role of different classes of antidepressants. Our findings demonstrated that the antidepressants Imipramine and Escitalopram were able to rescue the observed synaptic protein damage. In conclusion, our study shows that synaptic degeneration is an important common denominator underlying depression and AD, and alleviation of this pathology by antidepressants may be therapeutically beneficial.
Collapse
Affiliation(s)
- Suthicha Wuwongse
- Neurodysfunction Research Laboratory, Department of Psychiatry, LKS Faculty of Medicine, Hong Kong, China; Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Aidar M, Marques R, Valjakka J, Mononen N, Lehtimäki T, Parkkila S, de Souza AP, Line SRP. Effect of genetic polymorphisms in CA6 gene on the expression and catalytic activity of human salivary carbonic anhydrase VI. Caries Res 2013; 47:414-20. [PMID: 23652931 DOI: 10.1159/000350414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/03/2013] [Indexed: 11/19/2022] Open
Abstract
Carbonic anhydrase isoenzyme VI (CA VI) plays an important role in the homeostasis of oral tissues participating in the processes of taste, protection of dental tissues against the loss of minerals, caries, and possibly in the formation of dental calculus in periodontal disease. This study aimed to verify the correlation between changes in the expression and activity of human salivary carbonic anhydrase VI and genetic polymorphisms in its gene (CA6). The study population consisted of 182 healthy volunteers (female and male, aged 18-22). Samples of total saliva were assayed for CA VI concentrations using a specific time-resolved immunofluorometric assay. CA VI catalytic activity was detected by a modified protocol of Kotwica et al. [J Physiol Pharmacol 2006;57(suppl 8):107-123], adapted to CA VI in saliva. Samples of genomic DNA were genotyped for polymorphisms rs2274327 (C/T), rs2274328 (A/C) and rs2274333 (A/G) by TaqMan® SNP Genotyping Assays. The concentration and catalytic activity of the salivary CA VI obtained for the different genotypes were analyzed using the Kruskal-Wallis nonparametric test and the Dunn test. The results showed that individuals with TT genotype (rs2274327) had significantly lower CA VI concentrations than the individuals with genotypes CT or CC (p < 0.05). There was also an association between polymorphism rs2274333 and salivary CA VI concentrations. There were no associations between the three polymorphisms analyzed and variations in CA VI activity. Our results suggest that polymorphisms in the CA6 gene are associated with the concentrations of secreted CA VI.
Collapse
Affiliation(s)
- M Aidar
- Department of Morphology, Piracicaba Dental School, University of Campinas-Unicamp, Sao Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Jarome TJ, Helmstetter FJ. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem 2013; 105:107-16. [PMID: 23623827 DOI: 10.1016/j.nlm.2013.03.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 02/01/2023]
Abstract
Numerous studies have supported the idea that de novo protein synthesis is critical for synaptic plasticity and normal long-term memory formation. This requirement for protein synthesis has been shown for several different types of fear memories, exists in multiple brain regions and circuits, and is necessary for different stages of memory creation and storage. However, evidence has recently begun to accumulate suggesting that protein degradation through the ubiquitin-proteasome system is an equally important regulator of memory formation. Here we review those recent findings on protein degradation and memory formation and stability and propose a model explaining how protein degradation may be contributing to various aspects of memory and synaptic plasticity. We conclude that protein degradation may be the major factor regulating many of the molecular processes that we know are important for fear memory formation and stability in the mammalian brain.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Psychology, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA
| | | |
Collapse
|
106
|
Impairment of proteostasis network in Down syndrome prior to the development of Alzheimer's disease neuropathology: redox proteomics analysis of human brain. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1249-59. [PMID: 23603808 DOI: 10.1016/j.bbadis.2013.04.013] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 03/18/2013] [Accepted: 04/10/2013] [Indexed: 01/06/2023]
Abstract
DS is the most frequent genetic cause of intellectual disability characterized by the anomalous presence of three copies of chromosome 21. One of the peculiar features of DS is the onset of Alzheimer's disease neuropathology after the age of 40years characterized by deposition of senile plaques and neurofibrillary tangles. Growing studies demonstrated that increased oxidative damage, accumulation of unfolded/damaged protein aggregates and dysfunction of intracellular degradative system are key players in neurodegenerative processes. In this study, redox proteomics approach was used to analyze the frontal cortex from DS subjects under the age of 40 compared with age-matched controls, and proteins found to be increasingly carbonylated were identified. Interestingly, our results showed that oxidative damage targets specifically different components of the intracellular quality control system such as GRP78, UCH-L1, V0-ATPase, cathepsin D and GFAP that couples with decreased activity of the proteasome and autophagosome formation observed. We also reported a slight but consistent increase of Aβ 1-42 SDS- and PBS-soluble form and tau phosphorylation in DS versus CTR. We suggest that disturbance in the proteostasis network could contribute to the accumulation of protein aggregates, such as amyloid deposits and NFTs, which occur very early in DS. It is likely that a sub-optimal functioning of degradative systems occur in DS neurons, which in turn provide the basis for further accumulation of toxic protein aggregates. The results of this study suggest that oxidation of protein members of the proteostatis network is an early event in DS and might contribute to neurodegenerative phenomena.
Collapse
|
107
|
Lee PCW, Dodart JC, Aron L, Finley LW, Bronson RT, Haigis MC, Yankner BA, Harper JW. Altered social behavior and neuronal development in mice lacking the Uba6-Use1 ubiquitin transfer system. Mol Cell 2013; 50:172-84. [PMID: 23499007 DOI: 10.1016/j.molcel.2013.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/04/2012] [Accepted: 02/11/2013] [Indexed: 01/01/2023]
Abstract
The Uba6 (E1)-Use1 (E2) ubiquitin transfer cascade is a poorly understood alternative arm of the ubiquitin proteasome system (UPS) and is required for mouse embryonic development, independent of the canonical Uba1-E2-E3 pathway. Loss of neuronal Uba6 during embryonic development results in altered patterning of neurons in the hippocampus and the amygdala, decreased dendritic spine density, and numerous behavioral disorders. The levels of the E3 ubiquitin ligase Ube3a (E6-AP) and Shank3, both linked with dendritic spine function, are elevated in the amygdala of Uba6-deficient mice, while levels of the Ube3a substrate Arc are reduced. Uba6 and Use1 promote proteasomal turnover of Ube3a in mouse embryo fibroblasts (MEFs) and catalyze Ube3a ubiquitylation in vitro. These activities occur in parallel with an independent pathway involving Uba1-UbcH7, but in a spatially distinct manner in MEFs. These data reveal an unanticipated role for Uba6 in neuronal development, spine architecture, mouse behavior, and turnover of Ube3a.
Collapse
Affiliation(s)
- Peter C W Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Involvement of protein degradation by the ubiquitin proteasome system in opiate addictive behaviors. Neuropsychopharmacology 2013; 38:596-604. [PMID: 23169349 PMCID: PMC3572456 DOI: 10.1038/npp.2012.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Plastic changes in the nucleus accumbens (NAcc), a structure occupying a key position in the neural circuitry related to motivation, are among the critical cellular processes responsible for drug addiction. During the last decade, it has been shown that memory formation and related neuronal plasticity may rely not only on protein synthesis but also on protein degradation by the ubiquitin proteasome system (UPS). In this study, we assess the role of protein degradation in the NAcc in opiate-related behaviors. For this purpose, we coupled behavioral experiments to intra-accumbens injections of lactacystin, an inhibitor of the UPS. We show that protein degradation in the NAcc is mandatory for a full range of animal models of opiate addiction including morphine locomotor sensitization, morphine conditioned place preference, intra-ventral tegmental area morphine self-administration and intra-venous heroin self-administration but not for discrimination learning rewarded by highly palatable food. This study provides the first evidence of a specific role of protein degradation by the UPS in addiction.
Collapse
|
109
|
Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast 2013; 2013:196848. [PMID: 23476809 PMCID: PMC3586504 DOI: 10.1155/2013/196848] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/31/2012] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.
Collapse
|
110
|
Calpain 2 activated through N-methyl-D-aspartic acid receptor signaling cleaves CPEB3 and abrogates CPEB3-repressed translation in neurons. Mol Cell Biol 2012; 32:3321-32. [PMID: 22711986 DOI: 10.1128/mcb.00296-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long-term memory requires the activity-dependent reorganization of the synaptic proteome to modulate synaptic efficacy and consequently consolidate memory. Activity-regulated RNA translation can change the protein composition at the stimulated synapse. Cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a sequence-specific RNA-binding protein that represses translation of its target mRNAs in neurons, while activation of N-methyl-d-aspartic acid (NMDA) receptors alleviates this repression. Although recent research has revealed the mechanism of CPEB3-inhibited translation, how NMDA receptor signaling modulates the translational activity of CPEB3 remains unclear. This study shows that the repressor CPEB3 is degraded in NMDA-stimulated neurons and that the degradation of CPEB3 is accompanied by the elevated expression of CPEB3's target, epidermal growth factor receptor (EGFR), mostly at the translational level. Using pharmacological and knockdown approaches, we have identified that calpain 2, activated by the influx of calcium through NMDA receptors, proteolyzes the N-terminal repression motif but not the C-terminal RNA-binding domain of CPEB3. As a result, the calpain 2-cleaved CPEB3 fragment binds to RNA but fails to repress translation. Therefore, the cleavage of CPEB3 by NMDA-activated calpain 2 accounts for the activity-related translation of CPEB3-targeted RNAs.
Collapse
|
111
|
Adaikkan C, Rosenblum K. The role of protein phosphorylation in the gustatory cortex and amygdala during taste learning. Exp Neurobiol 2012; 21:37-51. [PMID: 22792024 PMCID: PMC3381211 DOI: 10.5607/en.2012.21.2.37] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/17/2012] [Indexed: 01/22/2023] Open
Abstract
Protein phosphorylation and dephosphorylation form a major post-translation mechanism that enables a given cell to respond to ever-changing internal and external environments. Neurons, similarly to any other cells, use protein phosphorylation/dephosphorylation to maintain an internal homeostasis, but they also use it for updating the state of synaptic and intrinsic properties, following activation by neurotransmitters and growth factors. In the present review we focus on the roles of several families of kinases, phosphatases, and other synaptic-plasticity-related proteins, which activate membrane receptors and various intracellular signals to promote transcription, translation and protein degradation, and to regulate the appropriate cellular proteomes required for taste memory acquisition, consolidation and maintenance. Attention is especially focused on the protein phosphorylation state in two forebrain areas that are necessary for taste-memory learning and retrieval: the insular cortex and the amygdala. The various temporal phases of taste learning require the activation of appropriate waves of biochemical signals. These include: extracellular signal regulated kinase I and II (ERKI/II) signal transduction pathways; Ca(2+)-dependent pathways; tyrosine kinase/phosphatase-dependent pathways; brain-derived neurotrophicfactor (BDNF)-dependent pathways; cAMP-responsive element bindingprotein (CREB); and translation-regulation factors, such as initiation and elongation factors, and the mammalian target of rapamycin (mTOR). Interestingly, coding of hedonic and aversive taste information in the forebrain requires activation of different signal transduction pathways.
Collapse
|
112
|
Rezvani K, Baalman K, Teng Y, Mee MP, Dawson SP, Wang H, De Biasi M, Mayer RJ. Proteasomal degradation of the metabotropic glutamate receptor 1α is mediated by Homer-3 via the proteasomal S8 ATPase: Signal transduction and synaptic transmission. J Neurochem 2012; 122:24-37. [PMID: 22486777 DOI: 10.1111/j.1471-4159.2012.07752.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) fine-tune the efficacy of synaptic transmission. This unique feature makes mGluRs potential targets for the treatment of various CNS disorders. There is ample evidence to show that the ubiquitin proteasome system mediates changes in synaptic strength leading to multiple forms of synaptic plasticity. The present study describes a novel interaction between post-synaptic adaptors, long Homer-3 proteins, and one of the 26S proteasome regulatory subunits, the S8 ATPase, that influences the degradation of the metabotropic glutamate receptor 1α (mGluR1α). We have shown that the two human long Homer-3 proteins specifically interact with human proteasomal S8 ATPase. We identified that mGluR1α and long Homer-3s immunoprecipitate with the 26S proteasome both in vitro and in vivo. We further found that the mGluR1α receptor can be ubiquitinated and degraded by the 26S proteasome and that Homer-3A facilitates this process. Furthermore, the siRNA mediated silencing of Homer-3 led to increased levels of total and plasma membrane-associated mGluR1α receptors. These results suggest that long Homer-3 proteins control the degradation of mGluR1α receptors by shuttling ubiquitinated mGluR-1α receptors to the 26S proteasome via the S8 ATPase which may modulate synaptic transmission.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, USA.
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Dennissen FJA, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative diseases: culprit, accomplice or victim? Prog Neurobiol 2012; 96:190-207. [PMID: 22270043 DOI: 10.1016/j.pneurobio.2012.01.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/18/2011] [Accepted: 01/05/2012] [Indexed: 12/14/2022]
Abstract
A shared hallmark for many neurodegenerative disorders is the accumulation of toxic protein species which is assumed to be the cause for these diseases. Since the ubiquitin proteasome system (UPS) is the most important pathway for selective protein degradation it is likely that it is involved in the aetiology neurodegenerative disorders. Indeed, impairment of the UPS has been reported to occur during neurodegeneration. Although accumulation of toxic protein species (amyloid β) are in turn known to impair the UPS the relationship is not necessarily causal. We provide an overview of the most recent insights in the roles the UPS plays in protein degradation and other processes. Additionally, we discuss the role of the UPS in clearance of the toxic proteins known to accumulate in the hallmarks of neurodegenerative diseases. The present paper will focus on critically reviewing the involvement of the UPS in specific neurodegenerative diseases and will discuss if UPS impairment is a cause, a consequence or both of the disease.
Collapse
Affiliation(s)
- F J A Dennissen
- Department of Neuroscience, Faculty of Health Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
114
|
Goebel-Goody SM, Lombroso PJ. Taking STEPs forward to understand fragile X syndrome. Results Probl Cell Differ 2012; 54:223-41. [PMID: 22009355 DOI: 10.1007/978-3-642-21649-7_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A priority of fragile X syndrome (FXS) research is to determine the molecular mechanisms underlying the functional, behavioral, and structural deficits in humans and in the FXS mouse model. Given that metabotropic glutamate receptor (mGluR) long-term depression (LTD) is exaggerated in FXS mice, considerable effort has focused on proteins that regulate this form of synaptic plasticity. STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific phosphatase implicated as an "LTD protein" because it mediates AMPA receptor internalization during mGluR LTD. STEP also promotes NMDA receptor endocytosis and inactivates ERK1/2 and Fyn, thereby opposing synaptic strengthening. We hypothesized that dysregulation of STEP may contribute to the pathophysiology of FXS. We review how STEP's expression and activity are regulated by dendritic protein synthesis, ubiquitination, proteolysis, and phosphorylation. We also discuss implications for STEP in FXS and other disorders, including Alzheimer's disease. As highlighted here, pharmacological interventions targeting STEP may prove successful for FXS.
Collapse
|
115
|
Goebel-Goody SM, Baum M, Paspalas CD, Fernandez SM, Carty NC, Kurup P, Lombroso PJ. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol Rev 2012; 64:65-87. [PMID: 22090472 PMCID: PMC3250079 DOI: 10.1124/pr.110.003053] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase that modulates key signaling molecules involved in synaptic plasticity and neuronal function. Targets include extracellular-regulated kinase 1 and 2 (ERK1/2), stress-activated protein kinase p38 (p38), the Src family tyrosine kinase Fyn, N-methyl-D-aspartate receptors (NMDARs), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). STEP-mediated dephosphorylation of ERK1/2, p38, and Fyn leads to inactivation of these enzymes, whereas STEP-mediated dephosphorylation of surface NMDARs and AMPARs promotes their endocytosis. Accordingly, the current model of STEP function posits that it opposes long-term potentiation and promotes long-term depression. Phosphorylation, cleavage, dimerization, ubiquitination, and local translation all converge to maintain an appropriate balance of STEP in the central nervous system. Accumulating evidence over the past decade indicates that STEP dysregulation contributes to the pathophysiology of several neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, fragile X syndrome, epileptogenesis, alcohol-induced memory loss, Huntington's disease, drug abuse, stroke/ischemia, and inflammatory pain. This comprehensive review discusses STEP expression and regulation and highlights how disrupted STEP function contributes to the pathophysiology of diverse neuropsychiatric disorders.
Collapse
Affiliation(s)
- Susan M Goebel-Goody
- Child Study Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Kudryashova IV. Structural and functional modifications of presynaptic afferents: Do they correlate with learning mechanisms? NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241104009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
117
|
Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS One 2011; 6:e24349. [PMID: 21961035 PMCID: PMC3178530 DOI: 10.1371/journal.pone.0024349] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 08/05/2011] [Indexed: 12/14/2022] Open
Abstract
Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses.
Collapse
|
118
|
Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J Neurosci 2011; 31:10189-200. [PMID: 21752995 DOI: 10.1523/jneurosci.2088-11.2011] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Global changes of activity in neuronal networks induce homeostatic adaptations of synaptic strengths, which involve functional remodeling of both presynaptic and postsynaptic apparatuses. Despite considerable advances in understanding cellular properties of homeostatic synaptic plasticity, the underlying molecular mechanisms are not fully understood. Here, we explored the hypothesis that adaptive homeostatic adjustment of presynaptic efficacy involves molecular remodeling of the release apparatus including the presynaptic cytomatrix, which spatially and functionally coordinates neurotransmitter release. We found significant downregulation of cellular expression levels of presynaptic scaffolding proteins Bassoon, Piccolo, ELKS/CAST, Munc13, RIM, liprin-α, and synapsin upon prolonged (48 h) activity depletion in rat neuronal cultures. This was accompanied by a general reduction of Bassoon, Piccolo, ELKS/CAST, Munc13, and synapsin levels at synaptic sites. Interestingly, RIM was upregulated in a subpopulation of synapses. At the level of individual synapses, RIM quantities correlated well with synaptic activity, and a constant relationship between RIM levels and synaptic activity was preserved upon silencing. Silencing also induced synaptic enrichment of other previously identified regulators of presynaptic release probability, i.e., synaptotagmin1, SV2B, and P/Q-type calcium channels. Seeking responsible cellular mechanisms, we revealed a complex role of the ubiquitin-proteasome system in the functional presynaptic remodeling and enhanced degradation rates of Bassoon and liprin-α upon silencing. Together, our data indicate a significant molecular reorganization of the presynaptic release apparatus during homeostatic adaptation to network inactivity and identify RIM, synaptotagmin1, Ca(v)2.1, and SV2B as molecular candidates underlying the main silencing-induced functional hallmark at presynapse, i.e., increase of neurotransmitter release probability.
Collapse
|
119
|
Fioravante D, Byrne JH. Protein degradation and memory formation. Brain Res Bull 2011; 85:14-20. [PMID: 21078374 PMCID: PMC3079012 DOI: 10.1016/j.brainresbull.2010.11.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 10/21/2010] [Accepted: 11/03/2010] [Indexed: 11/16/2022]
Abstract
Long-term memories are created when labile short-term memory traces are converted to more enduring forms. This process, called consolidation, is associated with changes in the synthesis of proteins that alter the biophysical properties of neurons and the strength of their synaptic connections. Recently, it has become clear that the consolidation process requires not only protein synthesis but also degradation. Here, we discuss recent findings on the roles of ubiquitination and protein degradation in synaptic plasticity and learning and memory.
Collapse
Affiliation(s)
| | - John H. Byrne
- Dept. Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, The University of Texas Medical School at Houston, Houston TX 77030
| |
Collapse
|
120
|
Bingol B, Sheng M. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 2011; 69:22-32. [PMID: 21220096 DOI: 10.1016/j.neuron.2010.11.006] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2010] [Indexed: 12/17/2022]
Abstract
The brain changes in response to experience and altered environment. This neural plasticity is largely mediated by morphological and functional modification of synapses, a process that depends on both synthesis and degradation of proteins. It is now clear that regulated proteolysis plays a critical role in the remodeling of synapses, learning and memory, and neurodevelopment. Here, we highlight the mechanisms and functions of proteolysis in synaptic plasticity and discuss its alteration in disease states.
Collapse
Affiliation(s)
- Baris Bingol
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | | |
Collapse
|
121
|
Hegde AN, Upadhya SC. Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1809:128-40. [PMID: 20674814 PMCID: PMC2995838 DOI: 10.1016/j.bbagrm.2010.07.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 07/15/2010] [Accepted: 07/21/2010] [Indexed: 12/12/2022]
Abstract
Proteolysis by the ubiquitin-proteasome pathway (UPP) is now widely recognized as a molecular mechanism controlling myriad normal functions in the nervous system. Also, this pathway is intimately linked to many diseases and disorders of the brain. Among the diseases connected to the UPP are neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Perturbation in the UPP is also believed to play a causative role in mental disorders such as Angelman syndrome. The pathology of neurodegenerative diseases is characterized by abnormal deposition of insoluble protein aggregates or inclusion bodies within neurons. The ubiquitinated protein aggregates are believed to result from dysfunction of the UPP or from structural changes in the protein substrates which prevent their recognition and degradation by the UPP. An early effect of abnormal UPP in diseases of the nervous system is likely to be impairment of synaptic function. Here we discuss the UPP and its physiological roles in the nervous system and how alterations in the UPP relate to development of nervous system diseases. This article is part of a Special Issue entitled The 26S Proteasome: When degradation is just not enough!
Collapse
Affiliation(s)
- Ashok N Hegde
- Department of Neurology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
122
|
Jakawich SK, Neely RM, Djakovic SN, Patrick GN, Sutton MA. An essential postsynaptic role for the ubiquitin proteasome system in slow homeostatic synaptic plasticity in cultured hippocampal neurons. Neuroscience 2010; 171:1016-31. [PMID: 20888892 PMCID: PMC3024716 DOI: 10.1016/j.neuroscience.2010.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 09/25/2010] [Accepted: 09/28/2010] [Indexed: 01/29/2023]
Abstract
Chronic increases or decreases in neuronal activity initiates compensatory changes in synaptic strength that emerge slowly over a 12-24 h period, but the mechanisms underlying this slow homeostatic response remain poorly understood. Here, we show an essential role for the ubiquitin proteasome system (UPS) in slow homeostatic plasticity induced by chronic changes in network activity. In cultured hippocampal neurons, UPS inhibitors drive a slow increase in miniature excitatory postsynaptic current (mEPSC) amplitude and synaptic AMPA receptor subunit GluA1 and GluA2 expression that both mirrors and occludes the changes produced by chronic suppression of network activity with tetrodotoxin (TTX). These non-additive effects were similarly observed under conditions of chronic hyperactivation of network activity with bicuculline--the increase in mEPSC amplitude and GluA1/2 expression with chronic UPS inhibition persists during network hyperactivation, which scales synaptic strength and AMPA receptor expression in the opposite direction when UPS activity is intact. Finally, cell-autonomous UPS inhibition (via expression of the ubiquitin chain elongation mutant, UbK48R) enhances mEPSC amplitude in a manner that mimics and occludes changes in network activity, demonstrating a postsynaptic role for the UPS in slow homeostatic plasticity. Taken together, our results suggest that the UPS acts as an integration point for translating sustained changes in network activity into appropriate incremental compensatory changes at synapses.
Collapse
Affiliation(s)
- Sonya K. Jakawich
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Molecular and Behavioral Neuroscience Institute, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Ryan M. Neely
- Molecular and Behavioral Neuroscience Institute, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Stevan N. Djakovic
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093
| | - Gentry N. Patrick
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093
| | - Michael A. Sutton
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Molecular and Behavioral Neuroscience Institute, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
123
|
Rószer T, Kiss-Tóth E, Rózsa D, Józsa T, Szentmiklósi AJ, Bánfalvi G. Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 2010; 342:191-203. [PMID: 20953631 DOI: 10.1007/s00441-010-1063-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/15/2010] [Indexed: 01/28/2023]
Abstract
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.
Collapse
Affiliation(s)
- Tamás Rószer
- Department of Microbial Biotechnology and Cell Biology (formerly Animal Anatomy and Physiology), Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|