101
|
Lee HK, Lahiri S, Park H. Nonequilibrium steady states in Langevin thermal systems. Phys Rev E 2017; 96:022134. [PMID: 28950478 DOI: 10.1103/physreve.96.022134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 06/07/2023]
Abstract
Equilibrium is characterized by its fundamental properties, such as the detailed balance, the fluctuation-dissipation relation, and no heat dissipation. Based on the stochastic thermodynamics, we show that these three properties are equivalent to each other in conventional Langevin thermal systems with microscopic reversibility. Thus, a conventional steady state has either all three properties (equilibrium) or none of them (nonequilibrium). In contrast, with velocity-dependent forces breaking the microscopic reversibility, we prove that the detailed balance and the fluctuation-dissipation relation mutually exclude each other, and no equivalence relation is possible between any two of the three properties. This implies that a steady state of Langevin systems with velocity-dependent forces may maintain some equilibrium properties but not all of them. Our results are illustrated with a few example systems.
Collapse
Affiliation(s)
- Hyun Keun Lee
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Sourabh Lahiri
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Hyunggyu Park
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
102
|
Hakim V, Silberzan P. Collective cell migration: a physics perspective. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:076601. [PMID: 28282028 DOI: 10.1088/1361-6633/aa65ef] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cells have traditionally been viewed either as independently moving entities or as somewhat static parts of tissues. However, it is now clear that in many cases, multiple cells coordinate their motions and move as collective entities. Well-studied examples comprise development events, as well as physiological and pathological situations. Different ex vivo model systems have also been investigated. Several recent advances have taken place at the interface between biology and physics, and have benefitted from progress in imaging and microscopy, from the use of microfabrication techniques, as well as from the introduction of quantitative tools and models. We review these interesting developments in quantitative cell biology that also provide rich examples of collective out-of-equilibrium motion.
Collapse
Affiliation(s)
- Vincent Hakim
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research University, UPMC, Paris, France
| | | |
Collapse
|
103
|
Tung CK, Lin C, Harvey B, Fiore AG, Ardon F, Wu M, Suarez SS. Fluid viscoelasticity promotes collective swimming of sperm. Sci Rep 2017; 7:3152. [PMID: 28600487 PMCID: PMC5466690 DOI: 10.1038/s41598-017-03341-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
From flocking birds to swarming insects, interactions of organisms large and small lead to the emergence of collective dynamics. Here, we report striking collective swimming of bovine sperm in dynamic clusters, enabled by the viscoelasticity of the fluid. Sperm oriented in the same direction within each cluster, and cluster size and cell-cell alignment strength increased with viscoelasticity of the fluid. In contrast, sperm swam randomly and individually in Newtonian (nonelastic) fluids of low and high viscosity. Analysis of the fluid motion surrounding individual swimming sperm indicated that sperm-fluid interaction was facilitated by the elastic component of the fluid. In humans, as well as cattle, sperm are naturally deposited at the entrance to the cervix and must swim through viscoelastic cervical mucus and other mucoid secretions to reach the site of fertilization. Collective swimming induced by elasticity may thus facilitate sperm migration and contribute to successful fertilization. We note that almost all biological fluids (e.g. mucus and blood) are viscoelastic in nature, and this finding highlights the importance of fluid elasticity in biological function.
Collapse
Affiliation(s)
- Chih-Kuan Tung
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Department of Physics, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Chungwei Lin
- Mitsubishi Electric Research Laboratories, Boston, MA, 02139, USA
| | - Benedict Harvey
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Alyssa G Fiore
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Florencia Ardon
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| | - Susan S Suarez
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
104
|
Mahapatra PS, Kulkarni A, Mathew S, Panchagnula MV, Vedantam S. Transitions between multiple dynamical states in a confined dense active-particle system. Phys Rev E 2017; 95:062610. [PMID: 28709325 DOI: 10.1103/physreve.95.062610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 06/07/2023]
Abstract
We study the collective motion of a dense suspension of active swimmers in a viscous fluid medium. The swimmers are modeled as soft spheres moving in a highly viscous fluid medium. The magnitude of the propelling thrust exerted by each particle is taken to be a constant and the direction is aligned to its velocity. Depending on the magnitude of the exerted thrust, several nonequilibrium steady states are observed. The transitions between the steady states are characterized using the total dissipation as a function of the magnitude of the thrust. The transitions between the nonequilibrium states are characterized by changes in exponent at low thrust values. At high thrust values, hysteretic transitions between ordered and disordered states are observed.
Collapse
Affiliation(s)
- Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ajinkya Kulkarni
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sam Mathew
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mahesh V Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Srikanth Vedantam
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
105
|
Nishiguchi D, Nagai KH, Chaté H, Sano M. Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria. Phys Rev E 2017; 95:020601. [PMID: 28297912 DOI: 10.1103/physreve.95.020601] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 05/02/2023]
Abstract
We study the collective dynamics of elongated swimmers in a very thin fluid layer by devising long filamentous nontumbling bacteria. The strong confinement induces weak nematic alignment upon collision, which, for large enough density of cells, gives rise to global nematic order. This homogeneous but fluctuating phase, observed on the largest experimentally accessible scale of millimeters, exhibits the properties predicted by standard models for flocking, such as the Vicsek-style model of polar particles with nematic alignment: true long-range nematic order and nontrivial giant number fluctuations.
Collapse
Affiliation(s)
- Daiki Nishiguchi
- Department of Physics, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| | - Ken H Nagai
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Masaki Sano
- Department of Physics, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan
| |
Collapse
|
106
|
Seyed-Allaei H, Schimansky-Geier L, Ejtehadi MR. Gaussian theory for spatially distributed self-propelled particles. Phys Rev E 2017; 94:062603. [PMID: 28085336 DOI: 10.1103/physreve.94.062603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/06/2022]
Abstract
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
Collapse
Affiliation(s)
- Hamid Seyed-Allaei
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran
| | - Lutz Schimansky-Geier
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstrasse 15, 12489 Berlin, Germany
| | - Mohammad Reza Ejtehadi
- Department of Physics, Sharif University of Technology, P. O. Box 11155-9161, Tehran, Iran.,School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| |
Collapse
|
107
|
Génois M, Hersen P, Bertin E, Courrech du Pont S, Grégoire G. Out-of-equilibrium stationary states, percolation, and subcritical instabilities in a fully nonconservative system. Phys Rev E 2016; 94:042101. [PMID: 27841529 DOI: 10.1103/physreve.94.042101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Indexed: 11/07/2022]
Abstract
The exploration of the phase diagram of a minimal model for barchan fields leads to the description of three distinct phases for the system: stationary, percolable, and unstable. In the stationary phase the system always reaches an out-of-equilibrium, fluctuating, stationary state, independent of its initial conditions. This state has a large and continuous range of dynamics, from dilute-where dunes do not interact-to dense, where the system exhibits both spatial structuring and collective behavior leading to the selection of a particular size for the dunes. In the percolable phase, the system presents a percolation threshold when the initial density increases. This percolation is unusual, as it happens on a continuous space for moving, interacting, finite lifetime dunes. For extreme parameters, the system exhibits a subcritical instability, where some of the dunes in the field grow without bound. We discuss the nature of the asymptotic states and their relations to well-known models of statistical physics.
Collapse
Affiliation(s)
- Mathieu Génois
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France.,CPT, Aix-Marseille Université, Université de Toulon, CNRS, UMR 7332, F-13288, Marseille, France
| | - Pascal Hersen
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France
| | - Eric Bertin
- LIPHY, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| | - Sylvain Courrech du Pont
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France
| | - Guillaume Grégoire
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris-Diderot, CNRS UMR 7057, F-75205 Paris Cedex 13, France.,HPC Institute (ICI), École Centrale, Nantes, 1 rue de la Noë, F-44300 Nantes, France
| |
Collapse
|
108
|
Fodor É, Nardini C, Cates ME, Tailleur J, Visco P, van Wijland F. How Far from Equilibrium Is Active Matter? PHYSICAL REVIEW LETTERS 2016; 117:038103. [PMID: 27472145 DOI: 10.1103/physrevlett.117.038103] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Indexed: 05/18/2023]
Abstract
Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.
Collapse
Affiliation(s)
- Étienne Fodor
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Cesare Nardini
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Michael E Cates
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Paolo Visco
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Frédéric van Wijland
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
109
|
Yang X, Marchetti MC. Hydrodynamics of Turning Flocks. PHYSICAL REVIEW LETTERS 2015; 115:258101. [PMID: 26722945 DOI: 10.1103/physrevlett.115.258101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 06/05/2023]
Abstract
We present a hydrodynamic model of flocking that generalizes the familiar Toner-Tu equations to incorporate turning inertia of well-polarized flocks. The continuum equations controlled by only two dimensionless parameters, orientational inertia and alignment strength, are derived by coarse-graining the inertial spin model recently proposed by Cavagna et al. The interplay between orientational inertia and bend elasticity of the flock yields anisotropic spin waves that mediate the propagation of turning information throughout the flock. The coupling between spin-current density to the local vorticity field through a nonlinear friction gives rise to a hydrodynamic mode with angular-dependent propagation speed at long wavelengths. This mode becomes unstable as a result of the growth of bend and splay deformations augmented by the spin wave, signaling the transition to complex spatiotemporal patterns of continuously turning and swirling flocks.
Collapse
Affiliation(s)
- Xingbo Yang
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
| | - M Cristina Marchetti
- Physics Department, Syracuse University, Syracuse, New York 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
110
|
Solon AP, Caussin JB, Bartolo D, Chaté H, Tailleur J. Pattern formation in flocking models: A hydrodynamic description. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062111. [PMID: 26764636 DOI: 10.1103/physreve.92.062111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Indexed: 06/05/2023]
Abstract
We study in detail the hydrodynamic theories describing the transition to collective motion in polar active matter, exemplified by the Vicsek and active Ising models. Using a simple phenomenological theory, we show the existence of an infinity of propagative solutions, describing both phase and microphase separation, that we fully characterize. We also show that the same results hold specifically in the hydrodynamic equations derived in the literature for the active Ising model and for a simplified version of the Vicsek model. We then study numerically the linear stability of these solutions. We show that stable ones constitute only a small fraction of them, which, however, includes all existing types. We further argue that, in practice, a coarsening mechanism leads towards phase-separated solutions. Finally, we construct the phase diagrams of the hydrodynamic equations proposed to qualitatively describe the Vicsek and active Ising models and connect our results to the phenomenology of the corresponding microscopic models.
Collapse
Affiliation(s)
- Alexandre P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| | - Jean-Baptiste Caussin
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, allée d'Italie, 69007 Lyon, France
| | - Denis Bartolo
- Laboratoire de Physique de l'Ecole Normale Supérieure de Lyon, Université de Lyon, CNRS, 46, allée d'Italie, 69007 Lyon, France
| | - Hugues Chaté
- Service de Physique de l'État Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
- LPTMC, CNRS UMR 7600, Université Pierre & Marie Curie, 75252 Paris, France
- Beijing Computational Science Research Center, Beijing 100094, China
| | - Julien Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
| |
Collapse
|
111
|
Solon AP, Tailleur J. Flocking with discrete symmetry: The two-dimensional active Ising model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042119. [PMID: 26565180 DOI: 10.1103/physreve.92.042119] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 06/05/2023]
Abstract
We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.
Collapse
Affiliation(s)
- A P Solon
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75205 Paris, France
| | - J Tailleur
- Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
112
|
Dossetti V, Sevilla FJ. Emergence of Collective Motion in a Model of Interacting Brownian Particles. PHYSICAL REVIEW LETTERS 2015; 115:058301. [PMID: 26274444 DOI: 10.1103/physrevlett.115.058301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Indexed: 06/04/2023]
Abstract
By studying a system of Brownian particles that interact among themselves only through a local velocity-alignment force that does not affect their speed, we show that self-propulsion is not a necessary feature for the flocking transition to take place as long as underdamped particle dynamics can be guaranteed. Moreover, the system transits from stationary phases close to thermal equilibrium, with no net flux of particles, to far-from-equilibrium ones exhibiting collective motion, phase coexistence, long-range order, and giant number fluctuations, features typically associated with ordered phases of models where self-propelled particles with overdamped dynamics are considered.
Collapse
Affiliation(s)
- Victor Dossetti
- CIDS-Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio esq. 14 Sur, Edif. 103D, Puebla, Pue. 72570, Mexico
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Postal J-48, Puebla, Puebla 72570, Mexico
- Consortium of the Americas for Interdisciplinary Science, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Francisco J Sevilla
- Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México D.F., Mexico
| |
Collapse
|
113
|
Nagai KH, Sumino Y, Montagne R, Aranson IS, Chaté H. Collective motion of self-propelled particles with memory. PHYSICAL REVIEW LETTERS 2015; 114:168001. [PMID: 25955073 DOI: 10.1103/physrevlett.114.168001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 05/11/2023]
Abstract
We show that memory, in the form of underdamped angular dynamics, is a crucial ingredient for the collective properties of self-propelled particles. Using Vicsek-style models with an Ornstein-Uhlenbeck process acting on angular velocity, we uncover a rich variety of collective phases not observed in usual overdamped systems, including vortex lattices and active foams. In a model with strictly nematic interactions the smectic arrangement of Vicsek waves giving rise to global polar order is observed. We also provide a calculation of the effective interaction between vortices in the case where a telegraphic noise process is at play, explaining thus the emergence and structure of the vortex lattices observed here and in motility assay experiments.
Collapse
Affiliation(s)
- Ken H Nagai
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Yutaka Sumino
- Department of Applied Physics, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Raul Montagne
- Departamento de Fisica, UFRPE, 52171-900 Recife, Pernambuco, Brazil
| | - Igor S Aranson
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CNRS UMR 3680, CEA-Saclay, 91191 Gif-sur-Yvette, France
- LPTMC, CNRS UMR 7600, Université Pierre et Marie Curie, 75252 Paris, France
- Beijing Computational Science Research Center, 3 Heqing Road, Beijing 100080, China
| |
Collapse
|