101
|
Kopittke PM, Menzies NW, Wang P, Blamey FPC. Kinetics and nature of aluminium rhizotoxic effects: a review. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4451-67. [PMID: 27302129 DOI: 10.1093/jxb/erw233] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Acid soils with elevated levels of soluble aluminium (Al) comprise ~40% of the world's arable land, but there remains much uncertainty regarding the mechanisms by which Al is rhizotoxic. This review examines the kinetics of the toxic effects of Al on the root elongation rate (RER), its effects on root tissues, and its location at a subcellular level. Depending upon the concentration and plant species, soluble Al decreases the RER in a median time of 73min, but in as little as 5min in soybean. This is initially due to a decreased rate at which cells expand anisotropically in the elongation zone. Thereafter, rhizodermal and outer cortical cells rupture through decreased cell wall relaxation. It is in this region where most Al accumulates in the apoplast. Subsequently, Al impacts root growth at a subcellular level through adverse effects on the plasma membrane (PM), cytoplasm, and nucleus. At the PM, Al alters permeability, fluidity, and integrity in as little as 0.5h, whilst it also depolarizes the PM and reduces H(+)-ATPase activity. The Al potentially crosses the PM within 0.5h where it is able to bind to the nucleus and inhibit cell division; sequestration within the vacuole is required to reduce the toxic effects of Al within the cytoplasm. This review demonstrates the increasing evidence of the importance of the initial Al-induced inhibition of wall loosening, but there is evidence also of the deleterious effects of Al on other cellular processes which are important for long-term root growth and function.
Collapse
Affiliation(s)
- Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Peng Wang
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - F Pax C Blamey
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| |
Collapse
|
102
|
Malucelli E, Fratini M, Notargiacomo A, Gianoncelli A, Merolle L, Sargenti A, Cappadone C, Farruggia G, Lagomarsino S, Iotti S. Where is it and how much? Mapping and quantifying elements in single cells. Analyst 2016; 141:5221-35. [PMID: 27441316 DOI: 10.1039/c6an01091a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biological function of a chemical element in cells not only requires the determination of its intracellular quantity, but also the spatial distribution of its concentration. Different strategies can be employed to quantify and map the intracellular concentration of elements in single cells. The assessment of the intracellular elemental concentration, which is the relevant information, requires the measurement of cell volume. This challenging and demanding task requires combining different techniques allowing gathering of both morphological and compositional information on the same cell. Moreover, the need to analyse samples more similar to their natural state requires complex hardware equipment, and supplementary efforts in preparation protocols. Nevertheless, the response to the question: "where is it and how much?" is worth all these efforts. This review aims at providing an insight into the recent and most advanced techniques and strategies for quantifying and mapping chemical elements in single cells. We describe and discuss indirect detection techniques (label based) which make use of fluorescent dyes, and direct ones (label free), such as particle induced X-ray emission, proton backscattering spectrometry, scanning transmission ion spectrometry, nano-secondary ion mass spectrometry, X-ray fluorescence microscopy, complemented by X-ray imaging.
Collapse
Affiliation(s)
- Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Herndon JM. Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification. Front Public Health 2016; 4:139. [PMID: 27433467 PMCID: PMC4927569 DOI: 10.3389/fpubh.2016.00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/16/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. METHODS Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. RESULTS The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. CONCLUSION Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially grave human health implications including cancer, cardiovascular disease, diabetes, respiratory diseases, reduced male fertility, and stroke. The fibrous mesh data admit the possibility of environmentally disastrous formation of methylmercury and ozone-depleting chlorinated-fluorinated hydrocarbons in jet exhaust. Geophysical implications include atmospheric warming and rainfall retardation.
Collapse
|
104
|
Sun L, Tian J, Zhang H, Liao H. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3655-3664. [PMID: 27190050 DOI: 10.1093/jxb/erw188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and limit plant growth on acid soils. It has been well documented that both P deficiency and Al toxicity alter root growth, including inhibition of primary roots and promotion of lateral roots. This suggests that plants adapt to both stresses through a common regulation pathway. Although an expanding set of results shows that phytohormones play vital roles in controlling root responses to Pi starvation and Al toxicity, it remains largely unknown whether P and Al coordinately regulate root growth through interacting phytohormone biosynthesis and signal transduction pathways. This review provides a summary of recent results concerning the influences of P deficiency and Al toxicity on root growth through the action of phytohormones, most notably auxin and ethylene. The objective is to facilitate increasing insights into complex responses of plants to adverse factors common on acid soils, which can spur development of 'smart' cultivars with better root growth and higher yield on these globally distributed marginal soils.
Collapse
Affiliation(s)
- Lili Sun
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Zhang
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
105
|
Gilliham M, Tyerman SD. Linking Metabolism to Membrane Signaling: The GABA-Malate Connection. TRENDS IN PLANT SCIENCE 2016; 21:295-301. [PMID: 26723562 DOI: 10.1016/j.tplants.2015.11.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 05/05/2023]
Abstract
γ-Aminobutyric acid (GABA) concentration increases rapidly in tissues when plants encounter abiotic or biotic stress, and GABA manipulation affects growth. This, coupled to GABA's well-described role as a neurotransmitter in mammals, led to over a decade of speculation that GABA is a signal in plants. The discovery of GABA-regulated anion channels in plants provides compelling mechanistic proof that GABA is a legitimate plant-signaling molecule. Here we examine research avenues unlocked by this finding and propose that these plant 'GABA receptors' possess novel properties ideally suited to translating changes in metabolic status into physiological responses. Specifically, we suggest they have a role in signaling altered cycling of tricarboxylic acid (TCA) intermediates during stress via eliciting changes in electrical potential differences across membranes.
Collapse
Affiliation(s)
- Matthew Gilliham
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Precinct, PMB1, Glen Osmond, SA 5064, Australia.
| | - Stephen D Tyerman
- Plant Transport and Signalling Lab, ARC Centre of Excellence in Plant Energy Biology and School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Precinct, PMB1, Glen Osmond, SA 5064, Australia
| |
Collapse
|
106
|
Voxeur A, Höfte H. Cell wall integrity signaling in plants: “To grow or not to grow that's the question”. Glycobiology 2016; 26:950-960. [DOI: 10.1093/glycob/cww029] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/27/2016] [Indexed: 11/12/2022] Open
|
107
|
Sun C, Lu L, Yu Y, Liu L, Hu Y, Ye Y, Jin C, Lin X. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:979-89. [PMID: 26663393 PMCID: PMC4737084 DOI: 10.1093/jxb/erv514] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, PR China Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
108
|
Yu Y, Jin C, Sun C, Wang J, Ye Y, Zhou W, Lu L, Lin X. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. Sci Rep 2016; 6:18888. [PMID: 26744061 PMCID: PMC4705537 DOI: 10.1038/srep18888] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/27/2015] [Indexed: 11/18/2022] Open
Abstract
Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Zhou
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
109
|
Yang J, Qu M, Fang J, Shen RF, Feng YM, Liu JY, Bian JF, Wu LS, He YM, Yu M. Alkali-Soluble Pectin Is the Primary Target of Aluminum Immobilization in Root Border Cells of Pea (Pisum sativum). FRONTIERS IN PLANT SCIENCE 2016; 7:1297. [PMID: 27679639 PMCID: PMC5020075 DOI: 10.3389/fpls.2016.01297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 05/20/2023]
Abstract
We investigated the hypothesis that a discrepancy of Al binding in cell wall constituents determines Al mobility in root border cells (RBCs) of pea (Pisum sativum), which provides protection for RBCs and root apices under Al toxicity. Plants of pea (P. sativum L. 'Zhongwan no. 6') were subjected to Al treatments under mist culture. The concentration of Al in RBCs was much higher than that in the root apex. The Al content in RBCs surrounding one root apex (10(4) RBCs) was approximately 24.5% of the total Al in the root apex (0-2.5 mm), indicating a shielding role of RBCs for the root apex under Al toxicity. Cell wall analysis showed that Al accumulated predominantly in alkali-soluble pectin (pectin 2) of RBCs. This could be attributed to a significant increase of uronic acids under Al toxicity, higher capacity of Al adsorption in pectin 2 [5.3-fold higher than that of chelate-soluble pectin (pectin 1)], and lower ratio of Al desorption from pectin 2 (8.5%) compared with pectin 1 (68.5%). These results indicate that pectin 2 is the primary target of Al immobilization in RBCs of pea, which impairs Al access to the intracellular space of RBCs and mobility to root apices, and therefore protects root apices and RBCs from Al toxicity.
Collapse
Affiliation(s)
- Jin Yang
- Department of Horticulture, Foshan UniversityFoshan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Mei Qu
- Department of Horticulture, Foshan UniversityFoshan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Jing Fang
- Department of Horticulture, Foshan UniversityFoshan, China
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of ScienceNanjing, China
| | - Ying Ming Feng
- Department of Horticulture, Foshan UniversityFoshan, China
| | - Jia You Liu
- Department of Horticulture, Foshan UniversityFoshan, China
| | - Jian Feng Bian
- Department of Horticulture, Foshan UniversityFoshan, China
| | - Li Shu Wu
- College of Resources and Environment, Huazhong Agricultural UniversityWuhan, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of ScienceNanjing, China
| | - Yong Ming He
- College of Life Science and Engineering, Foshan UniversityFoshan, China
| | - Min Yu
- Department of Horticulture, Foshan UniversityFoshan, China
- *Correspondence: Min Yu,
| |
Collapse
|
110
|
Schmitt M, Watanabe T, Jansen S. The effects of aluminium on plant growth in a temperate and deciduous aluminium accumulating species. AOB PLANTS 2016; 8:plw065. [PMID: 27613876 PMCID: PMC5091896 DOI: 10.1093/aobpla/plw065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/16/2016] [Indexed: 05/11/2023]
Abstract
Aluminium (Al) is a phytotoxic element affecting the growth and yield of many crop plants, especially in the tropics. Yet, some plants are able to accumulate high levels of Al. The monogeneric family Symplocaceae represents an Al accumulating family including many tropical and evergreen species with high Al levels in their above ground plant tissues. It is unclear, however, whether Al accumulation also characterises temperate species of Symplocos, and whether or not the uptake has a beneficial growth effect. Here, we investigate if the temperate, deciduous species Symplocos paniculata is able to accumulate Al by growing seedlings and saplings in a hydroponic setup at pH 4 with and without Al. Pyrocatechol-violet (PCV) and aluminon staining was performed to visualize Al accumulation in various plant tissues. Both seedlings and saplings accumulate Al in their tissues if available. Mean Al levels in leaves were 4107 (±1474 mg kg-1) and 4290 (±4025 mg kg-1) for the seedlings and saplings, respectively. The saplings treated without Al showed a high mortality rate unlike the Al accumulating ones. The seedlings, however, showed no difference in growth and vitality between the two treatments. The saplings treated with Al showed new twig, leaf and root development, resulting in a considerable biomass increase. PCV and aluminon staining indicated the presence of Al in leaf, wood and bark tissue of the plants. S. paniculata shares the capacity to accumulate Al with its tropical sister species and is suggested to be a facultative accumulator. Whether or not Al has a beneficial effect remains unclear, due to developmental differences between seedlings and saplings. Al is suggested to be transported via the xylem transport system into the leaves, which show the highest Al levels. Radial transport via ray parenchyma to bark tissue is also likely given the high Al concentrations in the bark tissue.
Collapse
Affiliation(s)
- Marco Schmitt
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kitaku, 060-8589 Sapporo, Japan
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
111
|
Yu Y, Jin C, Sun C, Wang J, Ye Y, Lu L, Lin X. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat. JOURNAL OF HAZARDOUS MATERIALS 2015; 299:280-288. [PMID: 26142157 DOI: 10.1016/j.jhazmat.2015.06.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 06/04/2023]
Abstract
Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.
Collapse
Affiliation(s)
- Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Yiquan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
112
|
Wu D, Shen H, Yokawa K, Baluška F. Overexpressing OsPIN2 enhances aluminium internalization by elevating vesicular trafficking in rice root apex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6791-801. [PMID: 26254327 PMCID: PMC4623688 DOI: 10.1093/jxb/erv385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Aluminium (Al) sequestration is required for internal detoxification of Al in plant cells. In this study, it was found that the rice OsPIN2 overexpression line (OX1) had significantly reduced Al content in its cell wall and increased Al concentration in cell sap only in rice root tips relative to the wild-type (WT). In comparison with WT, OX1 reduced morin staining of cytosolic Al, enhanced FM 4-64 staining of membrane vesicular trafficking in root tip sections (0-1mm), and showed morin-FM 4-64 fluorescence overlap. Recovery treatment showed that cell-wall-bound Al was internalized into vacuoles via endocytic vesicular trafficking after removal of external Al. In this process, OX1 showed a higher rate of Al internalization than WT. Brefeldin A (BFA) interfered with vesicular trafficking and resulted in inhibition of Al internalization. This inhibitory effect could be alleviated when BFA was washed out, and the process of alleviation was slower in the cells of WT than in those of OX1. Microscopic observations revealed that, upon Al exposure, numerous multilamellar endosomes were detected between the cell wall and plasma membrane in the cells of OX1. Moreover, more vesicles enriched with Al complexes accumulated in the cells of OX1 than in those of WT, and these vesicles transformed into larger structures in the cells of OX1. Taken together, the data indicate that endocytic vesicular trafficking might contribute to Al internalization, and that overexpressing OsPIN2 enhances rice Al tolerance via elevated endocytic vesicular trafficking and Al internalization.
Collapse
Affiliation(s)
- Daoming Wu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Shen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, PR China
| | - Ken Yokawa
- Department of Plant Cell Biology, IZMB, Univerisity of Bonn, Bonn D-53115, Germany
| | - František Baluška
- Department of Plant Cell Biology, IZMB, Univerisity of Bonn, Bonn D-53115, Germany
| |
Collapse
|
113
|
Roselló M, Poschenrieder C, Gunsé B, Barceló J, Llugany M. Differential activation of genes related to aluminium tolerance in two contrasting rice cultivars. J Inorg Biochem 2015; 152:160-6. [PMID: 26337117 DOI: 10.1016/j.jinorgbio.2015.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/07/2015] [Accepted: 08/20/2015] [Indexed: 01/19/2023]
Abstract
Rice (Oryza sativa) is a highly Al-tolerant crop. Among other mechanisms, a higher expression of STAR1/STAR2 (sensitive to Al rhizotoxicity1/2) genes and of Nrat1 (NRAMP Aluminium Transporter 1), and ALS1 (Aluminium sensitive 1) can at least in part be responsible for the inducible Al tolerance in this species. Here we analysed the responses to Al in two contrasting rice varieties. All analysed toxicity/tolerance markers (root elongation, Evans blue, morin and haematoxylin staining) indicated higher Al-tolerance in variety Nipponbare, than in variety Modan. Nipponbare accumulated much less Al in the roots than Modan. Aluminium supply caused stronger expression of STAR1 in Nipponbare than in Modan. A distinctively higher increase of Al-induced abscisic acid (ABA) accumulation was found in the roots of Nipponbare than in Modan. Highest ABA levels were observed in Nipponbare after 48 h exposure to Al. This ABA peak was coincident in time with the highest expression level of STAR1. It is proposed that ABA may be required for cell wall remodulation facilitated by the enhanced UDP-glucose transport to the walls through STAR1/STAR2. Contrastingly, in the roots of Modan the expression of both Nrat1 coding for a plasma membrane Al-transporter and of ALS1 coding for a tonoplast-localized Al transporter was considerably enhanced. Moreover, Modan had a higher Al-induced expression of ASR1 a gene that has been proposed to code for a reactive oxygen scavenging protein. In conclusion, the Al-exclusion strategy of Nipponbare, at least in part mediated by STAR1 and probably regulated by ABA, provided better protection against Al toxicity than the accumulation and internal detoxification strategy of Modan mediated by Nrat1, ALS1 and ARS1.
Collapse
Affiliation(s)
- Maite Roselló
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Benet Gunsé
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Juan Barceló
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
114
|
Mendoza-Soto AB, Naya L, Leija A, Hernández G. Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs. FRONTIERS IN PLANT SCIENCE 2015; 6:587. [PMID: 26284103 PMCID: PMC4519678 DOI: 10.3389/fpls.2015.00587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/15/2015] [Indexed: 05/29/2023]
Abstract
Aluminum (Al) toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43-50% reduction in nitrogenase activity indicates that Al toxicity (Alt) highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Alt. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs) along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated) Alt nodule-responsive miRNAs. We validated (quantitative reverse transcriptase-PCR) the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control) was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt-responsive miRNAs identified has also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 (NAM/ATAF/CUC transcription factor) and miR393/TIR1 (TRANSPORT INHIBITOR RESPONSE 1-like protein) in auxin and of miR170/SCL (SCARECROW-like protein transcription factor) in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a foundation for evaluating the individual roles of miRNAs in the response of common bean nodules to Alt.
Collapse
Affiliation(s)
| | | | | | - Georgina Hernández
- *Correspondence: Georgina Hernández, Functional Genomics of Eukaryotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001 Cuernavaca, Morelos 62209, Mexico,
| |
Collapse
|