101
|
Wrzaczek M, Rozhon W, Jonak C. A Proteasome-regulated Glycogen Synthase Kinase-3 Modulates Disease Response in Plants. J Biol Chem 2007; 282:5249-55. [PMID: 17179144 DOI: 10.1074/jbc.m610135200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a key player in various important signaling pathways in animals. The activity of GSK-3 is known to be modulated by protein phosphorylation and differential complex formation. However, little information is available regarding the function and regulation of plant GSK-3/shaggy-like kinases (GSKs). Analysis of the in vivo kinase activity of MsK1, a GSK from Medicago sativa, revealed that MsK1 is active in healthy plants and that MsK1 activity is down-regulated by the elicitor cellulase in a time- and dose-dependent manner. Surprisingly, cellulase treatment triggered the degradation of the MsK1 protein in a proteasome-dependent manner suggesting a novel mechanism of GSK-3 regulation. Inhibition of MsK1 kinase activity and degradation of the protein were two successive processes that could be uncoupled. In a transgenic approach, stimulus-induced inhibition of MsK1 was impeded by constant replenishment of MsK1 by a strong constitutive promoter. MsK1 overexpressing plants exhibited enhanced disease susceptibility to the virulent bacterial pathogen Pseudomonas syringae. MAP kinase activation in response to pathogen infection was compromised in plants with elevated MsK1 levels. These data strongly suggest that tight regulation of the plant GSK-3, MsK1, may be important for innate immunity to limit the severity of virulent bacterial infection.
Collapse
Affiliation(s)
- Michael Wrzaczek
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | |
Collapse
|
102
|
Wang YS, Pi LY, Chen X, Chakrabarty PK, Jiang J, De Leon AL, Liu GZ, Li L, Benny U, Oard J, Ronald PC, Song WY. Rice XA21 binding protein 3 is a ubiquitin ligase required for full Xa21-mediated disease resistance. THE PLANT CELL 2006; 18:3635-3646. [PMID: 17172358 PMCID: PMC1785399 DOI: 10.1105/tpc.106.046730] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 10/04/2006] [Accepted: 11/02/2006] [Indexed: 05/13/2023]
Abstract
XA21 is a receptor-like kinase protein in rice (Oryza sativa) that confers gene-for-gene resistance to specific races of the causal agent of bacterial blight disease, Xanthomonas oryzae pv oryzae. We identified XA21 binding protein 3 (XB3), an E3 ubiquitin ligase, as a substrate for the XA21 Ser and Thr kinase. The interaction between XB3 and the kinase domain of XA21 has been shown in yeast and in vitro, and the physical association between XB3 and XA21 in vivo has also been confirmed by coimmunoprecipitation assays. XB3 contains an ankyrin repeat domain and a RING finger motif that is sufficient for its interaction with the kinase domain of XA21 and for its E3 ubiquitin ligase activity, respectively. Transgenic plants with reduced expression of the Xb3 gene are compromised in resistance to the avirulent race of X. oryzae pv oryzae. Furthermore, reduced levels of Xb3 lead to decreased levels of the XA21 protein. These results indicate that Xb3 is necessary for full accumulation of the XA21 protein and for Xa21-mediated resistance.
Collapse
Affiliation(s)
- Yong-Sheng Wang
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P. F-box proteins everywhere. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:631-8. [PMID: 17005440 DOI: 10.1016/j.pbi.2006.09.003] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 09/15/2006] [Indexed: 05/12/2023]
Abstract
The ubiquitin proteasome system is a key regulator of many biological processes in all eukaryotes. This mechanism employs several types of enzymes, the most important of which are the ubiquitin E3 ligases that catalyse the attachment of polyubiquitin chains to target proteins for their subsequent degradation by the 26S proteasome. Among the E3 families, the SCF is the best understood; it consists of a multi-protein complex in which the F-box protein plays a crucial role by recruiting the target substrate. Strikingly, nearly 700 F-box proteins have been predicted in Arabidopsis, suggesting that plants have the capacity to assemble a multitude of SCF complexes, possibly controlling the stability of hundreds of substrates involved in a plethora of biological processes. Interestingly, viruses and even pathogenic bacteria have also found ways to hijack the plant SCF and to reprogram it for their own purposes.
Collapse
Affiliation(s)
- Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | | | | | |
Collapse
|
104
|
Dong W, Nowara D, Schweizer P. Protein polyubiquitination plays a role in basal host resistance of barley. THE PLANT CELL 2006; 18:3321-31. [PMID: 17114351 PMCID: PMC1693960 DOI: 10.1105/tpc.106.046326] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
To study protein ubiquitination pathways in the interaction of barley (Hordeum vulgare) with the powdery mildew fungus (Blumeria graminis), we measured protein turnover and performed transient-induced gene silencing (TIGS) of ubiquitin and 26S proteasome subunit encoding genes in epidermal cells. Attack by B. graminis hyperdestabilized a novel unstable green fluorescent protein fusion that contains a destabilization domain of a putative barley 1-aminocyclopropane-1-carboxylate synthase, suggesting enhanced protein turnover. Partial depletion of cellular ubiquitin levels by TIGS induced extreme susceptibility of transformed cells toward the appropriate host pathogen B. graminis f. sp hordei, whereas papilla-based resistance to the nonhost pathogen B. graminis f. sp tritici and host resistance mediated by the mlo gene (for mildew resistance locus O) remained unaffected. Cells were rescued from TIGS-induced ubiquitin depletion by synthetic genes encoding wild-type or mutant barley monoubiquitin proteins. The strongest rescue was from a gene encoding a K63R mutant form of ubiquitin blocked in several ubiquitination pathways while still allowing Lys-48-dependent polyubiquitination required for proteasomal protein degradation. Systematic RNA interference of 40 genes encoding all 17 subunits of the proteasome 19S regulatory particle failed to induce hypersusceptibility against B. graminis f. sp hordei. This suggests a role for Lys-48-linked protein polyubiquitination, which is independent from the proteasome pathway, in basal host defense of barley.
Collapse
Affiliation(s)
- Wubei Dong
- Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany
| | | | | |
Collapse
|
105
|
Kojo K, Yaeno T, Kusumi K, Matsumura H, Fujisawa S, Terauchi R, Iba K. Regulatory Mechanisms of ROI Generation are Affected by Rice
spl
Mutations. ACTA ACUST UNITED AC 2006; 47:1035-44. [PMID: 16816407 DOI: 10.1093/pcp/pcj074] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen intermediates (ROIs) play a pivotal role in the hypersensitive response (HR) in disease resistance. NADPH oxidase is a major source of ROI; however, the mechanisms of its regulation are unclear. Rice spl mutants spontaneously form lesions which resemble those occurring during the HR, suggesting that the mutations affect regulation of the HR. We found that spl2, spl7 and spl11 mutant cells accumulated increased amounts of H(2)O(2) in response to rice blast fungal elicitor. Increased accumulation of ROIs was suppressed by inhibition of NADPH oxidase in the spl cells, and was also observed in the ozone-exposed spl plants. These mutants have sufficient activities of ROI-scavenging enzymes compared with the wild type. In addition, spl7 mutant cells accumulated higher amounts of H(2)O(2) when treated with calyculin A (CA), an inhibitor of protein phosphatase. Furthermore, spl2 mutant plants exhibited accelerated accumulation of H(2)O(2) and increased rates of cell death in response to wounding. These results suggest that the spl2, spl7 and spl11 mutants are defective in the regulation of NADPH oxidase, and the spl7 mutation may give rise to enhancement of the signaling pathway which protein dephosphorylation controls, while the spl2 mutation affects both the pathogen-induced and wound-induced signaling pathways.
Collapse
Affiliation(s)
- Kaori Kojo
- Department of Biology, Faculty of Sciences, Kyushu University, Hakozaki, Fukuoka, 812-8581 Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Huang J, Zhao L, Yang Q, Xue Y. AhSSK1, a novel SKP1-like protein that interacts with the S-locus F-box protein SLF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 46:780-93. [PMID: 16709194 DOI: 10.1111/j.1365-313x.2006.02735.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The S-locus F-box (SLF/SFB) protein, recently identified as the pollen determinant of S-RNase-based self-incompatibility (SI) in Solanaceae, Scrophulariaceae and Rosaceae, has been proposed to serve as the subunit of an SCF (SKP1-CUL1-F-box) ubiquitin ligase and to target its pistil counterpart S-RNase during the SI response. However, the underlying mechanism is still in dispute, and the putative SLF-binding SKP1-equivalent protein remains unknown. Here, we report the identification of AhSSK1, Antirrhinum hispanicumSLF-interacting SKP1-like1, using a yeast two-hybrid screen against a pollen cDNA library. GST pull-down assays confirmed the SSK1-SLF interaction, and showed that AhSSK1 could connect AhSLF to a CUL1-like protein. AhSSK1, despite having a similar secondary structure to other SKP1-like proteins, appeared quite distinctive in sequence and unique in a phylogenetic analysis, in which no SSK1 ortholog could be predicted in the sequenced genomes of Arabidopsis and rice. Thus, our results suggest that the pollen-specific SSK1 could be recruited exclusively as the adaptor of putative SCF(SLF) in those plants with S-RNase-based SI, providing an important clue to dissecting the function of the pollen determinant.
Collapse
Affiliation(s)
- Jian Huang
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Center for Plant Gene Research, Beijing 100080, China
| | | | | | | |
Collapse
|
107
|
Zeng LR, Vega-Sánchez ME, Zhu T, Wang GL. Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 2006; 16:413-26. [PMID: 16699537 DOI: 10.1038/sj.cr.7310053] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Post-translational modification is central to protein stability and to the modulation of protein activity. Various types of protein modification, such as phosphorylation, methylation, acetylation, myristoylation, glycosylation, and ubiquitination, have been reported. Among them, ubiquitination distinguishes itself from others in that most of the ubiquitinated proteins are targeted to the 26S proteasome for degradation. The ubiquitin/26S proteasome system constitutes the major protein degradation pathway in the cell. In recent years, the importance of the ubiquitination machinery in the control of numerous eukaryotic cellular functions has been increasingly appreciated. Increasing number of E3 ubiquitin ligases and their substrates, including a variety of essential cellular regulators have been identified. Studies in the past several years have revealed that the ubiquitination system is important for a broad range of plant developmental processes and responses to abiotic and biotic stresses. This review discusses recent advances in the functional analysis of ubiquitination-associated proteins from plants and pathogens that play important roles in plant-microbe interactions.
Collapse
Affiliation(s)
- Li-Rong Zeng
- Department of Plant Pathology and Plant Molecular Biology and Biotechnology Program, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
108
|
Dong L, Wang L, Zhang Y, Zhang Y, Deng X, Xue Y. An auxin-inducible F-box protein CEGENDUO negatively regulates auxin-mediated lateral root formation in Arabidopsis. PLANT MOLECULAR BIOLOGY 2006; 60:599-615. [PMID: 16525894 DOI: 10.1007/s11103-005-5257-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Accepted: 11/17/2005] [Indexed: 05/07/2023]
Abstract
Previously, we characterized 92 Arabidopsis genes (AtSFLs) similar to the S-locus F-box genes involved in S-RNase-based self-incompatibility and found that they likely play diverse roles in Arabidopsis. In this study, we investigated the role of one of these genes, CEGENDUO (CEG, AtSFL61), in the lateral root formation. A T-DNA insertion in CEG led to an increased lateral root production, which was complemented by transformation of the wild-type gene. Its downregulation by RNAi also produced more lateral roots in transformed Arabidopsis plants whereas its overexpression generated less lateral roots compared to wild-type, indicating that CEG acts as a negative regulator for the lateral root formation. It was found that CEG was expressed abundantly in vascular tissues of the primary root, but not in newly formed lateral root primordia and the root meristem, and induced by exogenous auxin NAA (alpha-naphthalene acetic acid). In addition, the ceg mutant was hyposensitive to NAA, IAA (indole-3-acetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid), as well as the auxin transport inhibitor TIBA (3,3,5-triiodobenzoic acid), showing that CEG is an auxin-inducible gene. Taken together, our results show that CEG is a novel F-box protein negatively regulating the auxin-mediated lateral root formation in Arabidopsis.
Collapse
Affiliation(s)
- Li Dong
- Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Centre for Plant Gene Research, Beijing 100080, China
| | | | | | | | | | | |
Collapse
|
109
|
Gil MJ, Coego A, Mauch-Mani B, Jordá L, Vera P. The Arabidopsis csb3 mutant reveals a regulatory link between salicylic acid-mediated disease resistance and the methyl-erythritol 4-phosphate pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:155-66. [PMID: 16167903 DOI: 10.1111/j.1365-313x.2005.02517.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report on constitutive subtilisin3 (csb3), an Arabidopsis mutant showing strikingly enhanced resistance to biotrophic pathogens. Epistasis analyses with pad4, sid2, eds5, NahG, npr1, dth9 and cpr1 mutants revealed that the enhanced resistance of csb3 plants requires intact salicylic acid (SA) synthesis and perception. CSB3 encodes a 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase, the enzyme controlling the penultimate step of the biosynthesis of isopentenyl diphosphate via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the chloroplast. CSB3 is expressed constitutively in healthy plants, and shows repression in response to bacterial infection. We also show the pharmacological complementation of the enhanced-resistance phenotype of csb3 plants with fosmidomycin, an inhibitor of the MEP pathway, and propose that CSB3 represents a point of metabolic convergence modulating the magnitude of SA-mediated disease resistance to biotrophic pathogens.
Collapse
Affiliation(s)
- M José Gil
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), UPV-CSIC, Camino de Vera, s/n, 46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
110
|
Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ, Van den Ackerveken G. Identification of arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:583-92. [PMID: 15986928 DOI: 10.1094/mpmi-18-0583] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants are susceptible to a limited number of pathogens. Most infections fail due to active defense or absence of compatibility. Many components of the plant's surveillance system and defense arsenal have been identified in the last decades. However, knowledge is limited on compatibility; in particular, the role of plant factors in the infection process. To gain insight into these processes, we have initiated an Arabidopsis thaliana mutant screen for reduced susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. Ethyl methane sulfonate (EMS) mutants were generated in the highly susceptible Arabidopsis line Ler eds1-2. Eight downy mildew-resistant (dmr) mutants were analyzed in detail, corresponding to six different loci. Microscopic analysis showed that, in all mutants, H. parasitica growth was severely reduced. Resistance of dmr3, dmr4, and dmr5 was associated with constitutive expression of PR-1. Furthermore, dmr3 and dmr4, but not dmr5, also were resistant to Pseudomonas syringae and Golovinomyces orontii, respectively. However, enhanced activation of plant defense was not observed in dmr1, dmr2, and dmr6. We postulate that, in these susceptibility mutants, cellular processes are disrupted which are required for H. parasitica infection. This interesting new set of mutants provides a basis to elucidate the molecular processes underlying susceptibility to downy mildew in Arabidopsis.
Collapse
Affiliation(s)
- Mireille Van Damme
- Department of Molecular and Cellular Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
111
|
Thatcher LF, Anderson JP, Singh KB. Plant defence responses: what have we learnt from Arabidopsis? FUNCTIONAL PLANT BIOLOGY : FPB 2005; 32:1-19. [PMID: 32689107 DOI: 10.1071/fp04135] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Accepted: 09/19/2004] [Indexed: 05/27/2023]
Abstract
To overcome the attack of invading pathogens, a plant's defence system relies on preformed and induced responses. The induced responses are activated following detection of a pathogen, with the subsequent transmission of signals and orchestrated cellular events aimed at eliminating the pathogen and preventing its spread. Numerous studies are proving that the activated signalling pathways are not simply linear, but rather, form complex networks where considerable cross talk takes place. This review covers the recent application of powerful genetic and genomic approaches to identify key defence signalling pathways in the model plant Arabidopsis thaliana (L.) Heynh. The identification of key regulatory components of these pathways may offer new approaches to increase the defence capabilities of crop plants.
Collapse
Affiliation(s)
- Louise F Thatcher
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Jonathan P Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
112
|
Wang L, Dong L, Zhang Y, Zhang Y, Wu W, Deng X, Xue Y. Genome-wide analysis of S-Locus F-box-like genes in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2004; 56:929-945. [PMID: 15821991 DOI: 10.1007/s11103-004-6236-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 11/14/2004] [Indexed: 05/24/2023]
Abstract
The Antirrhinum S-locus F-box gene, AhSLF-S2, has been shown to determine the pollen function of S-RNase-mediated self-incompatibility (SI). Its initial identification led to the discovery of a large family of plant-specific F-box proteins, named the SLF (S-Locus F-box) family, including members from species with or without S-RNase SI system. To investigate the evolution and function of its family members in Arabidopsis, we first identified 92 Arabidopsis F-box proteins related to AhSLF-S2, referred to as AtSFL (S-locus F-box-like) in this report. Phylogenetic analyses with family members from several plant species revealed that they could be classified into five subgroups, and the SLF genes appeared to have had a monophyletic origin. Yeast two-hybrid analyses showed that most AtSFL proteins could interact with one or more ASK (Arabidopsis Skp1-like) proteins, a component of the SCF (Skp1/Cullin or CDC53/F-box) complex, suggesting that AtSFLs may function in the process of ubiquitin/26S proteasome-mediated proteolysis. Transcript analysis found that most of AtSFL genes are expressed ubiquitously and only three of them (AtSFL61, 79 and 85) displayed a tissue-specific pattern. In consistent, phenotypic observations for T-DNA insertion lines of 37 AtSFL genes revealed that most of them are functionally redundant, but inactivation of two AtSFL genes (AtSFL 61 and 70) appears to have caused developmental defects in embryo or female gametophyte. Our results show that a diversified expression and functional pattern are associated with AtSFL genes, indicating that they play important roles in various biological processes in Arabidopsis.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, P.R. China
| | | | | | | | | | | | | |
Collapse
|
113
|
Schwechheimer C, Schwager K. Regulated proteolysis and plant development. PLANT CELL REPORTS 2004; 23:353-364. [PMID: 15365760 DOI: 10.1007/s00299-004-0858-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2004] [Revised: 07/22/2004] [Accepted: 07/22/2004] [Indexed: 05/24/2023]
Abstract
Eukaryotes use the ubiquitin-proteasome system to control the abundance of regulatory proteins such as cell-cycle proteins and transcription factors. Over 5% of the Arabidopsis genome encodes for proteins with an apparent functional homology to components of the ubiquitin-proteasome system. This suggests that ubiquitin-mediated proteolysis has a major role in plant growth and development. Consistent with this notion, various processes, including most phytohormone responses and photomorphogenesis, have already been shown to require protein degradation in one way or another. In this review, we provide an overview of the plant ubiquitin-proteasome system and its role during Arabidopsis development. Since we consider auxin response and photomorphogenesis as particularly instructive examples, these processes are reviewed in greater detail.
Collapse
Affiliation(s)
- Claus Schwechheimer
- Developmental Genetics, Centre for Plant Molecular Biology, Auf der Morgenstelle 5, 72076, Tübingen, Germany.
| | | |
Collapse
|
114
|
Zeier J, Pink B, Mueller MJ, Berger S. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. PLANTA 2004; 219:673-83. [PMID: 15098125 DOI: 10.1007/s00425-004-1272-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 03/12/2004] [Indexed: 05/19/2023]
Abstract
In incompatible plant-pathogen interactions, disease resistance is generated by rapid activation of a multitude of plant defence reactions. Little is known about the dependency of these resistance responses on external factors. The plasticity of plant defence mechanisms in terms of light conditions is studied here. Interaction of Arabidopsis thaliana (L.) Heynh. with an avirulent strain of Pseudomonas syringae pv. maculicola in the dark resulted in increased apoplastic bacterial growth and therefore reduced local resistance as compared to an infection process in the presence of light. Several characteristic defence reactions, including activation of phenylalanine ammonia-lyase, accumulation of salicylic acid (SA), expression of the pathogenesis-related protein PR-1 and the development of a microscopically defined hypersensitive response, proved to be light dependent. In contrast, the extent of the oxidative burst, as estimated by induction of the protectant gene glutathione- S-transferase, was not weakened by the absence of light. Moreover, pathogen-induced accumulation of jasmonic acid, production of the phytoalexin camalexin and transcriptional induction of a pathogen-inducible myrosinase were even more pronounced in the dark. Apart from affecting local defence responses, light also influenced the establishment of systemic acquired resistance (SAR). SAR development in response to infection by avirulent bacteria was completely lost when the primary infection process occurred in the absence of light. SAR developed both under medium (70 micromol photons m(-2) s(-1)) and strong (500 micromol photons m(-2) s(-1)) light conditions but was in the latter case not associated with an accumulation of SA and PR-1 in systemic leaves, demonstrating that SAR can be executed independently from these molecular SAR markers. Our results are consistent with the notion that SA accumulation in infected primary leaves is necessary for induction of systemic resistance and indicate that defence mechanisms different from SA signalling and PR-protein action exist in systemic tissue to confer resistance during SAR.
Collapse
Affiliation(s)
- Jürgen Zeier
- Julius-von-Sachs-Institute of Biological Science, University of Würzburg, Julius-von-Sachs-Platz 3, 97082, Germany.
| | | | | | | |
Collapse
|
115
|
De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D. Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:537-59. [PMID: 15272873 DOI: 10.1111/j.1365-313x.2004.02156.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A comprehensive transcriptome analysis by means of cDNA-amplified fragment length polymorphism (AFLP) and cDNA-microarray technology was performed in order to gain further understanding of the molecular mechanisms of immediate transcriptional response to ethylene. Col-0 plants were treated with exogenous ethylene and sampled at six different time-points ranging from 10 min until 6 h. In order to isolate truly ethylene-responsive genes, both the ethylene-insensitive mutant ein2-1 and the constitutive mutant (ctr1-1) were analysed in parallel by cDNA-AFLP while ein2-1 was included for the microarray experiment. Out of the cDNA-transcript profiling covering about 5% of the Arabidopsis transcriptome, 46 ethylene-responsive genes were isolated, falling in different classes of expression pattern and including a number of novel genes. Out of the 6008 genes present on the chip, 214 genes were significantly (alpha = 0.001) differentially expressed between Col-0 and ein2-1 over time. Cluster analysis and functional grouping of co-regulated genes allowed to determine the major ethylene-regulated classes of genes. In particular, a large number of genes involved in cell rescue, disease and defence mechanisms were identified as early ethylene-regulated genes. Furthermore, the data provide insight into the role of protein degradation in ethylene signalling and ethylene-regulated transcription and protein fate. Novel interactions between ethylene response and responses to several other signals have been identified by this study. Of particular interest is the overlap between ethylene response and responses to abscisic acid, sugar and auxin. In conclusion, the data provide unique insight into early regulatory steps of ethylene response.
Collapse
Affiliation(s)
- Annelies De Paepe
- Unit Plant Hormone Signalling and Bio-imaging, Department of Molecular Genetics, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
116
|
Yang S, Hua J. A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. THE PLANT CELL 2004; 16:1060-71. [PMID: 15031411 PMCID: PMC412877 DOI: 10.1105/tpc.020479] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Accepted: 02/11/2004] [Indexed: 05/17/2023]
Abstract
Plant growth homeostasis and defense responses are regulated by BONZAI1 (BON1), an evolutionarily conserved gene. Here, we show that growth regulation by BON1 is mediated through defense responses. BON1 is a negative regulator of a haplotype-specific Resistance (R) gene SNC1. The bon1-1 loss-of-function mutation activates SNC1, leading to constitutive defense responses and, consequently, reduced cell growth. In addition, a feedback amplification of the SNC1 gene involving salicylic acid is subject to temperature control, accounting for the regulation of growth and defense by temperature in bon1-1 and many other mutants. Thus, plant growth homeostasis involves the regulation of an R gene by BON1 and the intricate interplay between defense responses and temperature responses.
Collapse
Affiliation(s)
- Shuhua Yang
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
117
|
Lu G, Jantasuriyarat C, Zhou B, Wang GL. Isolation and characterization of novel defense response genes involved in compatible and incompatible interactions between rice and Magnaporthe grisea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:525-34. [PMID: 14605807 DOI: 10.1007/s00122-003-1451-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2003] [Accepted: 08/20/2003] [Indexed: 05/11/2023]
Abstract
To identify early-induced defense genes involved in broad-spectrum resistance to rice blast, suppression subtractive hybridization was used to generate two cDNA libraries enriched for transcripts differentially expressed in Pi9(t)-resistant and -susceptible plants. After differential screening by membrane-based hybridization and subsequent confirmation by reverse Northern blot analysis, selected clones were sequenced and analyzed. Forty-seven unique cDNA clones were found and assigned to eight different groups according to the putative function of their homologous genes in the database. These genes may be involved in pathogen or stress response, signal transduction, transcription, cell transport, metabolism, energy or protein destination. Northern blot analysis showed that most of these genes were induced or suppressed after blast infection, and that half of them showed differential expression patterns between compatible and incompatible interactions. Interestingly, all but one of the identified genes are reported here for the first time to be involved in defense response to rice blast. In addition, hybridization of these clones with cDNAs synthesized from RNA samples from bacterial blight-infected leaves showed that few of them are induced or repressed in Xa21- or Xa7-resistant plants, suggesting a minimum overlap of defense responses mediated by different resistance genes to fungal and bacterial pathogens at an early stage of infection. Further characterization and functional analysis of these genes will enhance our understanding of the molecular mechanism of broad-spectrum resistance in rice.
Collapse
Affiliation(s)
- G Lu
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
118
|
Chen Z, Kloek AP, Cuzick A, Moeder W, Tang D, Innes RW, Klessig DF, McDowell JM, Kunkel BN. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:494-504. [PMID: 14756766 DOI: 10.1111/j.1365-313x.2003.01984.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.
Collapse
Affiliation(s)
- Zhongying Chen
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Sullivan JA, Shirasu K, Deng XW. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 2004; 4:948-58. [PMID: 14631355 DOI: 10.1038/nrg1228] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A tightly regulated and highly specific system for the degradation of individual proteins is essential for the survival of all organisms. In eukaryotes, this is achieved by the tagging of proteins with ubiquitin and their subsequent recognition and degradation by the 26S proteasome. In plants, genetic analysis has identified many genes that regulate developmental pathways. Subsequent analysis of these genes has implicated ubiquitin and the 26S proteasome in the control of diverse developmental processes, and indicates that proteolysis is a crucial regulatory step throughout the life cycle of plants.
Collapse
Affiliation(s)
- James A Sullivan
- Deptartment of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208104, 165 Prospect Street, New Haven, Connecticut 06520-8104, USA
| | | | | |
Collapse
|
120
|
Takahashi N, Kuroda H, Kuromori T, Hirayama T, Seki M, Shinozaki K, Shimada H, Matsui M. Expression and interaction analysis of Arabidopsis Skp1-related genes. PLANT & CELL PHYSIOLOGY 2004; 45:83-91. [PMID: 14749489 DOI: 10.1093/pcp/pch009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Specific protein degradation has been observed in several aspects of development and differentiation in many organisms. One example of such proteolysis is regulated by protein polyubiquitination that is promoted by the SCF complex consisting of Skp1, cullin, and an F-box protein. We examined the activities of the Arabidopsis Skp1-related proteins (ASKs). Among 19 annotated ASK genes, we isolated 16 of the corresponding cDNAs (ASK1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19), and examined their gene products for interactions with 24 representatives of F-box proteins carrying various classes of the C-terminal domains using the yeast two-hybrid system. As a result, we found diverse binding specificities: ASK1, ASK2, ASK11 and ASK12 interacted well with COI1, FKF1, UFO-like protein, LRR-containing F-box proteins, and other F-box proteins with unknown C-terminal motifs. We also observed specific interaction between F-box proteins and ASK3, ASK9, ASK13, ASK14, ASK16 and ASK18. In contrast, we detected no interaction between any of the 12 ASK proteins and F-box proteins containing CRFA, CRFB or CRFC domains. Both histochemical and RT-PCR analysis of eight ASK genes expression revealed unique expression patterns for the respective genes.
Collapse
Affiliation(s)
- Naoki Takahashi
- Plant Function Exploration Team, Plant Functional Genomics Research Group, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suyehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Liu F, Ni W, Griffith ME, Huang Z, Chang C, Peng W, Ma H, Xie D. The ASK1 and ASK2 genes are essential for Arabidopsis early development. THE PLANT CELL 2004; 16:5-20. [PMID: 14688296 PMCID: PMC301391 DOI: 10.1105/tpc.017772] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The requirement of CUL1 for Arabidopsis embryogenesis suggests that Skp1-CUL1-F-box protein (SCF) complexes play important roles during embryo development. Among the 21 Arabidopsis Skp1-like genes (ASKs), it is unknown which ASK gene(s) is essential for embryo development. In this study, we demonstrate a vital role for ASK1 and ASK2 in Arabidopsis embryogenesis and postembryonic development through analysis of the ask1 ask2 double mutant. Our detailed analysis indicates that the double mutations in both ASK1 and ASK2 affect cell division and cell expansion/elongation and cause a developmental delay during embryogenesis and lethality in seedling growth. The expression patterns of ASK1 and ASK2 were examined further and found to be consistent with their roles in embryogenesis and seedling development. We propose that mutations in ASK1 and ASK2 abolish all of the ASK1- and ASK2-based SCF and non-SCF complexes, resulting in alteration of gene expression and leading to defects in growth and development.
Collapse
Affiliation(s)
- Fuquan Liu
- Laboratory of Plant Signal Transduction, Institute of Molecular and Cell Biology, 117609 Republic of Singapore
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Much of plant physiology, growth, and development is controlled by the selective removal of short-lived regulatory proteins. One important proteolytic pathway involves the small protein ubiquitin (Ub) and the 26S proteasome, a 2-MDa protease complex. In this pathway, Ub is attached to proteins destined for degradation; the resulting Ub-protein conjugates are then recognized and catabolized by the 26S proteasome. This review describes our current understanding of the pathway in plants at the biochemical, genomic, and genetic levels, using Arabidopsis thaliana as the model. Collectively, these analyses show that the Ub/26S proteasome pathway is one of the most elaborate regulatory mechanisms in plants. The genome of Arabidopsis encodes more than 1400 (or >5% of the proteome) pathway components that can be connected to almost all aspects of its biology. Most pathway components participate in the Ub-ligation reactions that choose with exquisite specificity which proteins should be ubiquitinated. What remains to be determined is the identity of the targets, which may number in the thousands in plants.
Collapse
Affiliation(s)
- Jan Smalle
- Department of Genetics, 445 Henry Mall, University of Wisconsin-Madison, Madison, Wisconsin 53706-1574, USA
| | | |
Collapse
|
123
|
Quirino BF, Bent AF. Deciphering host resistance and pathogen virulence: the Arabidopsis/Pseudomonas interaction as a model. MOLECULAR PLANT PATHOLOGY 2003; 4:517-30. [PMID: 20569411 DOI: 10.1046/j.1364-3703.2003.00198.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SUMMARY The last decade has witnessed steady progress in deciphering the molecular basis of plant disease resistance and pathogen virulence. Although contributions have been made using many different plant and pathogen species, studies of the interactions between Arabidopsis thaliana and Pseudomonas syringae have yielded a particularly significant body of information. The present review focuses on recent findings regarding R gene products and the guard hypothesis, RAR1/SGT1 and other examples where protein processing activity is implicated in disease resistance or susceptibility, the use of microarray expression profiling to generate information and experimental leads, and important molecular- and genome-level discoveries regarding P. syringae effectors that mediate bacterial virulence. The development of the Arabidopsis-Pseudomonas model system is also reviewed briefly, and we close with a discussion of characteristics to consider when selecting other pathosystems as experimentally tractable models for future research.
Collapse
Affiliation(s)
- Betania F Quirino
- Genomics and Biotecnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | |
Collapse
|
124
|
Hare PD, Seo HS, Yang JY, Chua NH. Modulation of sensitivity and selectivity in plant signaling by proteasomal destabilization. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:453-62. [PMID: 12972046 DOI: 10.1016/s1369-5266(03)00080-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ubiquitin (Ub) system of intracellular protein degradation regulates the abundance of numerous proteins that control plant growth and development. Recent advances have begun to illustrate how environmental and endogenous signals affect plant responses through Ub-related proteolysis, the importance of combinatorial control in regulated protein destruction and how multiprotein complexes confer sensitivity and selectivity to ubiquitination. Further insight into the cell biology of Ub-chain assembly and proteasomal degradation, as well as into the relationship between proteolysis and other regulatory modifications, will be essential for understanding the mechanistic basis of the integration of diverse plant signals.
Collapse
Affiliation(s)
- Peter D Hare
- The Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021-6399, USA
| | | | | | | |
Collapse
|
125
|
Abstract
Recent important discoveries in several laboratories have identified SGT1 as an essential component of R gene-mediated disease resistance in plants. The precise molecular function of SGT1 remains unknown, although sequence analysis and structural predictions reveal that SGT1 has features of co-chaperones that associate with HSP90 in animals. This review will describe the role of SGT1 in R gene-mediated plant defence and discuss how SGT1 may regulate this process.
Collapse
Affiliation(s)
- Paul Muskett
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
126
|
Zhao D, Ni W, Feng B, Han T, Petrasek MG, Ma H. Members of the Arabidopsis-SKP1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:203-17. [PMID: 12970487 PMCID: PMC196598 DOI: 10.1104/pp.103.024703] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 04/25/2003] [Accepted: 05/29/2003] [Indexed: 05/18/2023]
Abstract
Ubiquitin-mediated proteolysis by the proteasome is a critical regulatory mechanism controlling many biological processes. In particular, SKP1, cullin/CDC53, F-box protein (SCF) complexes play important roles in selecting substrates for proteolysis by facilitating the ligation of ubiquitin to specific proteins. In plants, SCF complexes have been found to regulate auxin responses and jasmonate signaling and may be involved in several other processes, such as flower development, circadian clock, and gibberellin signaling. Although 21 Skp1-related genes, called Arabidopsis-SKP1-like (ASK), have been uncovered in the Arabidopsis genome, ASK1 is the only gene that has been analyzed genetically. As a first step toward understanding their functions, we tested for expression of 20 ASK genes using reverse transcription-polymerase chain reaction experiments. Also, we examined the expression patterns of 11 ASK genes by in situ hybridizations. The ASK genes exhibit a spectrum of expression levels and patterns, with a large subset showing expression in the flower and/or fruit. In addition, the ASK genes that have similar sequences tend to have similar expression patterns. On the basis of the expression results, we selectively suppressed the expression of a few ASK genes using RNA interference. Compared with the ask1 mutant, the strong ASK1 RNA interference (RNAi) line exhibited similar or enhanced phenotypes in both vegetative and floral development, whereas ASK11 RNAi plants had normal vegetative growth but mild defects in flower development. The diverse expression patterns and distinct defects observed in RNAi plants suggest that the ASK gene family may collectively perform a range of functions and may regulate different developmental and physiological processes.
Collapse
Affiliation(s)
- Dazhong Zhao
- Department of Biology and Huck Institute for Life Sciences, 313 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
127
|
Devoto A, Muskett PR, Shirasu K. Role of ubiquitination in the regulation of plant defence against pathogens. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:307-11. [PMID: 12873523 DOI: 10.1016/s1369-5266(03)00060-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ubiquitination is emerging as a common regulatory mechanism that controls a range of cellular processes in plants. Recent exciting discoveries from several laboratories suggest that ubiquitination may also play an important role in plant disease resistance. Several putative ubiquitin ligases have been identified as defence regulators. In addition, a combination of genetic screens and gene-silencing technologies has identified subunits and proposed regulators of SCF ubiquitin ligases as essential components of resistance (R)-gene-mediated resistance. Although no ubiquitin ligase targets that are associated with disease resistance have yet been identified in plants, there is evidence that this well-known protein-modification system may regulate plant defences against pathogens.
Collapse
Affiliation(s)
- Alessandra Devoto
- The Sainsbury Laboratory, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
128
|
Tör M, Yemm A, Holub E. The role of proteolysis in R gene mediated defence in plants. MOLECULAR PLANT PATHOLOGY 2003; 4:287-296. [PMID: 20569389 DOI: 10.1046/j.1364-3703.2003.00169.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Within the last 10 years, numerous R genes have been cloned from natural genetic variation in model as well as crop plants, and these have been classified according to their motifs. Some of the downstream signalling components have also been identified by artificial mutagenesis. Recently, cloning of three of these signalling genes (COI1, RAR1 and SGT1b) from Arabidopsis, barley and tobacco have helped uncover the physiological link between defence signalling and ubiquitin-mediated protein degradation. The physical association of COI1 and SGT1b with the components of ubiquitin-ligase complexes has been shown. In addition, post-transcriptional silencing of some of the subunits of the ubiquitin-ligase complex has led to a loss of resistance, indicating that protein degradation may also act as a regulatory mechanism in plant defence. Over the next few years, we should expect to see more examples of the interplay between the defence response and protein degradation in plants.
Collapse
Affiliation(s)
- Mahmut Tör
- Sustainable Disease Resistance Team, Horticulture Research International, Wellesbourne, Warwick, CV35 9EF, UK
| | | | | |
Collapse
|
129
|
Slusarenko AJ, Schlaich NL. Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). MOLECULAR PLANT PATHOLOGY 2003; 4:159-70. [PMID: 20569375 DOI: 10.1046/j.1364-3703.2003.00166.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED SUMMARY Downy mildew of Arabidopsis is not a hugely destructive disease of an important crop plant, neither is it of any economic importance. The most obvious symptom, the aerial conidiophores, might, at a glance to the casual observer, be mistaken for the trichomes normally present on the leaves. However, a huge research effort is being devoted to this humble pathosystem which became established as a laboratory model in the 1990s. Since then, enormous progress has been made in cloning and characterizing major genes for resistance (RPP genes) and in defining many of their downstream signalling components, some of them RPP-gene specific. Resistance is generally associated with an oxidative burst and a salicylic acid dependent hypersensitive reaction type of programmed cell death. Biological and chemical induction of systemic acquired resistance (SAR) in Arabidopsis protecting against downy mildew were demonstrated early on, and investigations of mutants have contributed fundamentally to our understanding of host-pathogen interactions and the mechanisms of plant defence. This review will attempt to collate the wealth of information which has accrued with this pathosystem in the last decade and will attempt to predict future research directions by drawing attention to some still unanswered questions. TAXONOMY Hyaloperonospora Constant. parasitica (Pers.:Fr) Fr. (formerly Peronospora parasitica), Kingdom Chromista, Phylum Oomycota, Order Peronosporales, Family Peronosporaceae, Genus Hyaloperonospora, of which it is the type species. The taxonomy of the group of organisms causing downy mildew of brassicas has undergone a number of revisions since Corda (1837) originally coined the genus Peronospora. All isolates pathogenic on brassicas were described initially as P. parasitica but Gäumann (1918) classified isolates from different brassicaceous hosts distinctly and thus defined 52 new species based on conidial dimensions and host range. After much debate it was decided to revert to the aggregate species of P. parasitica for all brassica-infecting downy mildews, whilst recognizing that these show some isolate-specific differences (Yerkes and Shaw, 1959). The latest re-examination of P. parasitica by Constantinescu and Fatehi (2002) has placed isolates of P. parasitica and five other downy mildew species in a clear new subgroup on the basis of their hyaline conidiospores, recurved conidiophore branch tips and ITS1, ITS2 and 5.8S rDNA sequence comparisons; meriting the coining of the new genus 'Hyaloperonospora Constant'. The class Oomycetes in the Kingdom Chromista (Straminipila) comprises fungus-like organisms with heterokont zoospores (i.e. possessing two types of flagellae, whiplash and tinsel). The Oomycetes have non-septate hyphae with cellulose-based walls containing very little or no chitin. The latter is regarded as a major distinction separating the Oomycetes from the true fungi, and reports of the presence of chitin had generally been regarded as due to small amounts of contamination (Gams et al., 1998). However, in view of recent studies by Werner et al. (2002) showing a chitin synthase gene in an Oomycete and demonstrating the presence of the polymer itself by an interaction with wheat germ agglutinin (WGA), it is perhaps safe to say that we have not seen the last taxonomic revision which will affect this group! The families within the Oomycetes show a clear evolutionary trend to a lesser absolute dependence on an aqueous environment and some members of the Peronosporales, e.g. H. parasitica, have no zoosporic stage in the life cycle. HOST RANGE Isolates infecting Arabidopsis thaliana have so far proven to be non-pathogenic on other crucifers tested but exist in a clear gene-for-gene relationship with different host ecotypes. Disease symptoms: Infections are first apparent to the naked eye as a carpet or 'down' of conidiophores covering the upper and lower surfaces of leaves and petioles. This symptom is characteristic of this group of diseases and lends it its name. USEFUL WEBSITES <http://ppathw3.cals.cornell.edu/PP644/ references.htm> (links to references on Oomycetes), <http://www.arabidopsis.org/> (TAIR, The Arabidopsis Information Resource).
Collapse
Affiliation(s)
- Alan J Slusarenko
- Department of Plant Physiology (BioIII), RWTH Aachen, Worringerweg 1, D-52056 Aachen, Germany
| | | |
Collapse
|
130
|
McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, Steber CM. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. THE PLANT CELL 2003; 15:1120-30. [PMID: 12724538 PMCID: PMC153720 DOI: 10.1105/tpc.010827] [Citation(s) in RCA: 405] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis SLY1 (SLEEPY1) gene positively regulates gibberellin (GA) signaling. Positional cloning of SLY1 revealed that it encodes a putative F-box protein. This result suggests that SLY1 is the F-box subunit of an SCF E3 ubiquitin ligase that regulates GA responses. The DELLA domain protein RGA (repressor of ga1-3) is a repressor of GA response that appears to undergo GA-stimulated protein degradation. RGA is a potential substrate of SLY1, because sly1 mutations cause a significant increase in RGA protein accumulation even after GA treatment. This result suggests SCF(SLY1)-targeted degradation of RGA through the 26S proteasome pathway. Further support for this model is provided by the observation that an rga null allele partially suppresses the sly1-10 mutant phenotype. The predicted SLY1 amino acid sequence is highly conserved among plants, indicating a key role in GA response.
Collapse
Affiliation(s)
- Karen M McGinnis
- United States Department of Agriculture-Agricultural Research Service, Washington State University, Pullman 99164-6420, USA
| | | | | | | | | | | | | |
Collapse
|
131
|
Hammond-Kosack KE, Parker JE. Deciphering plant-pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 2003; 14:177-93. [PMID: 12732319 DOI: 10.1016/s0958-1669(03)00035-1] [Citation(s) in RCA: 442] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Activation of local and systemic plant defences in response to pathogen attack involves dramatic cellular reprogramming. Over the past 10 years many novel genes, proteins and molecules have been discovered as a result of investigating plant-pathogen interactions. Most attempts to harness this knowledge to engineer improved disease resistance in crops have failed. Although gene efficacy in transgenic plants has often been good, commercial exploitation has not been possible because of the detrimental effects on plant growth, development and crop yield. Biotechnology approaches have now shifted emphasis towards marker-assisted breeding and the construction of vectors containing highly regulated transgenes that confer resistance in several distinct ways.
Collapse
Affiliation(s)
- Kim E Hammond-Kosack
- Rothamsted Research, Plant-Pathogen Interactions Division, Harpenden, Herts, AL5 2JQ, UK.
| | | |
Collapse
|
132
|
Hui D, Iqbal J, Lehmann K, Gase K, Saluz HP, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata: V. microarray analysis and further characterization of large-scale changes in herbivore-induced mRNAs. PLANT PHYSIOLOGY 2003; 131:1877-93. [PMID: 12692347 PMCID: PMC166944 DOI: 10.1104/pp.102.018176] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 12/26/2002] [Accepted: 01/14/2003] [Indexed: 05/18/2023]
Abstract
We extend our analysis of the transcriptional reorganization that occurs when the native tobacco, Nicotiana attenuata, is attacked by Manduca sexta larvae by cloning 115 transcripts by mRNA differential display reverse transcription-polymerase chain reaction and subtractive hybridization using magnetic beads (SHMB) from the M. sexta-responsive transcriptome. These transcripts were spotted as cDNA with eight others, previously confirmed to be differentially regulated by northern analysis on glass slide microarrays, and hybridized with Cy3- and Cy5-labeled probes derived from plants after 2, 6, 12, and 24 h of continuous attack. Microarray analysis proved to be a powerful means of verifying differential expression; 73 of the cloned genes (63%) were differentially regulated (in equal proportions from differential display reverse transcription-polymerase chain reaction and SHMB procedures), and of these, 24 (32%) had similarity to known genes or putative proteins (more from SHMB). The analysis provided insights into the signaling and transcriptional basis of direct and indirect defenses used against herbivores, suggesting simultaneous activation of salicylic acid-, ethylene-, cytokinin-, WRKY-, MYB-, and oxylipin-signaling pathways and implicating terpenoid-, pathogen-, and cell wall-related transcripts in defense responses. These defense responses require resources that could be made available by decreases in four photosynthetic-related transcripts, increases in transcripts associated with protein and nucleotide turnover, and increases in transcripts associated with carbohydrate metabolism. This putative up-regulation of defense-associated and down-regulation of growth-associated transcripts occur against a backdrop of altered transcripts for RNA-binding proteins, putative ATP/ADP translocators, chaperonins, histones, and water channel proteins, responses consistent with a major metabolic reconfiguration that underscores the complexity of response to herbivore attack.
Collapse
Affiliation(s)
- Dequan Hui
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
133
|
Lechner E, Xie D, Grava S, Pigaglio E, Planchais S, Murray JAH, Parmentier Y, Mutterer J, Dubreucq B, Shen WH, Genschik P. The AtRbx1 protein is part of plant SCF complexes, and its down-regulation causes severe growth and developmental defects. J Biol Chem 2002; 277:50069-80. [PMID: 12381738 DOI: 10.1074/jbc.m204254200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently in yeast and animal cells, one particular class of ubiquitin ligase (E3), called the SCF, was demonstrated to regulate diverse processes including cell cycle and development. In plants SCF-dependent proteolysis is also involved in different developmental and hormonal regulations. To further investigate the function of SCF, we characterized at the molecular level the Arabidopsis RING-H2 finger protein AtRbx1. We demonstrated that the plant gene is able to functionally complement a yeast knockout mutant strain and showed that AtRbx1 protein interacts physically with at least two members of the Arabidopsis cullin family (AtCul1 and AtCul4). AtRbx1 also associates with AtCul1 and the Arabidopsis SKP1-related proteins in planta, indicating that it is part of plant SCF complexes. AtRbx1 mRNAs accumulate in various tissues of the plant, but at higher levels in tissues containing actively dividing cells. Finally to study the function of the gene in planta, we either overexpressed AtRbx1 or reduced its expression by a dsRNA strategy. Down-regulation of AtRbx1 impaired seedling growth and development, indicating that the gene is essential in plants. Furthermore, the AtRbx1-silenced plants showed a reduced level of AtCul1 protein, but accumulated higher level of cyclin D3.
Collapse
Affiliation(s)
- Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS, 12, rue du Général Zimmer, 67084 Strasbourg Cédex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Kuroda H, Takahashi N, Shimada H, Seki M, Shinozaki K, Matsui M. Classification and expression analysis of Arabidopsis F-box-containing protein genes. PLANT & CELL PHYSIOLOGY 2002; 43:1073-85. [PMID: 12407186 DOI: 10.1093/pcp/pcf151] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
F-box proteins regulate diverse cellular processes, including cell cycle transition, transcriptional regulation and signal transduction, by playing roles in Skp1p-cullin-F-box protein (SCF) complexes or non-SCF complexes. F-box proteins are encoded by a large gene family. Our database search revealed that at least 568 F-box protein genes are present in the Arabidopsis thaliana (Arabidopsis) genome. Domain search analysis using SMART and Pfam-A databases revealed that 67 of the F-box proteins contained Kelch repeats and 29 contained leucine-rich repeats (LRRs). Interestingly only two F-box proteins contained WD40 repeats that are found in many F-box proteins of other organisms. Kelch repeats, LRRs and WD40 repeats are implicated in protein-protein interactions. This analysis also resulted in the finding of several unique functional domains; however, 448 of the F-box proteins did not contain any known domains. Therefore, these proteins were used to search the Pfam-B database to find novel domains, and three putative ones were found. These domain search analyses led us to classify the Arabidopsis F-box proteins into at least 19 groups based on their domain structures. Macro array analysis showed that several F-box protein genes are expressed in a tissue-specific manner.
Collapse
Affiliation(s)
- Hirofumi Kuroda
- Plant Function Exploration Team, Plant Functional Genomics Research Group, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suyehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | |
Collapse
|